JP3790495B2 - High temperature reactor burner - Google Patents

High temperature reactor burner Download PDF

Info

Publication number
JP3790495B2
JP3790495B2 JP2002140229A JP2002140229A JP3790495B2 JP 3790495 B2 JP3790495 B2 JP 3790495B2 JP 2002140229 A JP2002140229 A JP 2002140229A JP 2002140229 A JP2002140229 A JP 2002140229A JP 3790495 B2 JP3790495 B2 JP 3790495B2
Authority
JP
Japan
Prior art keywords
burner
diameter
tube
stress
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002140229A
Other languages
Japanese (ja)
Other versions
JP2003336809A (en
Inventor
克彦 横濱
文稔 坂田
雄一郎 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002140229A priority Critical patent/JP3790495B2/en
Publication of JP2003336809A publication Critical patent/JP2003336809A/en
Application granted granted Critical
Publication of JP3790495B2 publication Critical patent/JP3790495B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、石炭ガス化炉に代表される高温反応装置とその内部に設けられた冷却用水冷壁とにより支持されたバーナ管を有する高温反応装置用バーナに関する。
【0002】
【従来の技術】
一般に、石炭ガス化炉に代表される高温反応装置においては炉内の熱負荷が非常に高く、該反応装置の炉内側に水冷壁や耐火構造物を設けた構造が採られている。
高温反応装置の一例として、図3に石炭ガス化炉の全体概略構成図を示す。かかる石炭ガス化炉は微粉炭をガス化反応させてガス化するもので、全体が鉄皮からなる高温反応容器20により囲繞されるとともに、その内側に水管で構成された水冷壁21を有する二重構造となっている。
【0003】
かかる石炭ガス化炉30では、その下部に位置するコンバスタ24で微粉炭及びチャーの完全溶融を行い高温ガスを発生させ、ガス化炉上部のリダクタ23で、該高温ガスをリダクタバーナ15から噴出される微粉炭と混合しながら加熱し熱分解させてガス化している。前記コンバスタ24にはチャーバーナ16やコンバスタバーナ17等のバーナが水平方向に複数本配設されており、該チャーバーナ16からチャーの供給が行われるとともにコンバスタバーナ17から酸素が付加された空気からなるガス化剤が供給され、コンバスタ24内で高温、高負荷燃焼が行われる。
【0004】
このように石炭ガス化炉30では、石炭ガス化効率を高めるために高温、高負荷燃焼が行われており、前記リダクタ23及びコンバスタ24内の炉内温度は常に約1500から2000℃の高温雰囲気を維持しなければならない。さらにかかる高温雰囲気から炉壁を保護するために、前記したように複数の水管群からなる水冷壁を配設して炉の耐久性の改善に努めている。
【0005】
しかし、石炭ガス化炉30の運転中には前記水冷壁21と高温反応容器20との間に温度差が生じ、それに伴いこれらに熱伸び差が生じてしまう。そして、かかる熱伸び差により前記バーナに応力がかかりバーナ及びバーナ取り付け部が損傷してしまう惧れがある。
つまり、前記高温反応装置と水冷壁とを貫通して配設されるバーナはこれらの2点間によって支持される構造となっているため、温度差による熱伸び差、特に該反応装置と水冷壁とが異なる材料で形成されている場合においてはこれらの熱伸び差を吸収できなくなり亀裂が生じてしまうという問題を抱えている。
【0006】
そこで、従来、図4及び図5に示すようにバーナ管を形成することでかかる問題を回避してきた。図4は、炉内24に向かって燃料及びガス化剤14を供給するバーナ管10の水冷壁21と高温反応容器20との間の空間部22に位置する部分を薄肉のベローズ管27で形成し、該ベローズ管27により熱伸び差による応力を緩和するように構成している。
また、図5では、前記高温反応容器20側のバーナ管挿入口15を伸長して支持点間の長さを大とし、熱伸び差による応力を十分に吸収可能なように構成している。
【0007】
さらにまた、特開平9−95686号ではバーナを水管壁に直接取り付け、熱伸び差の生じる水管壁と耐圧容器間を径の小さい原材料供給配管、酸化剤配管、冷却水配管で連結することで伸びによる応力を吸収している。これらの配管は単独では比較的小径で長さ方向も自由に選定できるため容易に応力を吸収でき、またバーナの長さも水管壁と耐圧容器間の分短くなる。
【0008】
【発明が解決しようとする課題】
しかしながら、前記高温反応容器内のガスは一般に腐食性ガスであり、前記ベローズ管27を用いる構造では該ベローズ管27が薄肉で形成されているため腐食性、耐久性等の面で問題が生じる。また、前記バーナ管を伸長して応力緩和する方法ではバーナ管を長くしなければならないことによる設計、保守の困難性により実現は難しい。
さらに、前記特開平9−95686号のように、バーナを水管壁に直接取り付ける方法ではバーナが実質水管壁でのみ支持されている構成であるためバーナの安定性が悪く、また夫々の供給配管を高温反応容器内の腐食性ガス雰囲気下で連結しているためこれによる不具合が生じ易い。さらにまた、前記高温反応容器に夫々の供給管を配設するための挿入口を複数設けなければならず、シール機構が複雑となってしまう。
【0009】
従って、本発明はかかる従来技術の問題に鑑み、簡単な構造で以って高温反応容器と水冷壁との熱伸び差を吸収することができる高温反応装置用バーナを提供することを目的とする。
【0010】
【課題を解決するための手段】
そこで、本発明はかかる課題を解決するために、請求項1記載の発明は、
高温反応容器と該反応容器の内側に設けられた水冷壁とからなる高温反応装置に前記高温反応容器と水冷壁との二点により支持されるように具備され、該高温反応装置内に燃料及び酸化剤を供給する高温反応装置用バーナにおいて、
前記高温反応容器と水冷壁の間の断熱用空間部を挟んで前記高温反応容器と水冷壁で二点支持されたバーナ管であって、該バーナ管の断熱用空間部に位置する部位を、前記二点支持された部位のバーナ管より少なくとも重力方向に管径が小である応力吸収管部としたことを特徴とする。
【0011】
かかる発明によれば、前記高温反応容器と水冷壁との間に位置してこれらの熱伸び差による応力を最も受けやすいバーナ管の一部を、他部位、つまり前記反応容器挿入部及び水冷壁挿入部に位置するバーナ管の管径より小とした応力吸収管部を設けることで、バーナ管の曲げ剛性を小さくし、き裂等の損傷を防止することが可能となる。また、かかる発明では前記高温反応容器側及び前記水冷壁側のバーナ管径を従来と同様とすることができるため、バーナから噴出される流体の流速が適正化され安定した燃焼が可能となる。
尚、前記バーナ管の断面形状は、円形、楕円形、長円形、長方形等特に限定されない。
【0012】
また請求項2記載の発明は、前記応力吸収管部を、断面が重力方向に偏平形状でかつ短径部直径が二点支持された部位のバーナ管の直径より小とし、更に前記応力吸収管部の断面積を二点支持された部位のバーナ管断面積と略等しくなるように形成したことを特徴としている。
かかる発明によれば、最も熱伸び差が著しい上下方向の管径を小とし他方向の径をそれより大とした楕円形若しくは長円形等の偏平形状とした応力吸収管部を設けているため十分な応力吸収機能を有しながらも断面積を大幅に小さくすることなく流速変化による圧力損失を最小限に抑えることができ、安定した燃焼を行うことが可能となる。
特に、請求項5記載のように、前記応力吸収管部の断面積を他部位のバーナ管断面積と略等しくすることにより最も安定した運転が可能となり好適である。
【0013】
また、請求項3記載の発明のように、前記応力吸収管部を、断面が円形状でかつ直径が他部位のバーナ管の直径より小となるように形成してもよく、これにより、上下方向のみならずあらゆる方向からの撓みにも曲げ剛性が高くなり損傷が最小限に抑えられる。
また、請求項4記載の発明のように、前記応力吸収管部の重力方向の直径を、二点支持された部位のバーナ管の直径の約0.7〜0.9倍とすることにより、バーナ管の剛性を最も好適に維持することができ強度が保障される。
さらに、これらの発明において、前記高温反応装置が、石炭ガス化炉であることが好ましい。
【0014】
【発明の実施の形態】
以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。本実施形態では一例として石炭ガス化炉に具備されたバーナにつき説明しているが、水冷壁を設けた高温反応装置であれば何れにも適用可能である。
【0015】
図1は本発明の実施形態にかかる高温反応装置用バーナの縦断面図、図2は図1におけるA−A線断面図で、(a)は長円形応力吸収管部の断面図、(b)は小円形応力吸収管部の断面図、(c)はバーナ管部の断面図である。
まず、本発明が適用される石炭ガス化炉について図3に基づき全体構成を説明する。図3において、石炭ガス化炉30は、高温反応容器20とその内側に設けられた水冷壁21とからなり、これらによりチャーの溶融と高温ガスの生成を行うコンバスタ24と、炉内に供給される微粉炭のガス化を行うリダクタ23とが形成されている。
【0016】
前記高温反応容器20と水冷壁21の間には断熱用の空間部22が設けられ、前記石炭ガス化炉30には、前記高温反応容器20及び水冷壁21を貫通するように複数のバーナが二点支持されて配設されており、本実施形態では、前記コンバスタ24に不図示の微粉炭供給装置からの微粉炭噴出用のコンバスタバーナ17及び不図示のチャー供給装置からのチャー噴出用のチャーバーナ16、及び前記リダクタ23にガス化用微粉炭噴出用のリダクタバーナ15が設けられている。
【0017】
図1に示されるのは、図3のZ部拡大図である高温反応炉用バーナの縦断面図であり、高温反応容器20及び水冷壁21に貫装されるバーナ管10は、バーナ噴出口12側と燃料・ガス化剤供給口13側の二点支持された支持部位の管径Dが略同じであるバーナ管部10bと、前記二点支持された高温反応容器20及び水冷壁21の間の空間部22に位置する応力吸収管部10aとからなっている。そして、後述するように前記応力吸収管部10aの少なくとも重力方向の管径は前記バーナ管部10bより小さくなるように形成されている。これにより、前記応力吸収管部10bの曲げ剛性が高くなり、高温反応容器20と水冷壁21との熱伸び差による応力を吸収し、バーナ管10のき裂の発生等の損傷を防止することができる。
尚、前記空間部22には、通常メンテナンス等のために作業員が侵入可能な間隔Wがとられており、一般にはWは約1.0〜3.0mである。
【0018】
前記応力吸収管部10aの断面形状は、長円形状とした場合、図2(a)に示されるように重力方向の径が短径となる長円形状をしており、(c)に示されるバーナ噴出口12側と燃料・ガス化剤供給口13側に位置するバーナ管部10bの直径Dより前記短径部直径bが小さくなるように形成されている。そして、好ましくは長径部直径aがバーナ管部10bの直径Dより大きくなるように、つまり応力を受ける方向の断面二次モーメントを極力小さくなるような断面形状に形成することが好ましい。これにより十分な応力吸収機能を有しながらも断面積を大幅に小さくすることなく流速変化による圧力損失を最小限に抑えることができ、安定した燃焼を行うことが可能となる。このとき、前記応力吸収管部10aの断面積を前記バーナ管部10bの断面積と略同じ大きさとすることが好ましい。
【0019】
また、図2(c)に示されるように、円形状の応力吸収管部10aとしてもよい。かかる応力吸収管部10aの直径dを前記バーナ管部10bの直径Dより小さくするように形成することであらゆる方向からの応力を吸収できる。
このとき、管内の流速を所定速度範囲に保持するためにバーナ管を二又以上に分割してもよい。
さらに、長円形状の応力吸収管部10aの短径a若しくは円形状の応力吸収管部10aの直径dを前記バーナ管部10bの直径Dの約0.7〜0.9倍の大きさとすることが好ましい。かかる数値に設定すること最も曲げ剛性が高い構造となり熱伸び差による応力を最大限に吸収することができる。
【0020】
【発明の効果】
かかる発明によれば、高温反応装置に具備されたバーナ管のうち熱伸び差による応力を最も受けやすい部分を、他部位のバーナ管の管径より小とした応力吸収管部を設けることで、簡単な構造で以ってバーナ管の曲げ剛性を小さくし、き裂等の損傷を防止することができる。また、かかる発明では前記高温反応容器側及び前記水冷壁側のバーナ管径を従来と同様とすることができるため、バーナから噴出される流体の流速が適正化され安定した燃焼が可能となる。
また、楕円形若しくは長円形等の偏平形状とした応力吸収管部を設けることにより、十分な応力吸収機能を有しながらも断面積を大幅に小さくすることなく流速変化による圧力損失を最小限に抑えることができ、安定した燃焼を行うことが可能となる。
【0021】
また、前記応力吸収管部を、断面が円形状でかつ直径が他部位のバーナ管の直径より小となるように形成することにより、上下方向のみならずあらゆる方向からの撓みにも曲げ剛性が高くなり損傷が最小限に抑えられる。
さらに、前記応力吸収管部の重力方向の直径を、他部位のバーナ管の直径の約0.7〜0.9倍とすることにより、バーナ管の剛性を最も好適に維持することができ強度が保たれる。
【図面の簡単な説明】
【図1】 本発明の実施形態にかかる高温反応炉用バーナの縦断面図である。
【図2】 図1におけるA−A線断面図で、(a)は長円形応力吸収管部の断面図、(b)は小円形応力吸収管部の断面図、(c)はバーナ管部の断面図である。
【図3】 本発明にかかる高温反応装置用バーナが適用される石炭ガス化炉の全体構成図である。
【図4】 従来の高温反応炉用バーナの縦断面図である。
【図5】 従来の高温反応炉用バーナの縦断面図である。
【符号の説明】
10 バーナ
10a 応力吸収管部
10b バーナ管部
10a 長円形状応力吸収管部
10a 円形状応力吸収管部
11 燃料噴出路
12 バーナ噴出口
14 燃料・酸化剤
20 反応容器
21 水冷壁
22 空間部
23 リダクタ
24 コンバスタ
30 石炭ガス化炉
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a burner for a high-temperature reactor having a burner pipe supported by a high-temperature reactor represented by a coal gasification furnace and a cooling water cooling wall provided therein.
[0002]
[Prior art]
Generally, in a high temperature reactor represented by a coal gasification furnace, the heat load in the furnace is very high, and a structure in which a water cooling wall or a refractory structure is provided inside the reactor is adopted.
As an example of the high-temperature reactor, FIG. 3 shows an overall schematic configuration diagram of a coal gasification furnace. Such a coal gasification furnace gasifies pulverized coal by gasification. The coal gasification furnace is surrounded by a high-temperature reaction vessel 20 made entirely of iron skin, and has a water cooling wall 21 formed of a water pipe inside thereof. It has a heavy structure.
[0003]
In the coal gasification furnace 30, pulverized coal and char are completely melted by the combustor 24 located below the coal gasification furnace 30 to generate high-temperature gas, and the high-temperature gas is ejected from the reductor burner 15 by the reductor 23 at the top of the gasification furnace. It is gasified by heating and pyrolysis while mixing with pulverized coal. The combustor 24 is provided with a plurality of burners such as a char burner 16 and a combustor burner 17 in the horizontal direction. Char is supplied from the char burner 16 and oxygen is added from the combustor burner 17. The gasifying agent is supplied, and high-temperature, high-load combustion is performed in the combustor 24.
[0004]
As described above, in the coal gasification furnace 30, high temperature and high load combustion is performed in order to increase the coal gasification efficiency, and the furnace temperature in the reductor 23 and the combustor 24 is always a high temperature atmosphere of about 1500 to 2000 ° C. Must be maintained. Furthermore, in order to protect the furnace wall from such a high temperature atmosphere, as described above, a water cooling wall composed of a plurality of water tube groups is provided to improve the durability of the furnace.
[0005]
However, during the operation of the coal gasification furnace 30, a temperature difference is generated between the water cooling wall 21 and the high temperature reaction vessel 20, and accordingly, a thermal expansion difference is generated. And there exists a possibility that a stress may be applied to the burner due to the difference in thermal elongation, and the burner and the burner mounting portion may be damaged.
That is, since the burner disposed through the high temperature reactor and the water cooling wall is supported by these two points, the difference in thermal expansion due to the temperature difference, particularly the reactor and the water cooling wall. Is formed of a different material, it has a problem that the difference in thermal elongation cannot be absorbed and a crack occurs.
[0006]
Therefore, conventionally, such a problem has been avoided by forming a burner tube as shown in FIGS. In FIG. 4, a portion located in the space 22 between the water cooling wall 21 and the high temperature reaction vessel 20 of the burner pipe 10 for supplying the fuel and the gasifying agent 14 toward the furnace 24 is formed by a thin bellows pipe 27. In addition, the bellows tube 27 is configured to relieve stress due to a difference in thermal elongation.
In FIG. 5, the burner tube insertion port 15 on the high temperature reaction vessel 20 side is extended to increase the length between the support points so that the stress due to the difference in thermal expansion can be absorbed sufficiently.
[0007]
Furthermore, in JP-A-9-95686, a burner is directly attached to the water pipe wall, and the water pipe wall where the difference in thermal expansion occurs and the pressure vessel are connected by a raw material supply pipe having a small diameter, an oxidizer pipe, and a cooling water pipe. It absorbs stress due to elongation. These pipes are relatively small in diameter and can be freely selected in the length direction, so that stress can be easily absorbed, and the length of the burner is shortened by the distance between the water pipe wall and the pressure vessel.
[0008]
[Problems to be solved by the invention]
However, the gas in the high-temperature reaction vessel is generally a corrosive gas, and in the structure using the bellows tube 27, the bellows tube 27 is formed with a thin wall, which causes problems in terms of corrosivity and durability. Further, the method of extending the burner tube to relieve the stress is difficult to realize due to the difficulty of design and maintenance due to the length of the burner tube.
Further, as described in JP-A-9-95686, in the method of directly attaching the burner to the water pipe wall, since the burner is supported only by the substantial water pipe wall, the stability of the burner is poor, and the respective supply Since the pipes are connected in a corrosive gas atmosphere in the high temperature reaction vessel, problems due to this tend to occur. Furthermore, it is necessary to provide a plurality of insertion ports for disposing each supply pipe in the high temperature reaction vessel, which complicates the sealing mechanism.
[0009]
Therefore, in view of the problems of the prior art, an object of the present invention is to provide a burner for a high-temperature reactor that can absorb the difference in thermal elongation between the high-temperature reaction vessel and the water-cooled wall with a simple structure. .
[0010]
[Means for Solving the Problems]
Therefore, in order to solve the problem, the present invention described in claim 1
A high-temperature reactor comprising a high-temperature reaction vessel and a water-cooled wall provided inside the reaction vessel is supported by two points of the high-temperature reaction vessel and the water-cooled wall, and fuel and In the burner for the high temperature reactor that supplies the oxidizing agent,
A burner tube supported at two points by the high temperature reaction vessel and the water cooling wall with the heat insulation space between the high temperature reaction vessel and the water cooling wall sandwiched between the portions located in the heat insulation space of the burner tube, A stress absorbing pipe portion having a pipe diameter smaller than that of the burner pipe at the two-point supported portion at least in the direction of gravity.
[0011]
According to this invention, a part of the burner tube which is located between the high temperature reaction vessel and the water cooling wall and is most susceptible to the stress due to the difference in thermal elongation is placed in other parts, that is, the reaction vessel insertion part and the water cooling wall. By providing a stress absorbing tube portion that is smaller than the tube diameter of the burner tube located at the insertion portion, it is possible to reduce the bending rigidity of the burner tube and prevent damage such as cracks. Moreover, in this invention, since the burner pipe diameter on the high temperature reaction vessel side and the water cooling wall side can be made the same as the conventional one, the flow velocity of the fluid ejected from the burner is optimized and stable combustion becomes possible.
The cross-sectional shape of the burner tube is not particularly limited, such as a circle, an ellipse, an oval, and a rectangle.
[0012]
The invention according to claim 2, wherein the stress absorbing tube section, cross section and smaller than the diameter of the flat shape is and burner tube portion short diameter portion diameter is supported two points in the direction of gravity, further said stress-absorbing It is characterized in that the cross-sectional area of the pipe portion is formed so as to be substantially equal to the cross-sectional area of the burner pipe at the portion supported at two points .
According to this invention, the stress absorption tube portion having a flat shape such as an oval shape or an oval shape in which the tube diameter in the vertical direction with the largest difference in thermal elongation is small and the diameter in the other direction is larger than that is provided. While having a sufficient stress absorbing function, pressure loss due to a change in flow velocity can be minimized without significantly reducing the cross-sectional area, and stable combustion can be performed.
In particular, as described in claim 5, it is preferable that the most stable operation is possible by making the cross-sectional area of the stress absorbing pipe portion substantially equal to the cross-sectional area of the burner pipe in the other part.
[0013]
Further, as in a third aspect of the present invention, the stress absorbing tube portion may be formed so that the cross section is circular and the diameter is smaller than the diameter of the burner tube at the other part. Bending rigidity is increased not only in the direction but also in bending from all directions, and damage is minimized.
Further, as in the invention of claim 4, by making the diameter of the stress absorbing tube portion in the gravity direction about 0.7 to 0.9 times the diameter of the burner tube of the portion supported at two points , The rigidity of the burner tube can be most preferably maintained, and the strength is ensured.
Furthermore, in these inventions, it is preferable that the high temperature reactor is a coal gasifier.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much. In the present embodiment, the burner provided in the coal gasification furnace is described as an example. However, the present invention is applicable to any high-temperature reactor provided with a water-cooled wall.
[0015]
1 is a longitudinal sectional view of a burner for a high-temperature reactor according to an embodiment of the present invention, FIG. 2 is a sectional view taken along line AA in FIG. 1, (a) is a sectional view of an oval stress absorption tube portion, and (b) ) Is a cross-sectional view of the small circular stress absorbing tube portion, and (c) is a cross-sectional view of the burner tube portion.
First, the whole structure is demonstrated based on FIG. 3 about the coal gasifier to which this invention is applied. In FIG. 3, a coal gasification furnace 30 includes a high-temperature reaction vessel 20 and a water cooling wall 21 provided on the inside thereof, and a combustor 24 that melts char and generates high-temperature gas, and is supplied into the furnace. And a reductor 23 for gasifying pulverized coal.
[0016]
A space 22 for heat insulation is provided between the high temperature reaction vessel 20 and the water cooling wall 21, and the coal gasification furnace 30 has a plurality of burners so as to penetrate the high temperature reaction vessel 20 and the water cooling wall 21. In this embodiment, the combustor 24 is provided with a combustor burner 17 for ejecting pulverized coal from a pulverized coal supply device (not shown) and for char ejection from a char supply device (not shown). The char burner 16 and the reductor 23 are provided with a reductor burner 15 for discharging pulverized coal for gasification.
[0017]
FIG. 1 is a longitudinal sectional view of a burner for a high temperature reactor, which is an enlarged view of a Z portion in FIG. 3, and the burner pipe 10 penetrating the high temperature reaction vessel 20 and the water cooling wall 21 includes a burner outlet. A burner pipe portion 10b having substantially the same tube diameter D at the two points supported on the side 12 and the fuel / gasification agent supply port 13 side, the high temperature reaction vessel 20 and the water cooling wall 21 supported at the two points . It consists of a stress absorbing tube portion 10a located in the space portion 22 therebetween. As will be described later, the stress absorbing tube portion 10a is formed so that at least the tube diameter in the gravity direction is smaller than that of the burner tube portion 10b. As a result, the bending rigidity of the stress absorbing tube portion 10b is increased, the stress due to the difference in thermal elongation between the high temperature reaction vessel 20 and the water cooling wall 21 is absorbed, and damage such as cracking of the burner tube 10 is prevented. Can do.
The space 22 has a space W through which an operator can enter for normal maintenance or the like, and generally W is about 1.0 to 3.0 m.
[0018]
When the cross-sectional shape of the stress-absorbing tube portion 10a is an oval shape, it has an oval shape in which the diameter in the direction of gravity is a short axis as shown in FIG. The short diameter portion b is smaller than the diameter D of the burner pipe portion 10b located on the burner outlet 12 side and the fuel / gasification agent supply port 13 side. And it is preferable to form in a cross-sectional shape so that the major diameter a is larger than the diameter D of the burner tube portion 10b, that is, the cross-sectional second moment in the direction of receiving stress is minimized. As a result, the pressure loss due to the change in the flow velocity can be minimized without significantly reducing the cross-sectional area while having a sufficient stress absorbing function, and stable combustion can be performed. In this case, it is preferable that substantially the same size as the cross-sectional area of the stress absorbing tube portion 10a 1 cross-sectional area of the burner pipe portion 10b.
[0019]
Further, as shown in FIG. 2C, a circular stress absorbing tube portion 10a 2 may be used. Capable of absorbing stress from all directions by forming the diameter d of the stress absorbing tube portion 10a 2 to less than the diameter D of the burner pipe portion 10b.
At this time, the burner pipe may be divided into two or more in order to keep the flow velocity in the pipe within a predetermined speed range.
Furthermore, about 0.7 to 0.9 times the diameter D of the minor diameter a or circular stress absorbing tube portion 10a 2 of the diameter d the burner tube portion 10b of the stress of the oblong absorption tube portion 10a 1 size Preferably. Setting to such a numerical value results in a structure having the highest bending rigidity and can absorb the stress due to the difference in thermal elongation to the maximum.
[0020]
【The invention's effect】
According to this invention, by providing the stress absorption pipe part which is smaller than the pipe diameter of the burner pipe of the other part, the part that is most susceptible to the stress due to the difference in thermal elongation among the burner pipes provided in the high temperature reaction apparatus, With a simple structure, the bending rigidity of the burner tube can be reduced and damage such as cracks can be prevented. Moreover, in this invention, since the burner pipe diameter on the high temperature reaction vessel side and the water cooling wall side can be made the same as the conventional one, the flow velocity of the fluid ejected from the burner is optimized and stable combustion becomes possible.
In addition, by providing a flat stress absorption tube such as oval or oval, the pressure loss due to changes in flow rate can be minimized without significantly reducing the cross-sectional area while having a sufficient stress absorption function. Therefore, stable combustion can be performed.
[0021]
In addition, by forming the stress absorbing tube portion so that the cross section is circular and the diameter is smaller than the diameter of the burner tube at the other part, the bending rigidity is not only in the vertical direction but also in bending from all directions. Increases and minimizes damage.
Furthermore, the rigidity of the burner tube can be most suitably maintained by making the diameter of the stress absorbing tube portion in the direction of gravity approximately 0.7 to 0.9 times the diameter of the burner tube at the other part. Is preserved.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a burner for a high temperature reactor according to an embodiment of the present invention.
2 is a cross-sectional view taken along the line AA in FIG. 1, where (a) is a cross-sectional view of an oval stress absorbing tube portion, (b) is a cross-sectional view of a small circular stress absorbing tube portion, and (c) is a burner tube portion. FIG.
FIG. 3 is an overall configuration diagram of a coal gasification furnace to which a burner for a high temperature reactor according to the present invention is applied.
FIG. 4 is a longitudinal sectional view of a conventional high-temperature reactor burner.
FIG. 5 is a longitudinal sectional view of a conventional high-temperature reactor burner.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Burner 10a Stress absorption pipe part 10b Burner pipe part 10a 1 Elliptical stress absorption pipe part 10a Two circular stress absorption pipe part 11 Fuel ejection path 12 Burner outlet 14 Fuel / oxidant 20 Reaction vessel 21 Water cooling wall 22 Space part 23 Reductor 24 Combustor 30 Coal gasifier

Claims (5)

高温反応容器と該反応容器の内側に設けられた水冷壁とからなる高温反応装置に前記高温反応容器と水冷壁との二点により支持されるように具備され、該高温反応装置内に燃料及び酸化剤を供給する高温反応装置用バーナにおいて、
前記高温反応容器と水冷壁の間の断熱用空間部を挟んで前記高温反応容器と水冷壁で二点支持されたバーナ管であって、該バーナ管の断熱用空間部に位置する部位を、前記二点支持された部位のバーナ管より少なくとも重力方向に管径が小である応力吸収管部としたことを特徴とする高温反応装置用バーナ。
A high-temperature reactor comprising a high-temperature reaction vessel and a water-cooled wall provided inside the reaction vessel is supported by two points of the high-temperature reaction vessel and the water-cooled wall, and fuel and In the burner for the high temperature reactor that supplies the oxidizing agent,
A burner tube that is supported at two points by the high temperature reaction vessel and the water cooling wall with the heat insulation space between the high temperature reaction vessel and the water cooling wall interposed therebetween, and a portion located in the heat insulation space of the burner tube, A burner for a high-temperature reactor, characterized in that a stress-absorbing tube portion having a tube diameter that is at least smaller in the gravitational direction than the burner tube at the two-point supported portion.
前記応力吸収管部を、断面が重力方向に偏平形状でかつ短径部直径が二点支持された部位のバーナ管の直径より小とし、更に前記応力吸収管部の断面積を二点支持された部位のバーナ管断面積と略等しくなるように形成したことを特徴とする請求項1記載の高温反応装置用バーナ。The stress-absorbing tube section, cross section and a flat shape in the direction of gravity and smaller than the diameter of the burner tube of the portion short diameter portion diameter is supported two points, further said stress-absorbing tube portion of the cross-sectional area of the two-point support 2. The burner for a high temperature reactor according to claim 1 , wherein the burner tube is formed so as to be substantially equal to the cross-sectional area of the burner tube at the site . 前記応力吸収管部を、断面が円形状でかつ直径が二点支持された部位のバーナ管の直径より小となるように形成したことを特徴とする請求項1記載の高温反応装置用バーナ。2. The burner for a high temperature reactor according to claim 1, wherein the stress absorbing tube portion is formed so as to have a circular cross section and a diameter smaller than the diameter of the burner tube at a portion where the diameter is supported at two points . 前記応力吸収管部の重力方向の直径を、二点支持された部位のバーナ管の直径の約0.7〜0.9倍としたことを特徴とする請求項1乃至3の何れかに記載の高温反応装置用バーナ。4. The diameter of the stress absorption tube portion in the direction of gravity is approximately 0.7 to 0.9 times the diameter of the burner tube at a portion supported at two points. 5. High temperature reactor burner. 前記高温反応装置が、石炭ガス化炉であることを特徴とする請求項1乃至の何れかに記載の高温反応装置用バーナ。The burner for a high-temperature reactor according to any one of claims 1 to 4 , wherein the high-temperature reactor is a coal gasification furnace.
JP2002140229A 2002-05-15 2002-05-15 High temperature reactor burner Expired - Lifetime JP3790495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002140229A JP3790495B2 (en) 2002-05-15 2002-05-15 High temperature reactor burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002140229A JP3790495B2 (en) 2002-05-15 2002-05-15 High temperature reactor burner

Publications (2)

Publication Number Publication Date
JP2003336809A JP2003336809A (en) 2003-11-28
JP3790495B2 true JP3790495B2 (en) 2006-06-28

Family

ID=29701159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002140229A Expired - Lifetime JP3790495B2 (en) 2002-05-15 2002-05-15 High temperature reactor burner

Country Status (1)

Country Link
JP (1) JP3790495B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101914392B (en) * 2010-08-26 2013-04-24 中国东方电气集团有限公司 Entrained flow gasifier

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0995686A (en) * 1995-09-28 1997-04-08 Babcock Hitachi Kk Gasifying furnace
JPH09318062A (en) * 1996-05-30 1997-12-12 Nissan Motor Co Ltd Connecting portion structure of combustion tube of combustion device
JP3652836B2 (en) * 1997-05-01 2005-05-25 三菱重工業株式会社 Gasifier

Also Published As

Publication number Publication date
JP2003336809A (en) 2003-11-28

Similar Documents

Publication Publication Date Title
CN102538013B (en) There is the fuel injector of tip cooling
RU2466176C2 (en) Vessel of gasification reactor with inner wall from multiple tubes and comprising several burners
EP2176386B1 (en) Method for gasifying a carbonaceous feedstock
JP5522689B2 (en) burner
BR102013030627A2 (en) METHOD AND DEVICE FOR THERMAL POST-COMBUSTION OF HYDROCARBON GASES
JP6176023B2 (en) Equipment for reforming tar in gasification gas
JP3790495B2 (en) High temperature reactor burner
US20130000270A1 (en) System and method for cooling gasification reactor
US8377156B2 (en) Fluid cooled reformer and method for cooling a reformer
JP6248495B2 (en) Equipment for reforming tar in gasification gas
JP2010106132A (en) Solid fuel gasification burner and gasification furnace equipped with the same
JPH02206687A (en) Cooling type blowing burner
JPS61221294A (en) Coal gasifying apparatus
US20190194560A1 (en) Cooling screen with variable tube diameter for high gasifier power
JPS612792A (en) Reactor for gasifying solid fuel
JPS61218689A (en) Coal gasifier
JPS61207493A (en) Coal gasifying apparatus
JPH0995686A (en) Gasifying furnace
JPS624322B2 (en)
CN112920855A (en) Gasification furnace
CN117212805A (en) Slag device
CN117186951A (en) Slag discharging system
JP2010254727A (en) Airflow layer gasification furnace and method for operating the same
CN114806642A (en) High-efficient semi-waste pot gasification equipment
JPS61236895A (en) Gasifier

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060331

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250