JP3788525B2 - Scandium-perfluoroalkanesulfonylimide complex and method for producing the same - Google Patents

Scandium-perfluoroalkanesulfonylimide complex and method for producing the same Download PDF

Info

Publication number
JP3788525B2
JP3788525B2 JP00169996A JP169996A JP3788525B2 JP 3788525 B2 JP3788525 B2 JP 3788525B2 JP 00169996 A JP00169996 A JP 00169996A JP 169996 A JP169996 A JP 169996A JP 3788525 B2 JP3788525 B2 JP 3788525B2
Authority
JP
Japan
Prior art keywords
scandium
mmol
complex
perfluoroalkanesulfonylimide
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00169996A
Other languages
Japanese (ja)
Other versions
JPH09188683A (en
Inventor
尚 山本
一彰 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP00169996A priority Critical patent/JP3788525B2/en
Publication of JPH09188683A publication Critical patent/JPH09188683A/en
Application granted granted Critical
Publication of JP3788525B2 publication Critical patent/JP3788525B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アルコール類のカルボン酸無水物によるアシル化反応などの反応において、有用な触媒として利用される一般式[I]
【0002】
【化5】
[Sc〔N(Tf1)Tf2p]・(H2O)m・(RCOOH)n [I]
[式中、Tf1は−SO2Rf1を表し、Tf2は−SO2Rf2(Rf1およびRf2はそれぞれ独立にフッ素原子または、炭素数1〜10の直鎖または分岐鎖を有するパーフルオロアルキル基を表す。)を表し、Rは1〜10の直鎖または分岐鎖を有するアルキル基を表し、1≦p≦3であり、0≦m≦9であり、0<n≦2であり、3≦p+m+n≦12である。]
で示されるスカンジウム−パーフルオロアルカンスルホニルイミド錯体およびその製造方法に関するものである。
【0003】
【発明が解決しようとする課題】
従来、アルコール類のカルボン酸無水物によるアシル化反応においては、さまざまな触媒が開発されており、例えば、トリブチルホスフィンや4−(ジメチルアミノ)ピリジン(DMAP)などが知られている[(a)J.Am.Chem.Soc.,1993,115,3358,(b)J.Org.Chem.,1993,58,7286,(c)Angew.Chem.,Int.Ed.Engl.,1978,17,569]。
【0004】
しかしながら、これらの従来の触媒の触媒活性は充分とはいえず、このような問題点を解決するため、本発明者らが鋭意、研究を重ねた結果、触媒としてスカンジウムトリフラートを使用する方法を既に見出している[J.Am.Chem.Soc.,1995,117,4413]。
【0005】
【課題を解決するための手段】
本発明者らは、上記の知見に基づき、さらに鋭意、研究を重ねた結果、スカンジウム−パーフルオロアルカンスルホニルイミド錯体がアルコール類のカルボン酸無水物によるアシル化反応などの反応において、スカンジウムトリフラートよりもさらに高い触媒活性を有することを見出し、本発明に到達した。
【0006】
すなわち、本発明の第一は、一般式[I]
【0007】
【化6】
[Sc〔N(Tf1)Tf2p]・(H2O)m・(RCOOH)n [I]
[式中、Tf1は−SO2Rf1を表し、Tf2は−SO2Rf2(Rf1およびRf2はそれぞれ独立にフッ素原子または、炭素数1〜10の直鎖または分岐鎖を有するパーフルオロアルキル基を表す。)を表し、Rは1〜10の直鎖または分岐鎖を有するアルキル基を表し、1≦p≦3であり、0≦m≦9であり、0<n≦2であり、3≦p+m+n≦12である。]
で示されるスカンジウム−パーフルオロアルカンスルホニルイミド錯体である。
【0008】
また、本発明の第二は、一般式[II]
【0009】
【化7】
Sc(OCOR)3 [II]
[式中、Rは1〜10の直鎖または分岐鎖を有するアルキル基を表す。]
で示されるスカンジウム−カルボン酸塩と一般式[III]
【0010】
【化8】
HN(Tf1)Tf2 [III]
[式中、Tf1は−SO2Rf1を表し、Tf2は−SO2Rf2(Rf1およびRf2
はそれぞれ独立にフッ素原子または、炭素数1〜10の直鎖または分岐鎖を有するパーフルオロアルキル基を表す。)を表す。]
で示されるパーフルオロアルカンスルホニルイミド酸とを、水を溶媒として使用し、反応させることを特徴とする一般式[I]
【0011】
【化9】
[Sc〔N(Tf1)Tf2p]・(H2O)m・(RCOOH)n [I]
[式中、Tf1は−SO2Rf1を表し、Tf2は−SO2Rf2(Rf1およびRf2はそれぞれ独立にフッ素原子または、炭素数1〜10の直鎖または分岐鎖を有するパーフルオロアルキル基を表す。)を表し、Rは1〜10の直鎖または分岐鎖を有するアルキル基を表し、1≦p≦3であり、0≦m≦9であり、0<n≦2であり、3≦p+m+n≦12である。]
で示されるスカンジウム−パーフルオロアルカンスルホニルイミド錯体の製造方法である。
【0012】
以下、本発明を詳細に説明する。
本発明の一般式[I]で示されるスカンジウム−パーフルオロアルカンスルホニルイミド錯体においては、1個のスカンジウム原子およびp個のパーフルオロアルカンスルホニルイミド基:−N(Tf1)Tf2[Tf1は−SO2Rf1を表し、Tf2は−SO2Rf2(Rf1およびRf2はそれぞれ独立にフッ素原子または、炭素数1〜10の直鎖または分岐鎖を有するパーフルオロアルキル基を表す。)を表す。]からなるスカンジウム−パーフルオロアルカンスルホニルイミド錯体:Sc〔N(Tf1)Tf2pに対して、m個の水:H2Oおよびn個のカルボン酸:RCOOH[Rは1〜10の直鎖または分岐鎖を有するアルキル基を表す。]が配位している。
【0013】
なお、本発明における、炭素数1〜10の直鎖または分岐鎖を有するパーフルオロアルキル基とは、具体的には、たとえば、トリフルオロメチル基、ペンタフルオロエチル基、n−ヘプタフルオロプロピル基、iso−ヘプタフルオロプロピル基、n−ノナフルオロブチル基、iso−ノナフルオロブチル基、sec−ノナフルオロブチル基、tert−ノナフルオロブチル基、n−ウンデカフルオロペンチル基、n−トリデカフルオロヘキシル基、n−ペンタデカフルオロヘプチル基、n−ヘプタデカフルオロオクチル基などを挙げることができる。また、本発明における1〜10の直鎖または分岐鎖を有するアルキル基とは、具体的には、たとえば、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基などを挙げることができる。
【0014】
また、上記のp、mおよびnは、それぞれ1≦p≦3、0≦m≦9および0<n≦2の範囲の数値であり、かつ、p、mおよびnの合計が3≦p+m+n≦12となるような数値である。
【0015】
本発明の一般式[I]で示されるスカンジウム−パーフルオロアルカンスルホニルイミド錯体は、一般式[II]
【0016】
【化10】
Sc(OCOR)3 [II]
[式中、Rは1〜10の直鎖または分岐鎖を有するアルキル基を表す。]
で示されるスカンジウム−カルボン酸塩と一般式[III]
【0017】
【化11】
HN(Tf1)Tf2 [III]
[式中、Tf1は−SO2Rf1を表し、Tf2は−SO2Rf2(Rf1およびRf2はそれぞれ独立にフッ素原子または、炭素数1〜10の直鎖または分岐鎖を有するパーフルオロアルキル基を表す。)を表す。]
で示されるパーフルオロアルカンスルホニルイミド酸とを、水を溶媒として使用し、反応させることにより、容易に製造することができる。
【0018】
上記の本発明の一般式[I]で示されるスカンジウム−パーフルオロアルカンスルホニルイミド錯体の製造方法においては、一般式[II]で示されるスカンジウム−カルボン酸塩1モルと一般式[III]で示されるパーフルオロアルカンスルホニルイミド酸pモルとを、水に溶解し、反応させる。
【0019】
上記の反応における反応温度は、通常、90℃〜150℃、好ましくは90℃〜130℃、さらに好ましくは90℃〜110℃とするのがよい。この範囲より低い温度の場合には、反応が充分に進行せず、収率低下の原因となる、あるいは、反応速度が低下して反応終了までに長時間を要するなどの問題を生ずる場合があり、好ましくない。また、この範囲より高い温度の場合には、反応中に分解などが起こる場合があり、収率低下の原因となるため、好ましくない。
【0020】
本発明の一般式[I]で示されるスカンジウム−パーフルオロアルカンスルホニルイミド錯体の製造方法においては、反応終了後、室温まで冷却し、ろ過後、減圧条件下、ろ液から余分な水などを留去し、さらに高真空下で乾燥することにより、目的の一般式[I]で示されるスカンジウム−パーフルオロアルカンスルホニルイミド錯体を得ることができる。
【0021】
以上のような本発明の一般式[I]で示されるスカンジウム−パーフルオロアルカンスルホニルイミド錯体は、アルコール類のカルボン酸無水物によるアシル化反応などの反応において、非常に高い触媒活性を有しており、反応基質に対してごくわずかに使用するだけで、室温程度あるいはそれ以下の低温においても反応が速やかに進行し、かつ、非常に高い収率、選択率で目的の反応生成物を得ることができる。したがって、本発明の一般式[I]で示されるスカンジウム−パーフルオロアルカンスルホニルイミド錯体は、非常に有用な化合物である。
【0022】
【発明の実施の形態】
以下、実施例により、本発明の実施の形態を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0023】
【実施例】
実施例1
スカンジウムアセテート(222.1mg、1mmol)とトリフルオロメタンスルホニルイミド酸(843.5mg、3mmol)を水(0.5mL)に溶解した。この水溶液を還流条件下、3時間反応させた。その後、室温まで冷却し、ろ過した。減圧下、ろ液から溶媒を留去し、高真空下(10-3〜10-5Torr、120℃)で12時間乾燥し、スカンジウム−トリフルオロメタンスルホニルイミド錯体[Sc(NTf23]・(H2O)m・(CH3COOH)1.5を無色のガラス状結晶として定量的に得た。[Tfは−SO2CF3であり、0≦m≦7.5である。]
[Sc(NTf23]・(H2O)m・(CH3COOH)1.5
1H−NMR[D2O,standard(δ3.32(s,CH3OH)
)]δ2.05(s,CH3COOH)
13C−NMR[D2O,standard(δ48.92(CH3OH))
]δ21.71(CH3COOH),119.3(q,JC
F=317.8Hz,CF3),186.82(CH3CO
OH)
IR(KBr)3270(br),1350(s),1333(s),
1240(s),1202(s),1146(s),
1059,797,745cm-1
HNTf2
13C−NMR[D2O,standard(δ48.92(CH3OH))]
δ119.3(q,JCF=317.6Hz,CF3
IR(CH2Cl2)3227(br),1447(s),1350,
1333,1229(s),1202(s),1132
(s),1057,860cm-1
Sc(OCOCH33
1H−NMR[D2O,standard(δ3.32(s,CH3OH))]δ1.99(s,CH3COO)
実施例2
メントール(1mmol)および無水酢酸(1.2mmol)をアセトニトリル(4.5mL)に溶解し、これに実施例1で得られたスカンジウム−トリフルオロメタンスルホニルイミド錯体のアセトニトリル溶液(500μL、0.01mmol、0.02M)を0℃で添加した。0℃で1時間攪拌した後、NaHCO3水溶液を加え、エーテルで抽出した。有機層を無水硫酸マグネシウムで乾燥後、ろ過し、減圧下、溶媒を留去した。シリカゲルカラムクロマトグラフィーにより精製し、対応するアセチル化化合物を定量的に得た。
【0024】
実施例3
2−メチル−2−ウンデカノール(1mmol)および無水酢酸(5mmol)をアセトニトリル(4.5mL)に溶解し、これに実施例1で得られたスカンジウム−トリフルオロメタンスルホニルイミド錯体のアセトニトリル溶液(500μL、0.01mmol、0.02M)を−20℃で添加した。−20℃で2.5時間攪拌した後、NaHCO3水溶液を加え、エーテルで抽出した。有機層を無水硫酸マグネシウムで乾燥後、ろ過し、減圧下、溶媒を留去した。シリカゲルカラムクロマトグラフィーにより精製し、対応するアセチル化化合物を収率77%で得た。
【0025】
比較例1
スカンジウム−トリフルオロメタンスルホニルイミド錯体の代わりにスカンジウムトリフラートを用いた他は実施例3と全く同様にして目的のアセチル化化合物を収率38%で得た。
【0026】
実施例4
メントール(1mmol)および無水安息香酸(1.5mmol)をアセトニトリル(4.5mL)に溶解し、これに実施例1で得られたスカンジウム−トリフルオロメタンスルホニルイミド錯体のアセトニトリル溶液(500μL、0.01mmol、0.02M)を18℃で添加した。18℃で6時間攪拌した後、NaHCO3水溶液を加え、エーテルで抽出した。有機層を無水硫酸マグネシウムで乾燥後、ろ過し、減圧下、溶媒を留去した。シリカゲルカラムクロマトグラフィーにより精製し、対応するベンゾイル化化合物を収率69%で得た。
【0027】
比較例2
スカンジウム−トリフルオロメタンスルホニルイミド錯体の代わりにスカンジウムトリフラートを用いた他は実施例4と全く同様にして目的のベンゾイル化化合物を収率3%で得た。
【0028】
実施例5
フェノール(1mmol)および無水安息香酸(1.5mmol)をアセトニトリル(4.5mL)に溶解し、これに実施例1で得られたスカンジウム−トリフルオロメタンスルホニルイミド錯体のアセトニトリル溶液(50μL、0.001mmol、0.02M)を25℃で添加した。25℃で30分間攪拌した後、NaHCO3水溶液を加え、エーテルで抽出した。有機層を無水硫酸マグネシウムで乾燥後、ろ過し、減圧下、溶媒を留去した。シリカゲルカラムクロマトグラフィーにより精製し、対応するベンゾイル化化合物を収率21%で得た。
【0029】
比較例3
スカンジウム−トリフルオロメタンスルホニルイミド錯体の代わりにスカンジウムトリフラートを用いた他は実施例5と全く同様にして目的のベンゾイル化化合物を収率6%で得た。
【0030】
実施例6
3−フェニル−1−プロパノール(1mmol)および無水安息香酸(1.5mmol)をアセトニトリル(4.5mL)に溶解し、これに実施例1で得られたスカンジウム−トリフルオロメタンスルホニルイミド錯体のアセトニトリル溶液(1mL、0.02mmol、0.02M)を25℃で添加した。25℃で1.5時間攪拌した後、NaHCO3水溶液を加え、エーテルで抽出した。有機層を無水硫酸マグネシウムで乾燥後、ろ過し、減圧下、溶媒を留去した。シリカゲルカラムクロマトグラフィーにより精製し、対応するベンゾイル化化合物を収率95%で得た。
【0031】
実施例7
メントール(1mmol)および無水安息香酸(1.5mmol)をアセトニトリル(4.5mL)に溶解し、これに実施例1で得られたスカンジウム−トリフルオロメタンスルホニルイミド錯体のアセトニトリル溶液(1mL、0.02mmol、0.02M)を25℃で添加した。25℃で3時間攪拌した後、NaHCO3水溶液を加え、エーテルで抽出した。有機層を無水硫酸マグネシウムで乾燥後、ろ過し、減圧下、溶媒を留去した。シリカゲルカラムクロマトグラフィーにより精製し、対応するベンゾイル化化合物を収率98%で得た。
【0032】
比較例4
スカンジウム−トリフルオロメタンスルホニルイミド錯体の代わりにトリフルオロメタンスルホニルイミド酸を用いた他は実施例7と全く同様にして目的のベンゾイル化化合物を収率45%で得た。
【0033】
実施例8
フェノール(1mmol)および無水安息香酸(1.5mmol)をアセトニトリル(4.5mL)に溶解し、これに実施例1で得られたスカンジウム−トリフルオロメタンスルホニルイミド錯体のアセトニトリル溶液(250μL、0.005mmol、0.02M)を25℃で添加した。25℃で45分間攪拌した後、NaHCO3水溶液を加え、エーテルで抽出した。有機層を無水硫酸マグネシウムで乾燥後、ろ過し、減圧下、溶媒を留去した。シリカゲルカラムクロマトグラフィーにより精製し、対応するベンゾイル化化合物を収率95%で得た。
【0034】
実施例9
2,4,6−トリメチルフェノール(1mmol)および無水安息香酸(1.5mmol)をアセトニトリル(4.5mL)に溶解し、これに実施例1で得られたスカンジウム−トリフルオロメタンスルホニルイミド錯体のアセトニトリル溶液(250μL、0.005mmol、0.02M)を25℃で添加した。25℃で1.5時間攪拌した後、NaHCO3水溶液を加え、エーテルで抽出した。有機層を無水硫酸マグネシウムで乾燥後、ろ過し、減圧下、溶媒を留去した。シリカゲルカラムクロマトグラフィーにより精製し、対応するベンゾイル化化合物を収率90%で得た。
【0035】
実施例10
2−メチル−2−ウンデカノール(1mmol)および無水酢酸(5mmol)をアセトニトリル(4.5mL)に溶解し、これに実施例1で得られたスカンジウム−トリフルオロメタンスルホニルイミド錯体のアセトニトリル溶液(500μL、0.01mmol、0.02M)を−20℃で添加した。−20℃で4時間攪拌した後、NaHCO3水溶液を加え、エーテルで抽出した。有機層を無水硫酸マグネシウムで乾燥後、ろ過し、減圧下、溶媒を留去した。シリカゲルカラムクロマトグラフィーにより精製し、対応するアセチル化化合物を収率93%で得た。
【0036】
実施例11
メントール(1mmol)、プロピオン酸(1.5mmol)および無水−p−ニトロ安息香酸(632.4mg、2mmol)をニトロメタン(3.5mL)に溶解し、これに実施例1で得られたスカンジウム−トリフルオロメタンスルホニルイミド錯体のニトロメタン溶液(500μL、0.01mmol、0.02M)を25℃で添加した。25℃で2時間攪拌した後、NaHCO3水溶液を加え、エーテルで抽出した。有機層を無水硫酸マグネシウムで乾燥後、ろ過し、減圧下、溶媒を留去した。シリカゲルカラムクロマトグラフィーにより精製し、対応するエステル化化合物を収率96%で得た。
【0037】
実施例12
メントール(1mmol)、安息香酸(1.5mmol)および無水−p−ニトロ安息香酸(1.5mmol)をニトロメタン(3.5mL)に溶解し、これに実施例1で得られたスカンジウム−トリフルオロメタンスルホニルイミド錯体のニトロメタン溶液(1mL、0.02mmol、0.02M)を25℃で添加した。25℃で8時間攪拌した後、NaHCO3水溶液を加え、エーテルで抽出した。有機層を無水硫酸マグネシウムで乾燥後、ろ過し、減圧下、溶媒を留去した。シリカゲルカラムクロマトグラフィーにより精製し、対応するエステル化化合物を収率63%で得た。
【0038】
比較例5
スカンジウム−トリフルオロメタンスルホニルイミド錯体の代わりにスカンジウムトリフラートを用いた他は実施例12と全く同様にして目的のエステル化化合物を収率11%で得た。
【0039】
実施例13
メントール(1mmol)、2,4,6−トリメチル安息香酸(1.5mmol)および無水−p−ニトロ安息香酸(632.4mg、2mmol)をニトロメタン(3.5mL)に溶解し、これに実施例1で得られたスカンジウム−トリフルオロメタンスルホニルイミド錯体のニトロメタン溶液(1mL、0.02mmol、0.02M)を25℃で添加した。25℃で3時間攪拌した後、NaHCO3水溶液を加え、エーテルで抽出した。有機層を無水硫酸マグネシウムで乾燥後、ろ過し、減圧下、溶媒を留去した。シリカゲルカラムクロマトグラフィーにより精製し、対応するエステル化化合物を収率99%で得た。
【0040】
実施例14
メントール(1mmol)、安息香酸(1.5mmol)および無水−p−ニトロ安息香酸(632.4mg、2mmol)をニトロメタン(3.5mL)に溶解し、これに実施例1で得られたスカンジウム−トリフルオロメタンスルホニルイミド錯体のニトロメタン溶液(1mL、0.02mmol、0.02M)を25℃で添加した。25℃で3時間攪拌した後、NaHCO3水溶液を加え、エーテルで抽出した。有機層を無水硫酸マグネシウムで乾燥後、ろ過し、減圧下、溶媒を留去した。シリカゲルカラムクロマトグラフィーにより精製し、対応するエステル化化合物を収率98%で得た。
【0041】
実施例15
フェノール(1mmol)、安息香酸(1.5mmol)および無水−p−ニトロ安息香酸(632.4mg、2mmol)をニトロメタン(3.5mL)に溶解し、これに実施例1で得られたスカンジウム−トリフルオロメタンスルホニルイミド錯体のニトロメタン溶液(250μL、0.005mmol、0.02M)を25℃で添加した。25℃で1時間攪拌した後、NaHCO3水溶液を加え、エーテルで抽出した。有機層を無水硫酸マグネシウムで乾燥後、ろ過し、減圧下、溶媒を留去した。シリカゲルカラムクロマトグラフィーにより精製し、対応するエステル化化合物を収率93%で得た。
【0042】
実施例16
2,4,6−トリメチルフェノール(1mmol)、安息香酸(1.5mmol)および無水−p−ニトロ安息香酸(632.4mg、2mmol)をニトロメタン(3.5mL)に溶解し、これに実施例1で得られたスカンジウム−トリフルオロメタンスルホニルイミド錯体のニトロメタン溶液(250μL、0.005mmol、0.02M)を25℃で添加した。25℃で1.5時間攪拌した後、NaHCO3水溶液を加え、エーテルで抽出した。有機層を無水硫酸マグネシウムで乾燥後、ろ過し、減圧下、溶媒を留去した。シリカゲルカラムクロマトグラフィーにより精製し、対応するエステル化化合物を収率98%で得た。
【0043】
【発明の効果】
本発明の一般式[I]で示されるスカンジウム−パーフルオロアルカンスルホニルイミド錯体は、アルコール類のカルボン酸無水物によるアシル化反応などの反応において、非常に高い触媒活性を有し、非常に有用な化合物である。
[0001]
BACKGROUND OF THE INVENTION
The present invention is a compound represented by the general formula [I] used as a useful catalyst in a reaction such as an acylation reaction of an alcohol with a carboxylic acid anhydride.
[0002]
[Chemical formula 5]
[Sc [N (Tf 1 ) Tf 2 ] p ]. (H 2 O) m. (RCOOH) n [I]
[Wherein, Tf 1 represents —SO 2 Rf 1 , and Tf 2 represents —SO 2 Rf 2 (Rf 1 and Rf 2 each independently have a fluorine atom, or a linear or branched chain having 1 to 10 carbon atoms. represents a perfluoroalkyl group.) represents, R represents an alkyl group having a straight chain or branched chain of 1 to 10, a 1 ≦ p ≦ 3, a 0 ≦ m ≦ 9, 0 < n ≦ 2 And 3 ≦ p + m + n ≦ 12. ]
The scandium-perfluoroalkanesulfonylimide complex shown by these, and its manufacturing method.
[0003]
[Problems to be solved by the invention]
Conventionally, in the acylation reaction of alcohols with carboxylic acid anhydrides, various catalysts have been developed. For example, tributylphosphine, 4- (dimethylamino) pyridine (DMAP) and the like are known [(a). J. et al. Am. Chem. Soc. 1993, 115, 3358, (b) J. et al. Org. Chem. 1993, 58, 7286, (c) Angew. Chem. , Int. Ed. Engl. 1978, 17, 569].
[0004]
However, the catalytic activity of these conventional catalysts is not sufficient, and in order to solve such problems, the present inventors have intensively studied and, as a result, have already developed a method using scandium triflate as a catalyst. [J. Am. Chem. Soc. 1995, 117, 4413].
[0005]
[Means for Solving the Problems]
Based on the above findings, the inventors of the present invention have further intensively studied. As a result, the scandium-perfluoroalkanesulfonylimide complex is more effective than scandium triflate in reactions such as acylation reactions with carboxylic anhydrides of alcohols. The inventors have found that the catalyst has a higher catalytic activity, and have reached the present invention.
[0006]
That is, the first of the present invention is the general formula [I].
[0007]
[Chemical 6]
[Sc [N (Tf 1 ) Tf 2 ] p ]. (H 2 O) m. (RCOOH) n [I]
[Wherein, Tf 1 represents —SO 2 Rf 1 , and Tf 2 represents —SO 2 Rf 2 (Rf 1 and Rf 2 each independently have a fluorine atom, or a linear or branched chain having 1 to 10 carbon atoms. represents a perfluoroalkyl group.) represents, R represents an alkyl group having a straight chain or branched chain of 1 to 10, a 1 ≦ p ≦ 3, a 0 ≦ m ≦ 9, 0 < n ≦ 2 And 3 ≦ p + m + n ≦ 12. ]
Is a scandium-perfluoroalkanesulfonylimide complex represented by the formula:
[0008]
The second of the present invention is the general formula [II].
[0009]
[Chemical 7]
Sc (OCOR) 3 [II]
[Wherein, R represents an alkyl group having 1 to 10 linear or branched chains . ]
And a scandium-carboxylate represented by the general formula [III]
[0010]
[Chemical 8]
HN (Tf 1 ) Tf 2 [III]
[Wherein, Tf 1 represents —SO 2 Rf 1 , and Tf 2 represents —SO 2 Rf 2 (Rf 1 and Rf 2
Each independently represents a fluorine atom or a perfluoroalkyl group having a straight or branched chain having 1 to 10 carbon atoms. ). ]
And a perfluoroalkanesulfonylimide acid represented by the general formula [I]:
[0011]
[Chemical 9]
[Sc [N (Tf 1 ) Tf 2 ] p ]. (H 2 O) m. (RCOOH) n [I]
[Wherein, Tf 1 represents —SO 2 Rf 1 , and Tf 2 represents —SO 2 Rf 2 (Rf 1 and Rf 2 each independently have a fluorine atom, or a linear or branched chain having 1 to 10 carbon atoms. represents a perfluoroalkyl group.) represents, R represents an alkyl group having a straight chain or branched chain of 1 to 10, a 1 ≦ p ≦ 3, a 0 ≦ m ≦ 9, 0 < n ≦ 2 And 3 ≦ p + m + n ≦ 12. ]
It is a manufacturing method of the scandium-perfluoro alkane sulfonylimide complex shown by these.
[0012]
Hereinafter, the present invention will be described in detail.
In the scandium-perfluoroalkanesulfonylimide complex represented by the general formula [I] of the present invention, one scandium atom and p perfluoroalkanesulfonylimide groups: —N (Tf 1 ) Tf 2 [Tf 1 is represents -SO 2 Rf 1, Tf 2 are each -SO 2 Rf 2 (Rf 1 and Rf 2 are independently a fluorine atom or represents a perfluoroalkyl group having a linear or branched chain of 1 to 10 carbon atoms. ). ] For scandium-perfluoroalkanesulfonylimide complex: Sc [N (Tf 1 ) Tf 2 ] p , m water: H 2 O and n carboxylic acids: RCOOH [R is 1-10 An alkyl group having a straight chain or a branched chain is represented. ] Is coordinated.
[0013]
In the present invention, the perfluoroalkyl group having a linear or branched chain having 1 to 10 carbon atoms specifically includes, for example, a trifluoromethyl group, a pentafluoroethyl group, an n-heptafluoropropyl group, iso-heptafluoropropyl group, n-nonafluorobutyl group, iso-nonafluorobutyl group, sec-nonafluorobutyl group, tert-nonafluorobutyl group, n-undecafluoropentyl group, n-tridecafluorohexyl group N-pentadecafluoroheptyl group, n-heptadecafluorooctyl group and the like. In addition, the alkyl group having 1 to 10 linear or branched chains in the present invention specifically includes, for example, a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso group. -Butyl group, sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group and the like can be mentioned.
[0014]
The above p, m and n are numerical values in the range of 1 ≦ p ≦ 3, 0 ≦ m ≦ 9 and 0 <n ≦ 2, respectively, and the sum of p, m and n is 3 ≦ p + m + n ≦ The numerical value is 12.
[0015]
The scandium-perfluoroalkanesulfonylimide complex represented by the general formula [I] of the present invention is represented by the general formula [II].
[0016]
[Chemical Formula 10]
Sc (OCOR) 3 [II]
[Wherein, R represents an alkyl group having 1 to 10 linear or branched chains . ]
And a scandium-carboxylate represented by the general formula [III]
[0017]
Embedded image
HN (Tf 1 ) Tf 2 [III]
[Wherein, Tf 1 represents —SO 2 Rf 1 , and Tf 2 represents —SO 2 Rf 2 (Rf 1 and Rf 2 each independently have a fluorine atom, or a linear or branched chain having 1 to 10 carbon atoms. Represents a perfluoroalkyl group ). ]
The perfluoroalkanesulfonylimide acid represented by can be easily produced by reacting with water as a solvent.
[0018]
In the method for producing a scandium-perfluoroalkanesulfonylimide complex represented by the general formula [I] of the present invention, 1 mole of scandium-carboxylate represented by the general formula [II] and the general formula [III] are used. Pmol of perfluoroalkanesulfonylimide acid dissolved in water and reacted.
[0019]
The reaction temperature in the above reaction is usually 90 ° C to 150 ° C, preferably 90 ° C to 130 ° C, more preferably 90 ° C to 110 ° C. If the temperature is lower than this range, the reaction may not proceed sufficiently, which may cause a decrease in yield, or may cause problems such as a decrease in reaction rate and a long time to complete the reaction. It is not preferable. Moreover, when the temperature is higher than this range, decomposition or the like may occur during the reaction, which causes a decrease in yield, which is not preferable.
[0020]
In the method for producing a scandium-perfluoroalkanesulfonylimide complex represented by the general formula [I] of the present invention, after completion of the reaction, the reaction solution is cooled to room temperature, filtered, and excess water is distilled from the filtrate under reduced pressure conditions. The target scandium-perfluoroalkanesulfonylimide complex represented by the general formula [I] can be obtained by leaving and further drying under high vacuum.
[0021]
The scandium-perfluoroalkanesulfonylimide complex represented by the general formula [I] of the present invention as described above has very high catalytic activity in reactions such as acylation reactions of alcohols with carboxylic acid anhydrides. The reaction proceeds rapidly even at a low temperature of about room temperature or lower, and the desired reaction product can be obtained with a very high yield and selectivity. Can do. Therefore, the scandium-perfluoroalkanesulfonylimide complex represented by the general formula [I] of the present invention is a very useful compound.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
EXAMPLES Hereinafter, although an Example demonstrates embodiment of this invention concretely, this invention is not limited to these Examples.
[0023]
【Example】
Example 1
Scandium acetate (222.1 mg, 1 mmol) and trifluoromethanesulfonylimidic acid (843.5 mg, 3 mmol) were dissolved in water (0.5 mL). This aqueous solution was reacted under reflux conditions for 3 hours. Then, it cooled to room temperature and filtered. The solvent was distilled off from the filtrate under reduced pressure, dried under high vacuum (10 −3 to 10 −5 Torr, 120 ° C.) for 12 hours, and scandium-trifluoromethanesulfonylimide complex [Sc (NTf 2 ) 3 ]. (H 2 O) m · (CH 3 COOH) 1.5 was quantitatively obtained as colorless glassy crystals. [Tf is —SO 2 CF 3 , and 0 ≦ m ≦ 7.5. ]
[Sc (NTf 2 ) 3 ]. (H 2 O) m. (CH 3 COOH) 1.5
1 H-NMR [D 2 O, standard (δ 3.32 (s, CH 3 OH)
)] Δ 2.05 (s, CH 3 COOH)
13 C-NMR [D 2 O, standard (δ 48.92 (CH 3 OH))
] Δ 21.71 (CH 3 COOH), 119.3 (q, J C
F = 317.8 Hz, CF 3 ), 186.82 (CH 3 CO
OH)
IR (KBr) 3270 (br), 1350 (s), 1333 (s),
1240 (s), 1202 (s), 1146 (s),
1059, 797, 745 cm -1
HNTf 2
13 C-NMR [D 2 O, standard (δ 48.92 (CH 3 OH))]
δ 119.3 (q, J CF = 317.6 Hz, CF 3 )
IR (CH 2 Cl 2 ) 3227 (br), 1447 (s), 1350,
1333, 1229 (s), 1202 (s), 1132
(S), 1057, 860 cm -1
Sc (OCOCH 3 ) 3
1 H-NMR [D 2 O, standard (δ 3.32 (s, CH 3 OH))] δ 1.99 (s, CH 3 COO)
Example 2
Menthol (1 mmol) and acetic anhydride (1.2 mmol) were dissolved in acetonitrile (4.5 mL), and an acetonitrile solution of the scandium-trifluoromethanesulfonylimide complex obtained in Example 1 (500 μL, 0.01 mmol, 0 mmol) was dissolved therein. .02M) was added at 0 ° C. After stirring at 0 ° C. for 1 hour, an aqueous NaHCO 3 solution was added, and the mixture was extracted with ether. The organic layer was dried over anhydrous magnesium sulfate and filtered, and the solvent was distilled off under reduced pressure. Purification by silica gel column chromatography gave the corresponding acetylated compound quantitatively.
[0024]
Example 3
2-Methyl-2-undecanol (1 mmol) and acetic anhydride (5 mmol) were dissolved in acetonitrile (4.5 mL), and an acetonitrile solution of the scandium-trifluoromethanesulfonylimide complex obtained in Example 1 (500 μL, 0 mL) was dissolved therein. 0.01 mmol, 0.02 M) was added at -20 ° C. After stirring at −20 ° C. for 2.5 hours, an aqueous NaHCO 3 solution was added, and the mixture was extracted with ether. The organic layer was dried over anhydrous magnesium sulfate and filtered, and the solvent was distilled off under reduced pressure. Purification by silica gel column chromatography gave the corresponding acetylated compound in 77% yield.
[0025]
Comparative Example 1
The target acetylated compound was obtained in a yield of 38% in the same manner as in Example 3 except that scandium triflate was used in place of the scandium-trifluoromethanesulfonylimide complex.
[0026]
Example 4
Menthol (1 mmol) and benzoic anhydride (1.5 mmol) were dissolved in acetonitrile (4.5 mL), and an acetonitrile solution of the scandium-trifluoromethanesulfonylimide complex obtained in Example 1 (500 μL, 0.01 mmol, 0.02M) was added at 18 ° C. After stirring at 18 ° C. for 6 hours, an aqueous NaHCO 3 solution was added, and the mixture was extracted with ether. The organic layer was dried over anhydrous magnesium sulfate and filtered, and the solvent was distilled off under reduced pressure. Purification by silica gel column chromatography gave the corresponding benzoylated compound in 69% yield.
[0027]
Comparative Example 2
The target benzoylated compound was obtained in a yield of 3% in exactly the same manner as in Example 4 except that scandium triflate was used in place of the scandium-trifluoromethanesulfonylimide complex.
[0028]
Example 5
Phenol (1 mmol) and benzoic anhydride (1.5 mmol) were dissolved in acetonitrile (4.5 mL), and an acetonitrile solution of the scandium-trifluoromethanesulfonylimide complex obtained in Example 1 (50 μL, 0.001 mmol, 0.02M) was added at 25 ° C. After stirring at 25 ° C. for 30 minutes, an aqueous NaHCO 3 solution was added, and the mixture was extracted with ether. The organic layer was dried over anhydrous magnesium sulfate and filtered, and the solvent was distilled off under reduced pressure. Purification by silica gel column chromatography gave the corresponding benzoylated compound in 21% yield.
[0029]
Comparative Example 3
The target benzoylated compound was obtained in a yield of 6% in the same manner as in Example 5 except that scandium triflate was used instead of the scandium-trifluoromethanesulfonylimide complex.
[0030]
Example 6
3-phenyl-1-propanol (1 mmol) and benzoic anhydride (1.5 mmol) were dissolved in acetonitrile (4.5 mL), and an acetonitrile solution of the scandium-trifluoromethanesulfonylimide complex obtained in Example 1 ( 1 mL, 0.02 mmol, 0.02 M) was added at 25 ° C. After stirring at 25 ° C. for 1.5 hours, an aqueous NaHCO 3 solution was added, and the mixture was extracted with ether. The organic layer was dried over anhydrous magnesium sulfate and filtered, and the solvent was distilled off under reduced pressure. Purification by silica gel column chromatography gave the corresponding benzoylated compound in 95% yield.
[0031]
Example 7
Menthol (1 mmol) and benzoic anhydride (1.5 mmol) were dissolved in acetonitrile (4.5 mL), and an acetonitrile solution of the scandium-trifluoromethanesulfonylimide complex obtained in Example 1 (1 mL, 0.02 mmol, 0.02M) was added at 25 ° C. After stirring at 25 ° C. for 3 hours, an aqueous NaHCO 3 solution was added, and the mixture was extracted with ether. The organic layer was dried over anhydrous magnesium sulfate and filtered, and the solvent was distilled off under reduced pressure. Purification by silica gel column chromatography gave the corresponding benzoylated compound in 98% yield.
[0032]
Comparative Example 4
The target benzoylated compound was obtained in a yield of 45% in the same manner as in Example 7, except that trifluoromethanesulfonylimide acid was used instead of the scandium-trifluoromethanesulfonylimide complex.
[0033]
Example 8
Phenol (1 mmol) and benzoic anhydride (1.5 mmol) were dissolved in acetonitrile (4.5 mL), and an acetonitrile solution of the scandium-trifluoromethanesulfonylimide complex obtained in Example 1 (250 μL, 0.005 mmol, 0.02M) was added at 25 ° C. After stirring at 25 ° C. for 45 minutes, an aqueous NaHCO 3 solution was added, and the mixture was extracted with ether. The organic layer was dried over anhydrous magnesium sulfate and filtered, and the solvent was distilled off under reduced pressure. Purification by silica gel column chromatography gave the corresponding benzoylated compound in 95% yield.
[0034]
Example 9
2,4,6-Trimethylphenol (1 mmol) and benzoic anhydride (1.5 mmol) were dissolved in acetonitrile (4.5 mL), and an acetonitrile solution of the scandium-trifluoromethanesulfonylimide complex obtained in Example 1 was added thereto. (250 μL, 0.005 mmol, 0.02 M) was added at 25 ° C. After stirring at 25 ° C. for 1.5 hours, an aqueous NaHCO 3 solution was added, and the mixture was extracted with ether. The organic layer was dried over anhydrous magnesium sulfate and filtered, and the solvent was distilled off under reduced pressure. Purification by silica gel column chromatography gave the corresponding benzoylated compound in 90% yield.
[0035]
Example 10
2-Methyl-2-undecanol (1 mmol) and acetic anhydride (5 mmol) were dissolved in acetonitrile (4.5 mL), and an acetonitrile solution of the scandium-trifluoromethanesulfonylimide complex obtained in Example 1 (500 μL, 0 mL) was dissolved therein. 0.01 mmol, 0.02 M) was added at -20 ° C. After stirring at −20 ° C. for 4 hours, an aqueous NaHCO 3 solution was added, and the mixture was extracted with ether. The organic layer was dried over anhydrous magnesium sulfate and filtered, and the solvent was distilled off under reduced pressure. Purification by silica gel column chromatography gave the corresponding acetylated compound in 93% yield.
[0036]
Example 11
Menthol (1 mmol), propionic acid (1.5 mmol) and -p-nitrobenzoic anhydride (632.4 mg, 2 mmol) were dissolved in nitromethane (3.5 mL), and the scandium-trifluoro obtained in Example 1 was added thereto. A solution of lomethanesulfonylimide complex in nitromethane (500 μL, 0.01 mmol, 0.02 M) was added at 25 ° C. After stirring at 25 ° C. for 2 hours, an aqueous NaHCO 3 solution was added, and the mixture was extracted with ether. The organic layer was dried over anhydrous magnesium sulfate and filtered, and the solvent was distilled off under reduced pressure. Purification by silica gel column chromatography gave the corresponding esterified compound in 96% yield.
[0037]
Example 12
Menthol (1 mmol), benzoic acid (1.5 mmol) and -p-nitrobenzoic anhydride (1.5 mmol) were dissolved in nitromethane (3.5 mL), and scandium-trifluoromethanesulfonyl obtained in Example 1 was added thereto. A solution of the imide complex in nitromethane (1 mL, 0.02 mmol, 0.02 M) was added at 25 ° C. After stirring at 25 ° C. for 8 hours, an aqueous NaHCO 3 solution was added, and the mixture was extracted with ether. The organic layer was dried over anhydrous magnesium sulfate and filtered, and the solvent was distilled off under reduced pressure. Purification by silica gel column chromatography gave the corresponding esterified compound in 63% yield.
[0038]
Comparative Example 5
The target esterified compound was obtained in a yield of 11% in the same manner as in Example 12 except that scandium triflate was used instead of the scandium-trifluoromethanesulfonylimide complex.
[0039]
Example 13
Menthol (1 mmol), 2,4,6-trimethylbenzoic acid (1.5 mmol) and -p-nitrobenzoic anhydride (632.4 mg, 2 mmol) were dissolved in nitromethane (3.5 mL). A nitromethane solution (1 mL, 0.02 mmol, 0.02 M) of the scandium-trifluoromethanesulfonylimide complex obtained in 1 above was added at 25 ° C. After stirring at 25 ° C. for 3 hours, an aqueous NaHCO 3 solution was added, and the mixture was extracted with ether. The organic layer was dried over anhydrous magnesium sulfate and filtered, and the solvent was distilled off under reduced pressure. Purification by silica gel column chromatography gave the corresponding esterified compound in 99% yield.
[0040]
Example 14
Menthol (1 mmol), benzoic acid (1.5 mmol) and -p-nitrobenzoic anhydride (632.4 mg, 2 mmol) were dissolved in nitromethane (3.5 mL), and the scandium-trifluoro obtained in Example 1 was added thereto. A solution of lomethanesulfonylimide complex in nitromethane (1 mL, 0.02 mmol, 0.02 M) was added at 25 ° C. After stirring at 25 ° C. for 3 hours, an aqueous NaHCO 3 solution was added, and the mixture was extracted with ether. The organic layer was dried over anhydrous magnesium sulfate and filtered, and the solvent was distilled off under reduced pressure. Purification by silica gel column chromatography gave the corresponding esterified compound in 98% yield.
[0041]
Example 15
Phenol (1 mmol), benzoic acid (1.5 mmol) and -p-nitrobenzoic anhydride (632.4 mg, 2 mmol) were dissolved in nitromethane (3.5 mL), and the scandium-trifluoro obtained in Example 1 was added thereto. A solution of lomethanesulfonylimide complex in nitromethane (250 μL, 0.005 mmol, 0.02 M) was added at 25 ° C. After stirring at 25 ° C. for 1 hour, an aqueous NaHCO 3 solution was added, and the mixture was extracted with ether. The organic layer was dried over anhydrous magnesium sulfate and filtered, and the solvent was distilled off under reduced pressure. Purification by silica gel column chromatography gave the corresponding esterified compound in 93% yield.
[0042]
Example 16
2,4,6-Trimethylphenol (1 mmol), benzoic acid (1.5 mmol) and -p-nitrobenzoic anhydride (632.4 mg, 2 mmol) were dissolved in nitromethane (3.5 mL). A nitromethane solution (250 μL, 0.005 mmol, 0.02 M) of the scandium-trifluoromethanesulfonylimide complex obtained in 1 above was added at 25 ° C. After stirring at 25 ° C. for 1.5 hours, an aqueous NaHCO 3 solution was added, and the mixture was extracted with ether. The organic layer was dried over anhydrous magnesium sulfate and filtered, and the solvent was distilled off under reduced pressure. Purification by silica gel column chromatography gave the corresponding esterified compound in 98% yield.
[0043]
【The invention's effect】
The scandium-perfluoroalkanesulfonylimide complex represented by the general formula [I] of the present invention has a very high catalytic activity in a reaction such as an acylation reaction of an alcohol with a carboxylic acid anhydride and is very useful. A compound.

Claims (6)

一般式[I]
Figure 0003788525
[式中、Tf1は−SO2Rf1を表し、Tf2は−SO2Rf2(Rf1およびRf2はそれぞれ独立にフッ素原子または、炭素数1〜10の直鎖または分岐鎖を有するパーフルオロアルキル基を表す。)を表し、Rは1〜10の直鎖または分岐鎖を有するアルキル基を表し、1≦p≦3であり、0≦m≦9であり、0<n≦2であり、3≦p+m+n≦12である。]
で示されるスカンジウム−パーフルオロアルカンスルホニルイミド錯体。
Formula [I]
Figure 0003788525
[Wherein, Tf 1 represents —SO 2 Rf 1 , and Tf 2 represents —SO 2 Rf 2 (Rf 1 and Rf 2 each independently have a fluorine atom, or a linear or branched chain having 1 to 10 carbon atoms. represents a perfluoroalkyl group.) represents, R represents an alkyl group having a straight chain or branched chain of 1 to 10, a 1 ≦ p ≦ 3, a 0 ≦ m ≦ 9, 0 < n ≦ 2 And 3 ≦ p + m + n ≦ 12. ]
A scandium-perfluoroalkanesulfonylimide complex represented by the formula:
Tf1およびTf2が−SO2CF3である請求項1記載のスカンジウム−パーフルオロアルカンスルホニルイミド錯体。Scandium as claimed in claim 1, wherein Tf 1 and Tf 2 is -SO 2 CF 3 - perfluoroalkanesulfonyl imido complexes. Rがメチル基である請求項1または請求項2記載のスカンジウム−パーフルオロアルカンスルホニルイミド錯体。  The scandium-perfluoroalkanesulfonylimide complex according to claim 1 or 2, wherein R is a methyl group. 一般式[II]
Figure 0003788525
[式中、Rは1〜10の直鎖または分岐鎖を有するアルキル基を表す。]
で示されるスカンジウム−カルボン酸塩と一般式[III]
Figure 0003788525
[式中、Tf1は−SO2Rf1を表し、Tf2は−SO2Rf2(Rf1およびRf2はそれぞれ独立にフッ素原子または、炭素数1〜10の直鎖または分岐鎖を有するパーフルオロアルキル基を表す。)を表す。]
で示されるパーフルオロアルカンスルホニルイミド酸とを、水を溶媒として使用し、反応させることを特徴とする一般式[I]
Figure 0003788525
[式中、Tf1は−SO2Rf1を表し、Tf2は−SO2Rf2(Rf1およびRf2はそれぞれ独立にフッ素原子または、炭素数1〜10の直鎖または分岐鎖を有するパーフルオロアルキル基を表す。)を表し、Rは1〜10の直鎖または分岐鎖を有するアルキル基を表し、1≦p≦3であり、0≦m≦9であり、0<n≦2であり、3≦p+m+n≦12である。]
で示されるスカンジウム−パーフルオロアルカンスルホニルイミド錯体の製造方法。
Formula [II]
Figure 0003788525
[Wherein, R represents an alkyl group having 1 to 10 linear or branched chains . ]
And a scandium-carboxylate represented by the general formula [III]
Figure 0003788525
[Wherein, Tf 1 represents —SO 2 Rf 1 , and Tf 2 represents —SO 2 Rf 2 (Rf 1 and Rf 2 each independently have a fluorine atom, or a linear or branched chain having 1 to 10 carbon atoms. Represents a perfluoroalkyl group ). ]
And a perfluoroalkanesulfonylimide acid represented by the general formula [I], wherein water is used as a solvent for the reaction.
Figure 0003788525
[Wherein, Tf 1 represents —SO 2 Rf 1 , and Tf 2 represents —SO 2 Rf 2 (Rf 1 and Rf 2 each independently have a fluorine atom, or a linear or branched chain having 1 to 10 carbon atoms. represents a perfluoroalkyl group.) represents, R represents an alkyl group having a straight chain or branched chain of 1 to 10, a 1 ≦ p ≦ 3, a 0 ≦ m ≦ 9, 0 < n ≦ 2 And 3 ≦ p + m + n ≦ 12. ]
The manufacturing method of the scandium perfluoro alkane sulfonylimide complex shown by these.
Tf1およびTf2が−SO2CF3である請求項4記載のスカンジウム−パーフルオロアルカンスルホニルイミド錯体の製造方法。Claim 4, wherein the scandium Tf 1 and Tf 2 is -SO 2 CF 3 - perfluoroalkanesulfonyl imide method for producing a complex. Rがメチル基である請求項4または請求項5記載のスカンジウム−パーフルオロアルカンスルホニルイミド錯体の製造方法。  The method for producing a scandium-perfluoroalkanesulfonylimide complex according to claim 4 or 5, wherein R is a methyl group.
JP00169996A 1996-01-09 1996-01-09 Scandium-perfluoroalkanesulfonylimide complex and method for producing the same Expired - Fee Related JP3788525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00169996A JP3788525B2 (en) 1996-01-09 1996-01-09 Scandium-perfluoroalkanesulfonylimide complex and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00169996A JP3788525B2 (en) 1996-01-09 1996-01-09 Scandium-perfluoroalkanesulfonylimide complex and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09188683A JPH09188683A (en) 1997-07-22
JP3788525B2 true JP3788525B2 (en) 2006-06-21

Family

ID=11508795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00169996A Expired - Fee Related JP3788525B2 (en) 1996-01-09 1996-01-09 Scandium-perfluoroalkanesulfonylimide complex and method for producing the same

Country Status (1)

Country Link
JP (1) JP3788525B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR0208094A (en) * 2001-03-12 2004-03-02 Univ Belfast Metallic bis-triflimide compounds and processes for synthesizing metallic bis-triflimide compounds
US11142809B2 (en) 2015-02-10 2021-10-12 Scandium International Mining Corp. Systems and processes for recovering scandium values from laterite ores

Also Published As

Publication number Publication date
JPH09188683A (en) 1997-07-22

Similar Documents

Publication Publication Date Title
JP3788525B2 (en) Scandium-perfluoroalkanesulfonylimide complex and method for producing the same
JP3746694B2 (en) In-water esterification method
JP4734607B2 (en) Ester production method and esterification catalyst
JP3561178B2 (en) Nitrile production method
JPH0637414B2 (en) Method for producing vitamin K4 and vitamin K4 diacetate
JP2007231002A (en) Manufacturing method of polymerizable diamantyl ester compound
JP2965755B2 (en) Process for producing 2,6-di-t-butyl-4-mercapto-phenol
JP3343100B2 (en) Asymmetric aldol reaction method with chiral lead catalyst
JP3161689B2 (en) Method for producing acyl compounds
JP4277522B2 (en) Method for producing 3,3-dimethylcyclopropane-1,2-dicarboxylic anhydride
JP3393790B2 (en) Process for producing Friedel-Crafts alkylation reaction products
JPH10330314A (en) Production of pentaerythritol tetraester
JP2002322125A (en) Method for producing carboxylic vinyl ester
JP3830749B2 (en) Process for producing optically active 4,4,4-trifluoro-3-hydroxybutanoic acid aryl ester derivative
US4730077A (en) Method of preparing α-arylalkanoic esters
Puskas et al. 4-esters of trimellitic anhydride
JPH10330293A (en) Production of allyl compounds
JPS6361297B2 (en)
JPH06345749A (en) Production of n-(meth)acryloylmorpholine
JP2591111B2 (en) Method for inverting the configuration of an optically active α-oxy acid ester
JP2000229909A (en) Production of 2,3,5-trimethylhydroquinone diester
JP2000191592A (en) Manufacture of hydroquinone, diester derivative
JP3013022B2 (en) Method for producing alkyl 3-phthalidylideneacetate
JPH08157416A (en) Production of ester
JPH0372054B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees