JP3790105B2 - Method for producing fine particles using flame and laser - Google Patents

Method for producing fine particles using flame and laser Download PDF

Info

Publication number
JP3790105B2
JP3790105B2 JP2000595941A JP2000595941A JP3790105B2 JP 3790105 B2 JP3790105 B2 JP 3790105B2 JP 2000595941 A JP2000595941 A JP 2000595941A JP 2000595941 A JP2000595941 A JP 2000595941A JP 3790105 B2 JP3790105 B2 JP 3790105B2
Authority
JP
Japan
Prior art keywords
particles
flame
laser
particle
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000595941A
Other languages
Japanese (ja)
Other versions
JP2002535236A (en
Inventor
マンソー チョイ
ドンケウン リー
Original Assignee
マンソー チョイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マンソー チョイ filed Critical マンソー チョイ
Publication of JP2002535236A publication Critical patent/JP2002535236A/en
Application granted granted Critical
Publication of JP3790105B2 publication Critical patent/JP3790105B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/483Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using coherent light, UV to IR, e.g. lasers
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/28Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from gaseous metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/106Forming solid beads by chemical vapour deposition; by liquid phase reaction
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • C03B19/1423Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/0025Other surface treatment of glass not in the form of fibres or filaments by irradiation by a laser beam
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/453Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating passing the reaction gases through burners or torches, e.g. atmospheric pressure CVD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/46Comprising performance enhancing means, e.g. electrostatic charge or built-in heater

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【0001】
(技術分野)
本発明は炎を用いて微粒子を製造する方法に関する。
【0002】
(背景技術)
炎内で粒子を生成して成長させる炎加水分解蒸着(Flame hydrolysis deposition;FHD)のための概略的な装置を図1に示した。図面を参照すれば、それぞれの反応物質が含入れられた容器1a、1b内に、例えば、N2のようなガスを吹き込んでこれをバーナー4に移送する。前記バーナー4に移送された反応物質はH2のような燃料の燃焼で生成された炎5内に放射されて粒子6を生成する。前記ガスが入っている容器1a、1bとバーナー4は導管に連結されており、その流動経路上にはバルブ3と流量調節器(mass flow controller;MFC)2が設けられる。
【0003】
この装置に使われる反応物質は製造しようとする物質によって変わり、複数の反応物質を使用して多種成分(multi-component)の複合体粒子を製造することもできる。例えば、光導波薄膜や光ファイバー母材を製造する場合には、SiCl4、GeCl4、POCl3のような反応物質が使われ、前記反応物質は常温で蒸気圧が低いために流量調節器2により精密に流量が調節された後、移送ガスを通じてバーナー4に供給される。前記バーナー4のノズルから噴射された反応物質は水素の燃焼による炎5内で生成されたH2Oと反応して図4に示されたようにSiO2、GeO2、P2O5のような粒子6を生成し、このような粒子はターゲット基板10に蒸着される。
【0004】
光ファイバー母材を製造する場合、反応物質移送ガスを酸素に代えてターゲット基板10の代りにシリカ棒(図示せず)を設けて、約60rpm程度に回転させつつ、バーナー4を左右に往復移送して生成された粒子をシリカ棒に付着させる、いわゆる外部気相蒸着(Outside vaporde position;OVD)方法である。また、光導波膜または光分割器などを製造する前記FHD方法ではターゲット基板10の代りにシリコンウェーハ(図示せず)を設け、前記ウェーハまたはバーナー4を2次元的に移送させつつ粒子を付着する。
両方共に、最終製造された光素子の光特性及び母材の焼結(sintering)特性に最大の影響を与えるのは、付着時の粒子の大きさ、造成及び形状である。
【0005】
また、セラミックナノ粒子、金属ナノ粒子、複合体ナノ粒子等の微細粉末の製造後に焼結過程を通じて薄膜を製造する場合、集合体(aggregate)の生成と不均一な粒子の大小分布は粉末の流れ(flow)とパッキング(packing)に影響を与えて多孔性(porous)の気孔(pore)を形成することになり、これは光素子の機械的な強度と光特性及び磁気的特性に大きな損失として作用することになる。したがって、様々な微細粉末の製造及びこのような微細粉末を用いた光素子の製造において、品質及び信頼性を高めるためには粒子をnmサイズに最大限小さくしつつ均一な大きさ分布を有させると同時に、球状の粒子に製造するのが最も重要で、よってこのような問題を解決するための研究が論点となっている。
【0006】
現在、様々な微細粉末の製造及び光素子の製造に用いられるバーナーには同軸流拡散炎バーナー(coflow diffusion flame burner)、対向流拡散炎バーナー(counterflow diffusion flame burner)、同軸流予混合炎バーナー(coflow premixed flame burner)などがある。各バーナーによって温度分布と流動条件とはかなり異なるが、粒子生成及び成長メカニズムは根本的に同一である。粒子の大きさと形状(morphology)は炎から粒子に伝えられる熱により粒子が融合(coalescence)される時間と粒子間の衝突時間の比により決定される[Y.Xiong et al.,1993,J.Aerosol Sci.,24(3),pp.301-313,S.E. Pratsinis,1998,Prog.Energy Combust.Sci.,24,pp.197-219 参照]。もし、衝突より融合が先に起こる場合(すなわち、炎の温度が高い場合)には図2Aに示されたように、相互連結された2つの粒子が融合して同体積の大きな球状の粒子を形成する。反面に、融合に比べて衝突が多発する場合には、図2Bに示されたように、粒子が相互融合されて球状をなさず、相互枝状に連結されて集合体を形成することになる。
【0007】
ここで、図2Bのように、集合体の体積が2倍になるのにかかる時間を特性衝突時間(characteristic collision time、Tc)と定義するが、次のように式で表される[R.S.Windeler et al.,1997,Aerosolsci,and Tech.,27,pp.174-190、参照]。
【0008】
【数1】

Figure 0003790105
【0009】
前記式において、vは集合体の平均体積、kはボルツマン(Boltzmann)定数、Tは温度、αはDfによる定数、dpは1つの集合体を構成する別の基本粒子(primary particle)の直径、Φは生成された粒子の体積比(生成された粒子の体積/化学物質移送ガスの体積)、Dfは集合体のフラックタル(fractal)次元を示すものであって、3に近いほど球状に近く密集された粒子状を示し、1に近いほど枝状に広く拡散されている形状を意味する。炎を用いて製造された集合体である場合、約1.6-2.0の値を有する。
【0010】
ここで、生成粒子の体積比Φが増加するほど、すなわち化学物質の量を増加して粒子の付着率を高めようとする場合には衝突時間が融合時間に比べて相対的に短くなって集合体間の衝突によって大きな集合体になってしまう。
【0011】
また、2つの球状粒子が完全に融合して図2Aに示されたように同一な体積の球状に完全に粒子化するのにかかる時間を特性融合時間(characteristic coalescence time、Tf)と定義するが、これは粒子の焼結メカニズムによって固状拡散(solid state diffusion)メカニズムと粘性流動(viscous flow)メカニズムとに大別される。例えば、TiO2の場合は高状拡散メカニズムに、SiO2の場合は粘性流動メカニズムに各々該当する。SiO2について特性融合時間を表示すれば次の通りである[W.D.Kingery et al.,1976,Introduction to Ceramics、Wiley,New York 参照]。
【0012】
【数2】
Figure 0003790105
【0013】
現在、粒子の大小を制御するために多様な方法が試みられている。第1の方法は、バーナーに注入される燃料、酸化剤、そして反応物質移送ガス流量などを最適化するものであって、これまで実際の工程で使用されてきた受動的な方法に属する。しかし、このような方法において、同一な炎温度で反応物質の移送ガス流量が高い場合に基本粒子は小さくなるが大きな集合体が構成され、反面に、低い流量では球状の粒子が形成されるが、その大きさが100nm以上に大きくなる問題点がある。また、バーナーに注入される燃料と酸化剤の噴射位置、化学物質移送ガスの噴射位置を調節してもnmサイズの球状の独立粒子を製造することは不可能である[S.E.Pratsinis et al.,1996,Powder Tech.,86,pp.87 参照]。
【0014】
粒子の大小を制御する第2の方法は、図3に示されたように生成された粒子に直接的な力を加えて衝突を抑制することによって粒子を小さくする能動的な方法である。すなわち、バーナー4の炎から生成された粒子は帯電されて荷電量を有している。したがって、炎の両側に設けられた電極11a、11bにより強い直流(DC)電場を加えると陽または陰に帯電された粒子は電場により両電極側に移動する。したがって、炎の内部の高温領域で粒子の残留時間は短縮されるために粒子の融合率が低くなるので、基本粒子の大きさが小さくなる。また、粒子が炎から陽電極側に移動することによって、炎内部の粒子の数濃度が薄くなるために、その分粒子間の衝突率が低くなって集合体も小さくなる。前述したような方法は、基本粒子の大きさと集合体の大きさを全て小さくする長所はあるが、この方法も粒子の両側の電極への移動による流動の撹乱から生じる乱流成分による衝突は抑制できない。したがって、粒子が小さくなっても集合体の形成を避けられず、かつ生成された粒子が電極に付着されることによって粒子の付着率が低くなる限界がある[S. Vemuryetal., J.Aerosol Sci., 1996, 27, pp.951, Y.Xingetal., 1996, Combustion and Flame,107,pp.85 参照]。
【0015】
(発明の開示)
本発明は前記問題点を解決するためのものであって、炎を用いてセラミック微細粉末、金属微細粉末、ガラス微細粉末、複合体微細粉末を含む微細粉末を製造したり、光素子母材を製造するためにその微細粉末を蒸着させるに当たって、前記炎内にレーザーを照射することによってnmサイズの球状粒子を製造しうる方法を提供するのにその目的がある。
【0016】
前記目的を達成するために本発明に係る微粒子の製造方法は、反応物質をバーナーにより生成される炎に供給する段階と、前記炎による前記反応物質の反応により粒子核を発生させる段階と、前記炎により、前記粒子核の相互衝突及び結合により前記粒子核を含む集合体を形成する段階と、前記炎によって前記集合体の形成が開始される個所にある前記集合体に、少なくとも1つのレーザービームを照射し、前記集合体をこの集合体よりも小さな微粒子にする段階と、前記微粒子を成長させる段階と、を含むことを特徴とする。
【0018】
(発明を実施するための最良の態様)
本発明に係る微粒子の製造方法及び光素子母材の製造方法は、図1に示された通常の製造装置を採用して行える。本発明の特徴的な要旨は、図5に示されたように、バーナー4の端部炎5内で粒子6'が生成される時、所定波長のレーザービームを照射するのにある。
【0019】
本発明によって微粒子及び光素子母材を製造する過程は次の通りである。すなわち、図1に示された装置を使用して水素、酸素をバーナー4に注入して炎5を形成し、化学反応物質を窒素または酸素を用いてバーナー4の中心部から炎5の内部に噴射する。そうすると、炎5の内部に噴射された気相の化学物質はバーナーの表面近傍で反応して0.5nm程度の粒子核を形成する。このような粒子核は炎5に従って移動しつつ相互衝突により極小の集合体を形成する。この段階で、生成された粒子の主吸収波長帯と近い波長を有するレーザービームを適切なパワーで照射すれば、粒子の温度が急に上昇し、小さな集合体が完全融合されて5-10nm程度の微細な球状粒子6'に変化する。したがって、球状の微粒子を製造しうる。
【0020】
前述した数学式1によれば、粒子間衝突時間は昇温によって温度の-1/2乗に短縮されるが、融合時間は温度によって指数関数的にさらに迅速に短縮されることに注目する必要がある。したがって、炎内で粒子がよく吸収する波長帯のレーザーを粒子生成初期段階の小さな集合体に照射することによって粒子の温度を急に上昇させると、粒子の融合が支配的に起こって微細な球状の粒子が生成されうる。
【0021】
このように生成された微粒子で光ファイバー母材を製造する場合には、例えば、シリカ棒をバーナー4の表面から約10-20cm離隔された位置にターゲット基板10として設けた後、約60rpmに回転させれば、生成された約10-40nmの粒子が蒸着されるが、融合前の集合体に比べて球状の粒子は衝突断面積がさらに小さくなるので[S.E.Pratsinis, 1998, Prog.Energy Combust.Sci., 24,pp. 197-219 参照]、炎に従って移動しつつ低い衝突率を有することになる。したがって、蒸着直前の粒子はレーザーを照射しない場合(図4の6参照)に比べてさらに微細な球状の粒子となる(図5の6'参照)。これは衝突率とは独立して融合率の調節が可能であることを意味し、反応物質移送ガスの量を増加しても微細な球状の粒子製造が可能で、蒸着率の向上及び微細粉末または光素子の品質改善に大きく寄与可能な方法となる。蒸着はバーナーを左右に約1m程度、15cm/minの速度に移送しつつ行い続ける。
【0022】
次いで、光導波薄膜の製造時にはシリカ棒の代わりに約12インチの直径のシリコンウェーハを設け、ウェーハを回転及び移送しつつ粒子を蒸着する。
最後に、セラミック、金属、複合体微細粉末を含む粉末だけを別に製造しようとする場合には、前記ターゲット基板10の代りにセラミックフィルター、電気集塵装置などを設けて前記過程により生成された粒子を採集する。
【0023】
前記炎についてレーザーを照射する方式は図6Aないし図6Cに示されたように多様に適用しうる。最も簡単な単一照射(single incidence)方法(図6A)以外にもレーザー照射効果を高めるために、図6Bに示されたようにレーザーを多重照射(multi-incidence)することが望ましい。この場合、複数のレーザービームを採用することもでき、複数のミラー41、42を設けて炎を交互に照射しうる。代案として、図6Cに示されたように炎と同軸にレーザーを照射する同軸照射(co-axial incidence)方法も採用しうる。前記図面において、51、31、52はレーザービームを集束するためのミラー及びレンズを示す。
【0024】
多重照射方法は単一照射方法に比べてレーザービームを粒子の移動によって何回か照射することによってレーザーエネルギーの効率的な使用が可能である。同軸照射方法はバーナー内部の反応物質の移送管を通じてレーザービームを照射することによって、粒子が炎に従って移動しつつ連続的にレーザービームを吸収するためにさらに低いパワーのレーザーにも同一な効果を発揮しうる。
【0025】
本発明の実際の効果を立証するために本発明者は次のような実験を行った。
(実験例)
実験に用いられた反応物質供給装置と燃料油量調節装置は図1のように設け、図7に示されたように4つのステンレス管から構成された同軸流拡散炎バーナー4の外部にはハニカム(honeycomb)4bのような炎安定化装置をさらに設けて安定した層流(laminar)拡散炎を形成させた。前記バーナー4の中心部にノズル4aを通じてSiCl4+N2の混合ガスを供給し、ノズル4aの出口から生成された粒子によるノズルの閉塞を防止するためにノズルの周囲に形成された複数の孔を通じてシールド(shield)用窒素を噴射した。
【0026】
図7において、61a-61cはポラライザーを、62a-62cはレンズを、82はレーザーラインフィルターを、63a、63bはピンホール開口を、64はミラーを、91a、91bはビームダンプ(beam dump)を示す。
【0027】
また、バーナー4の表面から所定距離hLだけ離れた上部にCO2レーザー70を設けてレーザービームを照射し、そのCO2レーザー70の5mm上部には514nm波長のアルゴンイオン(Ar+ion)レーザー60を設けてレーザービームを照射することによって粒子による光散乱信号を光増倍管(Photomultipliertube、PMT)80を通じてコンピュータ(PC)(図示せず)に貯蔵した。また、熱泳動を用いた採集(themophoretic sampling)を通じて透過電子顕微鏡(TEM)で粒子の形状と大きさを観察して光散乱強度と比較してCO2レーザーの照射が炎中で生成された粒子の成長制御にいかほど効率的かを確認した。アルゴンイオンレーザー60はバーナー4の表面からhp距離(採集位置)だけ上部に設けられ、CO2レーザービーム70より5mmほど高く設けられている。
【0028】
集合体形状を有する粒子について一方向で測定した散乱強度は数学式3に比例する[R.A.Dobbins et al.,1991,Applied Optics,30(33),pp.4747-4754 参照]。
【0029】
【数3】
Figure 0003790105
【0030】
ここで、Nは集合体の数、nは基本粒子の数、xpはπdp/λに照射した光の波長λに対する基本粒子の直径比dp、そしてRgは集合体の回転半径であって、基本粒子の集合体の中心からの離隔距離を示す。したがって、散乱強度は基本粒子直径の6乗で、集合体数に比例して大きくなる。したがって、測定された散乱強度の大きさによって粒子の数濃度が大きく変化しないという仮定下で粒子の大きさ変化を正常的に予測しうる。また、熱泳動を用いて炎内の局所地点で粒子を採集して透過電子顕微鏡で確認すれば、粒子の大きさ及び形状の変化を定量的に把握しうる。
【0031】
CO2レーザーの影響を極大化するためには炎内の温度変化による大きさ及び形態の側面で粒子の変化を先に把握しなければならず、レーザーの照射位置を決定しなければならない。炎内の半径方向の温度分布をhpを変化させつつB型熱電対(thermocouple)を用いて測定した。この際、粒子が生成されると熱電対に付着されて温度測定が不可能なので、SiCl4をバブリングする時、ノズルから噴射される移送ガス全体流量と同一な流量で窒素のみを噴射し、粒子生成時と同じ条件で測定した。前記熱電対のビードの直径は0.5mmで、複写と対流による補正を行った炎温度分布を図8Aに示した。バーナーからの高さが11mm以下において、炎の中心では低温を有するが、炎の中心から約5mm程度離れた位置では2000℃以上の高温を示した。炎の中心部で低温を示すのは、生成された粒子がノズル表面に付着されることを防止するために噴射するシールドガスによる炎の冷却効果からである。また、hpが大きくなるほど最大温度を示す地点が順次に炎の中心部(x=0)に移動し、hpが17mm以上ではほう物線状の温度分布を示す。これは酸素、水素炎の拡散による。噴射されたSiCl4の化学反応は温度に依存するので生成された粒子の分布は炎内の温度分布と類似しており、散乱実験を通じて光散乱信号の分布の類似性を確認した。
【0032】
図8Bでは、hL=6mm、15mm位置で各々CO2レーザーを1137Wで照射する時、CO2レーザービームより5mm上の位置であるhp=11mm、20mmで熱電対を用いて温度変化を測定することによって、CO2レーザーによるガス加熱効果を示した。炎内には注入された水素、酸素、窒素、そして水素の燃焼による水蒸気と中間生成物などが存在する。水素の燃焼による中間生成物によるレーザービームの吸収によってガス温度が約100℃程度上昇するものと判断される。hp=11mm位置で、炎中心部では噴射された窒素の濃度が濃く、水素の拡散が十分にならない状態なのでガスによるレーザーの吸収が相対的に少なくなって温度上昇が40℃程度と低かった。SiO2の赤外線吸収バンドは455,1090,800cm-1の順に示され[R.A.Nyquist et al.,Infrared spectra of inorganic compounds,4,Academic press,INC.,1997参照]、CO2レーザーの周波数は934cm-1であるために、ガスに比べて粒子の周波数一致がさらによくなされ、粒子の大小もガス分子に比べて100倍以上大きいので実際のレーザービームの吸収量は粒子が余程大きい。したがって、レーザービームを粒子に照射すればガス温度に比べて急な温度の上昇が誘発される。
【0033】
CO2レーザービームの強度を0、266、750、1150、1490Wに各々変化させ、CO2レーザービームの照射位置(hL)を5mmから19mmまでに変化させつつ(図9A及び図9Bに示されたグラフの横側にhp距離10-24mm)、炎中心軸に沿う散乱強度の変化を50sccmの反応物質移送ガス流量について図9Aに、そして150sccmの反応物質移送ガス流量について図9Bに各々示した。図面の横軸は光散乱強度測定位置(hp)を示し、CO2レーザーはhpより5mm低い位置に照射した。図9AにおいてCO2レーザーを照射しない場合(図面でI=0)、hp距離が増加するほど散乱強度は増加する。
【0034】
hpは約14mmまでは化学反応による急な粒子生成と凝集(coagulation)とによって急に散乱強度が増加する。しかし、それ以上の高さでは緩慢に増加する。レーザーを照射すれば相反する傾向を示す。
【0035】
hpは9mmの高さまでは炎中心部でSiCl4の化学反応が完全に起こらないためにCO2レーザーを照射すれば、図8Bにおいて観察したレーザーによるガス温度の上昇によって化学反応が誘発されて粒子が生成される。したがって、5mm上で測定した散乱強度(図9Aにおいてhp<=14mm)も増加することになる。CO2レーザーパワーを増加するほど粒子の生成効果も増加されることを観察しうる。バーナーの表面から9mm以上、14mm以下の高さでは化学反応は終結されたが、粒子の成長が急な地域なので生成された粒子の衝突と凝集、融合過程による集合体が存在することになり、ここにCO2レーザーを照射すれば集合体を構成する基本粒子が吸収されて相互焼結されて微細な球状の粒子が形成される。そして、炎に従って移動しつつ衝突断面積の減少によって集合体の形成が抑制される。したがって、散乱強度(図9Aにおいて、14mm<=hp<=19mm)もCO2レーザーのパワーの増加によって減少し、14mmの高さでCO2レーザーを照射する時(hp=19mm)、各レーザーのパワーレベルに対した散乱強度の極小点が存在することが分かる。
【0036】
15mm以上の高さでは粒子の焼結が終結された球状の粒子が形成され、ここにCO2レーザーを照射すれば、球状粒子の大きさが集合体の基本粒子に比べてかなり大きいためにレーザービームの吸収率が一層大きくなる。したがって、球状粒子が蒸発し、散乱強度もレーザーパワーの増加によって減少される。蒸発されたガス上の粒子がレーザービームを通過した直後、ガスとの熱交換によって冷却されて再凝縮される。再凝縮時には均一核生成(homogeneous nucleation)に近く、多くの濃度によって集合体の形成を避けられない。反応物質移送ガスの流量を150sccmに増加した時のCO2レーザーによる散乱強度の変化を高さ別に同様に図9Bに示した。
【0037】
図9A、9Bを比較すると反応物質移送ガスの流量を増加するほど、CO2レーザーの最大影響を示す照射位置(散乱強度の極小点が14mm(hp=19mm)から17mm(hp=22mm)にバーナーの表面から離隔される。また、低い位置にレーザービームを照射して誘発された粒子生成効果も移送ガス流量の増加によって減少されることがわかる。本実験で移送ガス流量が変化しても、粒子がCO2レーザービームを通過する時間を一致させるため、N2(移送ガス)+SiCl4+N2(追加ガス)の全体流量を、追加ガスの流量を調節して一定に保たせた。したがって、粒子及びガスの速度は両方共に同一である。しかし、ノズルから噴射されるSiCl4は窒素に比べて20倍以上重い気体なので、SiCl4の流量が大きくなるとノズルの出口における運動量も大きくなって水素の拡散が遅延されるので中心部での温度が減少し、その結果化学反応が遅くなる。また、SiCl4の流量が増加するほど生成された粒子の濃度が増加し、衝突頻度の増加によるさらに小さな基本粒子からなる大きい集合体が形成される。集合体の焼結が終了し、球状の粒子に変化する位置もSiCl4の流量の増加によってさらに上方に移動する。
【0038】
図9Aにおける散乱強度の極小点の位置がSiCl4の流量増加によって図9Bでは増加することも同じ理由である。
【0039】
移送ガス流量が低い場合、図9Aの低い位置における粒子生成効果、散乱強度の極小点での粒子焼結効果と、高い位置での粒子蒸発効果を各々確認するために6、12、18mmでCO2レーザーを各々照射して11、17、23mmで粒子を採集した後、観察した。
【0040】
まず、CO2レーザーを照射しない場合(I=0W)、レーザー照射位置6mmでガス相が主になされ、採集位置11mmでガス相から粒子生成が生じる。ここで、CO2レーザーのパワーを増加させることによって粒子生成効果が大きくなることを確認した。
【0041】
レーザー照射位置が12mmであり、採集位置が17mmでは、レーザーパワーを増加させることによって粒子は球状を保ちつつその大きさが約70nmから40nmに減少し、レーザー出力が1170Wでは粒子の表面で蒸発及び再凝縮の結果、粒子表面に5nm程度の微細な粒子が付着した。したがって、炎中にレーザーの照射が粒子の大小を成功的に変化させることを確認した。
【0042】
一方、18mmの高さでは、完全焼結された球状の粒子が存在するのでレーザーを照射しても焼結が起こらず表面の蒸発が起こるために、レーザーパワーを増加しても存在する球状粒子の大きさには別に変化がなかった。
レーザー出力が相当高いパワーの1808Wでは、球状粒子は若干小さくなり、蒸発と再凝縮による微細な粒子からなる集合体が多く存在することが分かる。
【0043】
また、移送ガスの流量が大きい時、15mmの位置でCO2レーザーパワーを増加しなつつレーザービームを照射し、20mm位置で採集した結果を観察した。I=0Wの場合には、完全焼結が起こる直前の太い集合体が形成された。約260Wの低いレーザービームを照射しても集合体の焼結がなされて完全な球状の粒子が形成された。そして、レーザーパワーを増加すれば直径が約60%程度小さくなり、依然として球状を保つことがわかる。これは蒸着率の観点から見れば望ましい結果である。反応物質移送ガスを3倍増やせば近似的に蒸着率は線形的に増加するが、この時にも球状の微粒子を製造して付着できるということを意味し、本発明の目的と一致する。また、生成された粒子の吸収波長とレーザーの周波数を一致させれば低い出力のレーザーを使用しても大きな効果が得られる。
【0044】
(産業上の利用分野)
前述したように本発明の微粒子製造方法及び微粒子蒸着方法によれば、炎内に生成された粒子にレーザーを照射して粒子の焼結を促進させることによってnmサイズの球状粒子が得られ、これによって製造された粒子及びその粒子を用いて蒸着された薄膜の品質が改善されうる。
【0045】
以上、本発明は明示した具体例にのみついて詳しく説明したが、本発明の技術的な思想範囲内で多様な変形及び修正が可能なのは当業者に明白なものであり、このような変形及び修正は特許請求の範囲に属するのは当然である。すなわち、本発明は炎内で微細粉末状の粒子を作る一般の工程に全て適用可能なものと理解しなければならない。
【図面の簡単な説明】
【図1】 一般の微粒子製造装置の構成を概略的に示す図面である。
【図2】 図1の炎内で粒子が成長するメカニズムを示す図面である。
【図3】 粒子の成長を制御するための従来の微粒子製造方法の一例を説明するための図面である。
【図4】 粒子の成長を制御するための従来の微粒子製造方法の他の例を説明するための図面である。
【図5】 本発明の一実施例に係る微粒子製造方法のメカニズムを図式的に示す図面である。
【図6】 本発明の一実施例に係る微粒子製造方法を行うための装置に採用されうるレーザービームの実施例を説明するために示した図面である。
【図7】 本発明の一実施例に係る微粒子製造方法を実施するための具体的な装置の例を示す図面である。
【図8】 本発明の一実施例による微粒子製造方法に係る炎内の温度分布を示す図面である。
【図9】 本発明の一実施例による微粒子製造方法に係るレーザービームの照射位置による散乱強度を示すグラフである。
【図10】 本発明の一実施例による微粒子製造方法において、CO2レーザー照射がない状態で捕集位置に関するルチルフェーズの重量比を示すグラフである。
【図11】 本発明の一実施例による微粒子製造方法において、CO2レーザーのビームの力がバーナーの端部から35nmの位置に照射されるときに65nmの高さで捕集された微粒子サンプルのX線回折パターンの変化を示すグラフである。
【図12】 本発明の一実施例による微粒子製造方法において、照射位置の異なるレーザービームによるルチルフェーズの重量比を示すグラフである。[0001]
    (Technical field)
  The present invention relates to a method for producing fine particles using a flame.
[0002]
(Background technology)
A schematic apparatus for flame hydrolysis deposition (FHD) in which particles are generated and grown in a flame is shown in FIG. Referring to the drawing, in the containers 1a and 1b containing the respective reactants, for example, N2Then, the gas is blown into the burner 4. The reactant transferred to the burner 4 is H.2The particles 6 are radiated into the flame 5 generated by the combustion of the fuel. The containers 1a and 1b containing the gas and the burner 4 are connected to a conduit, and a valve 3 and a mass flow controller (MFC) 2 are provided on the flow path.
[0003]
The reactants used in this apparatus vary depending on the substance to be produced, and multi-component composite particles can be produced using a plurality of reactants. For example, when manufacturing optical waveguide thin films and optical fiber preforms, SiClFour, GeClFour, POClThreeSince the reactant has a low vapor pressure at room temperature, the flow rate is precisely adjusted by the flow rate regulator 2 and then supplied to the burner 4 through the transfer gas. The reactant injected from the nozzle of the burner 4 is H generated in the flame 5 by hydrogen combustion.2Reacts with O as shown in FIG.2, GeO2, P2OFiveThe particles 6 are generated, and such particles are deposited on the target substrate 10.
[0004]
When manufacturing the optical fiber preform, replace the oxygen in the reactant transfer gas with a silica rod (not shown) instead of the target substrate 10, and reciprocate the burner 4 left and right while rotating it at about 60rpm. This is a so-called outside vapor deposition (OVD) method in which particles produced in this manner are attached to a silica rod. Further, in the FHD method for manufacturing an optical waveguide film or an optical splitter, a silicon wafer (not shown) is provided instead of the target substrate 10, and particles are attached while the wafer or the burner 4 is transferred two-dimensionally. .
In both cases, it is the size, formation and shape of the particles upon deposition that have the greatest impact on the optical properties of the final fabricated optical element and the sintering properties of the matrix.
[0005]
In addition, when a thin film is manufactured through a sintering process after the production of fine powders such as ceramic nanoparticles, metal nanoparticles, and composite nanoparticles, the formation of aggregates and the uneven distribution of particles are the flow of the powder. Will affect the flow and packing to form a porous pore, which is a significant loss in the mechanical strength and optical and magnetic properties of the optical element. Will work. Therefore, in the manufacture of various fine powders and the manufacture of optical elements using such fine powders, in order to improve the quality and reliability, the particles are made to have a uniform size distribution while minimizing the particles to the nm size. At the same time, it is most important to produce spherical particles, so research to solve such problems has become an issue.
[0006]
Currently, the burners used for the production of various fine powders and optical devices are coflow diffusion flame burner, counterflow diffusion flame burner, coaxial premix flame burner ( coflow premixed flame burner). Although the temperature distribution and flow conditions differ considerably for each burner, the particle generation and growth mechanisms are fundamentally the same. Particle size and morphology is determined by the ratio of the time during which particles are coalesced by the heat transferred from the flame to the particles and the collision time between the particles [Y. Xiong et al., 1993, J. Aerosol Sci., 24 (3), pp. 301-313, SE Pratsinis, 1998, Prog. Energy Combust. Sci., 24, pp. 197-219]. If the fusion occurs before the collision (ie, the flame temperature is high), as shown in FIG. 2A, the two interconnected particles fuse to form a large spherical particle of the same volume. Form. On the other hand, when collisions occur more frequently than in fusion, as shown in FIG. 2B, the particles are fused together to form a sphere without being spherical and connected to each other in a branch shape. .
[0007]
Here, as shown in FIG. 2B, the time taken for the volume of the aggregate to double is defined as a characteristic collision time (Tc), which is expressed by the following equation [RSWindeler et al., 1997, Aerosolsci, and Tech., 27, pp. 174-190].
[0008]
[Expression 1]
Figure 0003790105
[0009]
In the above equation, v is the average volume of the aggregate, k is the Boltzmann constant, T is the temperature, α is DfConstant by dpIs the diameter of another primary particle that makes up one aggregate, Φ is the volume ratio of the generated particles (volume of generated particles / volume of chemical transfer gas), DfIndicates the fractal dimension of the aggregate. The closer to 3, the closer to a spherical shape, the denser the particle shape, and the closer to 1, the wider the shape of branches. In the case of a mass produced using a flame, it has a value of about 1.6-2.0.
[0010]
Here, as the volume ratio Φ of the generated particles increases, that is, when the amount of chemical substances is increased to increase the adhesion rate of the particles, the collision time becomes relatively short compared to the fusion time. It becomes a big aggregate by collision between bodies.
[0011]
In addition, as shown in FIG. 2A, the time required for two spherical particles to completely fuse into a spherical particle having the same volume is defined as a characteristic coalescence time (Tf). This is roughly divided into a solid state diffusion mechanism and a viscous flow mechanism according to the sintering mechanism of the particles. For example, TiO2In the case of high diffusion mechanism, SiO2Corresponds to the viscous flow mechanism. SiO2The characteristic fusion time is shown as follows (see W.D.Kingery et al., 1976, Introduction to Ceramics, Wiley, New York).
[0012]
[Expression 2]
Figure 0003790105
[0013]
At present, various methods have been tried to control the size of particles. The first method optimizes the fuel, oxidant, and reactant transfer gas flow rates injected into the burner, and belongs to the passive method that has been used in actual processes. However, in such a method, when the transfer gas flow rate of the reactants is high at the same flame temperature, the basic particles become small but a large aggregate is formed. On the other hand, spherical particles are formed at a low flow rate. There is a problem that the size becomes larger than 100 nm. Moreover, it is impossible to produce spherical independent particles of nm size by adjusting the injection position of the fuel and oxidant injected into the burner and the injection position of the chemical transfer gas [SEPratsinis et al., 1996, Powder Tech., 86, pp. 87].
[0014]
The second method for controlling the size of the particles is an active method for reducing the size of the particles by applying a direct force to the generated particles to suppress collision as shown in FIG. That is, the particles generated from the flame of the burner 4 are charged and have a charge amount. Therefore, when a strong direct current (DC) electric field is applied by the electrodes 11a and 11b provided on both sides of the flame, the positively or negatively charged particles move to both electrodes by the electric field. Accordingly, since the particle remaining time is shortened in the high temperature region inside the flame, the particle fusion rate is lowered, and thus the size of the basic particles is reduced. Moreover, since the number density | concentration of the particle | grains inside a flame | frame becomes thin when a particle | grain moves to a positive electrode side from a flame, the collision rate between particle | grains will become low and the aggregate will also become small. Although the method described above has the advantage of reducing both the size of the basic particles and the size of the aggregate, this method also suppresses collisions caused by turbulent flow components resulting from flow disturbance due to movement of the particles to the electrodes on both sides. Can not. Therefore, the formation of aggregates cannot be avoided even when the particles become small, and there is a limit that the adhesion rate of the particles becomes low due to the generated particles adhering to the electrode [S. Vemuryetal., J. Aerosol Sci ., 1996, 27, pp. 951, Y. Xingetal., 1996, Combustion and Flame, 107, pp. 85].
[0015]
(Disclosure of the Invention)
The present invention is for solving the above-mentioned problems, and uses a flame to produce fine powder including ceramic fine powder, metal fine powder, glass fine powder, composite fine powder, or optical element base material. It is an object of the present invention to provide a method capable of producing spherical particles of nm size by irradiating a laser in the flame in depositing the fine powder for production.
[0016]
  In order to achieve the above object, the method for producing fine particles according to the present invention comprises:Supplying a reactant to a flame generated by a burner; generating a particle nucleus by reaction of the reactant with the flame; and including the particle nucleus by mutual collision and coupling of the particle nucleus by the flame. Forming an aggregate, and irradiating at least one laser beam to the aggregate at a position where the formation of the aggregate is started by the flame, so that the aggregate becomes smaller particles than the aggregate And a step of growing the fine particles.
[0018]
(Best Mode for Carrying Out the Invention)
The method for producing fine particles and the method for producing an optical element base material according to the present invention can be performed by employing the ordinary production apparatus shown in FIG. The characteristic gist of the present invention is that a laser beam having a predetermined wavelength is irradiated when particles 6 'are generated in the end flame 5 of the burner 4, as shown in FIG.
[0019]
The process of manufacturing the fine particles and the optical element base material according to the present invention is as follows. That is, using the apparatus shown in FIG. 1, hydrogen and oxygen are injected into the burner 4 to form a flame 5, and a chemical reactant is introduced from the center of the burner 4 into the flame 5 using nitrogen or oxygen. Spray. Then, the chemical substance in the gas phase injected into the flame 5 reacts near the surface of the burner to form a particle nucleus of about 0.5 nm. Such particle nuclei move according to the flame 5 and form a minimum aggregate by mutual collision. At this stage, if a laser beam having a wavelength close to the main absorption wavelength band of the generated particles is irradiated with an appropriate power, the temperature of the particles suddenly rises, and a small aggregate is completely fused to about 5-10 nm. It turns into fine spherical particles 6 ′. Accordingly, spherical fine particles can be produced.
[0020]
According to Equation 1 above, it is necessary to note that the interparticle collision time is shortened to the -1/2 power of the temperature by increasing the temperature, but the fusion time is exponentially shortened more rapidly by the temperature. There is. Therefore, when the temperature of the particles is suddenly increased by irradiating a small-sized assembly in the initial stage of particle generation with a laser in a wavelength band that the particles absorb well in the flame, particle fusion occurs predominantly and a fine spherical shape Of particles can be produced.
[0021]
When producing an optical fiber preform with the fine particles thus produced, for example, a silica rod is provided as a target substrate 10 at a position separated by about 10-20 cm from the surface of the burner 4, and then rotated to about 60 rpm. In this case, the generated particles of about 10-40 nm are vapor-deposited, but since the spherical particles have a smaller collision cross-section than the aggregate before fusion, [SEPratsinis, 1998, Prog. Energy Combust. , 24, pp. 197-219], it will have a low collision rate while moving according to the flame. Therefore, the particles immediately before vapor deposition become finer spherical particles (see 6 ′ in FIG. 5) than when the laser is not irradiated (see 6 in FIG. 4). This means that the fusion rate can be adjusted independently of the collision rate. Even if the amount of reactant transfer gas is increased, fine spherical particles can be produced. Alternatively, the method can greatly contribute to the quality improvement of the optical element. Deposition continues while transferring the burner to the left and right at a speed of about 1 m and 15 cm / min.
[0022]
Next, when manufacturing the optical waveguide thin film, a silicon wafer having a diameter of about 12 inches is provided instead of the silica rod, and particles are deposited while the wafer is rotated and transferred.
Finally, in the case where only powder containing ceramic, metal, and composite fine powder is to be manufactured separately, a ceramic filter, an electrostatic precipitator, etc. are provided in place of the target substrate 10 to generate particles generated by the above process. To collect.
[0023]
As shown in FIGS. 6A to 6C, various methods may be applied to irradiate the flame with the laser. In order to enhance the laser irradiation effect other than the simplest single incidence method (FIG. 6A), it is desirable to perform multi-incidence of the laser as shown in FIG. 6B. In this case, a plurality of laser beams can be employed, and a plurality of mirrors 41 and 42 can be provided to alternately irradiate the flame. As an alternative, as shown in FIG. 6C, a co-axial incidence method of irradiating a laser coaxially with the flame may be employed. In the figure, reference numerals 51, 31, and 52 denote mirrors and lenses for focusing the laser beam.
[0024]
The multiple irradiation method can use the laser energy more efficiently by irradiating the laser beam several times by moving the particles as compared with the single irradiation method. The coaxial irradiation method irradiates the laser beam through the reactant transfer tube inside the burner, so that the particles can move continuously according to the flame and absorb the laser beam continuously. Yes.
[0025]
In order to prove the actual effect of the present invention, the present inventor conducted the following experiment.
(Experimental example)
The reactant supply device and the fuel oil amount adjusting device used in the experiment are provided as shown in FIG. 1, and as shown in FIG. 7, there is a honeycomb outside the coaxial flow diffusion flame burner 4 composed of four stainless steel tubes. A flame stabilizing device such as (honeycomb) 4b was further provided to form a stable laminar diffusion flame. SiCl through the nozzle 4a in the center of the burner 4Four+ N2In order to prevent clogging of the nozzle by particles generated from the outlet of the nozzle 4a, nitrogen for shielding was injected through a plurality of holes formed around the nozzle.
[0026]
In FIG. 7, 61a-61c is a polarizer, 62a-62c is a lens, 82 is a laser line filter, 63a and 63b are pinhole openings, 64 is a mirror, 91a and 91b are beam dumps. Show.
[0027]
Also, a predetermined distance h from the surface of the burner 4LCO at the top just away2Laser 70 is installed and irradiated with a laser beam, and its CO2Argon ion (Ar + ion) laser 60 with a wavelength of 514 nm is installed 5 mm above laser 70, and the light scattering signal from the particles is emitted by irradiating the laser beam through a photomultiplier tube (PMT) 80 to a computer (PC) (Not shown). In addition, the shape and size of the particles are observed with a transmission electron microscope (TEM) through thermophoretic sampling and compared with the light scattering intensity.2We confirmed how efficient laser irradiation is for controlling the growth of particles generated in a flame. Argon ion laser 60 is installed at the top of the burner 4 surface by hp distance (collection position), CO2It is about 5 mm higher than the laser beam 70.
[0028]
The scattering intensity measured in one direction for particles having an aggregate shape is proportional to Equation 3 [see R.A.Dobbins et al., 1991, Applied Optics, 30 (33), pp. 4747-4754].
[0029]
[Equation 3]
Figure 0003790105
[0030]
Where N is the number of aggregates, n is the number of elementary particles, xpIs πdpThe ratio of the diameters of the basic particles to the wavelength λ of the light irradiated to / λpAnd RgIs the radius of rotation of the aggregate and indicates the separation distance of the basic particles from the center of the aggregate. Therefore, the scattering intensity is the sixth power of the basic particle diameter, and increases in proportion to the number of aggregates. Therefore, the change in the particle size can be normally predicted under the assumption that the number concentration of the particles does not change greatly depending on the magnitude of the measured scattering intensity. In addition, if particles are collected at a local point in the flame using thermophoresis and confirmed with a transmission electron microscope, changes in the size and shape of the particles can be grasped quantitatively.
[0031]
CO2In order to maximize the influence of the laser, it is necessary to first grasp the change of the particle in terms of the size and shape due to the temperature change in the flame, and to determine the laser irradiation position. The temperature distribution in the radial direction in the flame was measured using a B-type thermocouple while changing hp. At this time, if particles are generated, they are attached to the thermocouple and temperature measurement is impossible.FourWhen bubbling, only nitrogen was injected at the same flow rate as the entire flow rate of the transfer gas injected from the nozzle, and the measurement was performed under the same conditions as during particle generation. The thermocouple bead diameter was 0.5 mm, and the flame temperature distribution corrected by copying and convection is shown in FIG. 8A. When the height from the burner was 11 mm or less, the center of the flame had a low temperature, but at a position about 5 mm away from the center of the flame, a high temperature of 2000 ° C. or higher was exhibited. The low temperature at the center of the flame is due to the cooling effect of the flame by the shielding gas injected to prevent the generated particles from adhering to the nozzle surface. Also, as hp increases, the point showing the maximum temperature moves to the center of the flame (x = 0) sequentially, and when hp is 17mm or more, it shows a linear temperature distribution. This is due to the diffusion of oxygen and hydrogen flames. Injected SiClFourSince the chemical reaction depends on temperature, the distribution of the generated particles is similar to the temperature distribution in the flame, and the similarity of the distribution of the light scattering signal was confirmed through scattering experiments.
[0032]
In FIG. 8B, CO at hL = 6mm and 15mm positions, respectively.2When irradiating laser at 1137W, CO2By measuring the temperature change with a thermocouple at hp = 11mm, 20mm, which is 5mm above the laser beam, CO2The gas heating effect by laser was shown. In the flame, there are injected hydrogen, oxygen, nitrogen, and steam and intermediate products from the combustion of hydrogen. It is judged that the gas temperature rises by about 100 ° C due to the absorption of the laser beam by the intermediate product from the combustion of hydrogen. At the hp = 11mm position, the concentration of injected nitrogen was high at the center of the flame, and hydrogen was not sufficiently diffused, so the absorption of the laser by the gas was relatively small and the temperature rise was as low as about 40 ° C. SiO2Infrared absorption band of 455,1090,800cm-1[See R.A.Nyquist et al., Infrared spectra of inorganic compounds, 4, Academic press, INC., 1997], CO2Laser frequency is 934cm-1Therefore, the frequency matching of the particles is better than that of the gas, and the size of the particles is more than 100 times larger than that of the gas molecules, so that the actual laser beam absorption is much larger. Therefore, if the particle is irradiated with a laser beam, a sudden temperature rise is induced compared to the gas temperature.
[0033]
CO2Change the intensity of the laser beam to 0, 266, 750, 1150, 1490 W2While changing the laser beam irradiation position (hL) from 5 mm to 19 mm (hp distance 10-24 mm on the side of the graph shown in FIGS. 9A and 9B), the change in scattering intensity along the flame center axis is 50 sccm. 9A and FIG. 9B show the reactant transfer gas flow rate of 150 sccm. The horizontal axis of the drawing shows the light scattering intensity measurement position (hp), CO2The laser was irradiated at a position 5mm below hp. In FIG. 9A, CO2When the laser is not irradiated (I = 0 in the drawing), the scattering intensity increases as the hp distance increases.
[0034]
For hp up to about 14 mm, the scattering intensity suddenly increases due to sudden particle formation and coagulation due to chemical reaction. However, it increases slowly at higher heights. When laser is irradiated, it shows a tendency to conflict.
[0035]
If the hp is 9mm high, SiCl in the center of the flameFourBecause the chemical reaction of CO does not occur completely2When the laser is irradiated, a chemical reaction is induced by the increase in gas temperature caused by the laser observed in FIG. 8B to generate particles. Therefore, the scattering intensity measured at 5 mm (hp <= 14 mm in FIG. 9A) also increases. CO2It can be observed that the particle generation effect increases with increasing laser power. At a height of 9 mm or more and 14 mm or less from the surface of the burner, the chemical reaction was terminated, but since the particle growth is a rapid region, there are aggregates due to collision and aggregation of the generated particles, fusion process, CO here2When the laser is irradiated, the basic particles constituting the aggregate are absorbed and mutually sintered to form fine spherical particles. And the formation of the aggregate is suppressed by the reduction of the collision cross-sectional area while moving according to the flame. Therefore, the scattering intensity (14mm <= hp <= 19mm in FIG. 9A) is also CO.2Reduced by increasing laser power, CO at 14mm height2When the laser is irradiated (hp = 19mm), it can be seen that there is a minimum point of the scattering intensity for each laser power level.
[0036]
At a height of 15 mm or more, spherical particles are formed where the sintering of the particles is terminated.2When the laser is irradiated, the absorptivity of the laser beam is further increased because the size of the spherical particles is considerably larger than the basic particles of the aggregate. Thus, the spherical particles are evaporated and the scattering intensity is also reduced by increasing the laser power. Immediately after the vaporized particles on the gas pass through the laser beam, they are cooled and recondensed by heat exchange with the gas. At the time of recondensation, it is close to homogeneous nucleation, and the formation of aggregates is inevitable due to many concentrations. CO when the flow rate of the reactant transfer gas is increased to 150 sccm2The change in the scattering intensity by the laser is similarly shown in FIG. 9B for each height.
[0037]
9A and 9B, as the flow rate of the reactant transfer gas is increased, the CO2The irradiation position that shows the maximum influence of the laser (the minimum point of the scattering intensity is separated from the surface of the burner from 14 mm (hp = 19 mm) to 17 mm (hp = 22 mm). It can be seen that the particle generation effect is also reduced by the increase in the transfer gas flow rate.2N to match the time through the laser beam2(Transport gas) + SiClFour+ N2The total flow rate of (additional gas) was kept constant by adjusting the flow rate of the additional gas. Thus, both the particle and gas velocities are the same. However, SiCl sprayed from the nozzleFourIs a gas 20 times heavier than nitrogen, so SiClFourAs the flow rate increases, the momentum at the outlet of the nozzle also increases and hydrogen diffusion is delayed, so the temperature at the center decreases, resulting in a slower chemical reaction. SiClFourAs the flow rate increases, the concentration of the generated particles increases, and a large aggregate of smaller basic particles is formed due to the increased collision frequency. The position where the aggregates have been sintered and changed to spherical particles is also SiCl.FourAs the flow rate increases, it moves further upward.
[0038]
The position of the minimum point of the scattering intensity in FIG.FourThe increase in the flow rate of FIG. 9B is the same reason.
[0039]
When the transfer gas flow rate is low, in order to confirm the particle generation effect at the low position in FIG. 9A, the particle sintering effect at the minimum point of the scattering intensity, and the particle evaporation effect at the high position, CO at 6, 12 and 18 mm.2The particles were collected at 11, 17, and 23 mm by irradiating each laser, and then observed.
[0040]
First, CO2When laser irradiation is not performed (I = 0W), the gas phase is mainly produced at the laser irradiation position 6 mm, and particle generation occurs from the gas phase at the collection position 11 mm. Where CO2It was confirmed that the particle generation effect was increased by increasing the laser power.
[0041]
When the laser irradiation position is 12 mm and the collection position is 17 mm, the particle is reduced from about 70 nm to 40 nm while keeping the spherical shape by increasing the laser power, and when the laser output is 1170 W, the particle is evaporated and As a result of recondensation, fine particles of about 5 nm adhered to the particle surface. Therefore, it was confirmed that the laser irradiation successfully changed the size of the particles during the flame.
[0042]
On the other hand, at a height of 18 mm, spherical particles that have been completely sintered exist, so even if laser irradiation is performed, sintering does not occur and surface evaporation occurs. There was no change in the size.
It can be seen that at 1808 W, which has a considerably high laser output, the spherical particles are slightly smaller and there are many aggregates of fine particles by evaporation and recondensation.
[0043]
Also, when the flow rate of the transfer gas is large, CO2The laser beam was irradiated while increasing the laser power, and the results collected at the 20 mm position were observed. In the case of I = 0 W, a thick aggregate just before complete sintering was formed. Even when irradiated with a low laser beam of about 260 W, the aggregate was sintered and perfect spherical particles were formed. It can be seen that increasing the laser power reduces the diameter by about 60% and still maintains a spherical shape. This is a desirable result from the viewpoint of the deposition rate. If the reactant transfer gas is increased by a factor of 3, the deposition rate increases approximately linearly, but this also means that spherical fine particles can be produced and adhered, which is consistent with the object of the present invention. Further, if the absorption wavelength of the generated particles is matched with the frequency of the laser, a great effect can be obtained even if a low-power laser is used.
[0044]
(Industrial application fields)
As described above, according to the fine particle production method and fine particle vapor deposition method of the present invention, spherical particles of nm size can be obtained by irradiating the particles generated in the flame with laser to promote the sintering of the particles. The quality of the particles produced by and the thin film deposited using the particles can be improved.
[0045]
Although the present invention has been described in detail with reference to specific examples, it will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the technical idea of the present invention. Belongs to the scope of the claims. That is, it should be understood that the present invention can be applied to all general processes for producing fine powder particles in a flame.
[Brief description of the drawings]
FIG. 1 is a drawing schematically showing a configuration of a general fine particle manufacturing apparatus.
FIG. 2 is a view showing a mechanism of particle growth in the flame of FIG. 1;
FIG. 3 is a drawing for explaining an example of a conventional fine particle manufacturing method for controlling the growth of particles.
FIG. 4 is a drawing for explaining another example of a conventional fine particle manufacturing method for controlling the growth of particles.
FIG. 5 is a drawing schematically showing a mechanism of a fine particle manufacturing method according to an embodiment of the present invention.
FIG. 6 is a drawing for explaining an example of a laser beam that can be employed in an apparatus for performing a fine particle manufacturing method according to an embodiment of the present invention.
FIG. 7 is a drawing showing an example of a specific apparatus for carrying out the fine particle manufacturing method according to an embodiment of the present invention.
FIG. 8 is a view showing a temperature distribution in a flame according to a method for producing fine particles according to an embodiment of the present invention.
FIG. 9 is a graph showing the scattering intensity according to the irradiation position of the laser beam according to the fine particle manufacturing method according to an embodiment of the present invention.
FIG. 10 shows a method for producing fine particles according to an embodiment of the present invention.2It is a graph which shows the weight ratio of the rutile phase regarding a collection position in the state without laser irradiation.
FIG. 11 shows a method for producing fine particles according to an embodiment of the present invention.2It is a graph which shows the change of the X-ray-diffraction pattern of the microparticle sample collected with the height of 65 nm when the laser beam force is irradiated to the position of 35 nm from the edge part of a burner.
FIG. 12 is a graph showing the rutile phase weight ratio of laser beams with different irradiation positions in the fine particle manufacturing method according to an embodiment of the present invention.

Claims (4)

反応物質をバーナーにより生成される炎に供給する段階と、
前記炎による前記反応物質の反応により粒子核を発生させる段階と、
前記炎により、前記粒子核の相互衝突及び結合により前記粒子核を含む集合体を形成する段階と、
前記炎によって前記集合体が形成される範囲にある前記集合体に、少なくとも1つのレーザービームを照射し、前記集合体をこの集合体よりも小さな微粒子にする段階と、
前記微粒子を成長させる段階と、
を含むことを特徴とする微粒子の製造方法。
Supplying reactants to a flame generated by a burner;
Generating particle nuclei by reaction of the reactant with the flame;
Forming an assembly including the particle nuclei by mutual collision and coupling of the particle nuclei with the flame;
Irradiating the assembly in a range where the assembly is formed by the flame with at least one laser beam, and making the assembly smaller particles than the assembly;
Growing the fine particles;
A method for producing fine particles, comprising:
前記微粒子は、球形状であることを特徴とする請求項1記載の微粒子の製造方法。  The method for producing fine particles according to claim 1, wherein the fine particles have a spherical shape. 前記集合体の衝突断面積は、前記集合体から生成される微粒子の衝突断面積よりも大きいことを特徴とする請求項1記載の微粒子の製造方法。  The method for producing fine particles according to claim 1, wherein a collision cross-sectional area of the aggregate is larger than a collision cross-sectional area of the fine particles generated from the aggregate. 前記レーザービームは、前記集合体が形成される範囲の初期に、前記炎へ照射することを特徴とする請求項1記載の微粒子の製造方法。2. The method for producing fine particles according to claim 1, wherein the laser beam is applied to the flame at an initial stage in which the aggregate is formed .
JP2000595941A 1999-01-27 2000-01-22 Method for producing fine particles using flame and laser Expired - Lifetime JP3790105B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1999/2613 1999-01-27
KR1019990002613A KR100308795B1 (en) 1999-01-27 1999-01-27 method for manufacturing fine particles and depositing thereof using flame and laser beam
PCT/KR2000/000049 WO2000044679A1 (en) 1999-01-27 2000-01-22 Methods for manufacturing and depositing fine particles combining flame and laser beam

Publications (2)

Publication Number Publication Date
JP2002535236A JP2002535236A (en) 2002-10-22
JP3790105B2 true JP3790105B2 (en) 2006-06-28

Family

ID=19572547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000595941A Expired - Lifetime JP3790105B2 (en) 1999-01-27 2000-01-22 Method for producing fine particles using flame and laser

Country Status (4)

Country Link
JP (1) JP3790105B2 (en)
KR (1) KR100308795B1 (en)
DE (1) DE10083901T1 (en)
WO (1) WO2000044679A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100330626B1 (en) * 2000-03-07 2002-03-29 곽영훈 Producing method for nano-size ultra fine silica particle by the chemical vapor reaction
KR100385574B1 (en) * 2001-02-10 2003-05-27 최만수 Method for manufacturing shell shaped fine carbon particles
KR20040000830A (en) * 2002-06-25 2004-01-07 한국지질자원연구원 a Producing Method for Silica Ultrafine Particles from Silane Compounds by the Gas Phase Oxidation
WO2004035496A2 (en) * 2002-07-19 2004-04-29 Ppg Industries Ohio, Inc. Article having nano-scaled structures and a process for making such article
US8679580B2 (en) 2003-07-18 2014-03-25 Ppg Industries Ohio, Inc. Nanostructured coatings and related methods
KR100989941B1 (en) 2003-07-16 2010-10-26 주식회사 케이씨씨 The method and apparatus for the silica fine powder
FI20060288A0 (en) * 2006-03-27 2006-03-27 Abr Innova Oy coating process
US8563097B2 (en) 2007-12-17 2013-10-22 Guardian Industries Corp. Remote combustion deposition burner and/or related methods
US8440256B2 (en) 2007-12-17 2013-05-14 Guardian Industries Corp. Combustion deposition of metal oxide coatings deposited via infrared burners
DE102010021693A1 (en) 2010-05-27 2011-12-01 Heraeus Quarzglas Gmbh & Co. Kg Process for the preparation of quartz glass grains

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158143A (en) * 1979-05-28 1980-12-09 Nippon Telegr & Teleph Corp <Ntt> Manufacture of optical fiber base material
JPS6311539A (en) * 1986-06-30 1988-01-19 Sumitomo Electric Ind Ltd Production of base material for optical fiber
JPH0781965A (en) * 1993-07-22 1995-03-28 Sumitomo Electric Ind Ltd Gas producer, method for producing optical waveguide and optical fiber preform and device therefor

Also Published As

Publication number Publication date
KR100308795B1 (en) 2001-09-26
WO2000044679A1 (en) 2000-08-03
DE10083901T1 (en) 2002-01-03
KR20000051909A (en) 2000-08-16
JP2002535236A (en) 2002-10-22

Similar Documents

Publication Publication Date Title
JP5581203B2 (en) Synthesis of silicon nanocrystals by laser pyrolysis
AU2006349829B2 (en) Device and method for producing nanoparticles
KR100934679B1 (en) Coating Formation by Reactive Deposition
JP3790105B2 (en) Method for producing fine particles using flame and laser
US7393385B1 (en) Apparatus and method for electrostatically depositing aerosol particles
US7575784B1 (en) Coating formation by reactive deposition
JPS636497B2 (en)
JP5038327B2 (en) System and method for continuous flow generation of nano or submicron powders by the action of laser pyrolysis
US7754656B2 (en) Production of nano-powder based combinatorial libraries
JP2012040555A (en) System and method for production of nanometric or sub-micrometric powder in continuous flux under action of pyrolysis laser
US20180016180A1 (en) Method and apparatus for continuous or batch preform and optical fiber production
US7907347B2 (en) Optical composite material and method for its production
WO2023223697A1 (en) Composite particle production method and composite particle
CZ36570U1 (en) Device for nanoprinting from nanoparticles
CZ2022444A3 (en) A method of nanoprinting nanoparticles and a device for nanoprinting nanoparticles

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050209

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20050502

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20050512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060202

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060202

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3790105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term