JP3789005B2 - Catalyst film and photocatalyst film having photocatalytic activity and methanol decomposition activity - Google Patents

Catalyst film and photocatalyst film having photocatalytic activity and methanol decomposition activity Download PDF

Info

Publication number
JP3789005B2
JP3789005B2 JP11486296A JP11486296A JP3789005B2 JP 3789005 B2 JP3789005 B2 JP 3789005B2 JP 11486296 A JP11486296 A JP 11486296A JP 11486296 A JP11486296 A JP 11486296A JP 3789005 B2 JP3789005 B2 JP 3789005B2
Authority
JP
Japan
Prior art keywords
zinc oxide
plane
film
activity
ray diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11486296A
Other languages
Japanese (ja)
Other versions
JPH09299791A (en
Inventor
靖英 山口
正敏 山崎
昭 藤嶋
和仁 橋本
高史 白樫
佐知雄 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP11486296A priority Critical patent/JP3789005B2/en
Publication of JPH09299791A publication Critical patent/JPH09299791A/en
Application granted granted Critical
Publication of JP3789005B2 publication Critical patent/JP3789005B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は酸化亜鉛皮膜からなる光触媒活性及びメタノール分解活性を有する触媒皮膜及び光触媒皮膜に関し、詳しくは高い活性を有する酸化亜鉛皮膜からなる光触媒活性及びメタノール分解活性を有する触媒皮膜及び光触媒皮膜に関するものである。
【0002】
【従来の技術】
酸化亜鉛は触媒材料、光触媒材料として広く工業的に使用されており、これらの触媒材料、光触媒材料に用いられる酸化亜鉛は微粒で比表面積が大きいことが望ましい。これらは酸化亜鉛粉体を造粒して粗大粒として用いるか、粉体をハニカムなどに塗布するか又は浸漬被覆し、焼結して用いられている。
また、酸化亜鉛の製膜方法としてはスパッタ法、蒸着法、熱分解法、陽極酸化法、陰極電解析出法などがある。これらの方法によって製膜された酸化亜鉛皮膜は一般に(001)面配向しやすい。
【0003】
【発明が解決しようとする課題】
本発明者等は、種々の製造方法、種々の電解条件下で酸化亜鉛皮膜を形成し、それらの酸化亜鉛皮膜の触媒活性、光触媒活性について調べたところ、それらの製造方法、電解条件の相違により触媒活性、光触媒活性に顕著な差異が生じることを見いだし、そのような顕著な触媒活性、光触媒活性の生じる酸化亜鉛皮膜の条件について検討した。
本発明の目的は顕著な触媒活性及びメタノール分解活性を有する触媒皮膜及び光触媒皮膜を提供することにある。
【0004】
【課題を解決するための手段】
本発明者等は触媒活性、光触媒活性の高い酸化亜鉛皮膜について鋭意研究の結果、酸化亜鉛皮膜の(100)面の配向性を高めることによって光触媒活性及びメタノール分解活性が大きくなることを見出し本発明を完成した。
即ち、本発明の光触媒活性及びメタノール分解活性を有する触媒皮膜、光触媒皮膜は、(100)面のX線回折ピーク強度が(002)面のX線回折ピーク強度より大きい酸化亜鉛皮膜からなることを特徴とする。
また、本発明の光触媒活性及びメタノール分解活性を有する触媒皮膜、光触媒皮膜は、亜鉛の表面を陽極酸化することによって製膜された、(100)面のX線回折ピーク強度が(002)面のX線回折ピーク強度より大きい酸化亜鉛皮膜からなることを特徴とする。
【0005】
本発明の光触媒活性及びメタノール分解活性を有する触媒皮膜、光触媒皮膜を構成する酸化亜鉛は、ウルツ鉱型構造を有する六方晶であり、その単位格子はa=3.250Å、c=5.207Åである。本発明でいう(100)面は(1・0・−1・0)とも記載され、単位格子のa面を指す。また、(002)面は(0・0・0・2)面とも記載され、単位格子のc面を指す。
【0006】
(002)面のX線回折ピーク強度に比べて(100)面のX線回折ピーク強度が高い酸化亜鉛皮膜を製膜することによって、光触媒活性及びメタノール分解活性の高い酸化亜鉛皮膜を得ることができる。このような光触媒活性及びメタノール分解活性の高い酸化亜鉛皮膜を得るための製膜方法については、陽極酸化法、陰極電解析出法、スパッタ法、蒸着法、熱分解法等の何れでもよく、特には限定されないが、(100)面の配向を強くするためには特定の製膜条件とする必要がある。とりわけ陽極酸化法を用いる場合には、比表面積の大きな酸化亜鉛からなる皮膜を容易に製膜することができ、また電解条件を制御することによって、例えば0.1〜0.3Nの水酸化ナトリウム水溶液を電解液として用い、15〜30Vの直流定電圧で亜鉛表面を陽極酸化することによって(100)面/(002)面のX線回折ピーク強度比が1よりも大きな皮膜を容易に製膜することができ、このような酸化亜鉛皮膜は高い光触媒活性及びメタノール分解活性を示す。
【0007】
ここでいう酸化亜鉛皮膜は酸化亜鉛だけからなる皮膜に限らず、酸化亜鉛とその他の物質(例えば、白金やパラジウム、酸化チタンや酸化アルミニウムなどのその他の触媒作用物質)との混合物であってもよい。
また、ここでいう酸化亜鉛皮膜とは必ずしも平面である必要はなく、曲面であってもよい。その酸化亜鉛皮膜面の垂線方向から見たときに(100)面のX線回折ピーク強度が(002)面のX線回折ピーク強度に比べて高ければよい。従って酸化亜鉛皮膜は板に限らず、シートのような柔軟性のあるものや網状のような通気性、通水性のあるもの、ハニカム状に加工したもの、或いはハニカム上に製膜したものであってもよい。また表面を物理的、化学的に処理してその表面積を増大させた基体の上であってもよい。
【0008】
【実施例】
実施例1
研磨、脱脂した亜鉛板を水酸化ナトリウム水溶液(40℃)中で陽極酸化して亜鉛板表面に酸化亜鉛皮膜を製膜した。電解電圧および水酸化ナトリウム水溶液濃度を第1表に示すように変化させることによって様々な酸化亜鉛皮膜を製膜した。陽極酸化後に酸化亜鉛皮膜を純水で洗浄し、その後、熱風乾燥した。これらの酸化亜鉛皮膜のX線回折(銅ターゲット)を測定すると、2θ=31.7°に酸化亜鉛の(100)面のX線回折ピークが表れ、また34.3°に(002)面のX線回折ピークが表れた。(100)面/(002)面のX線回折ピーク強度比の計算値は第1表に示す通りであった。
【0009】
紫外線が透過する密閉ガラス容器(内容積9.2リットル)に上記の酸化亜鉛皮膜(10×10cm2 )を固定し、アセトアルデヒドガス50ppmを被分解ガスとして注入し、外部から酸化亜鉛皮膜表面に紫外線(ブラックライト、10W×5灯)を照射して、その酸化亜鉛皮膜の光触媒活性をアセトアルデヒドガスの分解速度として測定した。アセトアルデヒドガス濃度は容器内のガスを注射器でサンプリングし、ガスクロマトグラフィーで分析して求めた。密閉容器内のガス濃度が紫外線照射開始から5ppmまで低下するに要した時間(濃度が1/10に低下するまでの所要時間)(分)を求めた。その結果は第1表に示す通りであった。第1表のデータから明らかなように、(100)面/(002)面のX線回折ピーク強度比が高いほど反応時間が早く、良好な光触媒活性を示した。特にX線回折ピーク強度比が1を越えると活性が良好となった。
【0010】

Figure 0003789005
【0011】
実施例2
ガラス板の上にRFスパッタによって酸化亜鉛皮膜を施した。酸化亜鉛皮膜はc軸配向し易く、基板温度200℃、アルゴン10cc/分、酸素10cc/分でスパッタすると、得られた酸化亜鉛皮膜は(002)面のX線回折ピークだけが見られた。さらにスパッタ圧を高くし、基板温度を室温とし、アルゴン50cc/分、酸素50cc/分、10ミリトールでスパッタを行った。得られた酸化亜鉛皮膜のX線回折を行ったところ、いくつもX線回折ピークが表れた。これらのX線回折ピークのうち、(002)面X線回折ピーク強度に対する(100)面X線回折ピーク強度の比は1.06であり、わずかながら(100)面X線回折ピーク強度の方が高かった。
【0012】
密閉ガラス容器(内容積9.2リットル)中にこれらの酸化亜鉛皮膜(10×10cm2 )を固定し、メタノールを200ppmの濃度で注入し、分解反応を行った。その結果、c軸配向した酸化亜鉛皮膜を用いた場合には2時間後でも濃度の減少は見られなかった。一方、(100)面/(002)面のX線回折ピーク強度比が1.06であった酸化亜鉛皮膜を用いた場合には2時間後に50ppmの濃度減少が見られ、また二酸化炭素濃度が増加していることが確認された。
【0013】
実施例3
60℃の0.1N硝酸亜鉛水溶液中で、銅板を陰極として電解を行い、銅板上に酸化亜鉛皮膜を施した。このとき印加電圧を第2表に示すように変化させて第2表に示す様々な酸化亜鉛皮膜を製膜した。また、これらの酸化亜鉛皮膜を用いて実施例1と同一の装置でアセトアルデヒドガスの光触媒作用による分解反応を行った。その結果は第2表に示す通りであった。その結果から、(100)面/(002)面のX線回折ピーク強度比が1を越えるとアセトアルデヒドの分解速度が上昇することがわかった。
【0014】
Figure 0003789005
【0015】
【発明の効果】
本発明の酸化亜鉛皮膜を用いると、高い光触媒活性及びメタノール分解活性が得られる。従って、この酸化亜鉛皮膜を用いて化学物質の分解を行ったり、光を照射しながら酸化亜鉛皮膜上で酸化・還元反応を生じさせたり、あるいは光触媒作用によって殺菌作用を行うことができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a catalyst film and photocatalytic film having photocatalytic activity and methanol decomposition activity consisting of zinc oxide film, and more particularly relates to catalyst coatings and photocatalytic film having photocatalytic activity and methanol decomposition activity consisting of zinc oxide film having a high activity is there.
[0002]
[Prior art]
Zinc oxide is widely used industrially as a catalyst material and a photocatalyst material, and it is desirable that the zinc oxide used in these catalyst materials and photocatalyst materials is fine and has a large specific surface area. These are used by granulating zinc oxide powder and using it as coarse particles, or applying the powder to a honeycomb or the like, or dip-coating and sintering.
Examples of the method for forming zinc oxide include sputtering, vapor deposition, thermal decomposition, anodic oxidation, and cathodic electrolytic deposition. In general, the zinc oxide film formed by these methods is easily (001) -oriented.
[0003]
[Problems to be solved by the invention]
The inventors of the present invention formed zinc oxide films under various production methods and various electrolysis conditions, and investigated the catalytic activity and photocatalytic activity of these zinc oxide films. Due to differences in the production methods and electrolysis conditions, It was found that there was a significant difference between the catalytic activity and the photocatalytic activity, and the conditions of the zinc oxide film where such remarkable catalytic activity and photocatalytic activity occurred were examined.
An object of the present invention is to provide a catalytic coating and a photocatalyst film having a remarkable photocatalytic activity and methanolysis activity.
[0004]
[Means for Solving the Problems]
As a result of intensive research on zinc oxide films having high catalytic activity and high photocatalytic activity, the present inventors have found that photocatalytic activity and methanol decomposition activity are increased by increasing the orientation of the (100) plane of the zinc oxide film. Was completed.
That is, the catalyst film and photocatalyst film having photocatalytic activity and methanol decomposition activity of the present invention are composed of a zinc oxide film in which the (100) plane X-ray diffraction peak intensity is larger than the (002) plane X-ray diffraction peak intensity. Features.
In addition, the catalyst film and photocatalyst film having photocatalytic activity and methanol decomposition activity of the present invention were formed by anodizing the surface of zinc, and the (100) plane X-ray diffraction peak intensity was (002) plane. It is characterized by comprising a zinc oxide film having a larger X-ray diffraction peak intensity.
[0005]
The catalyst film having photocatalytic activity and methanol decomposition activity of the present invention, and zinc oxide constituting the photocatalytic film are hexagonal crystals having a wurtzite structure, and the unit cell is a = 3.2503 and c = 5.207Å. is there. The (100) plane referred to in the present invention is also described as (1 · 0 · −1 · 0) and refers to the a plane of the unit cell. The (002) plane is also described as the (0 · 0 · 0 · 2) plane, and indicates the c plane of the unit cell.
[0006]
By forming a zinc oxide film having a higher (100) plane X-ray diffraction peak intensity than the (002) plane X-ray diffraction peak intensity, a zinc oxide film having a high photocatalytic activity and methanol decomposition activity can be obtained. it can. The film forming method for obtaining such a zinc oxide film having high photocatalytic activity and methanol decomposition activity may be any of an anodic oxidation method, cathodic electrolytic deposition method, sputtering method, vapor deposition method, thermal decomposition method, etc. Is not limited, but in order to strengthen the orientation of the (100) plane, it is necessary to use specific film forming conditions. In particular, when an anodic oxidation method is used, a film made of zinc oxide having a large specific surface area can be easily formed, and by controlling the electrolysis conditions, for example, 0.1 to 0.3N sodium hydroxide By using an aqueous solution as the electrolyte and anodizing the zinc surface at a DC constant voltage of 15 to 30 V, a film having an X-ray diffraction peak intensity ratio of (100) plane / (002) plane greater than 1 can be easily formed. Such zinc oxide films exhibit high photocatalytic activity and methanol decomposition activity .
[0007]
The zinc oxide film referred to here is not limited to a film made only of zinc oxide, but may be a mixture of zinc oxide and other substances (for example, other catalytic substances such as platinum, palladium, titanium oxide, and aluminum oxide). Good.
Moreover, the zinc oxide film here does not necessarily need to be a flat surface, and may be a curved surface. The X-ray diffraction peak intensity of the (100) plane should be higher than the X-ray diffraction peak intensity of the (002) plane when viewed from the perpendicular direction of the zinc oxide film surface. Therefore, the zinc oxide film is not limited to a plate, but is flexible such as a sheet, breathable such as a net, water-permeable, processed into a honeycomb, or formed on a honeycomb. May be. It may also be on a substrate whose surface has been increased by physically and chemically treating the surface.
[0008]
【Example】
Example 1
The polished and degreased zinc plate was anodized in an aqueous sodium hydroxide solution (40 ° C.) to form a zinc oxide film on the surface of the zinc plate. Various zinc oxide films were formed by changing the electrolytic voltage and the aqueous sodium hydroxide concentration as shown in Table 1. After the anodization, the zinc oxide film was washed with pure water and then dried with hot air. When the X-ray diffraction (copper target) of these zinc oxide films is measured, an X-ray diffraction peak of (100) plane of zinc oxide appears at 2θ = 31.7 °, and the (002) plane of 34.3 °. An X-ray diffraction peak appeared. The calculated values of the (100) plane / (002) plane X-ray diffraction peak intensity ratio were as shown in Table 1.
[0009]
The zinc oxide film (10 × 10 cm 2 ) is fixed to a sealed glass container (internal volume: 9.2 liters) through which ultraviolet rays are transmitted, 50 ppm of acetaldehyde gas is injected as a gas to be decomposed, and ultraviolet rays are applied to the surface of the zinc oxide film from the outside. (Black light, 10 W × 5 lights) was irradiated, and the photocatalytic activity of the zinc oxide film was measured as the decomposition rate of acetaldehyde gas. The acetaldehyde gas concentration was obtained by sampling the gas in the container with a syringe and analyzing it by gas chromatography. The time required for the gas concentration in the sealed container to decrease to 5 ppm from the start of ultraviolet irradiation (the time required for the concentration to decrease to 1/10) (min) was determined. The results were as shown in Table 1. As apparent from the data in Table 1, the higher the (100) plane / (002) plane X-ray diffraction peak intensity ratio, the faster the reaction time and the better the photocatalytic activity. In particular, when the X-ray diffraction peak intensity ratio exceeded 1, the activity was good.
[0010]
Figure 0003789005
[0011]
Example 2
A zinc oxide film was applied on the glass plate by RF sputtering. The zinc oxide film was easily c-axis oriented. When sputtered at a substrate temperature of 200 ° C., argon of 10 cc / min, and oxygen of 10 cc / min, the obtained zinc oxide film showed only the (002) plane X-ray diffraction peak. Further, the sputtering pressure was increased, the substrate temperature was set to room temperature, and sputtering was performed at 50 cc / min argon, 50 cc / min oxygen, and 10 mTorr. When X-ray diffraction of the obtained zinc oxide film was performed, several X-ray diffraction peaks appeared. Among these X-ray diffraction peaks, the ratio of the (100) plane X-ray diffraction peak intensity to the (002) plane X-ray diffraction peak intensity is 1.06. Was expensive.
[0012]
These zinc oxide films (10 × 10 cm 2 ) were fixed in a sealed glass container (internal volume 9.2 liters), and methanol was injected at a concentration of 200 ppm to carry out a decomposition reaction. As a result, when a c-axis oriented zinc oxide film was used, no decrease in concentration was observed even after 2 hours. On the other hand, when a zinc oxide film having a (100) plane / (002) plane X-ray diffraction peak intensity ratio of 1.06 was used, a concentration decrease of 50 ppm was observed after 2 hours, and the carbon dioxide concentration was It was confirmed that it increased.
[0013]
Example 3
Electrolysis was performed in a 0.1N zinc nitrate aqueous solution at 60 ° C. using the copper plate as a cathode, and a zinc oxide film was applied on the copper plate. At this time, the applied voltage was changed as shown in Table 2 to form various zinc oxide films shown in Table 2. Moreover, the decomposition reaction by the photocatalytic action of acetaldehyde gas was performed in the same apparatus as Example 1 using these zinc oxide films. The results were as shown in Table 2. From the results, it was found that when the X-ray diffraction peak intensity ratio of (100) plane / (002) plane exceeds 1, the decomposition rate of acetaldehyde increases.
[0014]
Figure 0003789005
[0015]
【The invention's effect】
When the zinc oxide film of the present invention is used, high photocatalytic activity and methanol decomposition activity can be obtained. Therefore, it is possible to decompose chemical substances using this zinc oxide film, to cause oxidation / reduction reaction on the zinc oxide film while irradiating light, or to perform sterilization by photocatalytic action.

Claims (4)

(100)面のX線回折ピーク強度が(002)面のX線回折ピーク強度より大きい酸化亜鉛皮膜からなることを特徴とする光触媒活性及びメタノール分解活性を有する触媒皮膜。 A catalyst film having photocatalytic activity and methanol decomposition activity, wherein the X-ray diffraction peak intensity of the (100) plane is higher than that of the (002) plane. (100)面のX線回折ピーク強度が(002)面のX線回折ピーク強度より大きい酸化亜鉛皮膜からなることを特徴とする光触媒皮膜。  A photocatalytic film comprising a zinc oxide film having a (100) plane X-ray diffraction peak intensity greater than a (002) plane X-ray diffraction peak intensity. 亜鉛の表面を陽極酸化することによって製膜された、(100)面のX線回折ピーク強度が(002)面のX線回折ピーク強度より大きい酸化亜鉛皮膜からなることを特徴とする光触媒活性及びメタノール分解活性を有する触媒皮膜。A photocatalytic activity characterized by comprising a zinc oxide film formed by anodizing the surface of zinc and having a (100) plane X-ray diffraction peak intensity greater than the (002) plane X-ray diffraction peak intensity; A catalyst film having methanol decomposition activity . 亜鉛の表面を陽極酸化することによって製膜された、(100)面のX線回折ピーク強度が(002)面のX線回折ピーク強度より大きい酸化亜鉛皮膜からなることを特徴とする光触媒皮膜。  A photocatalyst film comprising a zinc oxide film formed by anodizing the surface of zinc and having a (100) plane X-ray diffraction peak intensity greater than a (002) plane X-ray diffraction peak intensity.
JP11486296A 1996-05-09 1996-05-09 Catalyst film and photocatalyst film having photocatalytic activity and methanol decomposition activity Expired - Fee Related JP3789005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11486296A JP3789005B2 (en) 1996-05-09 1996-05-09 Catalyst film and photocatalyst film having photocatalytic activity and methanol decomposition activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11486296A JP3789005B2 (en) 1996-05-09 1996-05-09 Catalyst film and photocatalyst film having photocatalytic activity and methanol decomposition activity

Publications (2)

Publication Number Publication Date
JPH09299791A JPH09299791A (en) 1997-11-25
JP3789005B2 true JP3789005B2 (en) 2006-06-21

Family

ID=14648567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11486296A Expired - Fee Related JP3789005B2 (en) 1996-05-09 1996-05-09 Catalyst film and photocatalyst film having photocatalytic activity and methanol decomposition activity

Country Status (1)

Country Link
JP (1) JP3789005B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242080B1 (en) 1997-07-09 2001-06-05 Canon Kabushiki Kaisha Zinc oxide thin film and process for producing the film
JP7344495B2 (en) * 2019-04-24 2023-09-14 時空化学株式会社 Method for producing VOC removal catalyst, VOC removal catalyst and VOC removal method

Also Published As

Publication number Publication date
JPH09299791A (en) 1997-11-25

Similar Documents

Publication Publication Date Title
Kato et al. Morphology of thin anatase coatings prepared from alkoxide solutions containing organic polymer, affecting the photocatalytic decomposition of aqueous acetic acid
EP0590477B2 (en) Architectural material using metal oxide exhibiting photocatalytic activity
WO2003078694A1 (en) Electrode for generation of hydrogen
Nakata et al. Fabrication and photocatalytic properties of TiO2 nanotube arrays modified with phosphate
EP2518185B1 (en) Cathode, electrolytic cell for electrolysis of alkali metal chloride, and method for producing the cathode
Dikici et al. A comparative study on the photocatalytic activities of microporous and nanoporous TiO2 layers prepared by electrochemical anodization
Janczarek et al. Transparent thin films of Cu-TiO2 with visible light photocatalytic activity
Ohtsu et al. Fabrication of visible-light-responsive titanium dioxide layer on titanium using anodic oxidization in nitric acid
JP3789005B2 (en) Catalyst film and photocatalyst film having photocatalytic activity and methanol decomposition activity
WO2015041238A1 (en) Hydrolyzing photocatalyst for hydrolysis, production method for same, and hydrolyzing photoelectrode
KR100907467B1 (en) Method for preparing TiO2 photocatalyst using anodic aluminum oxide template and the TiO2 photocatalyst prepared by the method
JP2012007238A (en) Electrode for electrolytic synthesis of chlorine
JP3027739B2 (en) Photocatalyst and method for producing the same
EA023083B1 (en) Electrode for cathode hydrogen evolution in electrolytic process
JP2001347162A (en) Photocatalytic material with thin titanium dioxide film
JP3911355B2 (en) Method for producing photocatalyst
JPH09262473A (en) Iron oxide photocatalyst and production of hydrogen using the same
CN113463126A (en) Non-noble metal chlorine evolution catalyst electrode and preparation method thereof
Katal et al. Photocatalytic degradation of the acetaminophen by nanocrystal-engineered TiO 2 thin film in batch and continuous system
US20120100985A1 (en) Process for the preparation of a photocatalyst
CN103789811B (en) A kind of synthetic method of magnesium titanate powder
JP4214327B2 (en) Method for producing titanium oxide film and photocatalytic film
JPH11322301A (en) Production of hydrogen and/or oxygen and catalyst for production of hydrogen and/or oxygen
JP3856535B2 (en) Method for producing photocatalyst body
Serio et al. Environmental application of Ti/TiO2 anodes prepared by dc-magnetron sputtering: Degradation of Acid orange 7

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees