JP3618595B2 - Production method of soundproofing material - Google Patents

Production method of soundproofing material Download PDF

Info

Publication number
JP3618595B2
JP3618595B2 JP23628099A JP23628099A JP3618595B2 JP 3618595 B2 JP3618595 B2 JP 3618595B2 JP 23628099 A JP23628099 A JP 23628099A JP 23628099 A JP23628099 A JP 23628099A JP 3618595 B2 JP3618595 B2 JP 3618595B2
Authority
JP
Japan
Prior art keywords
chip
fibrous binder
solid
molding
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23628099A
Other languages
Japanese (ja)
Other versions
JP2001060090A (en
Inventor
敏幸 有尾
崇 中
淳一 菱田
哲靖 秋田
育司 辻田
拓治 梶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Boshoku Corp
Toyota Motor Corp
Original Assignee
Toyota Boshoku Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Boshoku Corp, Toyota Motor Corp filed Critical Toyota Boshoku Corp
Priority to JP23628099A priority Critical patent/JP3618595B2/en
Priority to US09/637,902 priority patent/US6576172B1/en
Priority to DE60039390T priority patent/DE60039390D1/en
Priority to EP20000118317 priority patent/EP1078724B8/en
Publication of JP2001060090A publication Critical patent/JP2001060090A/en
Application granted granted Critical
Publication of JP3618595B2 publication Critical patent/JP3618595B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は防音材の製造方法に関し、更に詳しくは、主として軽量材質のチップ状固形物からなる原材料と熱可塑性の繊維状バインダとを混合し、混合された処理材を加熱プレスして、繊維状バインダの熱溶融によりチップ状固形物を互いに結着させると共に防音材を成形する方式の、防音材の製造方法に関する。
【0002】
本発明は、原材料の面からは、例えば車両の廃材よりなる非金属性シュレッダーダストを原材料としてリサイクルする防音材、又、用途の面からは、例えばダッシュサイレンサーやフロアサイレンサー等の車両用途に用いる防音材、等に特に好ましく適用される。
【0003】
【従来の技術】
嵩密度が低く、防音,防振性能の優れた自動車用ダッシュサイレンサー,フロアサイレンサー等の防音材を製造するための有力な技術の一つとして、軽量材質のチップ状固形物からなる原材料と熱可塑性の繊維状バインダとを混合して加熱プレスする方法がある。
【0004】
特に、上記軽量材質のチップ状固形物として、例えば車両の廃材より抽出された非金属性シュレッダーダストを有効に利用する場合には、経済的であると共に材料リサイクルの観点からも有意義である。
【0005】
特開平8−112584号公報に係る「粒状複合材料とその製造方法」においては、シュレッダーダストに由来するウレタン,プラスチック,ゴム等の軽量材質のチップ状固形物を、繋ぎ材としての繊維状熱可塑性樹脂と混合し、この混合物を加熱、固化して所定形状の固形体とする複合材料二次加工体の製造方法が開示されている。
【0006】
更に、未だ出願公開されていないが、本件出願人の出願に係る特願平10−589号の願書に添付した明細書では、チップ状固形物と熱可塑性の繊維状バインダとの集合体を圧縮状態に拘束して、これを少量ずつ掻取る解繊混合処理により両者を良好に混合させ、繊維状バインダの熱溶融によりチップ状固形物を互いに結着させる防音材の製造方法を提案している。
【0007】
【発明が解決しようとする課題】
ところで、チップ状固形物からなる原材料を熱可塑性の繊維状バインダで良好に結着させ、しかも防音材の各部分において均一な材質を維持するためには、チップ状固形物と繊維状バインダとが互いに細かくかつ均一に分散して混合されている事が要求される。
【0008】
前記特開平8−112584号公報に開示された技術は、発明の主眼が「各種チップ状固形物のサイズや嵩密度を管理して、シュレッダーダストに処理上の一様性を与える」と言う点にあり、「チップ状固形物と繊維状バインダとを互いに細かく均一に分散して混合する」と言う要求に関しては、特段に注目すべき技術を開示していない。
【0009】
一方、前記特願平10−589号の願書に添付した明細書に記載された防音材の製造方法は、繊維状バインダの細かい解繊と、そのチップ状固形物との混合が、同時にしかも少量ずつ行われるために、両者を互いに細かくかつ均一に分散して混合させる点で、優れた効果が得られる。
【0010】
しかしながら、上記特願平10−589号の出願後、本願発明者が更に研究を進めた結果、繊維状バインダがチップ状固形物に比較して著しく比重が小さい点から、圧縮状態に拘束して掻取り処理に供されるチップ状固形物と繊維状バインダとの集合体の供給形態に、更に工夫の余地があることを見出した。
【0011】
そこで本発明は、チップ状固形物を熱可塑性の繊維状バインダを介して互いに結着させる方式の防音材の製造方法において、チップ状固形物と繊維状バインダとを一層理想的に細かく均一に分散・混合させ得る技術を提供することを、その解決すべき課題とする。
【0012】
【課題を解決するための手段】
上記課題を解決するための本発明の構成は、主として軽量材質のチップ状固形物からなる原材料と熱可塑性の繊維状バインダとを混合して処理材とする混合工程と、処理材を加熱プレスして繊維状バインダの熱溶融によりチップ状固形物を互いに結着させると共に防音材のプレス成形を行う成形工程とを含む防音材の製造方法において、前記混合工程は、チップ状固形物を上下層とし繊維状バインダを中間層とする積層体を圧縮状態に拘束しつつ、掻取り用突起部材により少量ずつ掻取る解繊混合処理を含む、防音材の製造方法である。
【0013】
【発明の作用・効果】
混合工程中の解繊混合処理において、圧縮状態に拘束されたチップ状固形物と繊維状バインダとの積層体を準備し、掻取り用突起部材を用いて積層体を少量ずつ掻取ると、その掻取りの度に、少量の繊維状バインダが強制的に千切られて細かく解繊された状態で掻取られ、これと同時に少量のチップ状固形物も掻取られるために、個々のチップ状固形物に対して解繊された繊維状バインダがまとわり着く状態となる。
【0014】
従って、掻取られたものの集積体(以下、これを「解繊混合処理材」と言う)においては、個々のチップ状固形物に解繊された繊維状バインダがまとわり着いた状態で、両者が細かくかつ均一に分散して混合している。
【0015】
しかも掻取られるチップ状固形物と繊維状バインダとは、著しく比重の小さい繊維状バインダを中間層とし、その上下層をチップ状固形物とした積層体として供給されるので、掻取られたチップ状固形物と繊維状バインダとが、比重差による分布密度の勾配を生ずることなく、極めて均一に分散して混合される。
【0016】
図1にこの作用のイメージを表す。図1(a)は解繊混合処理前のチップ状固形物1と繊維状バインダ2との積層体を示し、繊維状バインダ2は解繊されていてシート状の中間層2aを構成し、その上下両側にはチップ状固形物1からなる上下層1aが構成されている。これらの中間層2a及び上下層1aは、実際には密に圧縮された状態に拘束されて掻取られる。
【0017】
図1(b)は解繊混合処理材の状態を示し、掻取り処理により中間層2aの繊維状バインダ2が強制的に細かく解繊されると共に、これが上下層1aを構成していたチップ状固形物1に個々にまとわり着き、両者が極めて細かくかつ均一に分散混合している。
【0018】
上記のような解繊混合処理材を結着工程に供することにより、設計通りの防音性能、強度、保形性等を備え、かつ部分毎に設計外の品質のバラツキを伴わない防音材を製造することができる。
【0019】
なお、仮に、掻取り処理に供されるチップ状固形物と繊維状バインダとが、繊維状バインダの未解繊シートの上にチップ状固形物が散布された2層構造の集合物であったとした場合でも、チップ状固形物と繊維状バインダの両者は細かく均一に分散混合されるが、この場合には繊維状バインダの上側層を構成するチップ状固形物が存在しないために、その均一な分散混合の程度は図1(a)に示す積層体の場合には及ばない。
【0020】
【発明の実施の形態】
(原材料)
原材料は、主として軽量材質のチップ状固形物からなる。その代表的な実施形態の一つが、車両の廃材よりなるシュレッダーダストから金属,ガラス片,ワイヤハーネス等を除外した非金属性シュレッダーダストである。特に好ましい原材料として、車両廃材から抽出したウレタン,繊維を主とする良質のシュレッダーダストを挙げることができる。
【0021】
この場合、軽量材質のチップ状固形物としては、ウレタンフォーム等のプラスチックフォームの断片が過半量を占め、その他繊維とで主体をなす。この繊維とは、車両のシート表皮等を構成していた織物の断片や繊維屑等が混入したものである。原材料中には、防音材の製造工程及び防音材製品の品質を阻害しない限度において、金属,ガラス等の微小な断片が若干混入することも許される。
【0022】
更に、後述するように本発明に係る防音材のトリム端材や不良品を解繊・粉砕して原材料として再使用することもできるし、車両廃材に由来する非金属性シュレッダーダスト以外の、他の産業分野に由来する廃材を本発明の原材料としてリサイクルしても良く、場合によってはプラスチック,ゴム,木材等の新材を用いてチップ状固形物を調製し、これを原材料としても良い。
【0023】
チップ状固形物の形状やサイズは限定されない。但し、処理効率の向上及び好ましい防音材の形成のためには、極端にアスペクト比の大きな形状(膜状,繊維状等)でないこと、チップの平均粒子径が20mm程度以下であること等が、より好ましい。
【0024】
(熱可塑性の繊維状バインダ)
熱可塑性の繊維状バインダとしては、通常は、繊維状の熱可塑性樹脂が用いられる。樹脂以外の熱可塑性材料、例えば熱可塑性ゴム等からなる繊維状バインダも用いることができる。又、防音材の加熱成形時に溶融する低融点の鞘部と、防音材の加熱成形時に溶融しない高融点の芯部とからなる芯鞘構造の繊維状バインダは、特に好ましく利用できる。
【0025】
繊維状バインダにおける繊維の形態及び繊維長は限定されない。繊維の代表的な形態の例として、比較的長い繊維が交絡して毛玉状になった綿毛状繊維や、比較的短い繊維が束になった集束状繊維などがある。なお、繊維状バインダが結着すべきチップ状固形物のサイズとの関係においては、混合性の向上及びそれに伴う防音特性の均一性と言う理由から、繊維長とチップの平均粒子径が同程度の寸法であることが、より好ましい。
【0026】
通常の従来技術において、例えば自動車用ダッシュサイレンサを製造する場合、チップ状固形物からなる原材料Xに対する繊維状バインダYの使用量は、重量比でX:Y=8:2程度、もしくはYの使用量を更に多くする必要があると考えられるが、本発明においては繊維状バインダが良好に解繊されてチップ状固形物と極めて細かく分散混合されるため、繊維状バインダYの使用量が、重量比でX:Y=9:1程度で足りる。但し、繊維状バインダの使用量は限定されない。
【0027】
(混合工程)
混合工程は、主として軽量材質のチップ状固形物からなる原材料と、熱可塑性の繊維状バインダとを混合する工程である。この工程には少なくとも、チップ状固形物を上下層とし前記繊維状バインダを中間層とする積層体を準備する工程と、後述する解繊混合処理とが含まれる。
【0028】
積層体としては、中間層である繊維状バインダに対してチップ状固形物からなる上下層が構成されていれば良く、例えば前記図1(a)に示すような3層のサンドイッチ構造であっても良いし、同様な構成の5層又はそれ以上の奇数層のサンドイッチ構造であっても良い。必要な混合量、原材料の種類によって、これらの積層構成を変化させることができる。
【0029】
そして積層体を準備するための前処理として、シュレッダーダストのかたまりとして供給されたチップ状固形物を、周面に針状突起を有する回転シリンダ等により予め分散させておいたり、繊維状バインダを解繊機で予め解繊しておくことも好ましいが、かかる前処理は不可欠ではない。
【0030】
積層体の形成方法は限定されないが、例えば、積層体を解繊混合処理工程へ送り込むためのベルトコンベア等の搬送手段を作動させつつ、その最上流側の搬送面上に位置するホッパ等からまずチップ状固形物を供給して堆積させることにより下層を構成し、次いでその下流側の搬送面上に位置するホッパ等から繊維状バインダを供給して堆積させることにより中間層を構成し、更にその下流側の搬送面上に位置するホッパ等からチップ状固形物を供給して堆積させることにより上層を構成する、と言う方法等により、簡易に形成することができる。
【0031】
(解繊混合処理)
解繊混合処理は、圧縮状態に拘束されたチップ状固形物と繊維状バインダとの上記積層体を、掻取り用突起部材により少量ずつ掻取る処理である。
【0032】
積層体を圧縮状態に拘束するための実施形態は、その目的を達する限りにおいて限定されない。その代表的な例が、適宜な搬送手段により搬送される積層体を対の回転ローラ間に送り込んで、圧縮しつつ押し出すことである。この実施形態においては、回転ローラ間より押し出される積層体を順次掻取って行けばよいから、解繊混合処理を連続して効率的に行うことができる。
【0033】
その他の実施形態として、例えば、往復動式の対の押圧体に横送り機構を備えさせ、積層体をその一部がはみ出す状態で押圧体間に圧縮状態に拘束してはみ出した部分を掻取る操作と、積層体の拘束を解除して横送りすることにより再度積層体の一部をはみ出させる操作とを繰り返すような間欠方式等も可能である。
【0034】
掻取り用突起部材による掻取りの実施形態も、その目的を達する限りにおいて限定されない。その代表的な例が、周面に針状突起を有する回転シリンダに向けて圧縮状態に拘束された積層体を送り、針状突起によって少量ずつ掻取る方式である。この方式を前記の回転ローラ送り方式と組み合わせると、非常に優れた解繊混合処理を行うことができる。
【0035】
その他の実施形態として、例えば、櫛状に突起を備えた往復動する(いわゆるレシプロ方式の)掻取り用突起部材により、圧縮状態に拘束されて送られる積層体を順次少量ずつ掻取る方式等も可能である。
【0036】
解繊混合処理を終えた解繊混合処理材においては、チップ状固形物と強制的に細かく解繊された繊維状バインダとが極めて細かくかつ均一に分散して混合した状態となっているので、これをそのまま一時ストックに供しても良く、直ちに防音材製造のための次工程に供しても良い。
【0037】
(その他の工程)
本発明においては、例えば以下(1)〜(3)のような必要又は有益な任意の工程を含むことができる。
【0038】
(1)上記解繊混合処理の後に、解繊混合処理材をシート状として成形型へ搬送し、あるいは成形型へ吹き込み充填する搬送/充填工程。
【0039】
搬送/充填工程の実施形態は限定されないが、例えば、前者としては解繊混合処理材をシート状に堆積して加熱プレス式成形型の上型と下型との間に搬送する方法、後者としては解繊混合処理材を圧送気体に乗せて加熱プレス式成形型へ吹き込む方法が好適である。
【0040】
後者の方法においては、充填の進行に伴って吹き込み抵抗が漸次増大し、結果的に成形型への充填密度の均一性を確保できない恐れもあることから、吹き込み抵抗の増大に対応して吹き込み風量を低減させることも好ましい。
【0041】
成形型への吹き込み充填法を採用した場合、気体による圧送プロセスによって、チップ状固形物と繊維状バインダとが更に細かく均一な混合分散状態になると考えられる。
【0042】
(2)解繊混合処理材を成形型により加熱プレスして、熱溶融した繊維状バインダによりチップ状固形物を互いに結着させると共に、所定形状の防音材を成形する成形工程。
【0043】
この成形工程を吹き込み充填方式で行う場合において、弱く加熱するプリフォーム体の成形工程と、強く加熱する本成形工程とに分割し、前者においてはキャビティの複雑形状を避けて本成形より簡素な形状を持つ板状(例えば、平坦な板状)のプリフォーム体を形成することにより成形型への充填密度の均一性を確保し、後者においてプリフォーム体に対して目的とする防音材の複雑形状を与える、と言う方法も好ましい。
【0044】
成形サイクルにおける上記プリフォーム成形型や本成形型の加熱と冷却の繰り返しを効率化するため、上下の成形型には成形面に開口した多数の通気孔を設けると共にこれらの通気孔を上下の各成形型に付設した加熱冷却箱に連通させ、型加熱時には一方の加熱冷却箱Aから型通気孔を経由して他方の加熱冷却箱Bへ熱気を送り、型冷却時には逆に加熱冷却箱Bから型通気孔を経由して加熱冷却箱Aへ冷気を送る、と言う方法も好ましい。
【0045】
(3)上記成形後のトリム工程で生ずる端材(あるいは、成形不良品)をチップ状固形物の原材料として再使用する工程。この再使用工程においては、上記端材をまず解繊し、ついでシュレッダー処理することにより、本発明におけるチップ状固形物の原材料として、良好に再生することができる。
【0046】
【実施例】
以下において、工程のフローの一例を概念化して示す図2に基づいて、本発明の一実施例を説明する。
【0047】
図2に示す3基の原料供給サイト3,4,5は、積層体を構成して搬送するためのベルトコンベア6の搬送面上に、その搬送方向の上流側から下流側に向かって順次位置しており、搬送ベルト3a,4a,5aと、針状突起を有する対の回転シリンダ3b,4b,5bと、ホッパ3c,4c,5cとを備えている。
【0048】
そして上流側の原料供給サイト3と下流側の原料供給サイト5には、平均粒径が5mm程度の非金属性シュレッダーダスト(プラスチックフォーム材、非フォームプラスチック材、ゴム材の断片等からなる)の集合体7が供給され、中間の原料供給サイト4には、平均繊維長10mmの芯鞘構造のポリエステル短繊維からなる未解繊状態の繊維状バインダの集合体8が供給される。
【0049】
本実施例において、非金属性シュレッダーダストの集合体7(X)の合計供給量と、繊維状バインダの集合体8(Y)の供給量との比率は、重量比でX:Y=9:1程度としている。
【0050】
これらの集合体7,8は、それぞれ前記搬送ベルト3a,4a,5aによって回転シリンダ3b,4b,5bに送られる。そしてシュレッダーダストの集合体7はほぐされ(個別のチップ状固形物に分散され)、又、未解繊状態の集合体8は解繊されて、それぞれ前記ホッパ3c,4c,5cに供給され、ベルトコンベア6の搬送面上に順次下層9a,中間層9b,上層9cとして堆積され、3層の積層体9を構成する。
【0051】
次に、積層体9は、ベルトコンベア6により同期回転(いわゆる連れ回り)する対の回転ローラ10,10間に送られる。対の回転ローラ10,10間のクリアランスは、ベルトコンベア6上の積層体9の堆積厚さよりかなり小さく設定されているため、回転ローラ10,10間を通過する際の積層体9は回転ローラ10,10によって圧縮状態で拘束されている。
【0052】
そして回転ローラ10,10による送り出し方向のすぐ先には、ほとんど隙間なく隣接する状態で、周面に多数の針状突起を有する回転シリンダ11が設置されて、図の矢印方向へ回転している。
【0053】
このため、圧縮状態で拘束された積層体9は、回転ローラ10,10間を通過した直後、未だその拘束を解除されていない状態において、回転シリンダ11の針状突起により順次少量ずつ掻取られて行く。
【0054】
そしてこの際、中間層9bの繊維状バインダが少量ずつ強制的に千切られて細かく解繊された状態で掻取られ、これと同時にその上下層9a,9cのチップ状固形物も少量ずつ掻取られるために、個々のチップ状固形物に対して解繊された繊維状バインダがまとわり着く。従って、掻取られて下方に集積される解繊混合処理材12においては、前記図1(b)のように、チップ状固形物1と解繊された繊維状バインダ2が極めて細かくかつ均一に分散して混合している。
【0055】
以上の工程において、ベルトコンベア6上の積層体9の堆積厚さ、ベルトコンベア6の送り速度、回転ローラ10,10の回転速度あるいは回転シリンダ11の回転速度を調節することにより、解繊混合処理材12におけるチップ状固形物1と繊維状バインダ2との「極めて細かくかつ均一に分散した混合状態」を任意にかつ種々に微調整することができる。
【0056】
解繊混合処理材12は、集積槽13に仮集積され、次いで、例えば集積槽13に設けた適宜な供給量制御手段(図示省略)等によりコントロールされて、必要量ずつが成形装置へ送られ、搬送/充填工程及び成形工程に供される。
【0057】
成形装置は、前記集積槽13に接続されたブロア14、これに続くメインダクト15、メインダクト15から切替弁16を介して分岐した2本の分岐ダクト17,18、分岐ダクト17,18の各末端に設けた2基の成形サイト19,20(成形サイト20は成形サイト19と同一の構成であるため、図示及び詳しい説明を省略する)、及び前記切替弁16に対してダクトを以て接続された冷熱風送出機21からなる。
【0058】
成形サイト19において、詳細な図示は省略するが、本成形より簡素な成形面を備えたプリフォーム成形型22と、実際の防音材の形状に対応した成形面を備えた本成形型23とが、ライン方向に沿って順次設けられている。
【0059】
これらのプリフォーム成形型22と本成形型23はそれぞれ、型開き可能な上型と下型からなり、上下型のいずれもが、型に付設された加熱冷却箱と成形面と自由に通気させ得る多数の通気孔を備えている。更に上型と下型の側面周囲は型開きスペースを覆う金属メッシュ板で取り囲まれて、解繊混合処理材12を型内に止めると共にエアを逃がすようになっている。上下型の成形面をメッシュ板で構成しても良い。
【0060】
一般に、複雑な凹凸を伴う形状の防音材を吹き込み成形しようとする時、そのキャビティも複雑に屈折した空間となるため、キャビティ内に多数のエアだまりを生じて、幅方向,厚み方向共に解繊混合処理材を均一な密度で充填させることが困難である。
【0061】
しかし、プリフォーム成形型22によって比較的低度の加熱圧縮のもとに本成形より簡素な板形状のプリフォーム成形体24を一旦形成し、これを本成形型23に持ち込んで必要な加熱圧縮のもとに本成形体を成形することで、かかる問題を解消することができる。
【0062】
更に、上記プリフォーム成形型22への解繊混合処理材の吹き込み充填の際、充填の進行に伴って吹き込み抵抗が漸次増大するのに対応して吹き込み風量を漸次低減させ、結果的に吹き込み抵抗を一定のレベルに保つことで、プリフォーム成形型22への解繊混合処理材の充填密度の均一性を一層良好に確保して、より高品質の防音材を製造することができる。
【0063】
なお、解繊混合処理材はブロア14の作用により気体圧送されて、切替弁16を介して2基の成形サイト19,20のいずれかへ吹き込まれる。従って、例えば成形サイト19においてプリフォーム成形及び本成形が行われている時に、他方の成形サイト20においてプリフォーム成形型22への解繊混合処理材の吹き込みを行うことが可能になる。
【0064】
こうして切替弁16を有効に利用しつつ、複数の成形型においてプロセスのフェーズが異なる同時進行状態で搬送/充填工程及び成形工程を繰り返すことにより、成形型の遊び時間を低減させ、成形サイクルを向上させることができる。
【0065】
プリフォーム成形体24は、本成形型23において必要な加熱圧縮のもとに実際の防音材の形状に対応した成形・固化を受け、本成形体25として図示省略のトリム型にてトリミングされ、防音材26とトリム端材27とに分かれる。なお、本成形型23における加熱プレス成形の際に同時にトリミングを行うことも可能であり、これにより製造効率が一層向上する。
【0066】
上記トリム端材27は、再生サイト28に投入して、針状突起を有する対の回転シリンダ29によりチップ状固形物を結着している繊維状バインダを解繊し、次いで簡略図示するシュレッダー30に投入して、例えば5mm程度の平均粒径のチップ状固形物に復元することにより、良好なチップ状固形物原材料として再使用できる。但し、トリム端材27を再生サイト28で解繊処理せずにシュレッダーに投入しても、良好なチップ状固形物原材料とはならない。
【0067】
又、上記製造工程で生じえる防音材の不良品も、トリム端材27と同様の上記の処理により、良好なチップ状固形物原材料として再使用できる。
【図面の簡単な説明】
【図1】解繊混合処理の前と後との集合物の状態を示す図である。
【図2】実施例の工程のフローを示す図である。
【符号の説明】
1 チップ状固形物
2 繊維状バインダ
3,4,5 原料供給サイト
6 ベルトコンベア
7,8 集合体
9 積層体
10 回転ローラ
11 回転シリンダ
12 解繊混合処理材
19,20 成形サイト
22 プリフォーム成形型
23 本成形型
24 プリフォーム成形体
25 本成形体
27 トリム端材
28 再生サイト
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a soundproof material, and more specifically, a raw material mainly composed of a light-weight chip-like solid and a thermoplastic fibrous binder are mixed, and the mixed treatment material is heated and pressed to form a fibrous material. The present invention relates to a method for manufacturing a soundproof material, in which chip-shaped solids are bound to each other by heat melting of a binder and a soundproof material is formed.
[0002]
The present invention is a soundproofing material that recycles, for example, non-metallic shredder dust, which is a waste material of a vehicle, as a raw material in terms of raw materials, and a soundproofing material that is used for vehicle applications such as a dash silencer and a floor silencer It is particularly preferably applied to materials.
[0003]
[Prior art]
One of the leading technologies for producing soundproof materials such as automotive dash silencers and floor silencers with low bulk density and excellent soundproofing and vibration isolation performance, raw materials made of lightweight solid chips and thermoplastics There is a method of mixing and heating with a fibrous binder.
[0004]
In particular, when the non-metallic shredder dust extracted from, for example, vehicle waste is effectively used as the light-weight chip-like solid material, this is economical and significant from the viewpoint of material recycling.
[0005]
In “granular composite material and manufacturing method thereof” disclosed in Japanese Patent Application Laid-Open No. 8-112584, a fibrous thermoplastic as a connecting material is used for a chip-like solid material such as urethane, plastic, and rubber derived from shredder dust. A method of manufacturing a composite material secondary processed body that is mixed with a resin and heated and solidified to form a solid body having a predetermined shape is disclosed.
[0006]
Furthermore, in the specification attached to the application of Japanese Patent Application No. 10-589 relating to the applicant's application, the application of the chip-like solid material and the thermoplastic fibrous binder is compressed. Proposes a method for producing a soundproofing material in which the two are satisfactorily mixed and the both are mixed well by defibrating and mixing to scrape them little by little, and the chip-like solids are bound to each other by thermal melting of the fibrous binder. .
[0007]
[Problems to be solved by the invention]
By the way, in order to satisfactorily bind the raw material made of chip-like solids with a thermoplastic fibrous binder and maintain a uniform material in each part of the soundproofing material, the chip-like solids and the fibrous binder are It is required to be finely and uniformly dispersed and mixed with each other.
[0008]
The technique disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 8-112584 is that the main point of the invention is to control the size and bulk density of various chip-like solids to give shredder dust processing uniformity. Therefore, regarding the requirement that “the chip-like solid and the fibrous binder are finely and uniformly dispersed and mixed with each other”, a technique that is notable in particular is not disclosed.
[0009]
On the other hand, in the method for producing a soundproof material described in the specification attached to the application of the above Japanese Patent Application No. 10-589, the fine defibration of the fibrous binder and the mixing with the chip-like solids are simultaneously performed in a small amount. Therefore, an excellent effect is obtained in that both are finely and uniformly dispersed and mixed with each other.
[0010]
However, after the filing of the above Japanese Patent Application No. 10-589, the present inventor has further researched, and as a result, the fibrous binder is constrained to a compressed state from the point that the specific gravity is significantly smaller than the chip-like solid. It has been found that there is room for further improvement in the supply form of the aggregate of the chip-like solid material and the fibrous binder used for the scraping treatment.
[0011]
Therefore, the present invention provides a method for producing a soundproof material in which chip-like solids are bonded to each other via a thermoplastic fibrous binder, and the chip-like solid and fibrous binder are more ideally finely and uniformly dispersed.・ Provide technology that can be mixed.
[0012]
[Means for Solving the Problems]
The configuration of the present invention for solving the above-mentioned problems is a mixing process in which a raw material mainly composed of a light-weight chip-like solid and a thermoplastic fibrous binder are mixed, and a processing material is heated and pressed. And the step of bonding the chip-like solids to each other by heat melting of the fibrous binder and the press-molding of the soundproofing material, and the mixing step includes the chip-like solids as upper and lower layers. It is a method for producing a soundproofing material, including a defibrating and mixing process in which a laminated body having a fibrous binder as an intermediate layer is restrained in a compressed state and is scraped little by little by a scraping projection member.
[0013]
[Operation and effect of the invention]
In the defibrating and mixing process in the mixing step, a laminated body of chip-like solid matter and fibrous binder constrained in a compressed state is prepared, and the laminated body is scraped little by little using a scraping projection member. Each time scraping, a small amount of fibrous binder is forcibly chopped and scraped in a finely defibrated state, and at the same time, a small amount of chip-like solids are also scraped. The fiber binder that has been defibrated to the object is in a state of being settled.
[0014]
Therefore, in the aggregate of scraped materials (hereinafter referred to as “defibration mixed treatment material”), in a state where the fibrous binder defibrated into individual chip-like solids is attached, Both are finely and uniformly dispersed and mixed.
[0015]
In addition, the chip-like solid material and the fibrous binder to be scraped are supplied as a laminated body in which the fibrous binder having a remarkably small specific gravity is used as an intermediate layer, and the upper and lower layers thereof are chip-like solid materials. The solid solid and the fibrous binder are dispersed and mixed extremely uniformly without causing a distribution density gradient due to a difference in specific gravity.
[0016]
FIG. 1 shows an image of this action. FIG. 1 (a) shows a laminate of chip-like solid 1 and fibrous binder 2 before defibrating and mixing treatment, and fibrous binder 2 is defibrated to form a sheet-like intermediate layer 2a. Upper and lower layers 1a made of chip-like solids 1 are formed on both upper and lower sides. The intermediate layer 2a and the upper and lower layers 1a are actually scraped while being constrained in a densely compressed state.
[0017]
FIG. 1 (b) shows the state of the defibration mixed material, and the fibrous binder 2 of the intermediate layer 2a is forcibly finely defibrated by the scraping process, and the chip-like shape that constitutes the upper and lower layers 1a. The solids 1 are individually settled and both are finely and uniformly dispersed and mixed.
[0018]
Producing soundproofing materials that have the soundproofing performance, strength, shape retention, etc. as designed and that do not have non-designed quality variations for each part by using the above-mentioned defibrated material for the binding process can do.
[0019]
In addition, suppose that the chip-like solid substance and the fibrous binder subjected to the scraping treatment were aggregates of a two-layer structure in which the chip-like solid substance was dispersed on the undefibrated sheet of the fibrous binder. Even in this case, both the chip-like solid and the fibrous binder are finely and uniformly dispersed and mixed. In this case, since the chip-like solid constituting the upper layer of the fibrous binder does not exist, the uniform The degree of dispersion mixing does not reach the case of the laminate shown in FIG.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
(raw materials)
The raw material is mainly composed of a light-weight chip solid material. One of the typical embodiments is non-metallic shredder dust in which metal, glass pieces, wire harnesses and the like are excluded from shredder dust made of scrap material of a vehicle. Particularly preferable raw materials include high-quality shredder dust mainly composed of urethane and fibers extracted from vehicle waste materials.
[0021]
In this case, as a light-weight chip-like solid material, a plastic foam fragment such as urethane foam occupies a majority, and is mainly composed of other fibers. This fiber is a mixture of woven fabric fragments, fiber scraps, and the like that constitute the vehicle seat skin. In the raw material, it is allowed that a minute piece of metal, glass or the like is mixed into the raw material to the extent that it does not impair the production process of the soundproofing material and the quality of the soundproofing material product.
[0022]
Furthermore, as will be described later, the trim end material and the defective product of the soundproofing material according to the present invention can be defibrated and pulverized and reused as raw materials, or other than non-metallic shredder dust derived from vehicle waste materials. Waste materials derived from these industrial fields may be recycled as raw materials of the present invention. In some cases, chip-shaped solids may be prepared using new materials such as plastic, rubber, and wood, and these may be used as raw materials.
[0023]
The shape and size of the chip-like solid material are not limited. However, in order to improve the processing efficiency and form a preferable soundproof material, the shape is not extremely large in shape (film shape, fiber shape, etc.), the average particle diameter of the chip is about 20 mm or less, etc. More preferred.
[0024]
(Thermoplastic fibrous binder)
As the thermoplastic fibrous binder, a fibrous thermoplastic resin is usually used. A fibrous binder made of a thermoplastic material other than resin, such as thermoplastic rubber, can also be used. Further, a fibrous binder having a core-sheath structure composed of a low melting point sheath that melts when the soundproofing material is heat-molded and a high melting point core that does not melt when the soundproofing material is heat-molded can be used particularly preferably.
[0025]
The fiber form and fiber length in the fibrous binder are not limited. As examples of typical forms of fibers, there are fluffy fibers in which relatively long fibers are entangled to form a hairball, and bundled fibers in which relatively short fibers are bundled. In addition, in relation to the size of the chip-like solid matter to which the fibrous binder is to be bound, the fiber length and the average particle diameter of the chips are approximately the same because of the improvement of the mixing property and the uniformity of the soundproofing properties accompanying therewith. More preferably, the dimensions are
[0026]
For example, when manufacturing a dash silencer for automobiles in the conventional prior art, the amount of the fibrous binder Y used for the raw material X made of chip-like solids is about X: Y = 8: 2 by weight ratio, or Y is used. Although it is considered that the amount needs to be further increased, in the present invention, the fibrous binder is satisfactorily defibrated and is extremely finely dispersed and mixed with the chip-like solid. A ratio of X: Y = 9: 1 is sufficient. However, the amount of fibrous binder used is not limited.
[0027]
(Mixing process)
The mixing step is a step of mixing a raw material mainly composed of a light-weight chip-like solid and a thermoplastic fibrous binder. This step includes at least a step of preparing a laminate having a chip-like solid as upper and lower layers and the fibrous binder as an intermediate layer, and a defibrating and mixing process described later.
[0028]
As the laminated body, it is sufficient that the upper and lower layers made of a chip-like solid are formed with respect to the fibrous binder as the intermediate layer. For example, the laminated body has a three-layer sandwich structure as shown in FIG. Alternatively, a sandwich structure of five or more odd layers having the same configuration may be used. Depending on the required amount of mixing and the type of raw materials, these laminated structures can be changed.
[0029]
As a pretreatment for preparing the laminated body, the chip-like solid material supplied as a shredder dust mass is dispersed in advance by a rotating cylinder having needle-like protrusions on the peripheral surface, or the fibrous binder is removed. It is also preferable to defibrate in advance with a fiber machine, but such pretreatment is not essential.
[0030]
The method of forming the laminated body is not limited, but for example, while operating a conveying means such as a belt conveyor for feeding the laminated body to the defibrating and mixing process, first from a hopper or the like positioned on the conveying surface on the most upstream side. A lower layer is configured by supplying and depositing chip-like solids, and then an intermediate layer is configured by supplying and depositing a fibrous binder from a hopper or the like located on the downstream conveyance surface, and further It can be easily formed by a method of forming an upper layer by supplying and depositing chip-like solids from a hopper or the like located on the downstream conveyance surface.
[0031]
(Defibration mixing process)
The defibrating and mixing process is a process of scraping the laminated body of the chip-like solid matter and the fibrous binder constrained in a compressed state little by little with a scraping projection member.
[0032]
The embodiment for constraining the laminate to a compressed state is not limited as long as the object is achieved. A typical example is to feed a laminated body conveyed by appropriate conveying means between a pair of rotating rollers and to extrude while compressing. In this embodiment, since the laminated body extruded from between the rotating rollers may be scraped sequentially, the defibrating and mixing process can be performed continuously and efficiently.
[0033]
As another embodiment, for example, a pair of reciprocating pressing bodies is provided with a lateral feed mechanism, and a part of the stacked body protrudes while being constrained in a compressed state between the pressing bodies, and the protruding portion is scraped off. An intermittent method or the like that repeats the operation and the operation of releasing the part of the laminated body again by releasing the restraint of the laminated body and laterally feeding is also possible.
[0034]
The embodiment of the scraping by the scraping projection member is not limited as long as the purpose is achieved. A typical example is a system in which a laminated body constrained in a compressed state is sent to a rotating cylinder having needle-like protrusions on the peripheral surface and scraped little by little by the needle-like protrusions. When this method is combined with the above-described rotating roller feeding method, a very excellent defibrating and mixing process can be performed.
[0035]
As another embodiment, for example, a method of scraping a laminated body that is sent in a compressed state by a reciprocating (so-called reciprocating method) scraping member having a comb-like protrusion is sequentially and little by little. Is possible.
[0036]
In the defibrated and mixed material after the defibrating and mixing process, the chip-like solid material and the fibrous binder that has been finely defibrated forcibly are in a state of being extremely finely and uniformly dispersed and mixed. This may be used as it is for a temporary stock or may be immediately used for the next process for producing a soundproof material.
[0037]
(Other processes)
In the present invention, any necessary or beneficial steps such as the following (1) to (3) can be included.
[0038]
(1) A conveyance / filling process in which, after the defibrating and mixing process, the defibrated and mixed material is conveyed to a mold as a sheet or blown into the mold.
[0039]
The embodiment of the conveyance / filling process is not limited. For example, as the former, a method of depositing a defibrated mixed processing material in a sheet shape and conveying it between an upper mold and a lower mold of a hot press mold, as the latter Is preferably a method in which the defibrated and mixed material is placed in a pressurized gas and blown into a hot press mold.
[0040]
In the latter method, the blowing resistance gradually increases as the filling progresses, and as a result, there is a possibility that the uniformity of the filling density into the mold may not be ensured. It is also preferable to reduce.
[0041]
When the blow filling method into the mold is adopted, it is considered that the chip-like solid and the fibrous binder are further finely and uniformly mixed and dispersed by the gas pressure feeding process.
[0042]
(2) A molding step in which the defibrated and mixed material is heated and pressed by a molding die, the chip-shaped solids are bound to each other by a hot-melted fibrous binder, and a soundproof material having a predetermined shape is molded.
[0043]
When this molding process is performed by the blow filling method, it is divided into a molding process of a preform body that is weakly heated and a main molding process that is heated strongly, and the former avoids the complicated shape of the cavity and is simpler than the main molding. By forming a plate-shaped (for example, flat plate-shaped) preform body having a uniform shape, the uniformity of the packing density in the mold is ensured. The method of giving is also preferable.
[0044]
In order to increase the efficiency of repeated heating and cooling of the preform mold and the main mold in the molding cycle, the upper and lower molds are provided with a large number of vent holes opened on the molding surface, and these vent holes are provided in the upper and lower molds. Communicating with the heating / cooling box attached to the molding die, hot air is sent from one heating / cooling box A to the other heating / cooling box B via the mold vent during mold heating, and conversely from the heating / cooling box B during mold cooling. A method of sending cold air to the heating / cooling box A via the mold vent is also preferable.
[0045]
(3) A step of reusing the end material (or defective molding product) generated in the trim step after the molding as a raw material for the chip-like solid. In this reuse process, the above-mentioned end material is first defibrated and then shredded, so that it can be regenerated well as a raw material for chip-like solids in the present invention.
[0046]
【Example】
In the following, an embodiment of the present invention will be described based on FIG.
[0047]
The three raw material supply sites 3, 4, and 5 shown in FIG. 2 are sequentially positioned on the transport surface of the belt conveyor 6 for transporting the laminated body from the upstream side to the downstream side in the transport direction. The conveyor belts 3a, 4a, 5a, a pair of rotating cylinders 3b, 4b, 5b having needle-like projections, and hoppers 3c, 4c, 5c are provided.
[0048]
The upstream raw material supply site 3 and the downstream raw material supply site 5 contain non-metallic shredder dust (made of plastic foam material, non-foam plastic material, rubber material fragments, etc.) having an average particle size of about 5 mm. The aggregate 7 is supplied, and the intermediate raw material supply site 4 is supplied with an aggregate 8 of an undefined fibrous binder composed of polyester short fibers having a core-sheath structure with an average fiber length of 10 mm.
[0049]
In this example, the ratio of the total supply amount of the non-metallic shredder dust aggregate 7 (X) and the supply amount of the fibrous binder aggregate 8 (Y) is X: Y = 9: About 1
[0050]
These aggregates 7 and 8 are sent to the rotary cylinders 3b, 4b and 5b by the conveyor belts 3a, 4a and 5a, respectively. Then, the shredder dust aggregates 7 are loosened (dispersed in individual chip-like solids), and the undefibrated aggregates 8 are defibrated and supplied to the hoppers 3c, 4c, 5c, respectively. The lower layer 9a, the intermediate layer 9b, and the upper layer 9c are sequentially deposited on the conveying surface of the belt conveyor 6 to form a three-layer laminate 9.
[0051]
Next, the laminated body 9 is sent between a pair of rotating rollers 10 and 10 that rotate synchronously (so-called rotation) by the belt conveyor 6. Since the clearance between the pair of rotating rollers 10 and 10 is set to be considerably smaller than the stacking thickness of the stacked body 9 on the belt conveyor 6, the stacked body 9 when passing between the rotating rollers 10 and 10 is the rotating roller 10. , 10 in a compressed state.
[0052]
A rotating cylinder 11 having a large number of needle-like projections on the peripheral surface is installed immediately adjacent to the feeding direction by the rotating rollers 10 and 10 with almost no gap, and is rotated in the direction of the arrow in the figure. .
[0053]
For this reason, the laminate 9 constrained in the compressed state is scraped little by little by the needle-like protrusions of the rotating cylinder 11 immediately after passing between the rotary rollers 10 and 10 in a state where the restraint has not yet been released. Go.
[0054]
At this time, the fibrous binder of the intermediate layer 9b is forcibly shredded and scraped in a finely defibrated state, and at the same time, the chip-like solids of the upper and lower layers 9a and 9c are scraped little by little. Therefore, a fibrous binder that has been defibrated to individual chip-like solids is settled. Accordingly, in the defibrated mixed processing material 12 that is scraped and accumulated downward, the chip-like solid 1 and the fibrillated binder 2 are very fine and uniform as shown in FIG. Dispersed and mixed.
[0055]
In the above process, the defibrating and mixing process is performed by adjusting the thickness of the laminate 9 on the belt conveyor 6, the feed speed of the belt conveyor 6, the rotational speed of the rotating rollers 10 and 10, or the rotational speed of the rotating cylinder 11. The “mixed state of extremely fine and uniform dispersion” between the chip-like solid 1 and the fibrous binder 2 in the material 12 can be arbitrarily and variously adjusted.
[0056]
The defibrating and mixing treatment material 12 is temporarily accumulated in the accumulation tank 13, and then controlled by appropriate supply amount control means (not shown) provided in the accumulation tank 13, for example, and the necessary amounts are sent to the molding apparatus. , Used for the conveyance / filling process and the molding process.
[0057]
The forming apparatus includes a blower 14 connected to the accumulation tank 13, a main duct 15 following the blower 14, two branch ducts 17 and 18 branched from the main duct 15 via a switching valve 16, and branch ducts 17 and 18. Two molding sites 19 and 20 provided at the ends (the molding site 20 has the same configuration as the molding site 19, and illustration and detailed description thereof are omitted) and connected to the switching valve 16 by a duct. It consists of a cold and hot air delivery machine 21.
[0058]
Although detailed illustration is omitted at the molding site 19, a preform mold 22 having a simpler molding surface than the main molding and a main mold 23 having a molding surface corresponding to the actual shape of the soundproofing material are provided. Are sequentially provided along the line direction.
[0059]
Each of the preform mold 22 and the main mold 23 is composed of an upper mold and a lower mold that can be opened, and both upper and lower molds are freely ventilated between the heating / cooling box attached to the mold and the molding surface. It has a large number of ventilation holes. Furthermore, the periphery of the side surfaces of the upper mold and the lower mold is surrounded by a metal mesh plate covering the mold opening space, so that the defibrating and mixing treatment material 12 is stopped in the mold and air is released. The upper and lower mold surfaces may be formed of a mesh plate.
[0060]
In general, when a soundproofing material with complicated irregularities is blown and molded, the cavity also becomes a complex refracted space, so that a large number of air pools are created in the cavity, and both the width direction and the thickness direction are defibrated. It is difficult to fill the mixed material with a uniform density.
[0061]
However, a preform-shaped molded body 24 having a simpler plate shape than the main molding is once formed by the preform molding die 22 under relatively low heat compression, and this is then brought into the main molding die 23 and necessary heat compression. Such a problem can be solved by molding the molded body under the above.
[0062]
Furthermore, when blowing the defibrated and mixed processing material into the preform mold 22, the blowing air volume is gradually reduced in response to the blowing resistance gradually increasing as the filling proceeds, resulting in the blowing resistance. Is maintained at a certain level, the uniformity of the filling density of the defibrated and mixed processing material into the preform mold 22 can be ensured more satisfactorily, and a higher quality soundproofing material can be manufactured.
[0063]
Note that the defibrated and mixed treatment material is gas-fed by the action of the blower 14 and blown into one of the two molding sites 19 and 20 via the switching valve 16. Therefore, for example, when preform molding and main molding are performed at the molding site 19, it is possible to blow the defibrated mixed processing material into the preform molding die 22 at the other molding site 20.
[0064]
In this way, while effectively using the switching valve 16, the idle time of the mold is reduced and the molding cycle is improved by repeating the conveying / filling process and the molding process in a plurality of molding dies at the same time with different process phases. Can be made.
[0065]
The preform molded body 24 is subjected to molding and solidification corresponding to the shape of the actual soundproofing material under the heat compression necessary for the main mold 23, and is trimmed as a main mold 25 by a trim mold (not shown). It is divided into a soundproof material 26 and a trim end material 27. Trimming can also be performed simultaneously with the hot press molding in the main mold 23, thereby further improving the production efficiency.
[0066]
The trim end material 27 is put into the regeneration site 28, and the fibrous binder to which the chip-like solid material is bound is disentangled by a pair of rotating cylinders 29 having needle-like protrusions, and then a shredder 30 illustrated in a simplified manner. And can be reused as a good chip-shaped solid raw material by restoring the chip-shaped solid having an average particle diameter of, for example, about 5 mm. However, even if the trim end material 27 is put into a shredder without being defibrated at the regeneration site 28, it does not become a good chip-like solid raw material.
[0067]
In addition, a defective soundproofing material that may occur in the manufacturing process can be reused as a good chip-like solid raw material by the same processing as that for the trim end material 27.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a state of an aggregate before and after a defibrating and mixing process.
FIG. 2 is a diagram showing a flow of steps of an embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Chip-like solid substance 2 Fibrous binder 3,4,5 Raw material supply site 6 Belt conveyor 7,8 Aggregate 9 Laminated body 10 Rotating roller 11 Rotating cylinder 12 Disentanglement processing material 19,20 Molding site 22 Preform molding die 23 Main mold 24 Preform molded body 25 Main molded body 27 Trim end material 28 Reproduction site

Claims (1)

主として軽量材質のチップ状固形物からなる原材料と熱可塑性の繊維状バインダとを混合して処理材とする混合工程と、前記処理材を加熱プレスして前記繊維状バインダの熱溶融により前記チップ状固形物を互いに結着させると共に防音材のプレス成形を行う成形工程とを含む防音材の製造方法において、
前記混合工程は、前記チップ状固形物を上下層とし前記繊維状バインダを中間層とする積層体を圧縮状に拘束しつつ、前記積層体の送り出し方向に設置した掻取り用突起部材により少量ずつ掻取る解繊混合処理を含むことを特徴とする防音材の製造方法。
A mixing step of mixing a raw material mainly composed of a light-weight chip-like solid and a thermoplastic fibrous binder to form a treatment material, and heating and pressing the treatment material to thermally melt the fibrous binder to form the chip shape. In a method of manufacturing a soundproofing material including a molding step of binding solids to each other and performing press molding of the soundproofing material,
The mixing step is carried out by a scraping protrusion member installed in the feeding direction of the laminate , while constraining the laminate having the chip-like solids as upper and lower layers and the fibrous binder as an intermediate layer in a compressed state. A method for producing a soundproofing material, comprising scraping and defibrating mixing treatment.
JP23628099A 1999-08-24 1999-08-24 Production method of soundproofing material Expired - Lifetime JP3618595B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP23628099A JP3618595B2 (en) 1999-08-24 1999-08-24 Production method of soundproofing material
US09/637,902 US6576172B1 (en) 1999-08-24 2000-08-14 Method of manufacturing sound-proof products
DE60039390T DE60039390D1 (en) 1999-08-24 2000-08-23 Method of making soundproofing products and soundproofing products
EP20000118317 EP1078724B8 (en) 1999-08-24 2000-08-23 Method of manufacturing sound-proof products and the sound-proof products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23628099A JP3618595B2 (en) 1999-08-24 1999-08-24 Production method of soundproofing material

Publications (2)

Publication Number Publication Date
JP2001060090A JP2001060090A (en) 2001-03-06
JP3618595B2 true JP3618595B2 (en) 2005-02-09

Family

ID=16998456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23628099A Expired - Lifetime JP3618595B2 (en) 1999-08-24 1999-08-24 Production method of soundproofing material

Country Status (1)

Country Link
JP (1) JP3618595B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3643268B2 (en) * 1999-08-24 2005-04-27 トヨタ紡織株式会社 Production method of soundproofing material
JP3643269B2 (en) * 1999-08-24 2005-04-27 トヨタ紡織株式会社 Production method of soundproofing material
JP3643267B2 (en) * 1999-08-24 2005-04-27 トヨタ紡織株式会社 Production method of soundproofing material
JP2001261737A (en) * 2000-03-14 2001-09-26 Chisso Corp Flexible polypropylene excellent in heat resistance
JP6136335B2 (en) * 2013-02-14 2017-05-31 セイコーエプソン株式会社 Sound absorber, printing device
FR3049894B1 (en) * 2016-04-12 2018-05-18 Treves Products, Services & Innovation METHOD FOR MAKING AN INSONORIZING INTERIOR TRIM PANEL OF A MOTOR VEHICLE
JP6332381B2 (en) * 2016-09-28 2018-05-30 セイコーエプソン株式会社 Sound absorber, printing device
JP6332382B2 (en) * 2016-09-28 2018-05-30 セイコーエプソン株式会社 Sound absorber, printing device
CN111469955B (en) * 2020-04-20 2022-03-11 陕西欣辉报废汽车回收拆解有限公司 Dust removal and noise reduction device for disassembling scraped car
CN116373197B (en) * 2023-04-19 2023-11-07 苏州恒则成智能科技有限公司 Rubber production equipment and method

Also Published As

Publication number Publication date
JP2001060090A (en) 2001-03-06

Similar Documents

Publication Publication Date Title
US6576172B1 (en) Method of manufacturing sound-proof products
DK171970B1 (en) Air permeable, plate-like, fibrous structure and process for its manufacture
JP3618595B2 (en) Production method of soundproofing material
US20130196154A1 (en) Method for producing pellets from fiber composite materials and carbon fiber containing pellet
JPH089200B2 (en) Fiber-reinforced plastic sheet and manufacturing method thereof
KR101742014B1 (en) Device for moulding fibrous material
US5972265A (en) Method and apparatus for producing composites
WO2001066323A1 (en) Woody formed article and method for producing the same
JP3472117B2 (en) Production method of soundproofing material
JP4132551B2 (en) Method for producing a wooden molded body
CA2678653C (en) Method and device for producing a molded part and molded part as heat insulating and/or sound absorbing element
JP3900753B2 (en) Reproduction method of soundproof material
EP0909619B1 (en) Discontinuous manufacture of shaped composite article
JP3643267B2 (en) Production method of soundproofing material
JP3643269B2 (en) Production method of soundproofing material
JP3966125B2 (en) Production method of soundproofing material
JP3643268B2 (en) Production method of soundproofing material
KR100296229B1 (en) Composite material manufacturing method with enhanced performance and its manufacturing apparatus
KR100464641B1 (en) Apparatus for processing fiber-reinforced composites using fiber mat and its manufacture
JP2655161B2 (en) Method for producing air-permeable sheet-like fiber structure
JPH0347712A (en) Manufacture of formed building member and manufacturing device therefor
GB2140837A (en) Sheet of material and method of making same
JPH0241202A (en) Manufacture of pad material for insulator of vehicle
CN1032472C (en) Improvements in fibre reinforced plastics structures
KR100832358B1 (en) The manufacturing method of soundproofing material for automobile interior

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041110

R150 Certificate of patent or registration of utility model

Ref document number: 3618595

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term