JP3787835B2 - Multiple wavelength synthesizer - Google Patents

Multiple wavelength synthesizer Download PDF

Info

Publication number
JP3787835B2
JP3787835B2 JP2000092537A JP2000092537A JP3787835B2 JP 3787835 B2 JP3787835 B2 JP 3787835B2 JP 2000092537 A JP2000092537 A JP 2000092537A JP 2000092537 A JP2000092537 A JP 2000092537A JP 3787835 B2 JP3787835 B2 JP 3787835B2
Authority
JP
Japan
Prior art keywords
wavelength
laser beams
laser
laser beam
light sources
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000092537A
Other languages
Japanese (ja)
Other versions
JP2001283457A (en
JP2001283457A5 (en
Inventor
浩 松本
泰二 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2000092537A priority Critical patent/JP3787835B2/en
Publication of JP2001283457A publication Critical patent/JP2001283457A/en
Publication of JP2001283457A5 publication Critical patent/JP2001283457A5/ja
Application granted granted Critical
Publication of JP3787835B2 publication Critical patent/JP3787835B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、概して光学素子に関し、さらに詳細には、波長の異なる2つの光線を1つの光線に合成する素子とこれを用いた光ピックアップに関する。
【0002】
【従来の技術】
光ディスク装置に用いられる光ピックアップは、種類の異なる光ディスクに対応するため、波長の異なる複数のレーザ光が使用できる構造となっている。
図10に、異なる波長の光源を2つ使用する光ピックアップの一般的な構成例を示す。図10において、1は波長650nmのLD(レーザダイオード),2は波長780nmのLD、3は2波長を合成するダイクロイックプリズムである。
このように構成した2波長の光を合成する光学系において、波長650nmのLD1の光は、ほぼ90%以上がダイクロイックプリズム3を透過する。また、波長780nmのLD2の光は、ほぼ90%以上がダイクロイックプリズム3で90°反射して、LD1からの透過光と同じ光路に入る。それぞれの光を同じ方向に反射および透過させる事で2波長を合成する事が一般的であった。
しかしながら、このような従来の方法では、LDの配置が2方向になるため光ピックアップのコンパクト化が困難であった。
【0003】
【発明が解決しようとする課題】
本発明は上記問題点を解決するためになされたものであり、隣接して配置された複数の光源からの平行な光線を1つに合成する複数波長合成素子を提供することを課題とする。
このような複数波長合成素子を用いたコンパクトな光ピックアップを提供することも別の課題である。
また、複数波長の光を1つの半導体チップで発光出射可能な発光源において、複数波長の光線を1つの光線に合成する機能を持ったデバイスをパッケージの蓋もしくは発光源と一体化する事で、複数波長の光線を1つに合成する機能を持った発光源を提供することを課題とする。
さらに、本発光源を用いたさらにコンパクト且つ低コストの光ピックアップを提供することを課題とする。
【0004】
【課題を解決するための手段】
上述の課題は、以下の波長の異なる複数のレーザ光線を単一光線にする方法および光学系、光ピックアップ、およびこれらを用いた波長の異なる複数のレーザ光線を用いる装置によって達成される。
請求項の波長の異なる複数のレーザ光線を単一光線にする方法は、波長の異なる複数のレーザ光線を発する複数の光源を、前記複数のレーザ光線が同一平面上で平行となるように配置するステップと、対向する面に対し45度の光学軸を有する一軸結晶の板からなる複数波長合成素子を前記光学軸が前記同一平面と平行になるように前記レーザ光線の光路上に前記レーザ光線と直角に配置するステップと、前記レーザ光線の偏波面が前記複数波長合成素子に対して共に異常光線となるように設定するステップと、前記複数波長合成素子に入射した前記レーザ光線が前記複数波長合成素子から同一の光路で出射するように前記複数の光源の間隔を調節するステップとを含むことを特徴とする。
請求項記載の波長の異なる複数のレーザ光線を単一光線にする光学系は、波長の異なる複数のレーザ光線を同一平面内で平行に発するように配置された複数の光源と、対向する面に対し45度の光学軸を有する一軸結晶の板からなり且つ前記光学軸が前記同一平面と平行になるように前記レーザ光線の光路上に前記レーザ光線と直角に配置された複数波長合成素子とを備え、前記レーザ光線の偏波面が前記複数波長合成素子に対して共に異常光線となるように設定されており、且つ前記複数の光源の間隔が、前記複数波長合成素子に入射した前記レーザ光線が前記複数波長合成素子から同一の光路で出射するように調節されたことを特徴とする。
請求項の発明は、請求項記載の光学系において、前記複数の光源が、前記複数のレーザ光線を単独で発する多波長レーザダイオードであることを特徴とする。
請求項の発明は、請求項又は記載の光学系を備えたことを特徴とする光ピックアップである。
請求項の発明は、請求項又は記載の光学系を備えたことを特徴とする波長の異なる複数のレーザ光線を用いる装置である。
請求項の発明は、波長の異なる3以上のレーザ光線を発する3以上の光源を、前記3以上のレーザ光線が同一平面上で平行になるように配置するステップと、対向する面に対し45度の光学軸を有する一軸結晶の板からなる複数波長合成素子を前記光学軸が前記同一平面と平行になるように前記レーザ光線の光路上に前記レーザ光線と直角に配置するステップと、前記レーザ光線の偏波面が前記複数波長合成素子に対して常光線または異常光線となるように設定するステップと、前記複数波長合成素子に入射した前記レーザ光線が前記複数波長合成素子から同一の光路で出射するように前記3以上の光源の間隔を調節するステップとを含むことを特徴とする。
請求項の発明は、波長の異なる2つのレーザ光線を発する2つの光源を、前記2つのレーザ光線が同一平面上で平行となるように配置するステップと、対向する面に対し角度ψの光学軸を有する一軸結晶の板からなる複数波長合成素子を前記光学軸が前記同一平面と平行になるように前記レーザ光線の光路上に前記レーザ光線と直角に配置するステップと、前記レーザ光線の偏波面が前記複数波長合成素子に対して共に異常光線となるように設定するステップと、前記複数波長合成素子に入射した前記レーザ光線が前記複数波長合成素子から同一の光路で出射するために、前記板の常光線屈折率noの逆数をa、異常光線屈折率neの逆数をb、前記板厚をe、前記a、b、ψとの関係をc=a2×sin2ψ十b2×cos2ψとし、前記板の主面に入射する2つのレーザ光線の光線間距離をSとした際に、
S=(b2−a2/(2c2))×sin(2ψ)×e
を満足するように前記2つの光源の間隔を調節するステップとを含むことを特徴とする波長の異なる2つのレーザ光線を単一光線にする方法である
請求項の発明は、波長の異なる2つのレーザ光線を同一平面内で平行に発するように配置された2つの光源と、対向する面に対し角度ψの光学軸を有する一軸結晶の板からなり且つ前記光学軸が前記同一平面と平行になるように前記レーザ光線の光路上に前記レーザ光線と直角に配置された複数波長合成素子とを備え、前記レーザ光線の偏波面が前記複数波長合成素子に対して共に異常光線となるように設定されており、且つ前記2つの光源の間隔が、前記複数波長合成素子に入射した前記レーザ光線が前記複数波長合成素子から同一の光路で出射するために、前記板の常光線屈折率noの逆数をa、異常光線屈折率neの逆数をb、前記板厚をe、前記a、b、ψとの関係をc=a2×sin2ψ十b2×cos2ψとし、前記板の主面に入射する2つのレーザ光線の光線間距離をSとした際に、
S=(b2−a2/(2c2))×sin(2ψ)×eを満足するように調節されたことを特徴とする波長の異なる2つのレーザ光線を単一光線にする光学系である。
請求項の発明は、前記2つの光源が、前記2つのレーザ光線を単独で発する多波長レーザダイオードであることを特徴とする。
請求項10の発明は、請求項又は記載の光学系を備えたことを特徴とする光ピックアップである。
請求項11の発明は、請求項又は記載の光学系を備えたことを特徴とする波長の異なる複数のレーザ光線を用いる装置である。
【0005】
【発明の実施の形態】
以下、本発明の実施の形態例と添付図面により本発明を詳細に説明する。なお、複数の図面に同じ要素を示す場合には同一の参照符号を付ける。図面に描かれた各部の寸法は、分かり易くするために部分的に拡大または縮小することがあるので、縮尺は寸法間で必ずしも一定ではない。
(実施の形態1)図1は、本発明の複数波長合成素子の斜視図である。図1において、本発明の複数波長合成素子1は、複屈折性を有する一軸結晶の材料を光学軸Aoが表面と45°の角度(これは、一般的にサバール板と呼ばれるデバイスと同じ切断角度である)を成すように薄切りにしたものである。複数波長合成素子1の光学軸Aoと合成しようとする複数の光線(例えば、L1とL2)との配置は、複数の光線L1およびL2を含む平面と光学軸Aoとが平行となるようにする。図2は、発光波長の異なる2つの光源から平行な方向に出射されるそれぞれの光線を図1の本発明の複数波長合成素子1が1つに合成する光学系を示す図である。図2は、図1の複数波長合成素子1をVの方向から見た図である。図2の光学系100において、2は波長650nmのレーザ光L1を発するLD(レーザダイオード)、3はLD2と並列に配置され光線L1と平行な波長780nmのレーザ光L2を発するLDである。光線L1とL2との間隔はSとする。レーザ光源LD2および3からそれぞれ出射した光線L1およびL2は、複数波長合成素子1に垂直に入射する。この時、LD2から出射する光線L1は、複数波長合成素子1に入射したときの常光線L1oと同じ偏波面となるようにする。また、LD3から出射する光線L2は、複数波長合成素子1に入射したときの異常光線L2eと同じ偏波面となるようにする。即ち、光線Lの磁気ベクトルの振動方向が主断面(XY平面)に平行となり(上下方向の矢印で示す)、光線Lの磁気ベクトルの振動方向が主断面に垂直となる(中に点を有する小円で示す)ように、LD1とLD2とを出射光軸を中心として回転させながら調整を行う。
【0006】
図1および2に示した複数波長合成素子1による2波長の合成においては、次ぎの式が成立する。
S=(b2−a2/2C2)sin2ψ・e (1)
ただし、S:光線間距離
ψ:光学軸と基板法線との角度
e:基板の板厚
a=1/ne ne:異常光線屈折率
b=1/no no:常光線屈折率
c=a2sin2ψ十b2cos2ψ
ここで、材料としてLN(ニオブ酸リチウム)を用いて複数波長合成素子1を構成した場合、波長650nmの光線のLNに対する常光線屈折率noは2.282、波長780nmの光線のLNに対する異常光線屈折率neは2.178である。複数波長合成素子1の厚さeをe=2.15mmとすると、式(1)から、L1とL2との間隔Sは、0.10mmとなる。したがって、LD2およびLD3は、それぞれの光線L1およびL2の間隔Sが0.10mmとなるような間隔で配置すればよい。
なお、複数波長合成素子1の材料としては、LNの他に、方解石やルチル(金紅石)も利用可能である。
このように、本発明では、屈折率の波長依存性を用いて複数波長の光を合成する。因みに、光ディスクで使用される波長のLNに対する屈折率は、次のとおりである。

Figure 0003787835
【0007】
(実施の形態2)
図3は、発光波長の異なる3つの光源から平行な方向に出射されるそれぞれの光線を本発明の複数波長合成素子が1つに合成する光学系を示す図である。図3の光学系200において、1は上述の本発明の複数波長合成素子、2は上述の波長650nmのLD、3は上述の波長780nmのLD、4は波長410nmのLDである。即ち、図3の光学系200は図2の光学系100に波長410nmのLD4を追加したものである。光学系200の要素1〜3およびこれらの配置は、光学系100と全く同じである。
LD4は、LD1およびLD2と並列に配置され、光線L1およびL2と同一平面上にあり且つ平行な光線L3を410nmの波長で出射する。LD4から出射した光線L3も、複数波長合成素子1に垂直に入射する。この時も、前述のようにLD4から出射する光線L3が複数波長合成素子1に入射したときの異常光線L3eと同じ偏波面となるように、LD4を出射光軸を中心に回転させて調整する。
この場合も、式(1)が成立するので、LNに対する波長410nmの異常光屈折率は2.319であるから、光線L1とL3との間隔S1+S2は、式(1)から0.11nmと計算できる。S1=Sとすると、S2=0.110.10nmである。したがって、LD3は、光線L2とL3との間隔S2が0.01nmとなるように、配置すればよい。
【0008】
(実施の形態3)
図4は、本発明の複数波長合成素子1を用いた光ピックアップ300の一実施例の要部を模式的に表した図である。図4(a)は、光ピックアップ300のケース10の上面を透視した平面図であり、図4(b)は、(a)の下方の壁を取り去って描いた側面図である。図4において、要素1〜3は、図1の光学系100そのものである。この点を除けば、光ピックアップ300は、複数波長合成素子1からの出射光Lの光路上に配置されたハーフミラー5、ハーフミラー5を透過した光の光路に配置された立上げミラー6、立上げミラー6による反射光の光路上に配置されケース10に取り付けられた対物レンズ7、対物レンズ7を通り光ディスク90、立上げミラー6およびハーフミラー5でそれぞれ反射された戻り光を検出する光検出器8、およびケース10を備え、通常の光ピックアップと同じである。
動作としては、波長650nmのLD2および780nmのLD3からそれぞれ出射された平行な光線は実施の形態1で述べたように複数波長合成素子1に於いて1つの光線Lに合成される。以降、光線Lは、各要素で周知の光学作用を経て光検出器8で検出される。
光源LD2およびLD3が並列に配置できることで光学系の幅方向寸法を小さくできるため光ピックアップをコンパクトにすることができる。なお、2つの光源2および3を用いる代わりに、波長の異なる光線を発する1つの光源を用いてもよい。
【0009】
(実施の形態4)
図5は、波長650nmおよび780nmのレーザ光を1つの半導体チップで発光出射可能な2波長半導体レーザと本発明の複数波長合成素子1とを一体化した新奇なレーザ光源装置の一実施例を示す、2波長の光路を含む断面図である。図5において、本発明による光源装置400は、波長650nmと波長780nmの光を1チップで発光する2波長LD23、本発明により複屈折性を用いて2波長を合成する複数波長合成素子1a、2波長LD23の電極(図示せず)に接続された電極端子11、複数波長合成素子1aと電極端子11とを取り付け固定する絶縁体12、およびケース13からなる。
2波長レーザダイオード23から出射した光線は、本発明の複数波長合成素子1aに入射する。この時、波長650nmのレーザ光線は、複数波長合成素子1aに入射したときの常光線と同じ偏波面となるようにする。波長780nmのレーザ光線は、複数波長合成素子1aに入射したときの異常光線と同じ偏波面となるようにする。この時、2波長LD23から発光出射される2つのレーザ光線の間隔、即ち、LD23の発光点の間隔は、式(1)のSで与えられる。
このように構成することにより、2波長LD23から出射した波長650nmと波長780nmの光は、複数波長合成素子1aにより1つの光線に合成される。
【0010】
(実施の形態5)
図6は、本発明により2波長レーザダイオードと本発明の複数波長合成素子とを一体化した新奇なレーザ光源装置の第2の実施例を示す、2波長の光路を含む断面図である。図6の光源装置400aは、図5の2波長LD23を2波長LD23aで置き換えた点を除けば、図5の光源装置400と同じである。
図6の光源装置400aでは、2波長LD23aから出射される2つの光線L1およびL2を複数波長合成素子1a内で異常光線とし、これらの異常光線を複数波長合成素子1aの出射面で重なり合わせて1つの合成波Lにする。このため、発振波長650nmおよび780nmの2波長LD23aは、平行な各波長のレーザ光線L1およびL2を、複数波長合成素子1aにそれぞれ入射したときの異常光線と同じ偏波面となるように、出射する。さらに、この時、光線L1およびL2の間隔は、複数波長合成素子1aに入射した時の異常光線どおしが複数波長合成素子1aの出射面で一致するように調整する。
この場合、複数波長合成素子1aから出射する合成光線Lと波長650nmの光線L1との距離S1、および合成光線Lと波長780nmの光線L2との距離S2は、共に式(1)によって計算される。したがって、光線L1とL2との間隔、即ち2波長LD23aの出射点の間隔は、S1S2とすればよい。
【0011】
(実施の形態6)
図7は、図5又は6のレーザ光源装置400又は400aを用いて更に小型化した光ピックアップの要部を模式的に、ケースを透視して、表した平面図である。図7の光ピックアップ500は、図4の光ピックアップ300のLD2、LD3および複数波長合成素子1をレーザ光源装置400又は400aで置き換え、ケース10をケース10aと小型化した点を除けば、光ピックアップ300と同じである。
このように、本発明の実施の形態6によれば、複数波長の光線を1つに合成する機能を持った光源装置を使用することで、ピックアップをコンパクトにでき、且つコスト削減が可能である。
【0012】
(変形様態)
図8は、本発明の複数波長合成素子と波長の異なる光源を2つ用いた光ピックアップの他の実施例のケースを透視した平面図である。図8の光ピックアップ300aは、複数波長合成素子1を光源1および2とハーフミラー5との間ではなくハーフミラー5と受光素子8との間に配置した点を除けば、図4の光ピックアップ300と同じである。また、全体の寸法に応じてケースも10から10bに変更した。
このように、光源を並列に配置できることで光学系の幅方向寸法を小さくでき、且つ受光素子8が1つで済むため光軸調整などが簡単にできる。
図9は、本発明の複数波長合成素子と波長の異なる光線を発する光源を1つ用いた光ピックアップの他の実施例のケースを透視した平面図である。図8の光ピックアップ300bは、2つの光源2および3を波長の異なる光線を発する1つの光源23で置き換えた点を除けば、図8の光ピックアップ300aと同じである。
このように、2つの光源を1つにすることで、さらに部品数を減らすことができる。
以上の説明に於いて、「波長の異なる複数の光線を複数波長合成素子により単一光線に合成する」とは、「波長の異なる複数の光線を複数波長合成素子に入射させて、複数波長合成素子から同一の光路で出射させること」を意味する。したがって、合成という語を用いているが、複数の光源は必ずしも同時に発光する必要はない。複数の何れの光源から出射した光線も、複数波長合成素子から同一の光路で出射すれば、各光源が単独で発光する場合も「合成」の意味に含まれるものとする。
以上は、本発明の説明のために実施の形態の例を掲げたに過ぎない。したがって、本発明の技術思想または原理に沿って上述の実施の形態に種々の変更、修正または追加を行うことは、当業者には容易である。故に、本発明は、以上述べた実施の形態に捕らわれることなく、ただ特許請求の範囲の記載に従って解釈するべきである。
【0013】
【発明の効果】
以上のように本発明によれば、波長の異なる複数の平行な光線を1つの光線に合成する複数波長合成素子が得られる。この複数波長合成素子を用いることにより、複数波長の光を使用する光ピックアップを小型化することができる。
また、異なる波長の光源と本発明の複数波長合成素子とを組み合わせることにより複数波長の光を合成した単一光線を出射する光源装置を得ることができる。この光源装置を用いることにより、複数波長の光を使用する光ピックアップをさらに小型化することができる。
【図面の簡単な説明】
【図1】本発明の複数波長合成素子の斜視図である。
【図2】発光波長の異なる2つの光源から平行な方向に出射されるそれぞれの光線を図1の複数波長合成素子が1つに合成する光学系を示す図である。
【図3】発光波長の異なる3つの光源から平行な方向に出射されるそれぞれの光線を図1の複数波長合成素子が1つに合成する光学系を示す図である。
【図4】本発明の複数波長合成素子を用いた光ピックアップの一実施例の要部を模式的に表した図である。(a)は、ケースを透視した平面図であり、(b)は、(a)の下方の壁を取り去って描いた側面図である。
【図5】波長の異なるレーザ光を発光出射する2波長半導体レーザと本発明の複数波長合成素子1とを一体化した新奇なレーザ光源装置の一実施例を示す、2波長の光路を含む断面図である。
【図6】2波長レーザダイオードと本発明の複数波長合成素子とを一体化した新奇なレーザ光源装置の第2の実施例を示す、2波長の光路を含む断面図である。
【図7】図5又は6のレーザ光源装置400又は400aを用いて更に小型化した光ピックアップの要部を模式的に、ケースを透視して、表した平面図である。
【図8】本発明の複数波長合成素子と波長の異なる光源を2つ用いた光ピックアップの他の実施例のケースを透視した平面図である。
【図9】本発明の複数波長合成素子と波長の異なる光線を発する光源を用いた光ピックアップの他の実施例のケースを透視した平面図である。
【図10】異なる波長の光源を2つ使用する従来の光ピックアップの一般的な構成例を示す図である。
【符号の説明】
1、1a:本発明の複数波長合成素子
2〜4:レーザダイオード(LD)
5:ハーフミラー
6:立上げミラー
7:対物レンズ
8:光センサ
10:ピックアップのケース
11:電極端子
12:絶縁体
13:光源装置のケース
23、23a:2波長レーザダイオード
300、500:本発明による光ピックアップ
400:本発明によるレーザ光源装置[0001]
BACKGROUND OF THE INVENTION
The present invention generally relates to an optical element, and more particularly to an element for combining two light beams having different wavelengths into one light beam and an optical pickup using the element.
[0002]
[Prior art]
The optical pickup used in the optical disc apparatus is adapted to use different types of optical discs, so that a plurality of laser beams having different wavelengths can be used.
FIG. 10 shows a general configuration example of an optical pickup using two light sources having different wavelengths. In FIG. 10, 1 is an LD (laser diode) having a wavelength of 650 nm, 2 is an LD having a wavelength of 780 nm, and 3 is a dichroic prism that combines two wavelengths.
In the optical system configured to synthesize light of two wavelengths configured in this way, approximately 90% or more of the light of the LD 1 having a wavelength of 650 nm is transmitted through the dichroic prism 3. Further, almost 90% or more of the light of the LD2 having a wavelength of 780 nm is reflected by 90 ° by the dichroic prism 3 and enters the same optical path as the light transmitted from the LD1. It was common to synthesize two wavelengths by reflecting and transmitting each light in the same direction.
However, in such a conventional method, since the LD is arranged in two directions, it is difficult to make the optical pickup compact.
[0003]
[Problems to be solved by the invention]
The present invention has been made to solve the above problems, and an object of the present invention is to provide a multi-wavelength synthesizing element that synthesizes parallel light beams from a plurality of adjacent light sources.
It is another problem to provide a compact optical pickup using such a multi-wavelength synthesizing element.
In addition, in a light emitting source capable of emitting and emitting light of a plurality of wavelengths with a single semiconductor chip, by integrating a device having a function of combining light beams of a plurality of wavelengths into one light beam, with a package lid or a light emitting source, It is an object of the present invention to provide a light emitting source having a function of combining light beams of a plurality of wavelengths into one.
It is another object of the present invention to provide a more compact and low-cost optical pickup using the light emission source.
[0004]
[Means for Solving the Problems]
The above-described problems are achieved by the following method and optical system for making a plurality of laser beams having different wavelengths, an optical pickup , and an apparatus using the plurality of laser beams having different wavelengths using them.
The method according to claim 1 , wherein a plurality of laser beams having different wavelengths are converted into a single beam, and a plurality of light sources emitting a plurality of laser beams having different wavelengths are arranged so that the plurality of laser beams are parallel on the same plane. A multi-wavelength synthesizing element comprising a uniaxial crystal plate having an optical axis of 45 degrees with respect to the opposing surface, and the laser beam on the optical path of the laser beam so that the optical axis is parallel to the same plane. And a step of setting the polarization plane of the laser beam to be an extraordinary ray with respect to the multiple wavelength combining element, and the laser beam incident on the multiple wavelength combining element is the multiple wavelength. Adjusting the intervals of the plurality of light sources so that the light is emitted from the combining element through the same optical path.
An optical system for converting a plurality of laser beams having different wavelengths into a single beam according to claim 2 , and a surface facing a plurality of light sources arranged so as to emit a plurality of laser beams having different wavelengths in parallel in the same plane A multi-wavelength combining element that is formed of a uniaxial crystal plate having an optical axis of 45 degrees with respect to the laser beam and is disposed at right angles to the laser beam on the optical path of the laser beam so that the optical axis is parallel to the same plane. The laser beam is set such that the plane of polarization of the laser beam is an extraordinary beam with respect to the plurality of wavelength combining elements, and the interval between the plurality of light sources is incident on the plurality of wavelength combining elements. Is adjusted so as to be emitted from the multi-wavelength combining element in the same optical path.
According to a third aspect of the present invention, in the optical system according to the second aspect , the plurality of light sources are multi-wavelength laser diodes that independently emit the plurality of laser beams.
According to a fourth aspect of the present invention, there is provided an optical pickup comprising the optical system according to the second or third aspect.
According to a fifth aspect of the present invention, there is provided an apparatus using a plurality of laser beams having different wavelengths, comprising the optical system according to the second or third aspect.
According to a sixth aspect of the present invention, there are provided a step of disposing three or more light sources emitting three or more laser beams having different wavelengths so that the three or more laser beams are parallel on the same plane, A step of arranging a multi-wavelength synthesizing element composed of a uniaxial crystal plate having an optical axis of a predetermined degree on the optical path of the laser beam so that the optical axis is parallel to the same plane; A step of setting a polarization plane of the light beam to be an ordinary ray or an extraordinary ray with respect to the multi-wavelength synthesis element; and the laser beam incident on the multi-wavelength synthesis element is emitted from the multi-wavelength synthesis element in the same optical path Adjusting the interval between the three or more light sources.
The invention according to claim 7 is the step of arranging two light sources emitting two laser beams having different wavelengths so that the two laser beams are parallel on the same plane, and an optical device having an angle ψ with respect to the opposing surface. Disposing a multi-wavelength combining element comprising a uniaxial crystal plate having an axis on the optical path of the laser beam at right angles to the laser beam so that the optical axis is parallel to the same plane; A step of setting the wavefront to be an extraordinary ray with respect to the plurality of wavelength combining elements, and the laser beam incident on the plurality of wavelength combining elements to be emitted from the plurality of wavelength combining elements in the same optical path, The reciprocal of the ordinary ray refractive index no of the plate is a, the reciprocal of the extraordinary ray refractive index ne is b, the plate thickness is e, and the relationship between a, b, and ψ is c = a 2 × sin 2 ψ + b 2 × and cos 2 [psi, the plate The inter-optical-beam distance of the two laser beams incident on the major surface upon the S,
S = (b 2 −a 2 / (2c 2 )) × sin (2ψ) × e
The two laser beams of different wavelengths, which comprises the step of adjusting the spacing of the two light sources so as to satisfy a method for a single beam.
The invention of claim 8 comprises two light sources arranged so as to emit two laser beams having different wavelengths in parallel in the same plane, and a uniaxial crystal plate having an optical axis at an angle ψ with respect to the opposing surface. And a plurality of wavelength combining elements arranged at right angles to the laser beam on the optical path of the laser beam so that the optical axis is parallel to the same plane, and the plane of polarization of the laser beam is the multiple wavelength combining element Both are set to be extraordinary rays, and the interval between the two light sources is such that the laser beam incident on the multiple wavelength combining device is emitted from the multiple wavelength combining device in the same optical path. The inverse of the ordinary ray refractive index no of the plate is a, the inverse of the extraordinary ray refractive index ne is b, the thickness of the plate is e, and the relationship between a, b, and ψ is c = a 2 × sin 2 ψ + b and 2 × cos 2 ψ, enter the main surface of the plate The inter-optical-beam distance of the two laser beams upon the S to,
An optical system for converting two laser beams having different wavelengths into a single light beam, which is adjusted to satisfy S = (b 2 −a 2 / (2c 2 )) × sin (2ψ) × e. is there.
The invention of claim 9 is characterized in that the two light sources are multi-wavelength laser diodes emitting the two laser beams independently.
A tenth aspect of the present invention is an optical pickup comprising the optical system according to the eighth or ninth aspect.
An eleventh aspect of the invention is an apparatus using a plurality of laser beams having different wavelengths, comprising the optical system according to the eighth or ninth aspect.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to embodiments of the present invention and the accompanying drawings. In addition, when showing the same element in several drawing, the same referential mark is attached | subjected. Since the dimensions of each part depicted in the drawings may be partially enlarged or reduced for easy understanding, the scale is not necessarily constant between the dimensions.
(Embodiment 1) FIG. 1 is a perspective view of a multi-wavelength synthesizing element of the present invention. In FIG. 1, a multi-wavelength synthesizing element 1 according to the present invention is made of a uniaxial crystal material having birefringence and an angle at which the optical axis Ao is 45 ° with the surface (this is the same cutting angle as a device generally called a Savart plate). )). The arrangement of the plurality of light beams (for example, L1 and L2) to be combined with the optical axis Ao of the multiple wavelength combining element 1 is such that the plane including the plurality of light beams L1 and L2 and the optical axis Ao are parallel. . FIG. 2 is a diagram showing an optical system in which light beams emitted in parallel directions from two light sources having different emission wavelengths are combined into one by the multiple wavelength combining element 1 of the present invention shown in FIG. FIG. 2 is a view of the multiple wavelength combining element 1 of FIG. In the optical system 100 of FIG. 2, 2 is an LD (laser diode) that emits a laser beam L1 having a wavelength of 650 nm, and 3 is an LD that is arranged in parallel with the LD2 and emits a laser beam L2 having a wavelength of 780 nm that is parallel to the light beam L1. The interval between the light beams L1 and L2 is S. Light rays L1 and L2 respectively emitted from the laser light sources LD2 and 3 are perpendicularly incident on the multiple wavelength combining element 1. At this time, the light beam L1 emitted from the LD2 has the same polarization plane as the ordinary light beam L1o when entering the multi-wavelength combining element 1. The light beam L2 emitted from the LD 3 has the same polarization plane as that of the extraordinary light beam L2e when entering the multi-wavelength combining element 1. That is, the vibration direction of the magnetic vector of the light beam L 2 is parallel to the main section (XY plane) (indicated by vertical arrows), the point in which the composed (in perpendicular to the vibration direction main section of the magnetic vector of the light beam L 1 As shown by a small circle having a), adjustment is performed while rotating LD1 and LD2 around the output optical axis.
[0006]
In the synthesis of two wavelengths by the multi-wavelength synthesizing element 1 shown in FIGS. 1 and 2, the following equation is established.
S = (b 2 −a 2 / 2C 2 ) sin 2ψ · e (1)
Where S: distance between light beams ψ: angle between optical axis and substrate normal e: substrate thickness a = 1 / ne ne: extraordinary ray refractive index b = 1 / no no: ordinary ray refractive index c = a 2 sin 2 ψ 10 b 2 cos 2 ψ
Here, when the multi-wavelength synthesis element 1 is configured using LN (lithium niobate) as a material, the ordinary ray refractive index no with respect to LN of light having a wavelength of 650 nm is 2.282, and an extraordinary ray with respect to LN of light having a wavelength of 780 nm. The refractive index ne is 2.178. Assuming that the thickness e of the multi-wavelength combining element 1 is e = 2.15 mm, the distance S between L1 and L2 is 0.10 mm from the equation (1). Therefore, LD2 and LD3 may be arranged at an interval such that the interval S between the light beams L1 and L2 is 0.10 mm.
As a material for the multi-wavelength synthesizing element 1, calcite and rutile (goldenite) can be used in addition to LN.
Thus, in the present invention, light of a plurality of wavelengths is synthesized using the wavelength dependence of the refractive index. Incidentally, the refractive index with respect to LN of the wavelength used with an optical disk is as follows.
Figure 0003787835
[0007]
(Embodiment 2)
FIG. 3 is a diagram showing an optical system in which the light beams emitted in the parallel direction from three light sources having different emission wavelengths are combined into one by the multiple wavelength combining element of the present invention. In the optical system 200 of FIG. 3, 1 is the above-described multi-wavelength synthesizing element of the present invention, 2 is the LD having the wavelength of 650 nm, 3 is the LD having the wavelength of 780 nm, and 4 is the LD having the wavelength of 410 nm. That is, the optical system 200 of FIG. 3 is obtained by adding an LD 4 having a wavelength of 410 nm to the optical system 100 of FIG. Elements 1 to 3 of the optical system 200 and their arrangement are the same as those of the optical system 100.
LD4 is arranged in parallel with LD1 and LD2, and emits a light ray L3 that is coplanar with and parallel to light rays L1 and L2 at a wavelength of 410 nm. The light beam L3 emitted from the LD 4 also enters the multiple wavelength combining element 1 perpendicularly. Also at this time, as described above, the light beam L3 emitted from the LD4 is adjusted by rotating the LD4 about the outgoing optical axis so that it has the same polarization plane as that of the extraordinary light beam L3e when entering the multiple wavelength combining element 1. .
Also in this case, since the formula (1) is established, the extraordinary refractive index at the wavelength of 410 nm with respect to LN is 2.319, and the distance S1 + S2 between the light beams L1 and L3 is calculated as 0.11 nm from the formula (1). it can. If S1 = S, then S2 = 0.110.10 nm. Therefore, LD3 should just be arrange | positioned so that the space | interval S2 of the light rays L2 and L3 may be set to 0.01 nm.
[0008]
(Embodiment 3)
FIG. 4 is a diagram schematically showing a main part of an embodiment of the optical pickup 300 using the multiple wavelength combining element 1 of the present invention. 4A is a plan view of the optical pickup 300 seen through the top surface of the case 10, and FIG. 4B is a side view of the optical pickup 300 with the lower wall removed. In FIG. 4, elements 1 to 3 are the optical system 100 itself of FIG. 1. Except this point, the optical pickup 300 includes a half mirror 5 disposed on the optical path of the outgoing light L from the multiple wavelength combining element 1, a rising mirror 6 disposed on the optical path of the light transmitted through the half mirror 5, Light for detecting return light reflected on the optical disk 90, the rising mirror 6 and the half mirror 5 through the objective lens 7 and the objective lens 7 which are arranged on the optical path of the reflected light by the rising mirror 6 and attached to the case 10. A detector 8 and a case 10 are provided, which is the same as a normal optical pickup.
In operation, parallel light beams respectively emitted from the LD 2 having a wavelength of 650 nm and the LD 3 having a wavelength of 780 nm are combined into one light beam L in the multi-wavelength combining element 1 as described in the first embodiment. Thereafter, the light beam L is detected by the photodetector 8 through a known optical action in each element.
Since the light sources LD2 and LD3 can be arranged in parallel, the size in the width direction of the optical system can be reduced, so that the optical pickup can be made compact. Instead of using the two light sources 2 and 3, one light source that emits light beams having different wavelengths may be used.
[0009]
(Embodiment 4)
FIG. 5 shows an embodiment of a novel laser light source device in which a two-wavelength semiconductor laser capable of emitting and emitting laser beams having wavelengths of 650 nm and 780 nm with one semiconductor chip and the multiple wavelength combining element 1 of the present invention are integrated. It is sectional drawing containing the optical path of 2 wavelengths. In FIG. 5, a light source device 400 according to the present invention includes a two-wavelength LD 23 that emits light having a wavelength of 650 nm and a wavelength of 780 nm with one chip, and a plurality of wavelength combining elements 1a, 2 that combine two wavelengths using birefringence according to the present invention. It comprises an electrode terminal 11 connected to an electrode (not shown) of wavelength LD 23, an insulator 12 for attaching and fixing the multi-wavelength synthesis element 1 a and the electrode terminal 11, and a case 13.
The light beam emitted from the two-wavelength laser diode 23 is incident on the multiple-wavelength combining element 1a of the present invention. At this time, the laser beam having a wavelength of 650 nm has the same polarization plane as that of the ordinary beam when entering the multi-wavelength combining element 1a. The laser beam having a wavelength of 780 nm is set to have the same polarization plane as the extraordinary beam when entering the multi-wavelength combining element 1a. At this time, the interval between the two laser beams emitted and emitted from the two-wavelength LD 23, that is, the interval between the emission points of the LD 23 is given by S in Expression (1).
With this configuration, light having a wavelength of 650 nm and a wavelength of 780 nm emitted from the two-wavelength LD 23 is combined into one light beam by the multiple wavelength combining element 1a.
[0010]
(Embodiment 5)
FIG. 6 is a cross-sectional view including a two-wavelength optical path showing a second embodiment of a novel laser light source apparatus in which a two-wavelength laser diode and a multi-wavelength combining element of the present invention are integrated according to the present invention. The light source device 400a of FIG. 6 is the same as the light source device 400 of FIG. 5 except that the two-wavelength LD 23 of FIG. 5 is replaced with the two-wavelength LD 23a.
In the light source device 400a of FIG. 6, the two light beams L1 and L2 emitted from the two-wavelength LD 23a are made extraordinary rays in the multiple-wavelength synthesizing device 1a, and these extraordinary rays are overlapped on the emission surface of the multi-wavelength synthesizing device 1a. One synthetic wave L is used. For this reason, the two-wavelength LDs 23a having the oscillation wavelengths of 650 nm and 780 nm emit the parallel laser beams L1 and L2 so as to have the same polarization plane as the extraordinary beam when entering the multi-wavelength combining element 1a, respectively. . Further, at this time, the distance between the light beams L1 and L2 is adjusted so that the extraordinary light beams when they enter the multi-wavelength synthesizing element 1a coincide with each other on the exit surface of the multi-wavelength synthesizing element 1a.
In this case, the distance S1 between the combined light L emitted from the multi-wavelength combining element 1a and the light beam L1 having a wavelength of 650 nm, and the distance S2 between the combined light beam L and the light beam L2 having a wavelength of 780 nm are both calculated by the equation (1). . Therefore, the distance between the light beams L1 and L2, that is, the distance between the emission points of the two-wavelength LD 23a may be S1S2.
[0011]
(Embodiment 6)
FIG. 7 is a plan view schematically showing the main part of an optical pickup further miniaturized using the laser light source device 400 or 400a of FIG. 5 or 6, seeing through the case. The optical pickup 500 in FIG. 7 is the same as the optical pickup 300 except that the LD 2 and LD 3 and the multiple wavelength combining element 1 of the optical pickup 300 in FIG. 4 are replaced with the laser light source device 400 or 400a and the case 10 is downsized with the case 10a. 300 is the same.
As described above, according to the sixth embodiment of the present invention, the pickup can be made compact and the cost can be reduced by using the light source device having the function of combining the light beams having a plurality of wavelengths into one. .
[0012]
(Deformation mode)
FIG. 8 is a plan view seen through a case of another embodiment of an optical pickup using two light sources having different wavelengths from the multi-wavelength synthesis element of the present invention. The optical pickup 300a of FIG. 8 is the optical pickup of FIG. 4 except that the multi-wavelength combining element 1 is arranged between the half mirror 5 and the light receiving element 8 instead of between the light sources 1 and 2 and the half mirror 5. 300 is the same. Also, the case was changed from 10 to 10b according to the overall dimensions.
As described above, since the light sources can be arranged in parallel, the dimension in the width direction of the optical system can be reduced, and since only one light receiving element 8 is required, the optical axis can be easily adjusted.
FIG. 9 is a plan view seen through a case of another embodiment of an optical pickup using one light source that emits light beams having different wavelengths from the multiple wavelength combining element of the present invention. The optical pickup 300b in FIG. 8 is the same as the optical pickup 300a in FIG. 8 except that the two light sources 2 and 3 are replaced with one light source 23 that emits light beams having different wavelengths.
Thus, the number of parts can be further reduced by using two light sources.
In the above description, “combining a plurality of light beams having different wavelengths into a single light beam by a plurality of wavelength combining elements” means “combining a plurality of light beams having different wavelengths into a plurality of wavelength combining elements to combine multiple wavelengths. This means that the light is emitted from the element in the same optical path. Therefore, although the word “synthetic” is used, a plurality of light sources do not necessarily have to emit light simultaneously. The light emitted from any of the plurality of light sources is included in the meaning of “combining” even when each light source emits light alone if it is emitted from the multiple wavelength combining element through the same optical path.
The above is merely an example of an embodiment for explaining the present invention. Accordingly, it is easy for those skilled in the art to make various changes, modifications, or additions to the above-described embodiments in accordance with the technical idea or principle of the present invention. Therefore, the present invention should not be construed as the embodiments described above, but should be construed according to the description of the claims.
[0013]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a multiple wavelength combining element that combines a plurality of parallel light beams having different wavelengths into one light beam. By using this multi-wavelength synthesizing element, an optical pickup using light of a plurality of wavelengths can be reduced in size.
Moreover, the light source device which radiate | emits the single light which synthesize | combined the light of multiple wavelengths can be obtained by combining the light source of a different wavelength and the multiple wavelength synthetic | combination element of this invention. By using this light source device, an optical pickup that uses light of a plurality of wavelengths can be further downsized.
[Brief description of the drawings]
FIG. 1 is a perspective view of a multiple wavelength combining device of the present invention.
FIG. 2 is a diagram showing an optical system in which light beams emitted in parallel directions from two light sources having different emission wavelengths are combined into one by the multiple wavelength combining element in FIG. 1;
3 is a diagram illustrating an optical system in which light beams emitted in parallel directions from three light sources having different emission wavelengths are combined into one by the multiple wavelength combining element in FIG. 1;
FIG. 4 is a diagram schematically showing a main part of an embodiment of an optical pickup using the multiple wavelength combining element of the present invention. (A) is the top view which saw through the case, (b) is the side view drawn by removing the lower wall of (a).
FIG. 5 is a cross-sectional view including a two-wavelength optical path showing an embodiment of a novel laser light source device in which a two-wavelength semiconductor laser that emits and emits laser beams having different wavelengths and a multi-wavelength combining element 1 of the present invention are integrated. FIG.
FIG. 6 is a cross-sectional view including a two-wavelength optical path showing a second embodiment of a novel laser light source device in which a two-wavelength laser diode and a multi-wavelength combining element of the present invention are integrated.
7 is a plan view schematically showing a main part of an optical pickup further miniaturized by using the laser light source device 400 or 400a of FIG. 5 or 6, seeing through a case. FIG.
FIG. 8 is a plan view seen through a case of another embodiment of an optical pickup using two or more light sources having different wavelengths and a multi-wavelength synthesizing element of the present invention.
FIG. 9 is a plan view seen through a case of another embodiment of an optical pickup using a light source that emits light beams having different wavelengths from the multi-wavelength synthesis element of the present invention.
FIG. 10 is a diagram illustrating a general configuration example of a conventional optical pickup that uses two light sources having different wavelengths.
[Explanation of symbols]
1, 1a: Multiple wavelength combining element 2-4 of the present invention: Laser diode (LD)
5: Half mirror 6: Rising mirror 7: Objective lens 8: Optical sensor 10: Pickup case 11: Electrode terminal 12: Insulator 13: Light source device case 23, 23a: Two-wavelength laser diode 300, 500: Present invention Optical pickup 400 according to the invention: laser light source device according to the invention

Claims (11)

波長の異なる複数のレーザ光線を発する複数の光源を、前記複数のレーザ光線が同一平面上で平行となるように配置するステップと、
対向する面に対し45度の光学軸を有する一軸結晶の板からなる複数波長合成素子を前記光学軸が前記同一平面と平行になるように前記レーザ光線の光路上に前記レーザ光線と直角に配置するステップと、
前記レーザ光線の偏波面が前記複数波長合成素子に対して共に異常光線となるように設定するステップと、
前記複数波長合成素子に入射した前記レーザ光線が前記複数波長合成素子から同一の光路で出射するように前記複数の光源の間隔を調節するステップとを含むことを特徴とする波長の異なる複数のレーザ光線を単一光線にする方法。
Arranging a plurality of light sources emitting a plurality of laser beams having different wavelengths such that the plurality of laser beams are parallel on the same plane;
A multi-wavelength synthesizing element composed of a uniaxial crystal plate having an optical axis of 45 degrees with respect to the opposing surface is arranged on the optical path of the laser beam at right angles to the laser beam so that the optical axis is parallel to the same plane. And steps to
Setting the polarization plane of the laser beam to be an extraordinary beam with respect to the multiple wavelength combining element;
Adjusting the intervals of the plurality of light sources so that the laser beams incident on the plurality of wavelength combining elements are emitted from the plurality of wavelength combining elements in the same optical path. How to make a single ray.
波長の異なる複数のレーザ光線を同一平面内で平行に発するように配置された複数の光源と、
対向する面に対し45度の光学軸を有する一軸結晶の板からなり且つ前記光学軸が前記同一平面と平行になるように前記レーザ光線の光路上に前記レーザ光線と直角に配置された複数波長合成素子とを備え、
前記レーザ光線の偏波面が前記複数波長合成素子に対して共に異常光線となるように設定されており、且つ前記複数の光源の間隔が、前記複数波長合成素子に入射した前記レーザ光線が前記複数波長合成素子から同一の光路で出射するように調節されたことを特徴とする波長の異なる複数のレーザ光線を単一光線にする光学系。
A plurality of light sources arranged to emit a plurality of laser beams having different wavelengths in parallel in the same plane;
A plurality of wavelengths made of a uniaxial crystal plate having an optical axis of 45 degrees with respect to the opposing surface, and arranged at right angles to the laser beam on the optical path of the laser beam so that the optical axis is parallel to the same plane A composite element,
The plane of polarization of the laser beam is set to be an extraordinary ray with respect to the plurality of wavelength combining elements, and the intervals between the plurality of light sources are the plurality of laser beams incident on the plurality of wavelength combining elements. An optical system for converting a plurality of laser beams having different wavelengths into a single beam, which is adjusted so as to be emitted from the wavelength synthesis element in the same optical path.
前記複数の光源が、前記複数のレーザ光線を単独で発する多波長レーザダイオードであることを特徴とする請求項記載の光学系。 3. The optical system according to claim 2 , wherein the plurality of light sources are multi-wavelength laser diodes that independently emit the plurality of laser beams. 請求項又は記載の光学系を備えたことを特徴とする光ピックアップ。An optical pickup that comprising the claims 2 or 3 optical system according. 請求項又は記載の光学系を備えたことを特徴とする波長の異なる複数のレーザ光線を用いる装置。A plurality of devices using laser beams of different wavelengths, comprising the claims 2 or 3 optical system according. 波長の異なる3以上のレーザ光線を発する3以上の光源を、前記3以上のレーザ光線が同一平面上で平行となるように配置するステップと、
対向する面に対し45度の光学軸を有する一軸結晶の板からなる複数波長合成素子を前記光学軸が前記同一平面と平行になるように前記レーザ光線の光路上に前記レーザ光線と直角に配置するステップと、
前記レーザ光線の偏波面が前記複数波長合成素子に対して常光線または異常光線となるように設定するステップと、
前記複数波長合成素子に入射した前記レーザ光線が前記複数波長合成素子から同一の光路で出射するように前記3以上の光源の間隔を調節するステップとを含むことを特徴とする波長の異なる3以上のレーザ光線を単一光線にする方法。
Disposing three or more light sources emitting three or more laser beams having different wavelengths so that the three or more laser beams are parallel on the same plane;
A multi-wavelength synthesizing element composed of a uniaxial crystal plate having an optical axis of 45 degrees with respect to the opposing surface is arranged on the optical path of the laser beam at right angles to the laser beam so that the optical axis is parallel to the same plane. And steps to
Setting the polarization plane of the laser beam to be an ordinary ray or an extraordinary ray with respect to the multiple wavelength combining element;
Adjusting the intervals of the three or more light sources so that the laser beams incident on the multiple wavelength combining element are emitted from the multiple wavelength combining element through the same optical path. To make a single laser beam.
波長の異なる2つのレーザ光線を発する2つの光源を、前記2つのレーザ光線が同一平面上で平行となるように配置するステップと、
対向する面に対し角度ψの光学軸を有する一軸結晶の板からなる複数波長合成素子を前記光学軸が前記同一平面と平行になるように前記レーザ光線の光路上に前記レーザ光線と直角に配置するステップと、
前記レーザ光線の偏波面が前記複数波長合成素子に対して共に異常光線となるように設定するステップと、
前記複数波長合成素子に入射した前記レーザ光線が前記複数波長合成素子から同一の光路で出射するために、
前記板の常光線屈折率noの逆数をa、異常光線屈折率neの逆数をb、前記板厚をe、前記a、b、ψとの関係をc=a2×sin2ψ十b2×cos2ψとし、
前記板の主面に入射する2つのレーザ光線の光線間距離をSとした際に、
S=(b2−a2/(2c2))×sin(2ψ)×e
を満足するように前記2つの光源の間隔を調節するステップとを含むことを特徴とする波長の異なる2つのレーザ光線を単一光線にする方法。
Disposing two light sources emitting two laser beams having different wavelengths so that the two laser beams are parallel on the same plane;
A multi-wavelength synthesizing element composed of a uniaxial crystal plate having an optical axis at an angle ψ with respect to the opposing surface is disposed on the optical path of the laser beam at right angles to the laser beam so that the optical axis is parallel to the same plane. And steps to
Setting the polarization plane of the laser beam to be an extraordinary beam with respect to the multiple wavelength combining element;
In order for the laser beam incident on the multiple wavelength combining element to exit from the multiple wavelength combining element in the same optical path,
The reciprocal of the ordinary ray refractive index no of the plate is a, the reciprocal of the extraordinary ray refractive index ne is b, the plate thickness is e, and the relationship between the a, b, and ψ is c = a 2 × sin 2 ψ + b 2 X cos 2 ψ
When the distance between the two laser beams incident on the main surface of the plate is S,
S = (b 2 −a 2 / (2c 2 )) × sin (2ψ) × e
Adjusting the distance between the two light sources so as to satisfy the following: a method of making two laser beams having different wavelengths into a single beam.
波長の異なる2つのレーザ光線を同一平面内で平行に発するように配置された2つの光源と、
対向する面に対し角度ψの光学軸を有する一軸結晶の板からなり且つ前記光学軸が前記同一平面と平行になるように前記レーザ光線の光路上に前記レーザ光線と直角に配置された複数波長合成素子とを備え、
前記レーザ光線の偏波面が前記複数波長合成素子に対して共に異常光線となるように設定されており、且つ前記2つの光源の間隔が、前記複数波長合成素子に入射した前記レーザ光線が前記複数波長合成素子から同一の光路で出射するために、
前記板の常光線屈折率noの逆数をa、異常光線屈折率neの逆数をb、前記板厚をe、前記a、b、ψとの関係をc=a2×sin2ψ十b2×cos2ψとし、
前記板の主面に入射する2つのレーザ光線の光線間距離をSとした際に、
S=(b2−a2/(2c2))×sin(2ψ)×e
を満足するように調節されたことを特徴とする波長の異なる2つのレーザ光線を単一光線にする光学系。
Two light sources arranged to emit two laser beams having different wavelengths in parallel in the same plane;
A plurality of wavelengths made of a uniaxial crystal plate having an optical axis at an angle ψ with respect to the opposing surface, and arranged at right angles to the laser beam on the optical path of the laser beam so that the optical axis is parallel to the same plane A composite element,
The plane of polarization of the laser beam is set to be an extraordinary ray with respect to the plurality of wavelength combining elements, and the interval between the two light sources is the plurality of laser beams incident on the plurality of wavelength combining elements. In order to emit from the wavelength synthesis element in the same optical path,
The reciprocal of the ordinary ray refractive index no of the plate is a, the reciprocal of the extraordinary ray refractive index ne is b, the plate thickness is e, and the relationship between the a, b, and ψ is c = a 2 × sin 2 ψ + b 2 X cos 2 ψ
When the distance between the two laser beams incident on the main surface of the plate is S,
S = (b 2 −a 2 / (2c 2 )) × sin (2ψ) × e
An optical system for making two laser beams having different wavelengths into a single beam, adjusted so as to satisfy
前記2つの光源が、前記2つのレーザ光線を単独で発する多波長レーザダイオードであることを特徴とする請求項記載の光学系。9. The optical system according to claim 8 , wherein the two light sources are multi-wavelength laser diodes that independently emit the two laser beams. 請求項又は記載の光学系を備えたことを特徴とする光ピックアップ。An optical pickup that comprising the claims 8 or 9 optical system according. 請求項又は記載の光学系を備えたことを特徴とする波長の異なる2つのレーザ光線を用いる装置。Apparatus using two laser beams having different wavelengths, comprising the claims 8 or 9 optical system according.
JP2000092537A 2000-03-29 2000-03-29 Multiple wavelength synthesizer Expired - Fee Related JP3787835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000092537A JP3787835B2 (en) 2000-03-29 2000-03-29 Multiple wavelength synthesizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000092537A JP3787835B2 (en) 2000-03-29 2000-03-29 Multiple wavelength synthesizer

Publications (3)

Publication Number Publication Date
JP2001283457A JP2001283457A (en) 2001-10-12
JP2001283457A5 JP2001283457A5 (en) 2005-02-24
JP3787835B2 true JP3787835B2 (en) 2006-06-21

Family

ID=18607855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000092537A Expired - Fee Related JP3787835B2 (en) 2000-03-29 2000-03-29 Multiple wavelength synthesizer

Country Status (1)

Country Link
JP (1) JP3787835B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294279A (en) * 2002-03-20 2005-10-20 Matsushita Electric Ind Co Ltd Multiple wavelength laser light source, optical head unit and optical information processor employing it
US7420894B2 (en) * 2004-08-30 2008-09-02 Sanyo Electric Co., Ltd. Optical pickup device
WO2006038535A1 (en) * 2004-10-01 2006-04-13 Nalux Co., Ltd. Diffraction grating and optical system including the diffraction grating
JP4318622B2 (en) * 2004-10-19 2009-08-26 三洋電機株式会社 Optical pickup device

Also Published As

Publication number Publication date
JP2001283457A (en) 2001-10-12

Similar Documents

Publication Publication Date Title
KR100984202B1 (en) Optical transceiver module
US6314117B1 (en) Laser diode package
US20190020178A1 (en) Laser apparatus
JP5655902B1 (en) Manufacturing method of optical assembly
US6137820A (en) Optically pumped laser
US7245643B2 (en) Semiconductor laser module and method of manufacturing the same
JP2019175974A (en) Light source device
US6501782B1 (en) Compact laser apparatus
JP2002228412A (en) Light receiving and emitting composite unit and displacement detection apparatus using it
JP7323774B2 (en) Light source device and external cavity laser module
JPH05121838A (en) Semiconductor laser chip carrier and polarized wave synthesis system
JP2002252420A (en) Semiconductor laser device, semiconductor laser module and its manufacturing method, and optical fiber amplifier
JP3787835B2 (en) Multiple wavelength synthesizer
JPH0763943A (en) Multiplexer
JP2004022679A (en) Semiconductor laser module
WO2018179860A1 (en) Laser module and image projection device
JP2000012957A (en) Multi-wavelength semiconductor laser module
JP2002189148A (en) Optical semiconductor element module
JP2956152B2 (en) Laser light source
JP6460082B2 (en) Manufacturing method of optical assembly and optical assembly
JP2003315633A (en) Semiconductor laser module
JP2001283457A5 (en)
JP6112091B2 (en) Manufacturing method of optical assembly and optical assembly
JP3100481B2 (en) Optical passive module
JP7124465B2 (en) Mirror drive mechanism and optical module

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060319

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees