JP3786626B2 - Mold making method - Google Patents

Mold making method Download PDF

Info

Publication number
JP3786626B2
JP3786626B2 JP2002174886A JP2002174886A JP3786626B2 JP 3786626 B2 JP3786626 B2 JP 3786626B2 JP 2002174886 A JP2002174886 A JP 2002174886A JP 2002174886 A JP2002174886 A JP 2002174886A JP 3786626 B2 JP3786626 B2 JP 3786626B2
Authority
JP
Japan
Prior art keywords
mold
sand
model
carboxylic acid
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002174886A
Other languages
Japanese (ja)
Other versions
JP2004017085A (en
Inventor
善久 海川
吾郎 柿沼
寛往 鳥居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Yukizai Corp
Original Assignee
Asahi Organic Chemicals Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Organic Chemicals Industry Co Ltd filed Critical Asahi Organic Chemicals Industry Co Ltd
Priority to JP2002174886A priority Critical patent/JP3786626B2/en
Publication of JP2004017085A publication Critical patent/JP2004017085A/en
Application granted granted Critical
Publication of JP3786626B2 publication Critical patent/JP3786626B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋳物砂とフェノールウレタン系粘結剤とを混練して得られる常温自硬性混練砂と発泡ポリスチレン製の模型もしくは成形型とを用いて鋳型(主型または中子)を造型する方法に関する。
【0002】
【従来の技術】
有機鋳型の中でも非量産型の鋳型(主型)を造型する方法として、例えば木製、樹脂製型等の模型を設置した鋳枠内に常温自硬性の混練砂を充填し、これを常温に放置して硬化させた後、該模型を抜型して空間部を形成する鋳型の造型法が知られている。しかし、前記模型の製作には、一般に加工(抜き勾配や表面仕上げ)が必要であることから多くの費用および時間が費やされていた。また、大物の鋳型の場合、鋳型からの模型の抜型作業には大きな労力を要していた。このような問題を解消する鋳型の造型法として、例えば、特開平3−52742号公報において、耐火性骨材に酸硬化性樹脂、酸性硬化剤、並びに合成樹脂発泡体製の模型を溶解もしくは収縮させる特定の有機溶剤を添加混練した鋳砂に、前記模型を埋設し、鋳型成形後該模型を抜型する鋳型の製造方法が提案されている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記の鋳型造型法によれば、合成樹脂発泡体製の模型は使用する溶剤の作用により溶解もしくは収縮するため、前記模型の抜型作業は従来に比べて改善される筈であるが、実際には合成樹脂発泡体表面が溶剤によって侵食されてそこに混練砂が付着して模型の抜型作業性が意図するほど改善されずまた得られる鋳型の表面は平滑性に欠けること、溶剤の添加装置が特別に必要であること、作業環境が芳香族炭化水素等の溶剤により汚染される虞があることなどの問題がある。また、当該技術分野では、一般に大物鋳型の造型が主に行われているため、造型現場での模型の抜型作業性についてより一層の改善が求められている。また、資源リサイクルの観点から使用済み模型の再利用に関心が高まっている。
【0004】
上記の事情に鑑み、本発明の目的は、第1に発泡ポリスチレン製の模型への混練砂の付着を防止して抜型作業性の改善を図るとともに、表面平滑性に優れた鋳型を提供すること、第2に大物鋳型を造型する際に型変形や寸法精度の悪化がないこと、第3に新たな溶剤添加装置を設けなくても既存の混練装置が使用できること、第4に有機溶剤による造型および鋳造現場の環境汚染を抑制できること、第5に使用済み模型の再利用を可能とした鋳型(主型)の造型法を提供することにある。また、本発明の他の目的は、木型や樹脂型の代替として前記発泡ポリスチレン製の成形型を用いる鋳型(中子)の造型法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、鋭意研究を行った結果、発泡ポリスチレン製模型もしくは成形型と、フェノール樹脂、ポリイソシアネート化合物及び脂肪族カルボン酸エステルを主成分とする有機溶剤から構成されるフェノールウレタン系粘結剤とを組み合わせて使用することにより、上記目的を達成できることを見出し、本発明を完成するに至った。
【0006】
すなわち、本発明は、鋳物砂とフェノール樹脂、ポリイソシアネート化合物、脂肪族カルボン酸エステルを主成分とする有機溶剤及び必要に応じて硬化促進剤、硬化遅延剤その他の添加物を混練して得られる常温自硬性混練砂中に発泡ポリスチレン製の模型を埋設して鋳型を成形後、前記模型を抜型する鋳型の造型法にある。
【0007】
他の本発明は、発泡ポリスチレン製の成形型内に鋳物砂とフェノール樹脂、ポリイソシアネート化合物、脂肪族カルボン酸エステルを主成分とする有機溶剤及び必要に応じて硬化促進剤、硬化遅延剤その他の添加物を混練して得られる常温自硬性混練砂を充填して鋳型を成形後、該鋳型を前記成形型内から抜型する鋳型の造型法にある。
【0008】
【発明の実施の形態】
最初に鋳型の造型法について図面を参照して説明する。
図1(あ)を参照すると、鋳造法で製造すべき最終製品形状を有する模型1を作業定盤2の上に置く。模型1は図では簡単のために立方体にしたが、実際には数メートルもあるバルブ、ポンプなど複雑な形状である。本発明では模型を発泡ポリスチレンで製造する。
【0009】
模型1を囲むように鉄製金枠3をセットし(図1(い))、常温硬化性混練砂4を金枠3内に入れて砂を硬化させる(図1(う))。該混練砂が硬化したら、金枠3に設けた吊棒5を利用してクレーンなどで金枠3を反転させ(図1(え))、模型1を抜型すれば、硬化した砂型4’の内側に製品形状の空間6ができ、主型4’ができる(図1(お))。
【0010】
この模型1を抜型する場合、木型などでは型をテーパ状に形成して抜型を可能にしている。発泡ポリスチレン製模型の場合、一般に使い捨てできることからテーパなしの模型が用いられるが、従来技術ではテーパの有無とは関係なく砂型と発泡ポリスチレン製模型とが付着して簡単に抜型できないので、実際には発泡ポリスチレン製模型を掻き毟るようにして抜型作業が行われていた。特開平3−52742号公報に開示された方法を採用する場合でも先に従来技術の欄に述べたように砂型の表面の砂が発泡ポリスチレンに付着したものしか得られないので、特に複雑な形状や大物の模型の場合には抜型は容易ではなく、しかも得られる鋳型表面がひどく荒れたものであった。従って、従来の発泡ポリスチレン製模型の利用は非常に限られており、また使い勝手の悪いものであった。
【0011】
本発明の造型法によれば、詳しくは後述するが、硬化した砂型が発泡ポリスチレン模型表面に付着することなく、硬化砂型と発泡ポリスチレン模型の間に僅かな隙間ができ、しかも発泡ポリスチレン模型の表面は平滑であることが可能にされる。発泡ポリスチレン模型の収縮は非常に少ないにもかかわらず、模型1の抜型作業が極めて容易にされる。文字どおりの抜型、寸法精度の高い造型及び模型の再利用の可能性が従来の場合と比べて顕著に高くされる。その結果、発泡ポリスチレン製模型の利用性及び使い易さが顕著に高められる。
図2は中子の造型法を説明するものであるが、図2(あ)を参照すると、作業定盤12の上に成形型11を置き、その中に常温硬化性混練砂13を入れる(図2(い))。硬化した砂型13’を成形型11から抜型すると、中子13’が得られる(図2(う))。
【0012】
従来、この成形型は木型などで製造され発泡ポリスチレンで製造されることはなかった。その理由は、発泡ポリスチレン製成形型11を用いた従来の造型法では砂を硬化して得られる中子13’を発泡ポリスチレン製成形型11から抜型することが不可能又は困難であったからである。理論的には、砂が硬化して中子13’が形成されてから発泡ポリスチレン製成形型11を掻き毟れば、中子13’を入手することが可能であるが、そこまでして発泡ポリスチレン製成形型を利用する利益があるとは考えられかった。これに対し、本発明の造型法によれば、硬化した中子を発泡ポリスチレン製成形型から容易に「抜型」することが可能にされるので、発泡ポリスチレン製成形型を利用することが現実化される。
【0013】
このようにして製造された主型と中子は、先ず作業定盤22上に主型4’(図1(お))を置き(図3(あ))、次に主型4’内に中子13’をセットして下型23を完成し(図3(い))、その上に予め製作しておいた注湯口25を設けた上型24を載置し、注湯口25から溶解した金属(鋼など)を注入して鋳造する(図3(う))。鋳造後、上下型の砂型をばらして鋳物を取り出し、得られた鋳物の不要な上型の湯道部分を切断除去して鋳物25を得る(図3(え))。その後、必要な加工処理を施して最終製品に仕上る。
【0014】
次に、本発明で発泡ポリスチレン製の模型又は成形型と組み合わせて使用する常温硬化性混練砂について説明する。
【0015】
本発明で用いるフェノール樹脂としては、公知の反応触媒の存在下にフェノール類とホルムアルデヒド類とを反応させると得られる有機溶剤可溶性のフェノール樹脂(例えばベンジルエーテル型フェノール樹脂、レゾール型フェノール樹脂、ノボラック型フェノール樹脂およびこれらの混合物など)または該フェノール樹脂の製造時ないし製造後に任意の変性剤を反応ないし混合して得られる変性フェノール樹脂およびこれらの混合物などが挙げられるが、一般的にはベンジルエーテル型フェノール樹脂が使用される。
【0016】
フェノール樹脂は、鋳物砂へのコーティング性などの観点から有機溶剤により溶液に調製して使用され、溶液の濃度としては一般的には約40〜80質量%(フェノール樹脂成分)の濃度が採用される。有機溶剤としては、例えば、フェノール樹脂を溶解できるケトン、エステル、エーテル、アルコール及びこれらの混合物などを用いることができる。
【0017】
これらのフェノール樹脂用の有機溶剤の中でも、本発明では、模型もしくは成形型の収縮性および環境対応の観点から、脂肪族カルボン酸エステルを用いることが好適であり、より好ましくは、ジカルボン酸アルキルエステル、とりわけアルキル基がメチル基および/またはエチル基であるジカルボン酸アルキルエステル、例えばマロン酸ジメチル、コハク酸ジメチル、グルタル酸ジメチル、アジピン酸ジメチル及びこれらの混合物などが挙げられる。
【0018】
なお、これらのフェノール樹脂用有機溶剤には必要に応じてポリイソシアネート成分との相溶性の観点から、石油系溶剤を使用してもよいし、コストに難点があるが上記脂肪族カルボン酸エステルと同様の収縮作用を示すラクトン、例えばγ−ブチロラクトンなどを併用してもよい。
【0019】
本発明の造型法は、発泡ポリスチレン樹脂製型(模型もしくは形成型)と組み合わせて用いる常温硬化性混練砂用粘結剤としてフェノールウレタン系粘結剤を用いると共に、混練砂中に脂肪族カルボン酸エステルを主成分とする有機溶剤を含むことを必須構成要素とするものである。有機溶剤として脂肪族カルボン酸エステルを用いることにより発泡ポリスチレン製型を穏やかに収縮させるので、発泡ポリスチレン製型表面に硬化した鋳型の表面の砂が付着することが防止され、しかも硬化した砂型と発泡ポリスチレン製型との間に僅かに隙間が形成されて抜型が容易にされる、砂型の寸法精度及び表面平滑性が優れる、作業環境に優れる、発泡ポリスチレン製型の再利用が可能にされる、従来法の溶剤の作業環境汚染を抑制できる等の効果が得られるものである。脂肪族カルボン酸エステルは必ずしもフェノール樹脂の溶剤として用いる必要はないが、フェノール樹脂の溶剤として用いることが最も好ましい。脂肪族カルボン酸エステルをフェノール樹脂の溶剤として用いることにより、フェノール樹脂の溶剤として別の溶剤を多く用いる必要もなく、また脂肪族カルボン酸エステルを第三成分として添加する必要をなくし、さらに脂肪族カルボン酸エステルの添加量の制御も容易にされる。
【0020】
一方、本発明の造型法で用いるポリイソシアネート化合物としては、分子中に2以上のイソシアネート基を有する化合物、例えば芳香族ポリイソシアネート(例えばポリメチレンポリフェニレンポリイソシアネート、ジフェニルメタンジイソシアネートなど)、脂肪族ポリイソシアネート、(例えばヘキサメチレンジイソシアネートなど)、脂環式ポリイソシアネート(例えば4,4′−ジシクロヘキシルメタンジイソシアネートなど)、これらのポリイソシアネート化合物とポリオールとを反応させて得られるイソシアネート基を有するプレポリマーおよびこれらの混合物などが挙げられる。
【0021】
ポリイソシアネート化合物は、原液で使用してもよいが、鋳物砂へのコーティング性の観点から、一般的には石油系溶剤、例えばハイゾール(商品名、昭和シェル石油株式会社製)、ソルペッソ(商品名、エクソンモービル社製)により約65〜90質量%の溶液(ポリイソシアネート成分)に調製して使用されることが好ましい。なお、これらの石油系溶剤には必要に応じてフェノール樹脂成分で用いられる有機溶剤、特にエステルやエーテルを併用してもよく、脂肪族カルボン酸エステルを併用してもよい。
【0022】
鋳物砂に混練して使用するフェノール樹脂成分またはポリイソシアネート成分の配合量は、それぞれ鋳物砂100質量部に対して一般に0.01〜5.0質量部、好ましくは0.1〜2.0質量部である。また、フェノール樹脂成分とポリイソシアネート成分との配合比(質量基準)は、特に限定はされないが一般的には70/30〜30/70である。
【0023】
本発明の造型法は、ポリスチレン樹脂製の型と組み合わせて用いる常温硬化性混練砂用粘結剤としてフェノール樹脂及びポリイソシアネート化合物を用いると共に、混練砂中に脂肪族カルボン酸エステルを主成分とする有機溶剤を含むことを特徴とするものである。上記のように好適にはフェノール樹脂の溶剤として脂肪族カルボン酸エステルを使用するが、鋳物砂と混合するフェノール樹脂及びポリイソシアネート化合物に対する第三成分として脂肪族カルボン酸エステルを使用してもよい。本発明の造型法に用いる脂肪族カルボン酸エステルの好適な具体例は先にフェノール樹脂用の有機溶剤として説明した化合物である。
【0024】
鋳物砂に混練して使用する脂肪族カルボン酸エステルの量は、砂種(特に新砂又は再生砂)、フェノール樹脂成分とポリイソシアネート成分との配合比又は配合量などに依存するので一概に定められないが、例えば、鋳物砂100質量部に対して0.1〜1質量部程度の量で使用される。本発明において、脂肪族カルボン酸エステルを主成分とする有機溶剤というとき、有機溶剤全量に対して脂肪族カルボン酸エステルが主要量で存在することを意味する。主要量とは、いくつかの主要成分の1つであることであり、最高量成分であるか、さらには半分以上含まれることが好ましい。
【0025】
鋳物砂としては、例えばケイ砂、オリビンサンド、ジルコンサンド、クロマイトサンド、アルミナサンド、フェロクロム系スラグ、フェロニッケル系スラグ、転炉スラグ、ムライト系人工粒子、これらの再生砂などが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0026】
また、前記混練砂にはナフテン酸鉛、酢酸亜鉛、ジラウリル酸錫ブチル等の2価金属塩、ピリジン、フェニルピリジン、フェニルプロピルピリジン等の塩基などの硬化促進剤、無水マレイン酸、安息香酸、テレフタル酸等のカルボン酸、キシレンスルホン酸等の芳香族スルホン酸等の硬化遅延剤、γ−アミノプロピルトリエトキシシラン、グリシドキシプロピルトリメトキシシラン等のシランカップリング剤、その他の添加剤などを配合してもよい。
【0027】
次に、本発明に用いられる模型もしくは成形型は、ポリスチレン発泡体、例えば発泡性ポリスチレンを所定形状に発泡させて得た成形発泡体あるいは発泡性ポリスチレンのブロック発泡体から所定形状に切り出した加工発泡体である。
【0028】
これらはそのままの状態で用いてもよいが、好ましくは、模型もしくは成形型の表面にある発泡樹脂の粒状凹凸や切り出した加工面の平滑化、模型若しくは鋳型の脱型性改善のため、模型もしくは成形型の表面を塗型剤、例えばシリカ、ジルコン、クロマイト、ムライト等の無機粉粒体および必要に応じて添加された粘結剤、界面活性剤等を含む水もしくはアルコール懸濁液をどぶ漬、ハケ塗り、スプレー吹き付け等により塗布した後、これを乾燥して用いられる。
【0029】
本発明によれば、発泡ポリスチレン製模型もしくは成形型と硬化砂型との間の抜型性が顕著に高められるのみならず、驚くことには発泡ポリスチレン製模型又は成形型の表面には硬化砂の付着が全く見られないことである。また硬化砂型と発泡ポリスチレン製型との付着が実質的になくなるものであるが、発泡ポリスチレン製模型もしくは成形型の表面に無機粉粒体などの塗型剤を塗布しておくことにより、発泡ポリスチレン製模型もしくは成形型と硬化砂型との間の抜型性がさらに顕著に高められ、特に大物の発泡ポリスチレン製模型や硬化中子砂型の抜型の作業性が極めて容易にされる効果が得られる。従来技術の方法でも、塗型剤を塗ることにより抜型性は或る程度良くなるが、硬化砂型と発泡ポリスチレン製模型(あるいは成形型)との実質的な付着がなくなるものではなかった。
【0030】
本発明による鋳型(主型)は、例えば、温度0〜50℃程度の鋳物砂(新砂又は再生砂)とフェノール樹脂成分(必要に応じて硬化促進剤又は硬化遅延剤を含む)とを混練後、さらにポリイソシアネート成分を添加し再混練し、必要であればさらに混練の途中又は後で脂肪族カルボン酸エステルを添加して混練し、常温で自硬化する性質(所謂:自硬性)を持つ混練砂を作製する。ここで、脂肪族カルボン酸エステルはフェノール樹脂の溶剤として使用すれば、混練工程を簡素化できるし、しかも混練砂における脂肪族カルボン酸エステル量の調整も容易になるので、好ましいことは先に述べたとおりである。
【0031】
次に、この常温自硬性混練砂は、例えば、図1〜3を参照して説明したように、鋳枠内の底盤上に発泡ポリスチレン製の模型またはその表面に塗型剤を塗布した模型を載置した後前記混練砂を手込めまたは加振しながら充填し、室温で0.5〜24時間放置して該混練砂を硬化させて鋳型を成形し、その後、鋳型から模型を抜き取る(抜型)と該模型形状の空間部を有する主型が得られる。そして、本発明の造型法によれば、この鋳型から模型を抜き取る、即ち抜型の容易性が顕著に改良される。
【0032】
また、鋳型(中子)は、発泡ポリスチレン製の分割式成形型の空間部内に前記混練砂を前記同様に充填後、室温に放置して該混練砂を硬化させて鋳型を成形し、その後、該成形型から鋳型を抜型すれば空間部形状の中子が得られる。そして、本発明の造型法によれば、成形型から鋳型を文字通り抜型することが可能にされ、実用的に発泡ポリスチレン製成形型を用いて鋳物砂製中子を製造することが可能にされる。
【0033】
【実施例】
以下、実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、「部」及び「%」はすべて「質量部」及び「質量%」を意味する。
【0034】
有機粘結剤の調製例
フェノール樹脂成分は、ベンジルエーテル型フェノール樹脂と少量の塩基系硬化促進剤をグルタル酸ジメチルを主成分とするジカルボン酸メチルエステル混合物に溶解して50%溶液とした。一方、ポリイソシアネート成分は、ポリメチレンポリフェニレンポリイソシアネート(三井化学社製商品名:コスモネートM200)を石油系溶剤(エクソンモービル社製商品名:ソルベッソ100)に溶解して85%溶液とした。これらの2成分をセットにして有機粘結剤とした。
【0035】
実施例1
実験用品川式ミキサー内でフリーマントル砂1000部と上記有機粘結剤のフェノール樹脂成分7部とを30秒間混練後攪拌を止めてポリイソシアネート成分7部を添加し、再び30秒間混練して常温自硬性の混練砂を作製した。この混練砂に含まれる有機粘結剤由来の溶剤量は約4.6部であった。次に、200ccポリカップの底に発泡ポリスチレン製の模型(厚み10mm×幅20mm×長さ150mm)または予め該模型を市販のシリカ系塗型剤中にどぶ漬け処理した塗型処理模型をそれぞれ固定し、該ポリカップ上端まで前記混練砂を手込めで充填し、それから1時間および2時間後に以下の事項について調べた。
1) 鋳型から模型を抜型する際のバネ秤による抜型抵抗値(Kg)
2) 得られた模型表面(幅方向)での混練砂の付着状態(○:なし、×:あり)、模型(幅方向)の収縮量(%/幅寸法20mm)および鋳型の空間内面の平滑性(○:良好、×:ザラつきあり)
【0036】
また、別途、前記同様にして鋳型強度測定用混練砂を作製し、これを直ちに試験片作製木型内に手で充填し、それから1時間、2時間および24時間後に試験片(直径50mm×高さ50mm)を脱型し、その圧縮強度(Kg/cm2)を測定した。それらの結果を表1に示す。
【0037】
比較例1
実験用品川式ミキサー内でフリーマントル砂1000部、実施例1で用いた有機溶剤4.6部および酸性硬化剤(旭有機材工業社製商品名:AF−2)5部とを30秒間混練後攪拌を止めて酸硬化性フラン樹脂(旭有機材工業社製商品名:HP6200)10部を添加し、再び30秒間混練して常温自硬性混練砂を調製した。次に、実施例1と同様にして模型の抜型抵抗値、模型表面(幅方向)の混練砂の付着状態、模型の幅方向の収縮量、鋳型の空間内面の平滑性および混練砂の鋳型強度を調べた。なお、抜型抵抗値が3Kgでも抜型ができないときは3Kg以上と表示し、模型は鋳型をばらして回収した。それらの結果を表1に示す。
【0038】
従来例1
比較例1において、有機溶剤としてキシレン2.0部を用いた以外は比較例1と同様にして模型の抜型抵抗値、模型表面(幅方向)の混練砂の付着状態、模型の幅方向の収縮量、鋳型の空間内面の平滑性および混練砂の鋳型強度を調べた。それらの結果を表1に示す。
【0039】
【表1】

Figure 0003786626
【0040】
表1を参照すると、特開平3−52742号公報に開示されたフラン系粘結剤の場合(従来例1)には、引抜抵抗値が大きく抜型性が非常に悪いこと、模型表面に砂が付着し、表面の平滑性も低いこと、これは有機溶剤を脂肪族カルボン酸エステルに変えても大きな改良効果は得られないこと(比較例1)、しかし実施例1のようにフェノールウレタン系に粘結剤と脂肪族カルボン酸エステル有機溶剤を組み合わせると、模型の収縮は従来例1より小さいにもかかわらず引抜抵抗値が顕著に低減して抜型性が良くなること、模型表面に砂が付着しないこと、表面の平滑性も良好であることが見られる。
【0041】
図4に、実施例1(塗型処理なし)で鋳型から抜型した後の発泡ポリスチレン製模型の表面写真を示す。発泡ポリスチレン製模型の表面が真っ白で砂が付着しておらず、また表面の平滑性が高い様子が見られる。図5の従来例1の同様の写真と対照すれば、実施例では発泡ポリスチレン製模型が鋳型からスムーズに抜型されたことが明らかである。
【0042】
図5に鋳型から発泡ポリスチレン製模型を抜型した後の発泡ポリスチレン製模型の表面写真を示す。図4と比較すれば、抜型された発泡ポリスチレン製模型の表面に砂が付着して汚れており、また表面が粗れている様子が見られる。発泡ポリスチレン製模型の鋳型から抜型がスムーズでないことが明らかであり、これでは大物の模型における抜型はとても困難であり、毟り取る必要があることが明らかである。
【0043】
実施例2および従来例2
まず、内部に直径50mmの空間部を持つ発泡ポリスチレン製の2分割式成形型(縦100mm×横100mm×高さ100mm)または該成形型の空間側内面を、実施例1で使用した塗型剤で処理した成形型のそれぞれに、実施例1または従来例1に準じて別途作製した混練砂を手で充填し、常温下に1時間、2時間放置した後、それぞれの成形型から鋳型(中子)を脱型する際の離型性(○:良好、△:少し張り付きあり、×:張り付きあり)、成形型内面での混練砂の付着状態(○:なし、×:あり)および得られた鋳型の表面平滑性(○:良好、×:ザラつきあり)を調べた。それらの結果を表2に示す。
【0044】
【表2】
Figure 0003786626
【0045】
表2に示されるように、中子製作においても、特開平3−52742号公報に開示されたフラン系粘結剤を用いた場合(従来例2)には、塗型剤の使用の有無にかかわりなく、離型性が悪く抜型性が悪いこと、成形型表面に砂が付着し、表面の平滑性も低い、しかし実施例2ではこれらが全て改良され、離型性が低減して抜型性が良くなること、模型表面に砂が付着しないこと、表面の平滑性も良好であることが確認され、表では塗型剤の使用による差はないが、実際には塗型剤を使用した場合にはすべての項目で一段と優れていることが確認された。
【0046】
図6及び図7の写真は、これらの実施例2及び従来例2で中子を抜型した後の発泡ポリスチレン製2分割式成形型の内面を示す。これらの例は図4及び図5と同様に塗型処理なしの例であるが、図7の従来例2では発泡ポリスチレン製成形型の表面に砂が付着しているが、それに対して図6の実施例2では発泡ポリスチレン製成形型の表面は砂が全く付着していないのみならず、その平滑性が極めて高い(図4と比べても高い)。なお図6は特許図面の写真精度の関係で陰影が見えるがこれらは砂による汚れではなく、非常に清浄な表面であり平面性も高いものである。
【0047】
【発明の効果】
以上説明した通り、本発明によれば、(イ)発泡ポリスチレン製模型もしくは成形型と、(ロ)フェノール樹脂、ポリイソシアネート化合物及び脂肪族カルボン酸エステルを主溶剤として含む有機溶剤から構成されるフェノール・ウレタン系粘結剤とを組み合わせて用いることにより、従来例に比べて次の諸効果を奏する。
(1)鋳型(主型)からの模型の抜型抵抗値が著しく小さく、また成形型からの鋳型(中子)の離型性も良好であるので、造型時の模型又は中子の抜型作業が容易となり、これにかかる労力を軽減することができるとともに、表面平滑性に優れた鋳型(主型または中子)を提供することができる。
(2)粘結剤中の溶剤量の調節、塗型処理などにより模型もしくは成形型の収縮を微制御できるため、大物鋳型を造型する際の型壊れや寸法精度の悪化を防止することができる。
(3)本発明で用いる粘結剤には、既に模型もしくは成形型を穏やかに収縮させる溶剤が入っているため、新たに溶剤添加装置を設ける必要がなく、既存の混練装置を使用することができる。また独立の溶剤添加装置を用いる場合と比べて溶剤量の制御が容易である。
(4)脂肪族カルボン酸エステルを主成分とする有機溶剤を使用するため造型および鋳造現場の環境保全に寄与することができる。
(5)鋳型(主型、中子)造型後に回収した模型もしくは成形型の表面には、混練砂の付着が全くなく、しかも収縮量が従来より少ないため、他の模型への再利用が可能であり省資源化に寄与できる。
(6)模型もしくは成形型は、木型や樹脂型の代替として利用できるため、鋳型の試作に用いる模型もしくは成形型のコスト低減および製作期間の短縮を図ることができる。
【図面の簡単な説明】
【図1】主型の製造工程の説明である。
【図2】中子の製造工程の説明である。
【図3】主型及び中子を用いた鋳造工程の説明である。
【図4】実施例1(塗型処理なし)で鋳型から発泡ポリスチレン製模型を抜型した後の発泡ポリスチレン製模型の表面写真を示す。
【図5】従来例1で鋳型から発泡ポリスチレン製模型を抜型した後の発泡ポリスチレン製模型の表面写真を示す。
【図6】実施例2(塗型処理なし)で中子を抜型した後の発泡ポリスチレン製2分割式成形型の内面を示す写真である。
【図7】従来例2(塗型処理なし)で中子を抜型した後の発泡ポリスチレン製2分割式成形型の内面を示す写真である。
【符号の説明】
1…模型
2…作業定盤
3…金枠
4…混練砂
4’…硬化した砂型(主型)
5…吊棒
6…空間
11…成形型
12…作業定盤
13…混練砂
13’…硬化した砂型(中子)
22…作業定盤
23…下型
24…上型
25…注湯口
26…鋳物[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for forming a mold (main mold or core) using room-temperature self-hardening kneaded sand obtained by kneading foundry sand and a phenol-urethane binder and a model or mold made of expanded polystyrene. About.
[0002]
[Prior art]
Among organic molds, non-mass production molds (main molds) can be made by filling normal temperature self-hardening kneaded sand into a casting frame on which a model such as a wooden or resin mold is placed, and letting it stand at room temperature. Then, after being cured, a mold making method is known in which the model is removed to form a space. However, since the manufacturing of the model generally requires processing (draft angle and surface finishing), much cost and time have been spent. Further, in the case of a large mold, a large amount of labor is required for the work of removing the model from the mold. As a mold making method for solving such problems, for example, in Japanese Patent Application Laid-Open No. 3-52742, an acid curable resin, an acid curing agent, and a model made of a synthetic resin foam are dissolved or contracted in a refractory aggregate. There has been proposed a mold manufacturing method in which the model is embedded in casting sand added with a specific organic solvent to be kneaded, and the model is removed after molding.
[0003]
[Problems to be solved by the invention]
However, according to the above mold making method, the model made of synthetic resin foam is dissolved or shrunk by the action of the solvent used. The synthetic resin foam surface is eroded by a solvent, and kneaded sand adheres to it, so that the mold drawing workability is not improved as intended, and the resulting mold surface is not smooth, the solvent addition device Are specially required, and the working environment may be contaminated with solvents such as aromatic hydrocarbons. Further, in this technical field, generally large molds are mainly formed, and therefore further improvement is required for the mold drawing workability at the molding site. In addition, there is increasing interest in reusing used models from the viewpoint of resource recycling.
[0004]
In view of the above circumstances, the object of the present invention is to firstly prevent the adhesion of the kneaded sand to the model made of expanded polystyrene to improve the mold removal workability and to provide a mold having excellent surface smoothness. Second, there is no deformation or deterioration in dimensional accuracy when molding a large mold, third, an existing kneading apparatus can be used without providing a new solvent addition apparatus, and fourth, molding with an organic solvent Another object of the present invention is to provide a mold (main mold) molding method capable of suppressing environmental pollution at the casting site and fifthly enabling reuse of used models. Another object of the present invention is to provide a molding method of a mold (core) using the above-mentioned foamed polystyrene mold as an alternative to a wooden mold or a resin mold.
[0005]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have found that a phenol-urethane-based caking comprising a foamed polystyrene model or mold and an organic solvent mainly composed of a phenol resin, a polyisocyanate compound and an aliphatic carboxylic acid ester. The present inventors have found that the above object can be achieved by using a combination with an agent, and have completed the present invention.
[0006]
That is, the present invention can be obtained by kneading foundry sand, a phenol resin, a polyisocyanate compound, an organic solvent mainly composed of an aliphatic carboxylic acid ester and, if necessary, a curing accelerator, a curing retarder and other additives. There is a mold making method in which a model made of expanded polystyrene is embedded in room temperature self-hardening kneaded sand, a mold is molded, and then the model is removed.
[0007]
Other present inventions include molding sand, a phenol resin, a polyisocyanate compound, an organic solvent mainly composed of an aliphatic carboxylic acid ester, a curing accelerator, a curing retarder, and the like in a mold made of expanded polystyrene. There is a mold making method in which a mold is molded by filling normal temperature self-hardening kneaded sand obtained by kneading the additive, and then the mold is removed from the mold.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
First, a mold forming method will be described with reference to the drawings.
Referring to FIG. 1A, a model 1 having a final product shape to be manufactured by a casting method is placed on a work surface plate 2. The model 1 is a cube for the sake of simplicity in the figure, but in reality it has a complicated shape such as a valve or pump of several meters. In the present invention, the model is made of expanded polystyrene.
[0009]
An iron metal frame 3 is set so as to surround the model 1 (FIG. 1 (i)), and the room temperature curable kneaded sand 4 is put into the metal frame 3 to cure the sand (FIG. 1 (u)). When the kneaded sand is hardened, the metal frame 3 is reversed with a crane or the like using the suspension bar 5 provided on the metal frame 3 (FIG. 1 (E)), and the model 1 is removed from the mold. A product-shaped space 6 is formed inside, and a main mold 4 ′ is formed (FIG. 1 (O)).
[0010]
When the model 1 is removed, the die is formed by forming the die into a tapered shape in a wooden mold or the like. In the case of a model made of expanded polystyrene, a model without a taper is generally used because it is disposable, but in the prior art, the sand mold and the model made of expanded polystyrene cannot be easily removed regardless of the presence or absence of the taper. The mold was removed by scratching the expanded polystyrene model. Even when the method disclosed in Japanese Patent Laid-Open No. 3-52742 is adopted, since only sand on the surface of the sand mold adhered to the expanded polystyrene can be obtained as described in the prior art section, a particularly complicated shape is obtained. In the case of large models, it was not easy to remove the mold, and the resulting mold surface was extremely rough. Therefore, the use of the conventional model made of expanded polystyrene is very limited, and is inconvenient.
[0011]
According to the molding method of the present invention, as will be described in detail later, there is a slight gap between the cured sand mold and the expanded polystyrene model without the cured sand mold adhering to the expanded polystyrene model surface, and the surface of the expanded polystyrene model. Is allowed to be smooth. Despite the very small shrinkage of the expanded polystyrene model, the mold 1 can be very easily removed. The possibility of literal die-cutting, molding with high dimensional accuracy, and reuse of models is significantly increased compared to the conventional case. As a result, the usability and ease of use of the expanded polystyrene model are significantly enhanced.
FIG. 2 illustrates the core molding method. Referring to FIG. 2A, a molding die 11 is placed on a work surface plate 12, and a room temperature curable kneaded sand 13 is placed therein (see FIG. 2). FIG. 2 (ii)). When the hardened sand mold 13 ′ is removed from the mold 11, a core 13 ′ is obtained (FIG. 2 (U)).
[0012]
Conventionally, this mold has been manufactured with a wooden mold or the like, and has not been manufactured with expanded polystyrene. The reason is that it is impossible or difficult to remove the core 13 ′ obtained by curing the sand from the foamed polystyrene mold 11 by the conventional molding method using the foamed polystyrene mold 11. . Theoretically, it is possible to obtain the core 13 ′ by scratching the foamed polystyrene mold 11 after the sand has hardened to form the core 13 ′. There were no thoughts to benefit from using a polystyrene mold. On the other hand, according to the molding method of the present invention, the cured core can be easily “pulled” from the foamed polystyrene mold, so that it is practical to use the foamed polystyrene mold. Is done.
[0013]
In the main mold and the core manufactured in this way, the main mold 4 ′ (FIG. 1 (A)) is first placed on the work surface plate 22 (FIG. 3 (A)), and then in the main mold 4 ′. The core 13 'is set to complete the lower mold 23 (FIG. 3 (i)), and an upper mold 24 provided with a pouring port 25 prepared in advance is placed thereon and melted from the pouring port 25. The cast metal (steel etc.) is poured and casted (FIG. 3 (U)). After casting, the upper and lower sand molds are separated to take out the casting, and an unnecessary upper runner portion of the obtained casting is cut and removed to obtain the casting 25 (FIG. 3 (E)). Then, the necessary processing is performed to finish the final product.
[0014]
Next, room temperature curable kneaded sand used in combination with a model or mold made of expanded polystyrene in the present invention will be described.
[0015]
As the phenol resin used in the present invention, an organic solvent-soluble phenol resin obtained by reacting phenols with formaldehyde in the presence of a known reaction catalyst (for example, benzyl ether type phenol resin, resol type phenol resin, novolak type) Phenolic resins and mixtures thereof) or modified phenolic resins obtained by reacting or mixing any modifying agent during or after the production of the phenolic resin, and mixtures thereof. A phenolic resin is used.
[0016]
Phenol resin is prepared and used in a solution with an organic solvent from the viewpoint of coating properties on foundry sand, and the concentration of the solution is generally about 40 to 80% by mass (phenol resin component). The Examples of the organic solvent that can be used include ketones, esters, ethers, alcohols and mixtures thereof that can dissolve the phenol resin.
[0017]
Among these organic solvents for phenol resins, in the present invention, it is preferable to use an aliphatic carboxylic acid ester, more preferably a dicarboxylic acid alkyl ester, from the viewpoint of shrinkage of the model or mold and environmental friendliness. In particular, mention may be made of dicarboxylic acid alkyl esters in which the alkyl group is a methyl group and / or an ethyl group, such as dimethyl malonate, dimethyl succinate, dimethyl glutarate, dimethyl adipate and mixtures thereof.
[0018]
In addition, from the viewpoint of compatibility with the polyisocyanate component, these organic solvents for phenol resins may use petroleum-based solvents, and the aliphatic carboxylic acid esters described above are difficult in cost. A lactone exhibiting a similar contracting action, such as γ-butyrolactone, may be used in combination.
[0019]
The molding method of the present invention uses a phenol-urethane-based binder as a room-temperature-curing kneaded sand binder used in combination with a foamed polystyrene resin mold (model or mold), and an aliphatic carboxylic acid in the kneaded sand. Including an organic solvent mainly composed of an ester is an essential component. By using an aliphatic carboxylic acid ester as an organic solvent, the polystyrene foam mold is gently shrunk, preventing the sand on the mold surface from adhering to the polystyrene foam mold surface, and the cured sand mold and foaming. A slight gap is formed between the polystyrene mold and the mold can be easily removed, the sand mold has excellent dimensional accuracy and surface smoothness, the working environment is excellent, and the expanded polystyrene mold can be reused. The effect that the working environment contamination of the solvent of the conventional method can be suppressed is acquired. The aliphatic carboxylic acid ester is not necessarily used as a solvent for the phenol resin, but is most preferably used as a solvent for the phenol resin. By using an aliphatic carboxylic acid ester as a solvent for the phenol resin, it is not necessary to use a large amount of another solvent as a solvent for the phenol resin, and it is not necessary to add an aliphatic carboxylic acid ester as a third component. Control of the amount of carboxylic acid ester added is also facilitated.
[0020]
On the other hand, the polyisocyanate compound used in the molding method of the present invention includes a compound having two or more isocyanate groups in the molecule, such as aromatic polyisocyanate (for example, polymethylene polyphenylene polyisocyanate, diphenylmethane diisocyanate), aliphatic polyisocyanate, (For example, hexamethylene diisocyanate), alicyclic polyisocyanate (for example, 4,4'-dicyclohexylmethane diisocyanate), prepolymers having isocyanate groups obtained by reacting these polyisocyanate compounds and polyols, and mixtures thereof Etc.
[0021]
The polyisocyanate compound may be used as a stock solution. However, from the viewpoint of coating properties on foundry sand, generally a petroleum solvent such as Hysol (trade name, manufactured by Showa Shell Sekiyu KK), Solpeso (trade name) , Manufactured by ExxonMobil Co., Ltd.) to prepare a solution (polyisocyanate component) of about 65 to 90% by mass. In addition, these petroleum solvents may be used in combination with an organic solvent used in the phenol resin component, particularly an ester or an ether, or an aliphatic carboxylic acid ester, if necessary.
[0022]
The amount of the phenol resin component or polyisocyanate component used by kneading into foundry sand is generally 0.01 to 5.0 parts by weight, preferably 0.1 to 2.0 parts by weight per 100 parts by weight of foundry sand. Part. Moreover, the compounding ratio (mass basis) of a phenol resin component and a polyisocyanate component is not particularly limited, but is generally 70/30 to 30/70.
[0023]
The molding method of the present invention uses a phenol resin and a polyisocyanate compound as a binder for a room temperature curable kneaded sand used in combination with a mold made of polystyrene resin, and contains an aliphatic carboxylic acid ester as a main component in the kneaded sand. An organic solvent is included. As described above, an aliphatic carboxylic acid ester is preferably used as the solvent for the phenol resin, but an aliphatic carboxylic acid ester may be used as the third component for the phenol resin and polyisocyanate compound mixed with the foundry sand. Preferred specific examples of the aliphatic carboxylic acid ester used in the molding method of the present invention are the compounds described above as the organic solvent for the phenol resin.
[0024]
The amount of aliphatic carboxylic acid ester to be used by kneading into foundry sand is generally determined because it depends on the type of sand (especially fresh sand or recycled sand), the blending ratio or blending amount of the phenolic resin component and the polyisocyanate component. For example, it is used in an amount of about 0.1 to 1 part by mass with respect to 100 parts by mass of foundry sand. In the present invention, when the organic solvent is composed mainly of an aliphatic carboxylic acid ester, it means that the aliphatic carboxylic acid ester is present in a major amount with respect to the total amount of the organic solvent. The main amount is one of several main components, and is preferably the highest amount component or even more than half.
[0025]
Examples of the casting sand include silica sand, olivine sand, zircon sand, chromite sand, alumina sand, ferrochrome slag, ferronickel slag, converter slag, mullite artificial particles, and regenerated sand thereof. These may be used alone or in combination of two or more.
[0026]
In addition, the kneaded sand contains hardening accelerators such as divalent metal salts such as lead naphthenate, zinc acetate and tin butyl dilaurate, bases such as pyridine, phenylpyridine and phenylpropylpyridine, maleic anhydride, benzoic acid, terephthalate. Combination of carboxylic acid such as acid, retarder such as aromatic sulfonic acid such as xylene sulfonic acid, silane coupling agent such as γ-aminopropyltriethoxysilane, glycidoxypropyltrimethoxysilane, and other additives May be.
[0027]
Next, the model or mold used in the present invention is a polystyrene foam, for example, a molded foam obtained by foaming foamable polystyrene into a predetermined shape or a processed foam cut out from a block foam of expandable polystyrene into a predetermined shape. Is the body.
[0028]
These may be used as they are, but preferably the model or mold for smoothing the granular unevenness of the foamed resin on the surface of the mold or the mold, cutting the processed surface, and improving the mold or mold releasability. The surface of the mold is soaked with a coating agent such as silica, zircon, chromite, mullite and other inorganic powders, and water or alcohol suspensions containing a binder, surfactant, etc. added as necessary. After applying by brushing, spraying, etc., it is used after drying.
[0029]
According to the present invention, not only the removability between the expanded polystyrene model or mold and the cured sand mold is remarkably enhanced, but surprisingly, the surface of the expanded polystyrene model or mold is attached with the cured sand. Is not seen at all. In addition, the adhesion between the hardened sand mold and the expanded polystyrene mold is substantially eliminated. By applying a coating agent such as an inorganic powder to the surface of the expanded polystyrene model or mold, the expanded polystyrene mold is used. The moldability between the model or mold and the hardened sand mold is further remarkably enhanced, and in particular, the effect of making the workability of the large foam polystyrene model and the hardened core sand mold very easy is obtained. Even in the prior art method, the moldability is improved to some extent by applying a coating agent, but the substantial adhesion between the cured sand mold and the expanded polystyrene model (or mold) has not been lost.
[0030]
The mold (main mold) according to the present invention is, for example, after kneading casting sand (new sand or recycled sand) at a temperature of about 0 to 50 ° C. and a phenol resin component (including a curing accelerator or a curing retarder as necessary). Further, a polyisocyanate component is further added and re-kneaded, and if necessary, further kneading by adding an aliphatic carboxylic acid ester during or after kneading, and kneading having a property of self-curing at ordinary temperature (so-called: self-hardening). Make sand. Here, if the aliphatic carboxylic acid ester is used as a solvent for the phenol resin, the kneading process can be simplified, and the adjustment of the amount of the aliphatic carboxylic acid ester in the kneaded sand is facilitated. That's right.
[0031]
Next, as described with reference to FIGS. 1 to 3, for example, this room temperature self-hardening kneaded sand is a model made of polystyrene foam on the bottom plate in the casting frame or a model coated with a coating agent on the surface thereof. After placing, the kneaded sand is filled with hand or vibration, and left at room temperature for 0.5 to 24 hours to cure the kneaded sand to form a mold, and then the model is removed from the mold (die cutting). ) And a main mold having the model-shaped space. Then, according to the molding method of the present invention, the model can be extracted from the mold, that is, the ease of punching can be remarkably improved.
[0032]
Further, the mold (core) is filled with the kneaded sand in the same manner as described above in the space of a split mold made of expanded polystyrene, and then left at room temperature to cure the kneaded sand to mold the mold. If the mold is removed from the mold, a space-shaped core can be obtained. And, according to the molding method of the present invention, it is possible to literally remove the mold from the mold and practically produce the core made of foundry sand using the foamed polystyrene mold. .
[0033]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples. “Parts” and “%” mean “parts by mass” and “% by mass”.
[0034]
Preparation example of organic binder
The phenol resin component was prepared by dissolving a benzyl ether type phenol resin and a small amount of a base curing accelerator in a dicarboxylic acid methyl ester mixture containing dimethyl glutarate as a main component to form a 50% solution. On the other hand, the polyisocyanate component was prepared by dissolving polymethylene polyphenylene polyisocyanate (trade name: Cosmonate M200 manufactured by Mitsui Chemicals) in a petroleum solvent (trade name: Solvesso 100 manufactured by ExxonMobil Corporation) to obtain an 85% solution. These two components were set as an organic binder.
[0035]
Example 1
In a laboratory-use river-type mixer, 1000 parts of free mantle sand and 7 parts of the phenolic resin component of the organic binder were mixed for 30 seconds, then stirring was stopped, 7 parts of the polyisocyanate component was added, and again kneaded for 30 seconds. Self-hardening kneaded sand was produced. The amount of the solvent derived from the organic binder contained in the kneaded sand was about 4.6 parts. Next, a model made of polystyrene foam (thickness 10 mm x width 20 mm x length 150 mm) or a coating model obtained by immersing the model in a commercially available silica coating agent is fixed to the bottom of the 200 cc polycup. The kneaded sand was filled up to the upper end of the polycup by hand, and the following items were examined after 1 hour and 2 hours.
1) Die resistance value (Kg) with a spring balance when the model is removed from the mold
2) The state of adhesion of the kneaded sand on the obtained model surface (width direction) (○: none, x: yes), the shrinkage (% / width dimension 20 mm) of the model (width direction), and the smooth inner surface of the mold space (○: good, ×: with roughness)
[0036]
Separately, a kneaded sand for measuring the strength of the mold was prepared in the same manner as described above, and this was immediately filled into the test piece preparation mold by hand, and then the test piece (diameter 50 mm × high height) after 1 hour, 2 hours and 24 hours. 50 mm), and its compressive strength (Kg / cm 2 ) Was measured. The results are shown in Table 1.
[0037]
Comparative Example 1
100 parts of free mantle sand, 4.6 parts of the organic solvent used in Example 1 and 5 parts of an acidic curing agent (trade name: AF-2 manufactured by Asahi Organic Materials Co., Ltd.) were mixed for 30 seconds in the experimental river mixer. After stirring was stopped, 10 parts of acid curable furan resin (trade name: HP6200, manufactured by Asahi Organic Materials Co., Ltd.) was added and kneaded again for 30 seconds to prepare room temperature self-hardening kneaded sand. Next, in the same manner as in Example 1, the resistance to die removal of the model, the adhesion state of the kneaded sand on the model surface (width direction), the shrinkage in the width direction of the model, the smoothness of the inner surface of the mold space, and the mold strength of the kneaded sand I investigated. In addition, when the punching resistance value was 3 kg, when the punching could not be performed, it was indicated as 3 kg or more, and the model was recovered by separating the mold. The results are shown in Table 1.
[0038]
Conventional Example 1
In Comparative Example 1, except that 2.0 parts of xylene was used as the organic solvent, the resistance to die removal of the model, the adhesion state of the kneaded sand on the model surface (width direction), and the shrinkage in the model width direction were the same as in Comparative Example 1. The amount, the smoothness of the inner surface of the mold space, and the mold strength of the kneaded sand were examined. The results are shown in Table 1.
[0039]
[Table 1]
Figure 0003786626
[0040]
Referring to Table 1, in the case of the furan-based binder disclosed in JP-A-3-52742 (Conventional Example 1), the drawing resistance value is large and the moldability is very bad, and the model surface has sand. Adhesion and low surface smoothness, which means that even if the organic solvent is changed to an aliphatic carboxylic acid ester, a large improvement effect cannot be obtained (Comparative Example 1). When a binder and an aliphatic carboxylic acid ester organic solvent are combined, the shrinkage of the model is smaller than that of the conventional example 1, but the drawing resistance value is remarkably reduced and the moldability is improved, and sand adheres to the model surface. It can be seen that the surface smoothness is also good.
[0041]
In FIG. 4, the surface photograph of the model made from an expanded polystyrene after extracting from a casting_mold | template in Example 1 (no coating process) is shown. The surface of the model made of expanded polystyrene is pure white with no sand attached, and the surface is highly smooth. In contrast to the similar photograph of Conventional Example 1 in FIG. 5, it is clear that the expanded polystyrene model was smoothly removed from the mold in the example.
[0042]
FIG. 5 shows a surface photograph of the expanded polystyrene model after the expanded polystyrene model is removed from the mold. Compared with FIG. 4, it can be seen that sand is attached to the surface of the model of the foamed polystyrene model that has been cut out, and the surface is rough. It is clear that the mold drawing is not smooth from the model of the expanded polystyrene model, and it is clear that this is very difficult to mold in the large model and needs to be scraped off.
[0043]
Example 2 and Conventional Example 2
First, a coating agent using the two-part molding mold made of expanded polystyrene (length 100 mm × width 100 mm × height 100 mm) having a space portion with a diameter of 50 mm inside or the space-side inner surface of the mold in Example 1. Each of the molds treated in step 1 was manually filled with kneaded sand prepared in accordance with Example 1 or Conventional Example 1 and left at room temperature for 1 hour and 2 hours. Releasability at the time of mold removal (○: good, Δ: slightly sticky, ×: sticky), adhesion state of kneaded sand on the inner surface of the mold (○: none, x: yes) and obtained The surface smoothness (◯: good, x: rough) of the mold was examined. The results are shown in Table 2.
[0044]
[Table 2]
Figure 0003786626
[0045]
As shown in Table 2, also in the manufacture of the core, when the furan-based binder disclosed in JP-A-3-52742 is used (conventional example 2), the presence or absence of the use of a coating agent is considered. Regardless, the releasability is poor and the releasability is poor, sand adheres to the mold surface, and the surface smoothness is low. However, in Example 2, these are all improved and the releasability is reduced and the releasability is reduced. It is confirmed that the sand surface does not adhere to the model surface and the smoothness of the surface is also good, and there is no difference due to the use of the coating agent in the table, but in the case of actually using the coating agent It was confirmed that it was superior in all items.
[0046]
The photograph of FIG.6 and FIG.7 shows the inner surface of the foaming polystyrene two-part type shaping | molding die after extracting a core in these Example 2 and the prior art example 2. FIG. These examples are examples without coating treatment as in FIGS. 4 and 5, but in the conventional example 2 in FIG. 7, sand adheres to the surface of the foamed polystyrene mold, whereas FIG. In Example 2, the surface of the mold made of polystyrene foam is not only completely free of sand, but also has a very high smoothness (compared to FIG. 4). Note that FIG. 6 shows shadows due to the photographic accuracy of the patent drawing, but these are not dirt due to sand, but are very clean surfaces and have high flatness.
[0047]
【The invention's effect】
As described above, according to the present invention, (b) a phenol composed of an expanded polystyrene model or mold and (b) an organic solvent containing a phenol resin, a polyisocyanate compound and an aliphatic carboxylic acid ester as a main solvent. -By using in combination with a urethane-based binder, the following effects can be obtained as compared with the conventional example.
(1) The resistance of the model from the mold (main mold) is remarkably small, and the mold (core) from the mold is releasable, so that the model or core can be removed from the mold during molding. It becomes easy and the labor required for this can be reduced, and a mold (main mold or core) excellent in surface smoothness can be provided.
(2) Since the shrinkage of the model or mold can be finely controlled by adjusting the amount of solvent in the binder, coating treatment, etc., it is possible to prevent mold breakage and deterioration of dimensional accuracy when making large molds. .
(3) Since the binder used in the present invention already contains a solvent that gently shrinks the model or mold, it is not necessary to newly provide a solvent addition device, and an existing kneading device can be used. it can. Further, the amount of solvent can be easily controlled as compared with the case of using an independent solvent addition apparatus.
(4) Since an organic solvent containing an aliphatic carboxylic acid ester as a main component is used, it can contribute to environmental preservation at molding and casting.
(5) The surface of the model or mold collected after the molding of the mold (main mold, core) has no adhesion of kneaded sand, and the amount of shrinkage is less than before, so it can be reused for other models. It can contribute to resource saving.
(6) Since the model or the mold can be used as an alternative to the wooden mold or the resin mold, the cost of the model or the mold used for the trial manufacture of the mold can be reduced and the production period can be shortened.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a manufacturing process of a main mold.
FIG. 2 is a diagram illustrating a manufacturing process of a core.
FIG. 3 is an illustration of a casting process using a main mold and a core.
FIG. 4 shows a surface photograph of an expanded polystyrene model after the expanded polystyrene model was removed from the mold in Example 1 (no coating treatment).
FIG. 5 shows a surface photograph of an expanded polystyrene model after the expanded polystyrene model was removed from the mold in Conventional Example 1;
FIG. 6 is a photograph showing the inner surface of a foamed polystyrene two-part mold after the core has been removed in Example 2 (no coating treatment).
FIG. 7 is a photograph showing the inner surface of a two-part molding die made of expanded polystyrene after the core has been removed in Conventional Example 2 (no coating treatment).
[Explanation of symbols]
1 ... Model
2 ... Work surface plate
3. Gold frame
4 ... Kneaded sand
4 '... Hardened sand mold (main mold)
5 ... hanging rod
6 ... space
11 ... Mold
12 ... Work surface plate
13 ... Kneading sand
13 '... Hardened sand mold (core)
22 ... Work surface plate
23 ... Lower mold
24 ... Upper mold
25 ... pouring gate
26 ... Casting

Claims (4)

鋳物砂とフェノール樹脂、ポリイソシアネート化合物、脂肪族カルボン酸エステルを主成分とする有機溶剤を必須成分として混練して得られる常温自硬性混練砂中に発泡ポリスチレン製の模型を埋設して鋳型を成形後、前記模型を抜型する鋳型の造型法。Foundry sand and phenolic resin, a polyisocyanate compound, and embedded foamed polystyrene model to ambient temperature self-hardening kneading in sand obtained by kneading an organic solvent as an essential component mainly comprising an aliphatic carboxylic acid ester forming a mold Then, a mold making method for removing the model. 発泡ポリスチレン製の成形型内に鋳物砂とフェノール樹脂、ポリイソシアネート化合物、脂肪族カルボン酸エステルを主成分とする有機溶剤を必須成分として混練して得られる常温自硬性混練砂を充填して鋳型を成形後、該鋳型を前記成形型内から抜型する鋳型の造型法。Fill the molding mold made of polystyrene foam with casting sand and organic solvent mainly composed of phenolic resin, polyisocyanate compound and aliphatic carboxylic acid ester as essential components and fill it with normal temperature self-hardening kneaded sand. A mold making method in which the mold is removed from the mold after molding. 前記有機溶剤がジカルボン酸アルキルエステルであることを特徴とする請求項1または2に記載の鋳型の造型法。  3. The mold making method according to claim 1, wherein the organic solvent is a dicarboxylic acid alkyl ester. 前記ジカルボン酸アルキルエステルのアルキル基がメチル基および/またはエチル基であることを特徴とする請求項3に記載の鋳型の造型法。  4. The mold forming method according to claim 3, wherein the alkyl group of the dicarboxylic acid alkyl ester is a methyl group and / or an ethyl group.
JP2002174886A 2002-06-14 2002-06-14 Mold making method Expired - Fee Related JP3786626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002174886A JP3786626B2 (en) 2002-06-14 2002-06-14 Mold making method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002174886A JP3786626B2 (en) 2002-06-14 2002-06-14 Mold making method

Publications (2)

Publication Number Publication Date
JP2004017085A JP2004017085A (en) 2004-01-22
JP3786626B2 true JP3786626B2 (en) 2006-06-14

Family

ID=31173741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002174886A Expired - Fee Related JP3786626B2 (en) 2002-06-14 2002-06-14 Mold making method

Country Status (1)

Country Link
JP (1) JP3786626B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105964938B (en) * 2016-07-25 2017-12-05 大连金河铸造有限公司 Inter-embedding type for casting the chamber column of double-walled two combines core
CN107262665A (en) * 2017-06-26 2017-10-20 安徽安顺硅基玻璃原料有限公司 A kind of cast steel quartz sand anti-stick sand additive

Also Published As

Publication number Publication date
JP2004017085A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
UA56175C2 (en) Method for making foundry branch pipes and other elements for hot topping and supply for casting molds and composition for making such branch pipes and elements
CN108275958B (en) A kind of water solubility lost pattern core, preparation method and application
JP4398097B2 (en) Solvent-free polyurethane no-bake binder
JP3786626B2 (en) Mold making method
JPH01154846A (en) Method of casting metal in air gap section of sand mold easy to be fluidized and firmly cured
US6632856B2 (en) Polyurethane-forming binders
JP5159330B2 (en) Sand mold for centrifugal casting mold and method for producing rolling roll
JP4820413B2 (en) Production method of casting core or casting mold
JP2014018851A (en) Method of producing core and core
CA2484263C (en) Core material
JP6767899B2 (en) Manufacturing method of recycled sand and manufacturing method of foundry sand
JP2698665B2 (en) Mold production method
JP2918444B2 (en) Foundry sand for scrap molding
JPH04147742A (en) Mold for casting
TW201000281A (en) Method for manufacturing machine tool parts and product thereof
JPH0335469Y2 (en)
JP2005186097A (en) Binder composition for making mold and composition for making mold, and method for making mold for casting
JP4407865B2 (en) Dissipation model additive and mold disappearance model using it
JP3330926B2 (en) Mold molding method and molding sand regeneration method
CN104470653B (en) " from hard " cast mixture of working time with extension
JPH0438497B2 (en)
JP2002301540A (en) Composition for molding sweeping mold and method for molding sweeping mold
JP2019181566A (en) Sand mold material for casting mold, core for casting mold, and manufacturing method of sand mold material
JPH06328189A (en) Production of casting mold
JP2000000631A (en) Production of mold

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140331

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees