JP3788292B2 - Low nonlinear low dispersion slope optical fiber - Google Patents

Low nonlinear low dispersion slope optical fiber Download PDF

Info

Publication number
JP3788292B2
JP3788292B2 JP2001264902A JP2001264902A JP3788292B2 JP 3788292 B2 JP3788292 B2 JP 3788292B2 JP 2001264902 A JP2001264902 A JP 2001264902A JP 2001264902 A JP2001264902 A JP 2001264902A JP 3788292 B2 JP3788292 B2 JP 3788292B2
Authority
JP
Japan
Prior art keywords
refractive index
layer
optical fiber
core
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001264902A
Other languages
Japanese (ja)
Other versions
JP2003075674A (en
Inventor
賢吾 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2001264902A priority Critical patent/JP3788292B2/en
Publication of JP2003075674A publication Critical patent/JP2003075674A/en
Application granted granted Critical
Publication of JP3788292B2 publication Critical patent/JP3788292B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • G02B6/02009Large effective area or mode field radius, e.g. to reduce nonlinear effects in single mode fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02228Dispersion flattened fibres, i.e. having a low dispersion variation over an extended wavelength range
    • G02B6/02238Low dispersion slope fibres
    • G02B6/02242Low dispersion slope fibres having a dispersion slope <0.06 ps/km/nm2
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/0228Characterised by the wavelength dispersion slope properties around 1550 nm
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03661Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only
    • G02B6/03666Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only arranged - + - +

Description

【0001】
【発明の属する技術分野】
本発明は、幹線系伝送路や、海底光ケーブル用の低非線形低分散スロープ光ファイバに係り、特に、波長多重伝送等に用いられる低非線形低分散スロープ光ファイバに関するものである。
【0002】
【従来の技術】
近年のインターネットを始めとするデータ通信の爆発的な増加により、伝送容量の飛躍的な増大が求められている。現在、1本の光ファイバ内を、僅かに波長の異なる複数の信号光を同時に伝送させるWDM(Wavelength Division Multiplexing:波長多重)伝送方式が実用化され、幹線系伝送路や海底光ケーブルに適用されている。伝送後における波形の劣化や、非線形現象が生じる
このような光ファイバ伝送路には、通常、ある間隔で中継器が設置されている。従来の中継器は、信号光を補償・増幅するために、信号光を一旦電気信号に変換し、その変換した電気信号を同期再生・増幅して、再び信号光に変換するものであり、いわゆる再生中継器と呼ばれている。この再生中継器は、僅かに異なる波長毎に再生・増幅を行わなければならないため、波数分だけデバイスを必要としていた。このため、WDM伝送容量の大容量化のための波数増加には、コスト的及び実装空間的に限界があった。
【0003】
そこで、信号光を一旦電気信号に変換することなく、全波長の信号光を一括して光のまま増幅することができる増幅器として、EDFA(Erbium-Doped Fiber Amplifier:エルビウム添加光ファイバ増幅器)が提案されている。このEDFAにより、伝送容量の大容量化が急速に進展した。しかし、波数の増加と信号光のビットレートの増加により、新たに様々な問題が生じてきた。
【0004】
例えば、光ファイバが本来持つ波長分散により、使用波長帯城の両端で異なる分散を生じてしまい、伝送後における波形の劣化や、非線形現象が生じるという問題がある。非線形現象は、伝送路を構築する光ファイバの局所的な屈折率分布変化(一般に光パワー密度に依存する)により生じる現象で、FWM(Four Wave Mixing:四光波混合)などがそれに当たる。これらの分散や非線形現象は、伝送品質を劣化させる主要な原因となり、特にWDM伝送のように、多くの信号波長を長距離伝送させる場合には深刻な問題となる。また、複数の信号光を伝送するWDM伝送においては、最短波長側の信号光と最長波長側の信号光で分散の値が異なることから、分散スロープにより、波数そのものが制限を受けるという問題がある。
【0005】
そこで、光ファイバの波長分散による信号波形の劣化を回避すべく、使用波長帯域間の分散値をできるだけ小さくする、すなわち零分散波長を使用波長にシフトさせることが有効である。例えば、零分散波長を1550nm(1.55μm)帯にシフトさせた光ファイバであるDSF(Dispertion-Shifted optical Fiber:分散シフト光ファイバ)などは、信号波形の劣化が少ないことから、陸上用及び海底用と広く適用されている。また、伝送容量を増加させる上では、分散スロープの値をできるだけ小さくすることが重要である。従来の光ファイバの単峰型のプロファイル(屈折率分布)を、たとえばW型や3重クラッド型といった複雑なプロファイルに変更することで、0.1ps/nm2/km以下といった低い分散スロープを達成することができる。
【0006】
【発明が解決しようとする課題】
ところが、波数の増加に伴い、光ファイバ単位断面積あたりの光パワー密度が増加することから、前述の非線形現象の発生が再び大きな問題となっている。例えば、前述のFWMにより、零分散波長近傍のWDM信号光が増幅を受け、信号伝送特性を著しく劣化させる事も近年の研究により明らかとなっている。
【0007】
この非線形現象を防ぎつつ、信号光の波数を増加させるために、図12に示すように、増幅器直後(区間前半)の光密度の高い部分では、実効断面積の大きい光ファイバ(Aeff拡大ファイバ(図12中の実線a参照))を用い、その光ファイバの後段(区間後半)部分では、区間前半部分で生じた累積分散や分散スロープを補償する光ファイバ(分散・分散スロープ補償ファイバ(図12中の実線b参照)を用いるハイブリット伝送路が提案されており、実用化間近である。このハイブリッド伝送路では、線路全体での分散が、図12中において破線cで示すように非零に設計され、使用波長帯域において分散スロープがほぼ零となっている。
【0008】
しかし、このハイブリッド伝送路は、ある一定の分散・分散スロープ補償率を確保するために、極めて厳密な条長管理が必要である上に、ファイバプロファイルの異なるファイバ同士を融着接続する際の接続損失が無視できない程に大きいといった問題を有している。このため、このハイブリッド伝送路を用いて陸上系光伝送路を構築することは、ファイバ同士の接続箇所が多くなることから、極めて困難である。
【0009】
以上の事情を考慮して創案された本発明の目的は、波長多重伝送の伝送容量が大きく、かつ、伝送品質が良好な低非線形低分散スロープ光ファイバを提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成すべく本発明に係る低非線形低分散スロープ光ファイバは、内層側のコアと、そのコア外周を覆うクラッド層の二層構造であり、コア内を僅かに波長の異なる複数の信号光を同時に伝送させる低非線形低分散スロープ光ファイバにおいて、上記コアが光ファイバ中心から径方向外側に向かって、コア中心部、第1中間層、コアリング層、及び第2中間層の四層構造を有しており、コア中心部及びコアリング層の屈折率を、クラッド層の屈折率よりも大きくなるように、かつ、第1中間層及び第2中間層の屈折率を、クラッド層の屈折率以下となるように形成したものである。
【0011】
以上の構成によれば、光ファイバのコアを四層構造とし、コア各層の屈折率及びクラッド層の屈折率を規定することで、波長多重伝送の伝送容量が大きく、かつ、伝送品質が良好な低非線形低分散スロープ光ファイバを得ることができる。
【0012】
【発明の実施の形態】
以下、本発明の好適一実施の形態を添付図面に基いて説明する。
【0013】
本発明に係る低非線形低分散スロープ光ファイバの屈折率分布を示す図である。図1の、横軸は光ファイバ中心Oからの距離を、縦軸は比屈折率差を示している。
【0014】
図1に示すように、本発明に係る低非線形低分散スロープ光ファイバは、内層側のコア1と、そのコア1の外周を覆うクラッド層2の二層構造であり、そのコア1が光ファイバ中心Oから径方向外側に向かって、半径r1のコア中心部11、半径r2の第1中間層12、半径r3のコアリング層13、及び半径r4の第2中間層14の四層構造を有しているものである。
【0015】
コア中心部11の屈折率(n1)及びコアリング層13の屈折率(n3)は、クラッド層2の屈折率(n0)よりも大きく(n1(又はn3)>n0)、また、第1中間層12の屈折率(n2)及び第2中間層14の屈折率(n4)は、クラッド層2の屈折率(n0)以下(n2(又はn4)≦n0)に形成している。
【0016】
具体的には、伝送波長が1.55μmの信号光の、波長分散の傾き(以下、分散スロープと示す)が−0.01〜0.01ps/nm2/km、好ましくは約−0.00062ps/nm2/km、波長分散が−5〜5ps/nm/km、好ましくは約−1.3ps/nm/km、及び実効断面積が50μm2以上の光ファイバを得るべく、コア中心部11の屈折率(n1)とクラッド層2の屈折率(n0)の比屈折率差Δn1を0.4〜0.5%、好ましくは0.42%、コアリング層13の屈折率(n3)とクラッド層2の屈折率(n0)の比屈折率差Δn3を0.06〜0.10%、好ましくは0.1%、第1中間層12の屈折率(n2)とクラッド層2の屈折率(n0)の比屈折率差Δn2を−0.24〜−0.20%、好ましくは−0.22%、第2中間層14の屈折率(n4)とクラッド層2の屈折率(n0)の比屈折率差Δn4を−0.21〜−0.09%、好ましくは−0.10%に形成している。また、コア中心部11の半径r1を3.1〜3.4μm、好ましくは3.35μm、第1中間層12の層厚(r2−r1)を2.9〜3.3μm、好ましくは3.1μm、コアリング層13の層厚(r3−r2)を7.1〜8.0μm、好ましくは7.9μm、第2中間層14の層厚(r4−r1)を6.0μm以上、好ましくは6.0μmに形成している。
【0017】
また、コア中心部11を、0.05モル%以上、好ましくは4.0モル%以上の酸化ゲルマニウムを含んだ構成材で構成している。
【0018】
次に、本発明の作用を説明する。
【0019】
コア中心部11の半径r1を3.1〜3.4μmに規定することで、図2に示すように、分散を約−12.5〜2ps/nm/km、分散スロープを約0〜0.04ps/nm2/kmに制御することができる。また、コア中心部11の比屈折率差Δn1を0.4〜0.5%に規定することで、図3に示すように、分散を約−5〜10ps/nm/km、分散スロープを約0〜0.01ps/nm2/kmに制御することができる。
【0020】
第1中間層12の層厚(r2−r1)を2.9〜3.3μmに規定することで、図4に示すように、分散を約−0.01〜0.01ps/nm/kmに制御することができる。また、第1中間層12の比屈折率差Δn2を−0.24〜−0.20%に規定することで、図5に示すように、分散スロープを約−0.01〜0.01ps/nm2/kmに制御することができる。
【0021】
コアリング層13の層厚(r3−r2)を7.1〜8.0μmに規定することで、図6に示すように、カットオフ波長を約1.3〜1.5μmに、分散スロープを約0〜0.01ps/nm2/kmに制御することができる。また、コアリング層13の比屈折率差Δn3を0.06〜0.10%に規定することで、図7に示すように、カットオフ波長を約1.1〜1.5μmに、分散スロープを約0〜0.01強ps/nm2/kmに制御することができる。
【0022】
第2中間層14の層厚(r4−r3)を6.0μm以上に規定することで、図8に示すように、カットオフ波長を1.5μm以下に制御することができる。また、第2中間層14の比屈折率差Δn4を−0.23〜−0.09%に規定することで、図8に示すように、分散スロープを約−0.02〜0.01ps/nm2/kmに、カットオフ波長を約1.35〜1.55μmに制御することができる。
【0023】
本実施の形態に係る低非線形低分散スロープ光ファイバによれば、コア1を、光ファイバ中心Oから径方向外側に向かって、コア中心部11、第1中間層12、コアリング層13、及び第2中間層14の四層構造(換言すると、コア1+四重クラッドの構造)とし、コア中心部11及びコアリング層13の屈折率n1,n3をクラッド層2の屈折率n0よりも大きく、また、第1中間層12及び第2中間層14の屈折率n2,n4をクラッド層2の屈折率n0以下に形成することで、低非線形で、伝送波長が1.55μmの信号光の、分散スロープが−0.01〜0.01ps/nm2/km、分散が−5〜5ps/nm/km、及び実効断面積が50μm2以上の光ファイバとなる。その結果、波長多重伝送の伝送容量が大きく、かつ、伝送品質が良好な低非線形低分散スロープ光ファイバを得ることができる。
【0024】
また、本実施の形態の光ファイバは、上述したように、低非線形で、実効断面積が大きく、分散・分散スロープも十分に小さいため、ハイブリッド伝送路を形成することなく(即ち、この光ファイバ単体で)、線路全体の分散を非零に設計でき、使用波長帯域における分散スロープをほぼ零にすることができる。つまり、分散設計が簡易な単一ファイバで、低非線形低分散スロープ光ファイバの伝送路を構築することができるため、従来のハイブリッド伝送路のように、条長による厳密な補償率の計算を行う必要がなくなり、陸上系光伝送路の構築も可能である。
【0025】
さらに、実効断面積が50μm2以上と比較的大きく、また、分散スロープも極めて低いことから、WDM伝送の大容量化に必要不可欠な、使用波長帯城の拡大が可能となる。
【0026】
【実施例】
本実施の形態に係る低非線形低分散スロープ光ファイバのコアロッドを、MCVD法を用いて実際に製造する場合を説明する。製造は、図10に示すコアロッド製造装置を用いて行った。
【0027】
図10に示すように、先ず、原料ガス100をバブラ101に供給し、原料ガス100を純酸素でバブリングする。このバブリング後の原料ガス100を、回転導入端子102を介して、周方向に回転する出発石英管103の内部に導入する。次に、石英管103の内部に導入された原料ガス100を、石英管103の外側から、管長手方向に可動自在な酸水素バーナ104で加熱する。これによって、原料ガス100が化学反応することにより、スート粒子105が生成する。生成したスート粒子105は、その一部が石英管103の内面に付着・堆積し、残りは排気管106を通ってスートボックス107に排出される。次に、石英管103の内面に付着・堆積したスート粒子105は、再度、酸水素バーナ104で加熱することで透明ガラス化し、石英管103の内面にクラッド層2の母材が形成される。
【0028】
その後、上記工程を、原料ガス100を適宜変えて4回繰り返すことで、クラッド層2の母材の内面に、順次、第2中間層14の母材、コアリング層13の母材、第1中間層12の母材、及びコア中心部11の母材が形成され、コアロッドが得られる。ここで、原料ガス100としては、SiCl4、GeCl4、O2、He、Cl2、SiF4等を用いることができ、クラッド層2の母材形成時にはSiCl4、SiF4、O2を、第2中間層14の母材形成時にはSiCl4、GeCl4、O2、SiF4を、コアリング層13の母材形成時にはSiCl4、GeCl4、O2、SiF4を、第1中間層12の母材形成時にはSiCl4、GeCl4、O2、SiF4を、コア中心部11の母材形成時にはSiCl4、GeCl4、O2を用いた。
【0029】
コアロッドの形成後、コアロッドの中心部に残った空間を完全に埋めて中実にするために、酸水素バーナ104の火力を増加させて石英管103を再度加熱する。これによって、石英管103の表面張力が増加することで、コアロッドが石英管103の径方向中心に向かって収縮し、その結果、コアロッド全体が中実となる。
【0030】
このようにして得られたコアロッドの外周に、例えばVAD法を用いて純粋石英のスートを設けた後、コアロッドとスートを焼結し、線引母材を作製する。この線引母材を、例えば、線引き速度400m/min、張力140gで線引することで、条長が約100kmの本実施の形態に係る低非線形低分散スロープ光ファイバが得られた。
【0031】
この光ファイバの伝送特性を測定した結果、伝送波長が1.55μmの信号光の、伝送損失が0.212dB/km、実効断面積が58.7μm2、分散が−2.0ps/nm/km、分散スロープが−0.008ps/nm2/kmと良好な伝送特性が得られた。ここで、分散のシミュレーション値は、図11に示すように、約−1.5ps/nm/kmであり、シミュレーション値と略同じ測定値が得られた。
【0032】
以上、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、他にも種々のものが想定されることは言うまでもない。
【0033】
【発明の効果】
以上要するに本発明によれば、光ファイバのコアを、コア中心部、第1中間層、コアリング層、及び第2中間層の四層構造とし、コア中心部及びコアリング層の屈折率をクラッド層の屈折率よりも大きく、第1中間層及び第2中間層の屈折率をクラッド層の屈折率以下に形成することで、波長多重伝送の伝送容量が大きく、かつ、伝送品質が良好な低非線形低分散スロープ光ファイバを得ることができるという優れた効果を発揮する。
【図面の簡単な説明】
【図1】本実施の形態に係る低非線形低分散スロープ光ファイバにおける屈折率分布を示す図である。横軸は光ファイバ中心からの距離を、縦軸は比屈折率差を示している。
【図2】本実施の形態に係る低非線形低分散スロープ光ファイバにおけるコア中心部の半径と、分散及び分散スロープとの関係を示す図である。
【図3】本実施の形態に係る低非線形低分散スロープ光ファイバにおけるコア中心部の比屈折率差と、分散及び分散スロープとの関係を示す図である。
【図4】本実施の形態に係る低非線形低分散スロープ光ファイバにおける第1中間層の層厚と分散との関係を示す図である。
【図5】本実施の形態に係る低非線形低分散スロープ光ファイバにおける第1中間層の比屈折率差と分散スロープとの関係を示す図である。
【図6】本実施の形態に係る低非線形低分散スロープ光ファイバにおけるコアリング層の層厚と、カットオフ波長及び分散スロープとの関係を示す図である。
【図7】本実施の形態に係る低非線形低分散スロープ光ファイバにおけるコアリング層の比屈折率差と、カットオフ波長及び分散スロープとの関係を示す図である。
【図8】本実施の形態に係る低非線形低分散スロープ光ファイバにおける第2中間層の層厚とカットオフ波長との関係を示す図である。
【図9】本実施の形態に係る低非線形低分散スロープ光ファイバにおける第2中間層の比屈折率差と、分散スロープ及びカットオフ波長との関係を示す図である。
【図10】実施例におけるコアロッド製造装置の概略図である。
【図11】本実施の形態に係る低非線形低分散スロープ光ファイバの、分散の波長依存性のシミュレーション結果を示す図である。横軸は波長(μm)を、縦軸は分散(ps/nm/km)を示している。
【図12】波長多重伝送時のハイブリッド伝送路における各波長の累積分散を示す図である。横軸はファイバ長を、縦軸は累積分散を示している。
【符号の説明】
1 コア
2 クラッド層
11 コア中心部
12 第1中間層
13 コアリング層
14 第2中間層
100 原料ガス
101 バブラ
102 回転導入端子
103 石英管
104 酸水素バーナ
105 スート粒子
106 排気管
107 スートボックス
n0 クラッド層の屈折率
n1 コア中心部の屈折率
n2 第1中間層の屈折率
n3 コアリング層の屈折率
n4 第2中間層の屈折率
r1 コア中心部の半径
r2−r1 第1中間層の層厚
r3−r2 コアリング層の層厚
r4−r3 第2中間層の層厚
O 光ファイバ中心
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a trunk line transmission line and a low nonlinear low dispersion slope optical fiber for a submarine optical cable, and more particularly to a low nonlinear low dispersion slope optical fiber used for wavelength multiplexing transmission or the like.
[0002]
[Prior art]
Due to the explosive increase in data communications such as the Internet in recent years, a dramatic increase in transmission capacity is required. Currently, a WDM (Wavelength Division Multiplexing) transmission system that simultaneously transmits a plurality of signal lights having slightly different wavelengths through one optical fiber has been put into practical use and applied to trunk transmission lines and submarine optical cables. Yes. In such an optical fiber transmission line in which waveform deterioration after transmission or nonlinear phenomenon occurs, repeaters are usually installed at certain intervals. In order to compensate and amplify signal light, a conventional repeater temporarily converts signal light into an electric signal, synchronously reproduces and amplifies the converted electric signal, and converts it again into signal light. It is called a regenerative repeater. Since this regenerative repeater has to regenerate and amplify every slightly different wavelength, it requires a device corresponding to the wave number. For this reason, the increase in wave number for increasing the WDM transmission capacity has limitations in terms of cost and mounting space.
[0003]
Therefore, an EDFA (Erbium-Doped Fiber Amplifier) has been proposed as an amplifier that can amplify signal light of all wavelengths in a lump without converting the signal light into an electrical signal. Has been. With this EDFA, transmission capacity has rapidly increased. However, various problems have newly arisen due to the increase in the wave number and the bit rate of the signal light.
[0004]
For example, the wavelength dispersion inherent in the optical fiber causes different dispersion at both ends of the wavelength band to be used, and there is a problem that waveform deterioration after transmission and nonlinear phenomena occur. The non-linear phenomenon is a phenomenon caused by a local change in the refractive index distribution (generally depending on the optical power density) of the optical fiber constituting the transmission line, and FWM (Four Wave Mixing) or the like corresponds to this phenomenon. These dispersion and non-linear phenomena are the main causes of deterioration of transmission quality, and become a serious problem particularly when many signal wavelengths are transmitted over a long distance as in WDM transmission. In addition, in WDM transmission that transmits a plurality of signal lights, the dispersion value differs between the signal light on the shortest wavelength side and the signal light on the longest wavelength side, so that the wave number itself is limited by the dispersion slope. .
[0005]
Therefore, in order to avoid the deterioration of the signal waveform due to the chromatic dispersion of the optical fiber, it is effective to reduce the dispersion value between the used wavelength bands as much as possible, that is, to shift the zero dispersion wavelength to the used wavelength. For example, DSF (Dispertion-Shifted Optical Fiber), which is an optical fiber in which the zero-dispersion wavelength is shifted to the 1550 nm (1.55 μm) band, has little signal waveform deterioration. And widely applied. Further, in order to increase the transmission capacity, it is important to make the value of the dispersion slope as small as possible. A low dispersion slope of 0.1 ps / nm 2 / km or less is achieved by changing the conventional single-peak profile (refractive index profile) of an optical fiber to a complex profile such as a W-type or triple-clad type. can do.
[0006]
[Problems to be solved by the invention]
However, as the wave number increases, the optical power density per unit cross-sectional area of the optical fiber increases, so that the occurrence of the above-mentioned nonlinear phenomenon becomes a big problem again. For example, recent research has revealed that the WDM signal light in the vicinity of the zero dispersion wavelength is amplified by the FWM described above, and signal transmission characteristics are significantly deteriorated.
[0007]
In order to increase the wave number of the signal light while preventing this non-linear phenomenon, as shown in FIG. 12, an optical fiber having a large effective area (Aeff expansion fiber ( 12), and in the latter stage (second half of the section) of the optical fiber, an optical fiber (dispersion / dispersion slope compensating fiber (FIG. 12) for compensating the accumulated dispersion and dispersion slope generated in the first half of the section. In this hybrid transmission line, dispersion in the entire line is designed to be non-zero as indicated by a broken line c in FIG. Thus, the dispersion slope is almost zero in the used wavelength band.
[0008]
However, this hybrid transmission line requires extremely strict strip length management in order to secure a certain dispersion / dispersion slope compensation rate, and is also used for fusion-bonding fibers with different fiber profiles. There is a problem that the loss is so large that it cannot be ignored. For this reason, it is extremely difficult to construct a land-based optical transmission line using this hybrid transmission line because there are many connection points between fibers.
[0009]
An object of the present invention created in view of the above circumstances is to provide a low nonlinear low dispersion slope optical fiber having a large transmission capacity for wavelength division multiplexing transmission and good transmission quality.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a low nonlinear low dispersion slope optical fiber according to the present invention has a two-layer structure of a core on the inner layer side and a cladding layer covering the outer periphery of the core, and a plurality of signals having slightly different wavelengths in the core. In a low nonlinear low dispersion slope optical fiber for transmitting light simultaneously, the core has a four-layer structure of a core center portion, a first intermediate layer, a coring layer, and a second intermediate layer from the optical fiber center toward the radially outer side. The refractive index of the core center portion and the coring layer is set to be larger than the refractive index of the cladding layer, and the refractive indexes of the first intermediate layer and the second intermediate layer are set to be the refractive index of the cladding layer. It is formed so that it becomes below the rate.
[0011]
According to the above configuration, the optical fiber core has a four-layer structure, and by defining the refractive index of each core layer and the refractive index of the cladding layer, the transmission capacity of wavelength division multiplexing transmission is large and the transmission quality is good. A low nonlinear low dispersion slope optical fiber can be obtained.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a preferred embodiment of the invention will be described with reference to the accompanying drawings.
[0013]
It is a figure which shows the refractive index distribution of the low nonlinear low dispersion slope optical fiber which concerns on this invention. In FIG. 1, the horizontal axis represents the distance from the optical fiber center O, and the vertical axis represents the relative refractive index difference.
[0014]
As shown in FIG. 1, the low nonlinear low dispersion slope optical fiber according to the present invention has a two-layer structure of a core 1 on the inner layer side and a clad layer 2 covering the outer periphery of the core 1, and the core 1 is an optical fiber. From the center O toward the outside in the radial direction, it has a four-layer structure of a core central portion 11 having a radius r1, a first intermediate layer 12 having a radius r2, a coring layer 13 having a radius r3, and a second intermediate layer 14 having a radius r4. It is what you are doing.
[0015]
The refractive index (n1) of the core central portion 11 and the refractive index (n3) of the coring layer 13 are larger than the refractive index (n0) of the cladding layer 2 (n1 (or n3)> n0), and the first intermediate The refractive index (n2) of the layer 12 and the refractive index (n4) of the second intermediate layer 14 are formed to be equal to or lower than the refractive index (n0) of the cladding layer 2 (n2 (or n4) ≦ n0).
[0016]
Specifically, the slope of chromatic dispersion (hereinafter referred to as dispersion slope) of signal light having a transmission wavelength of 1.55 μm is −0.01 to 0.01 ps / nm 2 / km, preferably about −0.00062 ps / In order to obtain an optical fiber having a nm 2 / km, a chromatic dispersion of −5 to 5 ps / nm / km, preferably about −1.3 ps / nm / km, and an effective area of 50 μm 2 or more, the refraction of the core central portion 11 is achieved. The relative refractive index difference Δn1 between the refractive index (n1) and the refractive index (n0) of the cladding layer 2 is 0.4 to 0.5%, preferably 0.42%. The refractive index (n3) of the coring layer 13 and the cladding layer The relative refractive index difference Δn3 of the refractive index (n0) of 2 is 0.06 to 0.10%, preferably 0.1%, the refractive index (n2) of the first intermediate layer 12 and the refractive index (n0) of the cladding layer 2 ) Relative refractive index difference Δn2 of −0.24 to −0.20%, preferably −0.22%, the refractive index (n4) of the second intermediate layer 14 and the cladding layer -0.21~-0.09% the relative refractive index difference Δn4 refractive index (n0), preferably forms a -0.10%. Further, the radius r1 of the core central portion 11 is 3.1 to 3.4 μm, preferably 3.35 μm, and the layer thickness (r2-r1) of the first intermediate layer 12 is 2.9 to 3.3 μm, preferably 3. 1 μm, the layer thickness (r3-r2) of the coring layer 13 is 7.1 to 8.0 μm, preferably 7.9 μm, and the layer thickness (r4-r1) of the second intermediate layer 14 is 6.0 μm or more, preferably It is formed to 6.0 μm.
[0017]
Moreover, the core center part 11 is comprised with the structural material containing 0.05 mol% or more, preferably 4.0 mol% or more of germanium oxide.
[0018]
Next, the operation of the present invention will be described.
[0019]
By defining the radius r1 of the core central portion 11 to 3.1 to 3.4 μm, the dispersion is about −12.5 to 2 ps / nm / km and the dispersion slope is about 0 to 0. 0 as shown in FIG. It can be controlled to 04 ps / nm 2 / km. Further, by defining the relative refractive index difference Δn1 of the core central portion 11 to 0.4 to 0.5%, as shown in FIG. 3, the dispersion is about −5 to 10 ps / nm / km, and the dispersion slope is about It can be controlled to 0 to 0.01 ps / nm 2 / km.
[0020]
By defining the layer thickness (r2-r1) of the first intermediate layer 12 to 2.9 to 3.3 μm, the dispersion is reduced to about −0.01 to 0.01 ps / nm / km as shown in FIG. Can be controlled. Further, by defining the relative refractive index difference Δn2 of the first intermediate layer 12 to be −0.24 to −0.20%, as shown in FIG. 5, the dispersion slope is about −0.01 to 0.01 ps / It can be controlled to nm 2 / km.
[0021]
By defining the layer thickness (r3-r2) of the coring layer 13 to 7.1 to 8.0 μm, as shown in FIG. 6, the cutoff wavelength is set to about 1.3 to 1.5 μm, and the dispersion slope is set. It can be controlled to about 0 to 0.01 ps / nm 2 / km. Further, by defining the relative refractive index difference Δn3 of the coring layer 13 to 0.06 to 0.10%, the cutoff wavelength is set to about 1.1 to 1.5 μm as shown in FIG. Can be controlled to about 0 to 0.01 strength ps / nm 2 / km.
[0022]
By defining the thickness (r4-r3) of the second intermediate layer 14 to 6.0 μm or more, the cutoff wavelength can be controlled to 1.5 μm or less as shown in FIG. Further, by defining the relative refractive index difference Δn4 of the second intermediate layer 14 to −0.23 to −0.09%, as shown in FIG. 8, the dispersion slope is about −0.02 to 0.01 ps / The cutoff wavelength can be controlled to about 1.35 to 1.55 μm at nm 2 / km.
[0023]
According to the low nonlinear low dispersion slope optical fiber according to the present embodiment, the core 1 is moved from the optical fiber center O to the radially outer side, the core center portion 11, the first intermediate layer 12, the coring layer 13, and The second intermediate layer 14 has a four-layer structure (in other words, a core 1 + quadruple structure), and the refractive indexes n1 and n3 of the core central portion 11 and the coring layer 13 are larger than the refractive index n0 of the cladding layer 2, Further, by forming the refractive indexes n2 and n4 of the first intermediate layer 12 and the second intermediate layer 14 to be equal to or lower than the refractive index n0 of the cladding layer 2, dispersion of signal light having a low nonlinearity and a transmission wavelength of 1.55 μm is achieved. The optical fiber has a slope of −0.01 to 0.01 ps / nm 2 / km, a dispersion of −5 to 5 ps / nm / km, and an effective area of 50 μm 2 or more. As a result, it is possible to obtain a low nonlinear low dispersion slope optical fiber having a large transmission capacity for wavelength division multiplexing and good transmission quality.
[0024]
Further, as described above, the optical fiber according to the present embodiment has a low nonlinearity, a large effective area, and a sufficiently small dispersion / dispersion slope, so that a hybrid transmission line is not formed (that is, this optical fiber). By itself, the dispersion of the entire line can be designed to be non-zero, and the dispersion slope in the used wavelength band can be made almost zero. In other words, since a transmission line of low nonlinear low dispersion slope optical fiber can be constructed with a single fiber with simple dispersion design, the exact compensation rate is calculated by the length like a conventional hybrid transmission line. This eliminates the need for a land-based optical transmission line.
[0025]
Furthermore, since the effective area is relatively large at 50 μm 2 or more and the dispersion slope is extremely low, it is possible to expand the wavelength band for use, which is indispensable for increasing the capacity of WDM transmission.
[0026]
【Example】
The case where the core rod of the low nonlinear low dispersion slope optical fiber according to the present embodiment is actually manufactured using the MCVD method will be described. Manufacture was performed using the core rod manufacturing apparatus shown in FIG.
[0027]
As shown in FIG. 10, first, the source gas 100 is supplied to the bubbler 101, and the source gas 100 is bubbled with pure oxygen. The source gas 100 after the bubbling is introduced into the starting quartz tube 103 that rotates in the circumferential direction via the rotation introduction terminal 102. Next, the raw material gas 100 introduced into the quartz tube 103 is heated from the outside of the quartz tube 103 by an oxyhydrogen burner 104 movable in the longitudinal direction of the tube. As a result, the soot particles 105 are generated by the chemical reaction of the source gas 100. Part of the generated soot particles 105 adheres and accumulates on the inner surface of the quartz tube 103, and the rest passes through the exhaust pipe 106 and is discharged to the soot box 107. Next, the soot particles 105 attached and deposited on the inner surface of the quartz tube 103 are heated again by the oxyhydrogen burner 104 to become transparent glass, and the base material of the cladding layer 2 is formed on the inner surface of the quartz tube 103.
[0028]
Thereafter, the above process is repeated four times while appropriately changing the source gas 100, so that the base material of the second intermediate layer 14, the base material of the coring layer 13, and the first material are sequentially formed on the inner surface of the base material of the cladding layer 2. The base material of the intermediate layer 12 and the base material of the core central portion 11 are formed, and a core rod is obtained. Here, as the source gas 100, SiCl 4 , GeCl 4 , O 2 , He, Cl 2 , SiF 4 or the like can be used, and when forming the base material of the cladding layer 2, SiCl 4 , SiF 4 , O 2 are used. When the base material of the second intermediate layer 14 is formed, SiCl 4 , GeCl 4 , O 2 , SiF 4 is used. When the base material of the coring layer 13 is formed, SiCl 4 , GeCl 4 , O 2 , SiF 4 is used, and the first intermediate layer 12 is used. SiCl 4 , GeCl 4 , O 2 , and SiF 4 were used when forming the base material, and SiCl 4 , GeCl 4 , and O 2 were used when forming the base material for the core central portion 11.
[0029]
After the core rod is formed, the quartz tube 103 is heated again by increasing the thermal power of the oxyhydrogen burner 104 in order to completely fill the space remaining in the center of the core rod and make it solid. As a result, the surface tension of the quartz tube 103 increases, so that the core rod contracts toward the radial center of the quartz tube 103, and as a result, the entire core rod becomes solid.
[0030]
A pure quartz soot is provided on the outer periphery of the core rod thus obtained using, for example, the VAD method, and then the core rod and the soot are sintered to produce a drawing base material. For example, by drawing the drawing base material at a drawing speed of 400 m / min and a tension of 140 g, the low nonlinear low dispersion slope optical fiber according to the present embodiment having a strip length of about 100 km was obtained.
[0031]
As a result of measuring the transmission characteristics of this optical fiber, the transmission loss of the signal light having a transmission wavelength of 1.55 μm is 0.212 dB / km, the effective area is 58.7 μm 2 , and the dispersion is −2.0 ps / nm / km. A good transmission characteristic was obtained with a dispersion slope of -0.008 ps / nm 2 / km. Here, as shown in FIG. 11, the simulation value of the dispersion is about −1.5 ps / nm / km, and a measurement value substantially the same as the simulation value was obtained.
[0032]
As mentioned above, it cannot be overemphasized that embodiment of this invention is not limited to embodiment mentioned above, and various things are assumed in addition.
[0033]
【The invention's effect】
In short, according to the present invention, the core of the optical fiber has a four-layer structure of the core central portion, the first intermediate layer, the coring layer, and the second intermediate layer, and the refractive index of the core central portion and the coring layer is clad. By forming the refractive index of the first intermediate layer and the second intermediate layer to be lower than the refractive index of the cladding layer, the transmission capacity for wavelength division multiplexing is large and the transmission quality is low. An excellent effect is obtained that a nonlinear low dispersion slope optical fiber can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing a refractive index distribution in a low nonlinear low dispersion slope optical fiber according to the present embodiment. The horizontal axis indicates the distance from the center of the optical fiber, and the vertical axis indicates the relative refractive index difference.
FIG. 2 is a diagram showing the relationship between the radius of the core center, dispersion, and dispersion slope in the low nonlinear, low dispersion slope optical fiber according to the present embodiment.
FIG. 3 is a diagram showing a relationship between a relative refractive index difference at a core central portion, dispersion, and dispersion slope in the low nonlinear low dispersion slope optical fiber according to the present embodiment.
FIG. 4 is a diagram showing the relationship between the thickness of the first intermediate layer and dispersion in the low nonlinear low dispersion slope optical fiber according to the present embodiment.
FIG. 5 is a diagram showing a relationship between a relative refractive index difference of a first intermediate layer and a dispersion slope in the low nonlinear low dispersion slope optical fiber according to the present embodiment.
FIG. 6 is a diagram showing the relationship between the thickness of the coring layer, the cutoff wavelength, and the dispersion slope in the low nonlinear low dispersion slope optical fiber according to the present embodiment.
FIG. 7 is a diagram showing a relationship between a relative refractive index difference of a coring layer, a cutoff wavelength, and a dispersion slope in the low nonlinear low dispersion slope optical fiber according to the present embodiment.
FIG. 8 is a diagram showing a relationship between a layer thickness of a second intermediate layer and a cutoff wavelength in the low nonlinear low dispersion slope optical fiber according to the present embodiment.
FIG. 9 is a diagram showing the relationship between the relative refractive index difference of the second intermediate layer, the dispersion slope, and the cutoff wavelength in the low nonlinear low dispersion slope optical fiber according to the present embodiment.
FIG. 10 is a schematic view of a core rod manufacturing apparatus in an example.
FIG. 11 is a diagram showing a simulation result of dispersion wavelength dependency of the low nonlinear low dispersion slope optical fiber according to the present embodiment. The horizontal axis represents wavelength (μm), and the vertical axis represents dispersion (ps / nm / km).
FIG. 12 is a diagram showing cumulative dispersion of each wavelength in a hybrid transmission line at the time of wavelength multiplexing transmission. The horizontal axis indicates the fiber length, and the vertical axis indicates the cumulative dispersion.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Core 2 Cladding layer 11 Core center part 12 1st intermediate | middle layer 13 Coring layer 14 2nd intermediate | middle layer 100 Source gas 101 Bubbler 102 Rotation introducing | transducing terminal 103 Quartz tube 104 Oxyhydrogen burner 105 Soot particle 106 Exhaust pipe 107 Soot box n0 Cladding Refractive index of layer n1 Refractive index of core n2 Refractive index of first intermediate layer n3 Refractive index of coring layer n4 Refractive index of second intermediate layer r1 Radius r2-r1 of core central layer Layer thickness of first intermediate layer r3-r2 Coring layer thickness r4-r3 Second intermediate layer thickness O Optical fiber center

Claims (1)

内層側のコアと、そのコア外周を覆うクラッド層の二層構造であり、コア内を僅かに波長の異なる複数の信号光を同時に伝送させる低非線形低分散スロープ光ファイバにおいて、上記コアが光ファイバ中心から径方向外側に向かって、コア中心部、第1中間層、コアリング層、及び第2中間層の四層構造を有しており、コア中心部及びコアリング層の屈折率を、クラッド層の屈折率よりも大きくなるように、かつ、第1中間層及び第2中間層の屈折率を、クラッド層の屈折率以下となるように形成し
伝送波長が1.55μmの信号光の、波長分散の傾きが−0.01〜0.01 ps/nm 2 /km 、波長分散が−5〜5 ps/nm/km 、及び実効断面積が50μm 2 以上であり、且つ、
コア中心部の屈折率とクラッド層の屈折率の比屈折率差Δn1が0.4〜0.5%、コアリング層の屈折率とクラッド層の屈折率の比屈折率差Δn3が0.06〜0.10%、第1中間層の屈折率とクラッド層の屈折率の比屈折率差Δn2が−0.24〜−0.20%、第2中間層の屈折率とクラッド層の屈折率の比屈折率差Δn4が−0.21〜−0.09%であり、且つ、
コア中心部の半径が3.1〜3.4μm、第1中間層の層厚が2.9〜3.3μm、コアリング層の層厚が7.1〜8.0μm、第2中間層の層厚が6.0μm以上であり、且つ、
コア中心部が、0.05モル%以上の酸化ゲルマニウムを含んでいることを特徴とする低非線形低分散スロープ光ファイバ。
A low nonlinear low dispersion slope optical fiber having a two-layer structure of an inner layer side core and a clad layer covering the outer periphery of the core, and simultaneously transmitting a plurality of signal lights having slightly different wavelengths in the core. From the center to the outer side in the radial direction, it has a four-layer structure consisting of a core center, a first intermediate layer, a coring layer, and a second intermediate layer. Forming the refractive index of the first intermediate layer and the second intermediate layer to be lower than the refractive index of the cladding layer so as to be larger than the refractive index of the layer ,
Signal light with a transmission wavelength of 1.55 μm has a chromatic dispersion slope of −0.01 to 0.01 ps / nm 2 / km , a chromatic dispersion of −5 to 5 ps / nm / km , and an effective area of 50 μm. 2 or more, and
The relative refractive index difference Δn1 between the refractive index of the core center and the refractive index of the cladding layer is 0.4 to 0.5%, and the relative refractive index difference Δn3 of the refractive index of the coring layer and the refractive index of the cladding layer is 0.06. ~ 0.10%, relative refractive index difference Δn2 between the refractive index of the first intermediate layer and the refractive index of the cladding layer is -0.24 to -0.20%, the refractive index of the second intermediate layer and the refractive index of the cladding layer Relative refractive index difference Δn4 of −0.21 to −0.09%, and
The core center radius is 3.1 to 3.4 μm, the first intermediate layer thickness is 2.9 to 3.3 μm, the coring layer thickness is 7.1 to 8.0 μm, and the second intermediate layer thickness is The layer thickness is 6.0 μm or more, and
A low nonlinear low dispersion slope optical fiber, characterized in that a core central portion contains 0.05 mol% or more of germanium oxide .
JP2001264902A 2001-08-31 2001-08-31 Low nonlinear low dispersion slope optical fiber Expired - Fee Related JP3788292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001264902A JP3788292B2 (en) 2001-08-31 2001-08-31 Low nonlinear low dispersion slope optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001264902A JP3788292B2 (en) 2001-08-31 2001-08-31 Low nonlinear low dispersion slope optical fiber

Publications (2)

Publication Number Publication Date
JP2003075674A JP2003075674A (en) 2003-03-12
JP3788292B2 true JP3788292B2 (en) 2006-06-21

Family

ID=19091434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001264902A Expired - Fee Related JP3788292B2 (en) 2001-08-31 2001-08-31 Low nonlinear low dispersion slope optical fiber

Country Status (1)

Country Link
JP (1) JP3788292B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6268758B2 (en) * 2013-06-10 2018-01-31 住友電気工業株式会社 Optical fiber
CN109725382B (en) * 2019-03-07 2020-08-04 长飞光纤光缆股份有限公司 Ultralow-attenuation low-crosstalk weak-coupling third-order OAM optical fiber
CN110058350A (en) * 2019-04-25 2019-07-26 桂林电子科技大学 A kind of low-loss large effective area dispersion shifted single mode fiber and its manufacturing method

Also Published As

Publication number Publication date
JP2003075674A (en) 2003-03-12

Similar Documents

Publication Publication Date Title
US6009221A (en) Dispersion slope compensating optical fiber
US6490398B2 (en) Dispersion-compensating fiber having a high figure of merit
US7095940B2 (en) Optical fiber, method for manufacturing same and optical transmission channel
JP3720063B2 (en) Optical fiber for wavelength division multiplexing.
JP2004166300A (en) Wavelength division multiplexing system
US6654531B2 (en) Dispersion-compensating module
US6498887B1 (en) Dispersion-compensating fiber having a high relative dispersion slope
WO2002093795A2 (en) Dispersion-managed cable for raman-assisted transmission
WO2005015303A1 (en) Nonlinear optical fiber and optical signal processing device using the optical fiber
JP2006512615A (en) Dispersion flat NZDS fiber
JP2002526806A (en) Single mode dispersion shifted optical fiber with large effective area
JP4434172B2 (en) Dispersion compensating optical fiber
JP3788292B2 (en) Low nonlinear low dispersion slope optical fiber
JP2007297254A (en) Optical fiber
JP2002082250A (en) Low non-linear single mode optical fiber
JP3840991B2 (en) Low nonlinear low dispersion slope optical fiber
US6904216B2 (en) Optical fiber of complex index profile
JP3840977B2 (en) Dispersion compensating optical fiber
JP2000338353A (en) Dispersion shift optical fiber and its production
KR100666433B1 (en) Dispersion controlling optical fiber and manufacturing method thereof
JP3446944B2 (en) Dispersion slope compensating optical fiber
JP2003066259A (en) Low non-linear optical fiber for wavelength division multiplexing transmission
EP1341011A1 (en) Dispersion-compensating fiber
JP2003270469A (en) Dispersion-correction fiber with high figure of merit
JP4205455B2 (en) Optical fiber and optical transmission system using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees