JP3786202B2 - Floor structure - Google Patents

Floor structure Download PDF

Info

Publication number
JP3786202B2
JP3786202B2 JP2002330437A JP2002330437A JP3786202B2 JP 3786202 B2 JP3786202 B2 JP 3786202B2 JP 2002330437 A JP2002330437 A JP 2002330437A JP 2002330437 A JP2002330437 A JP 2002330437A JP 3786202 B2 JP3786202 B2 JP 3786202B2
Authority
JP
Japan
Prior art keywords
concrete layer
flange
floor
resistance
floor concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002330437A
Other languages
Japanese (ja)
Other versions
JP2004162412A (en
Inventor
光弘 徳野
和俊 津田
文博 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Engineering Co Ltd
Original Assignee
Asahi Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Engineering Co Ltd filed Critical Asahi Engineering Co Ltd
Priority to JP2002330437A priority Critical patent/JP3786202B2/en
Publication of JP2004162412A publication Critical patent/JP2004162412A/en
Application granted granted Critical
Publication of JP3786202B2 publication Critical patent/JP3786202B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は河川や陸上の橋梁における床版橋構造、又は鉄骨建物や鉄筋コンクリート建物等の各階層のスラブ構造、若しくは地下工事の上面に設ける路盤構造、或いは地面覆工に用いる路盤構造等の床構造体に関する。
【0002】
【従来の技術】
特許文献1の図1,図2等には、鋼矢板11を底板とし、該鋼矢板11にT形鋼又はH形鋼(主桁部材13)を溶接付けして間隔的に並設し、該各鋼矢板11の左右側端面に設けた爪部12により各鋼矢板11間を接合し、各T形鋼又はH形鋼の上部フランジ間に形成された間隔より各T形鋼又はH形鋼の上部フランジと鋼矢板11間のスペース内にコンクリートを打設して下部床コンクリート層を形成すると同時に、上記上部フランジ上にコンクリートを打設して上記下部床コンクリート層と上記間隔を通じ結合せる上部床コンクリート層を形成した床版橋を示している。
【0003】
又同様に図5においては、一枚物の鋼板から成る底板3に複数本のT形鋼又はH形鋼を並設してコンクリートを打設した床版橋構造を示している。
【0004】
又鉄骨建物の各階層のスラブ構造は梁材に床板を支持して形成しており、又鉄筋コンクリート建物の各階層のスラブ構造は一体打ちコンクリートで形成するのが通常である。同様に地下工事の上面に仮設する路盤構造は鉄板を梁材で支持する方法、又トラックや重機が出入りする工事現場においては単に鉄板を敷設して仮路盤を形成する方法等が採られている。
【0005】
【特許文献1】
特開平9−221717号公報
【0006】
【発明が解決しようとする課題】
而して上記特許文献1に示す床版橋構造においては、床版に活荷重による橋長方向におけるベンディングを生じ、該ベンディングにより上部床コンクリート層と下部床コンクリート層間に過度のずれ(撓み差)を生じ、該ずれに伴う上部床コンクリート層と下部床コンクリート層と鋼材間の界面に乖離を生じ強度を損なう問題点を有している。
【0007】
又上記路盤構造においては高重量の鉄板を多数枚敷き詰め或いは回収せねばならず、又鉄板間に段差や隙間を生じ、又過度の歩行音を生じ、強度や外観の面から本来の床構造体とは言い難いものである。
【0008】
又コンクリート建物においてスラブをコンクリートで一体打ちする場合には、煩雑な型枠構築と多数本の支柱の設置とそれらの撤去に手間が掛かり、コンクリート養生等を加えると工期が長く掛かり、総じて工費アップを招く。
【0009】
又鉄骨建物においては床板と梁材間に横架した根太によって荷重を支える構造が一般的であるが、撓みやきしみを生じがちであり、又根太と床板と天井板の構築に手間と時間を要する。
【0010】
【課題を解決するための手段】
本発明は上記問題点を適切に解決する床版橋における架橋床構造体、鉄骨建物や鉄筋コンクリート建物における床構造体、地下構築物における床構造体、地面を覆工する床構造体を提供する。
【0011】
上記床構造体は腹板の上端に上部フランジを有すると共に下端に下部フランジを有する複数本の鋼材を並設し、該鋼材の上部フランジと下部フランジと腹板間に画成されたスペース内に打設された下部床コンクリート層を有し、上記上部フランジ上に打設され且つ上記上部フランジ間の間隔を介して上記下部床コンクリート層と互いに結合された上部床コンクリート層を有する床構造体に関する。
【0012】
上記床構造体において上記鋼材の上部フランジから上記上部床コンクリート層中に埋入せる抵抗材を設け、該抵抗材を鋼材の長手方向に亘って間隔的に配設し、該抵抗材の脚部を上記上部フランジに貫挿して上記下部床コンクリート層中に埋入し、該抵抗材と脚部により上記鋼材と上部床コンクリート層と下部床コンクリート層の長手方向におけるベンディング抗力を生起せしめる構成とした。
【0013】
上記抵抗材とその脚部により上下床コンクリート層と鋼材から成る床構造体の活荷重に対するベンディング抗力を有効に惹起せしめる。
【0014】
具体例として上記抵抗材として抵抗棒を用い、該抵抗棒を上記鋼材の上部フランジから上記上部床コンクリート層中に埋入し、該抵抗棒を鋼材の長手方向に亘って間隔的に配設し、該抵抗棒の脚部を上部フランジに貫設した貫通孔に貫挿して脚部に螺合したナットにより上記上部フランジに固定すると共に該脚部を上記下部床コンクリート層中に埋入し、該抵抗棒と脚部により上記鋼材と上部床コンクリート層と下部床コンクリート層の長手方向におけるベンディング抗力を生起せしめる。
【0015】
上記抵抗棒は例えばU字形にし、該U字形抵抗棒の左右脚部を上記上部フランジに貫設した一対の貫通孔に貫挿し、上記ベンディング抗力を向上する。
【0016】
上記抵抗棒の脚部は上記上部フランジに貫挿しつつ、その下端を上記下部フランジに貫設した貫通孔に挿入し、抵抗棒を上部フランジと下部フランジに支持し、上記ベンディング抗力を向上する。
【0017】
又他の具体例として上記抵抗材として抵抗棒を用い、該抵抗棒を鋼材の上部フランジから上記上部床コンクリート層中に埋入し、該抵抗棒を鋼材の長手方向に亘って間隔的に配設し、該抵抗棒の脚部を上部フランジに貫設した貫通孔に貫挿すると共に該脚部の下端を下部フランジに貫設した貫通孔に挿入し、該脚部下端に螺合したナットにより上記下部フランジに固定し、上記上部フランジと下部フランジ間に延在する脚部を上記下部床コンクリート層中に埋入し、該抵抗棒と脚部により上記鋼材と上部床コンクリート層と下部床コンクリート層の長手方向におけるベンディング抗力を生起せしめる。
【0018】
上記抵抗棒は脚部に螺合したナットにより上部床コンクリート層中への埋入深さを調整可能な構成を有する。
【0019】
上記一つの床構造体に対し使用される抵抗棒の取付け総量は、取付け作業の負担と工期及び工費の増大を招く原因となる。本発明における抵抗棒は上記螺合構造により工場又は現場における取付け作業を著しく軽減し、配設位置や間隔を自由に設定して床構造体に応じた機能を発揮せしめることができ、ベンディングに対し均質な耐力を得ることができる。
【0020】
【発明の実施の形態】
以下本発明に係る床構造体の実施の形態を床版橋(橋梁)における床構造体(架橋床構造体)を代表例として、図1乃至図13に基づき説明する。
【0021】
この床版橋における床版構造体は腹板3の上端に上部フランジ2を有すると共に下端に下部フランジ4を有する複数本の鋼材(床版構造体においては鋼桁と称する)1を用い、該鋼材1を上記下部フランジ4を以って橋脚5間(建物や地下構築物の床構造体においては橋脚に代わる架橋支持体)に架橋しつつ橋幅方向(短手方向)に配設し、該鋼材1の上部フランジ2と下部フランジ4と腹板3間に画成されたスペース内に打設された下部床コンクリート層6を有し、上記上部フランジ2上に打設され且つ上記上部フランジ2間の間隔7を介して上記下部床コンクリート層6と互いに結合された上部床コンクリート層8を有する。
【0022】
上記鋼材1はその両端をゴム支承24等の衝撃吸収座を介して橋脚(橋台を含む)5の上面に支持せしめる。
【0023】
上記鋼材1は汎用のH形鋼を用いるか、又は長尺鋼板から成る腹板3の上端と下端に長尺鋼板から成る上部フランジ2と下部フランジ4を溶接しH形にしたものを用いる。
【0024】
上記床版橋に代表される架橋床構造体において、上記鋼材1の上部フランジ2から上記上部床コンクリート層8中に埋入せる抵抗材9を設け、該抵抗材9を鋼材1の長手方向(橋長方向)に亘って間隔的に配設し、該抵抗材9の脚部10を上記上部フランジ2に貫挿して同フランジ2の下方へ延出し上記下部床コンクリート層6中に埋入し、該抵抗材9と脚部10により上記鋼材1と上部床コンクリート層8と下部床コンクリート層6の長手方向(橋長方向)におけるベンディング抗力を生起せしめる。
【0025】
上記抵抗材9はその脚部10と協働して上下床コンクリート層8,6と鋼材1から成る床版橋の架橋床構造体の活荷重に対するベンディング抗力を有効に惹起する。
【0026】
上記上下床コンクリート層8,6によって床コンクリート層を形成し、該上部床コンクリート層8の上面に車輌路面層を形成する。
【0027】
<図1,図2に示す実施形態>
図1,図2に示すように、上記抵抗材9として抵抗棒11を用い、該抵抗棒11を上記鋼材1の上部フランジ2から上記上部床コンクリート層8中に埋入し、該抵抗棒11を鋼材1の長手方向(橋長方向)に亘って間隔的に配設し、該抵抗棒11の脚部10を上部フランジ2に貫設した貫通孔12に貫挿して脚部10に螺合したナット14により上記上部フランジ2に固定すると共に、該脚部10を上部フランジ2の下方へ延出して上記下部床コンクリート層6中に埋入し、該抵抗棒11と脚部10により上記鋼材1と上部床コンクリート層8と下部床コンクリート層6の長手方向におけるベンディング抗力を生起せしめる。
【0028】
上記ナット14は上部フランジ2の上面側と下面側において抵抗棒11を上部フランジ2に締結するダブルナット構造が有効である。
【0029】
従って上記貫通孔12は雌ねじを有しない馬鹿孔であり、抵抗棒11の脚部10を該貫通孔12に緩貫挿しつつ上記ナットにより上部フランジ2に固定する。
【0030】
上記抵抗棒11は上端に径大のヘッド13を有し、その頸下の軸部周面、即ち脚部10の周面に貫通孔12の深さよりも充分に長く、例えばその略全長に亘り雄ねじを形成しており、これによりナット14による螺合位置を調整して抵抗棒11の貫通孔12に対する螺合深さを調整し、その上部床コンクリート層8中への埋入深さを調整可能な構成とする。
【0031】
上記抵抗棒11は図1に示すように直棒状のものを用いるか、例えば図2に示すように、U字形抵抗棒11を用い、該U字形抵抗棒11の左右脚部10を上記上部フランジ2の貫通孔12に貫挿しつつ、ナット14により上部フランジ2に締結固定し、U字曲げ部16を上部床コンクリート層8中に埋入し、上記ベンディング抗力を向上する。この場合U字形抵抗棒11はそのU字形面が互いに対向するように長手方向に間隔を置いて配設する。
【0032】
<図3,図4に示す実施形態>
図3,図4に示すように、上記抵抗材9として抵抗棒11を用い、上記図1,図2で説明した構造の直棒形又はU字形の抵抗棒11の脚部10を上記上部フランジ2の貫通孔12に貫挿しつつ、上部フランジ2の下方へ延出してその下端を上記下部フランジ4に貫設した貫通孔15に挿入し、抵抗棒11を上部フランジ2と下部フランジ4に支持する構造を採りながら、上部フランジ2と下部フランジ4間に延在する該脚部10を下部床コンクリート層6中に埋入して上記ベンディング抗力を更に向上する。
【0033】
上記図3に示す直棒状の抵抗棒11はその脚部10を図1に示すナット締め構造により上部フランジ2に固定する。
【0034】
又は上記図3に示す直棒状の抵抗棒11はその脚部10を上部フランジ2の貫通孔12にナット締めしつつ、下部フランジ4の貫通孔15にナット締めすることができる。
【0035】
又図4に示すU字形抵抗棒11はU字曲げ部16を上部床コンクリート層8中に埋入し、上記ベンディング抗力を向上する。該U字形抵抗棒11はその一対の脚部10を上部フランジ2の左端と右端に貫設した貫通孔12に貫挿しナット締めすると共に、下部フランジ4の左端と右端に貫設した貫通孔12に緩挿入する。又は上記U字形抵抗棒11はその一対の脚部10を上部フランジ2の左端と右端に貫設した貫通孔12に緩貫挿しその下端を下部フランジ4の貫通孔15に緩挿入し、左右脚部10の下端に螺合したナットにより下部フランジ4に締結固定する。
【0036】
<図5,図6に示す実施形態>
図5,図6に示すように、上記抵抗材9として抵抗棒11を用い、該抵抗棒11を鋼材1の上部フランジ2から上記上部床コンクリート層8中に埋入し、該抵抗棒11を鋼材1の長手方向(橋長方向)に亘って間隔的に配設し、該抵抗棒11の脚部10を上部フランジ2に貫設した貫通孔12に貫挿すると共に、該脚部10の下端を下部フランジ4に貫設した貫通孔15に挿入し、該脚部10下端に螺合したナット17により上記下部フランジ4に締結固定し、上記上部フランジ2と下部フランジ4間に延在する脚部10を上記下部床コンクリート層6中に埋入し、該抵抗棒11と脚部10により上記鋼材1と上部床コンクリート層8と下部床コンクリート層6の長手方向におけるベンディング抗力を生起せしめる。
【0037】
従って上記下部フランジ4の貫通孔15は雌ねじを有しない馬鹿孔であり、この貫通孔15に緩貫挿し、上記ナット締めを行う。
【0038】
上記抵抗棒11は上端に径大のヘッド13を有し、その頸下の軸部周面、即ち脚部10の周面に貫通孔15の深さよりも充分に長く、例えばその略全長に亘り雄ねじを形成しており、抵抗棒11のナット17による締結螺合位置を調整して螺合深さを調整し、その上部床コンクリート層8中への埋入深さを調整可能な構成とする。
【0039】
又図6に示す上部フランジの左端と右端に一対の貫通孔12を設け、該貫通孔12は雌ねじを有しない馬鹿孔にしてU字形抵抗棒11の左右脚部10を緩貫挿し、該脚部10の下端を下部フランジ4の雌ねじを有しない貫通孔15に緩貫挿し、ナット17により下部フランジ4に締結固定する。このU字形抵抗棒11はそのU字形面が長手方向において対向するように間隔的に配設する。
【0040】
上記抵抗棒11の脚部10を上記上部フランジ2の貫通孔12に貫挿しつつ、その下端を上記下部フランジ4に貫設した貫通孔15に挿入し、抵抗棒11を上部フランジ2と下部フランジ4に支持しつつ、上部フランジ2と下部フランジ4間において下部床コンクリート層6中に埋入することにより上記ベンディング抗力を更に向上する。
【0041】
図6に示すU字形抵抗棒11はU字曲げ部16を上部床コンクリート層8中に埋入し、上記ベンディング抗力を更に向上する。
【0042】
次に図7乃至図9に基づき各鋼材1の上部フランジ2間に形成された、コンクリート流入間隔7について説明する。
【0043】
基本的には上記鋼材1として、下部フランジ4と上部フランジ2と腹板3とから成るJIS仕様(JISG3101鋼材、JISG3106鋼材、JISG3114鋼材等)のH形鋼を用い、図7に示すように、該H形鋼の腹板3の左右へ均等に張り出す上部フランジ2の両端部を等幅ずつ切除して下部フランジ4より短幅にし、腹板3の左右へ均等に張り出す下部フランジ4の左右端面を突き合わせつつ短手方向(橋幅方向)に並設し、以って上記短幅にした上部フランジ2間にコンクリート流入間隔7を形成する。
【0044】
又は図8に示すように、上記JIS規格のH形鋼の上部フランジ2の片半部を腹板3との接合部より切除して鋼材1を形成し、該鋼材1の下部フランジ4の左右端面を突き合わせつつ並設して上記除去した片フランジによる上記コンクリート流入間隔7を形成する。
【0045】
又は図9に示すように、上記JIS規格のH形鋼の上部フランジ4を幅詰めせずに、JIS仕様のH形鋼をそのまま橋脚5,5間に架橋支持すると共に、各下部フランジ4間に鋼材から成る継ぎ板25を介在して上記橋脚5,5間に架橋支持し、該各継ぎ板25の一方の板厚側端面と隣接する下部フランジ4の板厚側端面とを互いに突き合わせ状態にすると共に、各継ぎ板25の他方の板厚側端面と隣接する下部フランジ4の板厚側端面とを互いに突き合わせ状態にする。上記継ぎ板25の介在によって各上部フランジ2間にコンクリート流入間隔7を形成する。
【0046】
上記図9において説明した継ぎ板25を、図7,図8において説明した下部フランジ4の端面間に介在して上記コンクリート流入間隔7を拡大することができる。
【0047】
又上記継ぎ板25には該継ぎ板25の中央部上面より立ち上げて下部床コンクリート層6内に埋設せる補強板26を具備せしめる。この継ぎ板25と補強板26とでT形を呈する。この継ぎ板25は市販のJIS規格のT形鋼を適用するか、又は市販のJIS規格のH形鋼の上部フランジを切除してT形鋼を形成し、上記継ぎ板25と補強板26を形成する。
【0048】
図10,図11は上記継ぎ板25を鋼材1の下部フランジ4間に介在する具体例を示している。同図に示すように、継ぎ板25から左右へ張り出して隣接する下部フランジ4間に掛け止めされる上掛け27を設け、該上掛け27を隣接する下部フランジ4の各上面に掛け止めすることにより、継ぎ板25を隣接下部フランジ4間に介在する。
【0049】
例えば上掛け27を鋼材等から成るL形材にて形成し、該L形材を継ぎ板25の上面にボルト28又は溶接にて一体に取り付け、該L形材の両端を短手方向において張り出して上掛け部を形成し、該上掛け部を隣接する下部フランジ4の上面に載置して継ぎ板25を隣接下部フランジ4間に介在する。上記L形材の立ち上がり板は前記補強板26を形成する。この補強板26は下部床コンクリート層6のベンディングを抑止する補強板として機能する。
【0050】
図12,図13に示すように、上記各例によって形成されたコンクリート流入間隔7より上部フランジ2と下部フランジ4と腹板3間に画成されたスペース内にコンクリートを打設して下部床コンクリート層6を形成する。
【0051】
同時に上部フランジ2上にコンクリートを打設して、上記コンクリート流入間隔7を介して下部床コンクリート層6と結合された上部床コンクリート層8を形成する。
【0052】
上記何れの例においても下部フランジ4相互の突き合わせ、又は継ぎ板25を介しての下部フランジ4相互の突き合わせによって閉鎖された底板を形成し、コンクリート打設型枠として機能せしめる。
【0053】
上記上部床コンクリート層8と下部床コンクリート層6によって床コンクリート層を形成し、床版橋の場合には該上部床コンクリート層8の上面に車輌路面層を形成し、又建物の床構造である場合には、上記上部床コンクリート層8の上面に床仕上げ材を設ける。この建物においては上記構造の床構造体の両端を外壁に支持するように架橋する。又地面覆工の場合には上記構造の床構造体を設置し路盤を形成する。
【0054】
上記抵抗材9、抵抗棒11、これらの脚部10により車輌走行時又は歩行や設備品による活荷重に対するベンディング抗力を上記各床構造体に与える。
【0055】
各床コンクリート層8,6中には適宜鉄筋を配設埋入するが、図示は省略している。又上記鋼材1及び継ぎ板25は何れもその外表面に亜鉛メッキ等のメッキ、又は塗料を塗装したもの、或いは耐候性鋼材を用いる。
【図面の簡単な説明】
【図1】 Aは抵抗棒を鋼材の上部フランジにナット締めし貫挿した例を示す短手方向要部断面図、Bは同長手方向要部断面図。
【図2】 Aは抵抗棒をU字形にして鋼材の上部フランジにナット締めし貫挿した例を示す短手方向要部断面図、Bは同長手方向要部断面図。
【図3】 Aは抵抗棒を鋼材の上部フランジにナット締めしつつ下部フランジに支持した例を示す短手方向要部断面図、Bは同長手方向要部断面図。
【図4】 Aは抵抗棒をU字形にし鋼材の上部フランジにナット締めしつつ下部フランジに支持した例を示す短手方向要部断面図、Bは同長手方向要部断面図。
【図5】 Aは抵抗棒を鋼材の上部フランジに貫挿しつつ下部フランジにナット締めした例を示す短手方向要部断面図、Bは同長手方向要部断面図。
【図6】 Aは抵抗棒をU字形にし鋼材の上部フランジに貫挿しつつ下部フランジにナット締めした例を示す短手方向要部断面図、Bは同長手方向要部断面図。
【図7】 鋼材間にコンクリート流入間隔を形成する例を示す短手方向断面図。
【図8】 鋼材間にコンクリート流入間隔を形成する他の例を示す短手方向断面図。
【図9】 鋼材間にコンクリート流入間隔を形成する更に他の例を示す短手方向断面図。
【図10】 上記図9の継ぎ板の具体例を示す短手方向断面図。
【図11】 上記図9の継ぎ板の具体例を示す長手方向断面図。
【図12】 ベンディング抵抗材として抵抗棒を用いた例を示す床版橋の短手方向断面図、即ち架橋床構造体の同断面図。
【図13】 ベンディング抵抗材として抵抗棒を用いた例を示す床版橋の長手方向断面図、即ち架橋床構造体の同断面図。
【符号の説明】
1…鋼材、2…上部フランジ、3…腹板、4…下部フランジ、5…橋脚、6…下部床コンクリート層、7…間隔、8…上部床コンクリート層、9…抵抗材、10…脚部、11…抵抗棒、12…貫通孔、13…ヘッド、14…ナット、15…貫通孔、16…U字曲げ部、17…ナット、24…ゴム支承、25…継ぎ板、26…補強板、27…上掛け、28…ボルト
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a floor slab structure in a river or land bridge, a slab structure of each level such as a steel frame building or a reinforced concrete building, a roadbed structure provided on the upper surface of an underground construction, or a floor structure such as a roadbed structure used for ground covering About the body.
[0002]
[Prior art]
In FIG. 1, FIG. 2, etc. of patent document 1, the steel sheet pile 11 is used as a bottom plate, T-shaped steel or H-shaped steel (main girder member 13) is welded to the steel sheet pile 11 and arranged in parallel at intervals. The steel sheet piles 11 are joined to each other by claw portions 12 provided on the left and right end faces of the steel sheet piles 11, and each T-shaped steel or H-shaped steel is determined from the interval formed between the upper flanges of the T-shaped steel or H-shaped steel. Concrete is cast in the space between the steel upper flange and the steel sheet pile 11 to form a lower floor concrete layer, and at the same time, concrete is cast on the upper flange and coupled to the lower floor concrete layer through the gap. A floor slab bridge with an upper floor concrete layer is shown.
[0003]
Similarly, FIG. 5 shows a floor slab bridge structure in which a plurality of T-shaped steels or H-shaped steels are juxtaposed on a bottom plate 3 made of a single steel plate and concrete is cast.
[0004]
In addition, the slab structure of each level of the steel building is usually formed by supporting the floor board on the beam material, and the slab structure of each level of the reinforced concrete building is usually formed by integrally cast concrete. Similarly, the roadbed structure that is temporarily installed on the upper surface of the underground work is a method of supporting the iron plate with a beam material, or a method of simply laying the iron plate to form a temporary roadbed at a construction site where trucks and heavy machinery come and go. .
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 9-221717 [0006]
[Problems to be solved by the invention]
Thus, in the floor slab bridge structure shown in Patent Document 1, bending in the bridge length direction due to live load is generated in the floor slab, and excessive deviation (bending difference) occurs between the upper floor concrete layer and the lower floor concrete layer due to the bending. This causes a problem in that the strength is deteriorated by causing a divergence at the interface between the upper floor concrete layer, the lower floor concrete layer and the steel material due to the deviation.
[0007]
In the above roadbed structure, a large number of heavy iron plates must be laid or collected, and steps and gaps are created between the iron plates, and excessive walking noise is generated. It is hard to say.
[0008]
In addition, when concrete slabs are integrally cast with concrete in a concrete building, it takes time and effort to construct complicated formwork, install a large number of struts, and remove them, and adding concrete curing will increase the construction period and increase the overall construction cost. Invite.
[0009]
In steel-framed buildings, a structure that supports the load by the joists horizontally placed between the floor planks and the beams is common, but it tends to bend and squeeze, and it takes time and effort to construct the joists, floor planks and ceiling boards. Cost.
[0010]
[Means for Solving the Problems]
The present invention provides a bridged floor structure in a floor slab bridge, a floor structure in a steel frame building or a reinforced concrete building, a floor structure in an underground structure, and a floor structure that covers the ground.
[0011]
In the floor structure, a plurality of steel members having an upper flange at the upper end of the belly plate and a lower flange at the lower end are arranged side by side, and the steel plate is struck in a space defined between the upper flange, the lower flange and the belly plate. The present invention relates to a floor structure having an upper floor concrete layer that has an installed lower floor concrete layer, is placed on the upper flange, and is coupled to the lower floor concrete layer through a gap between the upper flanges.
[0012]
In the floor structure, a resistance material that is embedded in the upper floor concrete layer from the upper flange of the steel material is provided, the resistance material is disposed at intervals along the longitudinal direction of the steel material, and the legs of the resistance material Is inserted into the upper flange and embedded in the lower floor concrete layer, and the resistance material and the leg portion cause bending resistance in the longitudinal direction of the steel material, the upper floor concrete layer, and the lower floor concrete layer. .
[0013]
The resistance material and its legs effectively cause bending resistance against the live load of the floor structure composed of upper and lower floor concrete layers and steel materials.
[0014]
As a specific example, a resistance rod is used as the resistance material, the resistance rod is embedded in the upper floor concrete layer from the upper flange of the steel material, and the resistance rods are arranged at intervals along the longitudinal direction of the steel material. The resistance rod is inserted into a through-hole penetrating the upper flange and fixed to the upper flange by a nut screwed into the leg, and the leg is embedded in the lower floor concrete layer. The resistance rod and the leg cause bending resistance in the longitudinal direction of the steel material, the upper floor concrete layer and the lower floor concrete layer.
[0015]
The resistance rod is, for example, U-shaped, and the left and right leg portions of the U-shaped resistance rod are inserted into a pair of through holes provided in the upper flange to improve the bending resistance.
[0016]
The leg portion of the resistance rod is inserted into the upper flange and the lower end thereof is inserted into a through-hole penetrating the lower flange, and the resistance rod is supported by the upper flange and the lower flange to improve the bending resistance.
[0017]
As another specific example, a resistance rod is used as the resistance material, the resistance rod is embedded in the upper floor concrete layer from the upper flange of the steel material, and the resistance rods are arranged at intervals along the longitudinal direction of the steel material. A nut that is inserted into a through hole that penetrates the upper end flange of the resistance rod and that has a lower end of the leg portion that is inserted into a through hole that extends through the lower flange and is screwed to the lower end of the leg portion. The leg portion extending between the upper flange and the lower flange is embedded in the lower floor concrete layer, and the steel material, the upper floor concrete layer, and the lower floor are embedded by the resistance rod and the leg portion. Causes bending resistance in the longitudinal direction of the concrete layer.
[0018]
The resistance bar has a configuration in which the depth of embedding into the upper floor concrete layer can be adjusted by a nut screwed into the leg portion.
[0019]
The total amount of resistance rods used for the one floor structure causes the burden of installation work and the construction period and cost. The resistance rod according to the present invention can remarkably reduce the installation work at the factory or the site by the above-mentioned screwing structure, and can set the installation position and interval freely to exert the function according to the floor structure. Homogeneous yield strength can be obtained.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a floor structure according to the present invention will be described based on FIGS. 1 to 13 with a floor structure (bridge floor structure) in a floor slab bridge (bridge) as a representative example.
[0021]
The floor slab structure in this floor slab bridge uses a plurality of steel materials 1 (which are called steel girders in the floor slab structure) having an upper flange 2 at the upper end of the abdomen plate 3 and a lower flange 4 at the lower end. The steel material 1 is disposed in the bridge width direction (short direction) while bridging between the piers 5 with the lower flange 4 (the bridge support instead of the pier in the floor structure of a building or underground structure), It has a lower floor concrete layer 6 placed in a space defined between an upper flange 2, a lower flange 4 and a belly plate 3 of the steel material 1, and is placed on the upper flange 2 and between the upper flanges 2. The upper floor concrete layer 8 is connected to the lower floor concrete layer 6 through the gap 7.
[0022]
Both ends of the steel material 1 are supported on the upper surface of a bridge pier (including an abutment) 5 via an impact absorbing seat such as a rubber support 24.
[0023]
The steel material 1 is a general-purpose H-shaped steel, or a material obtained by welding an upper flange 2 and a lower flange 4 made of a long steel plate to the upper and lower ends of a belly plate 3 made of a long steel plate to form an H shape.
[0024]
In the bridged floor structure typified by the above-mentioned floor slab bridge, a resistance material 9 to be embedded from the upper flange 2 of the steel material 1 into the upper floor concrete layer 8 is provided, and the resistance material 9 is disposed in the longitudinal direction of the steel material 1 ( Are arranged at intervals over the bridge length direction), and the legs 10 of the resistance material 9 are inserted into the upper flange 2 and extend downward from the flange 2 to be embedded in the lower floor concrete layer 6. The resistance material 9 and the leg portion 10 cause a bending drag in the longitudinal direction (bridge length direction) of the steel material 1, the upper floor concrete layer 8 and the lower floor concrete layer 6.
[0025]
The resistance material 9 cooperates with the leg portion 10 to effectively induce a bending resistance against the live load of the bridge floor structure of the floor slab bridge composed of the upper and lower floor concrete layers 8 and 6 and the steel material 1.
[0026]
A floor concrete layer is formed by the upper and lower floor concrete layers 8 and 6, and a vehicle road surface layer is formed on the upper surface of the upper floor concrete layer 8.
[0027]
<Embodiment shown in FIGS. 1 and 2>
As shown in FIGS. 1 and 2, a resistance bar 11 is used as the resistance material 9, and the resistance bar 11 is embedded into the upper floor concrete layer 8 from the upper flange 2 of the steel material 1. Are arranged at intervals in the longitudinal direction (bridge length direction) of the steel material 1, and the leg portion 10 of the resistance rod 11 is inserted into the through hole 12 penetrating the upper flange 2 and screwed into the leg portion 10. The nut 14 is fixed to the upper flange 2, and the leg portion 10 extends below the upper flange 2 and is embedded in the lower floor concrete layer 6, and the steel material is formed by the resistance bar 11 and the leg portion 10. 1 and the bending resistance in the longitudinal direction of the upper floor concrete layer 8 and the lower floor concrete layer 6 is caused.
[0028]
The nut 14 is effective in a double nut structure in which the resistance rod 11 is fastened to the upper flange 2 on the upper surface side and the lower surface side of the upper flange 2.
[0029]
Accordingly, the through hole 12 is a foolish hole without an internal thread, and the leg portion 10 of the resistance rod 11 is loosely inserted into the through hole 12 and fixed to the upper flange 2 by the nut.
[0030]
The resistance rod 11 has a head 13 having a large diameter at the upper end, and is sufficiently longer than the depth of the through-hole 12 on the peripheral surface of the shaft portion under the neck, that is, the peripheral surface of the leg portion 10, for example, over the substantially entire length thereof. A male screw is formed, thereby adjusting the screwing position by the nut 14 to adjust the screwing depth of the resistance rod 11 with respect to the through hole 12, and adjusting the embedding depth in the upper floor concrete layer 8 Make it possible.
[0031]
The resistance rod 11 is a straight rod as shown in FIG. 1 or, for example, as shown in FIG. 2, a U-shaped resistance rod 11 is used, and the left and right leg portions 10 of the U-shaped resistance rod 11 are connected to the upper flange. While being inserted into the two through holes 12, the nut 14 is fastened and fixed to the upper flange 2, and the U-shaped bent portion 16 is embedded in the upper floor concrete layer 8 to improve the bending resistance. In this case, the U-shaped resistance rods 11 are arranged at intervals in the longitudinal direction so that the U-shaped surfaces face each other.
[0032]
<Embodiment shown in FIGS. 3 and 4>
As shown in FIGS. 3 and 4, a resistance bar 11 is used as the resistance material 9, and the leg portion 10 of the straight or U-shaped resistance bar 11 having the structure described in FIGS. The lower end of the upper flange 2 is inserted into the through-hole 15 extending through the lower flange 4 while being inserted into the two through-holes 12, and the resistance rod 11 is supported by the upper flange 2 and the lower flange 4. While adopting the structure, the leg 10 extending between the upper flange 2 and the lower flange 4 is embedded in the lower floor concrete layer 6 to further improve the bending resistance.
[0033]
3 is fixed to the upper flange 2 by the nut tightening structure shown in FIG.
[0034]
Alternatively, the straight rod-shaped resistance rod 11 shown in FIG. 3 can be nut-tightened to the through-hole 15 of the lower flange 4 while the leg portion 10 is nut-tightened to the through-hole 12 of the upper flange 2.
[0035]
Further, the U-shaped resistance rod 11 shown in FIG. 4 embeds the U-shaped bent portion 16 in the upper floor concrete layer 8 to improve the bending resistance. The U-shaped resistance rod 11 has a pair of leg portions 10 inserted into through holes 12 penetrating the left end and the right end of the upper flange 2 and tightened with nuts, and through holes 12 penetrating the left end and the right end of the lower flange 4. Insert it loosely. Alternatively, the U-shaped resistance rod 11 has its pair of leg portions 10 loosely inserted into through holes 12 penetrating the left end and right end of the upper flange 2, and its lower end is loosely inserted into the through holes 15 of the lower flange 4, thereby The nut 10 is fastened and fixed to the lower flange 4 by a nut screwed to the lower end of the portion 10.
[0036]
<Embodiment shown in FIGS. 5 and 6>
As shown in FIG. 5 and FIG. 6, a resistance bar 11 is used as the resistance material 9, and the resistance bar 11 is embedded in the upper floor concrete layer 8 from the upper flange 2 of the steel material 1. The steel material 1 is disposed at intervals in the longitudinal direction (bridge length direction), and the leg portion 10 of the resistance rod 11 is inserted into a through hole 12 penetrating the upper flange 2. A lower end is inserted into a through hole 15 penetrating the lower flange 4, and is fastened and fixed to the lower flange 4 by a nut 17 screwed to the lower end of the leg 10, and extends between the upper flange 2 and the lower flange 4. The leg portion 10 is embedded in the lower floor concrete layer 6, and the bending rod drag in the longitudinal direction of the steel material 1, the upper floor concrete layer 8 and the lower floor concrete layer 6 is caused by the resistance rod 11 and the leg portion 10.
[0037]
Therefore, the through hole 15 of the lower flange 4 is a fool hole that does not have a female screw, and is inserted slowly into the through hole 15 to tighten the nut.
[0038]
The resistance rod 11 has a large-diameter head 13 at the upper end, and is sufficiently longer than the depth of the through-hole 15 on the peripheral surface of the shaft portion under the neck, that is, the peripheral surface of the leg portion 10, for example, over the substantially entire length thereof. A male screw is formed, and the screwing depth is adjusted by adjusting the fastening screwing position of the resistance bar 11 with the nut 17 so that the depth of embedding into the upper floor concrete layer 8 can be adjusted. .
[0039]
Also, a pair of through holes 12 are provided at the left and right ends of the upper flange shown in FIG. 6, and the through holes 12 are ridiculous holes that do not have female threads, and the left and right leg portions 10 of the U-shaped resistance rod 11 are loosely inserted. The lower end of the portion 10 is loosely inserted into the through hole 15 of the lower flange 4 that does not have an internal thread, and is fastened and fixed to the lower flange 4 by the nut 17. The U-shaped resistance rods 11 are arranged at intervals so that the U-shaped surfaces thereof are opposed in the longitudinal direction.
[0040]
The leg 10 of the resistance rod 11 is inserted into the through hole 12 of the upper flange 2 and the lower end thereof is inserted into the through hole 15 provided in the lower flange 4 so that the resistance rod 11 is inserted into the upper flange 2 and the lower flange. 4, the bending resistance is further improved by embedding in the lower floor concrete layer 6 between the upper flange 2 and the lower flange 4.
[0041]
A U-shaped resistance rod 11 shown in FIG. 6 embeds a U-shaped bent portion 16 in the upper floor concrete layer 8 to further improve the bending resistance.
[0042]
Next, the concrete inflow interval 7 formed between the upper flanges 2 of the steel materials 1 will be described with reference to FIGS.
[0043]
Basically, as the steel material 1, an H-shaped steel of JIS specifications (JISG3101 steel material, JISG3106 steel material, JISG3114 steel material, etc.) consisting of the lower flange 4, the upper flange 2, and the belly plate 3 is used, as shown in FIG. Both ends of the upper flange 2 that projects evenly to the left and right of the H-shaped steel belly plate 3 are cut at equal widths to make the width shorter than the lower flange 4, and the left and right sides of the lower flange 4 that evenly project to the left and right of the belly plate 3 A concrete inflow interval 7 is formed between the upper flanges 2 which are arranged in parallel in the short direction (bridge width direction) while abutting the end faces, and thus the short width.
[0044]
Alternatively, as shown in FIG. 8, one half of the upper flange 2 of the JIS standard H-section steel is cut off from the joint with the abdomen 3 to form a steel material 1, and the left and right sides of the lower flange 4 of the steel material 1 are formed. The concrete inflow interval 7 is formed by the one-side flange removed by arranging the end faces in parallel with each other.
[0045]
Alternatively, as shown in FIG. 9, the upper flange 4 of the JIS standard H-section steel is not filled, and the JIS specification H-section is supported by bridges between the piers 5 and 5 as well as between the lower flanges 4. A bridge plate 25 made of steel is interposed between the bridge piers 5 and 5 so as to cross-link and support one plate thickness side end surface of each joint plate 25 and the plate thickness side end surface of the lower flange 4 adjacent to each other. In addition, the other plate thickness side end surface of each joint plate 25 and the plate thickness side end surface of the lower flange 4 adjacent to each other are brought into contact with each other. A concrete inflow interval 7 is formed between the upper flanges 2 by interposing the joint plate 25.
[0046]
The joint inflow interval 7 can be expanded by interposing the joint plate 25 described in FIG. 9 between the end faces of the lower flange 4 described in FIGS.
[0047]
Further, the joint plate 25 is provided with a reinforcing plate 26 that rises from the upper surface of the central portion of the joint plate 25 and is embedded in the lower floor concrete layer 6. The joint plate 25 and the reinforcing plate 26 have a T shape. A commercially available JIS standard T-shaped steel is applied to the joint plate 25, or a T-shaped steel is formed by cutting the upper flange of a commercially available JIS standard H-shaped steel. Form.
[0048]
10 and 11 show specific examples in which the joint plate 25 is interposed between the lower flanges 4 of the steel material 1. As shown in the figure, an upper hanger 27 that protrudes from the joint plate 25 to the left and right and is hung between the adjacent lower flanges 4 is provided, and the upper hanger 27 is hung on each upper surface of the adjacent lower flange 4. Thus, the joint plate 25 is interposed between the adjacent lower flanges 4.
[0049]
For example, the top 27 is formed of an L-shaped member made of steel or the like, and the L-shaped member is integrally attached to the upper surface of the joint plate 25 by bolts 28 or welding, and both ends of the L-shaped member are extended in the short direction. The upper plate is formed on the upper surface of the adjacent lower flange 4 and the joint plate 25 is interposed between the adjacent lower flanges 4. The rising plate of the L-shaped material forms the reinforcing plate 26. The reinforcing plate 26 functions as a reinforcing plate that suppresses bending of the lower floor concrete layer 6.
[0050]
As shown in FIGS. 12 and 13, concrete is placed in the space defined between the upper flange 2, the lower flange 4, and the belly plate 3 from the concrete inflow interval 7 formed in each of the above examples, thereby lower floor concrete. Layer 6 is formed.
[0051]
At the same time, concrete is cast on the upper flange 2 to form the upper floor concrete layer 8 connected to the lower floor concrete layer 6 through the concrete inflow interval 7.
[0052]
In any of the above examples, a closed bottom plate is formed by abutment between the lower flanges 4 or abutment between the lower flanges 4 via the joint plate 25, and functions as a concrete casting formwork.
[0053]
A floor concrete layer is formed by the upper floor concrete layer 8 and the lower floor concrete layer 6, and in the case of a floor slab bridge, a vehicle road surface layer is formed on the upper surface of the upper floor concrete layer 8, and the floor structure of the building. In that case, a floor finishing material is provided on the upper surface of the upper floor concrete layer 8. In this building, the both ends of the floor structure having the above structure are bridged so as to be supported on the outer wall. In the case of ground covering, a floor structure having the above structure is installed to form a roadbed.
[0054]
The resistance members 9, the resistance rods 11, and the legs 10 give the floor structures a bending resistance against a live load caused by running of the vehicle or walking or equipment.
[0055]
Reinforcing bars are arranged and embedded in the floor concrete layers 8 and 6 as appropriate, but they are not shown. The steel material 1 and the joint plate 25 are both made of galvanized plating or paint on the outer surface, or weather resistant steel.
[Brief description of the drawings]
FIG. 1A is a cross-sectional view of an essential part in a short direction showing an example in which a resistance bar is nut-tightened and inserted into an upper flange of a steel material, and B is a cross-sectional view of an essential part in the longitudinal direction.
FIG. 2A is a cross-sectional view of an essential part in a short direction showing an example in which a resistance rod is U-shaped and nuts are inserted into an upper flange of a steel material, and B is a cross-sectional view of an essential part in the longitudinal direction.
FIG. 3A is a cross-sectional view of an essential part in a short direction showing an example in which a resistance rod is supported on a lower flange while nuts are fastened to an upper flange of a steel material, and B is a cross-sectional view of an essential part in the longitudinal direction.
FIG. 4A is a cross-sectional view of an essential part in a short direction showing an example in which a resistance bar is formed in a U shape and is supported by a lower flange while tightening a nut to an upper flange of a steel material, and B is a cross-sectional view of an essential part in the longitudinal direction.
FIG. 5A is a cross-sectional view of an essential part in a short direction showing an example in which a resistance rod is inserted into an upper flange of a steel material and nut-tightened to a lower flange, and B is a cross-sectional view of an essential part in the longitudinal direction.
6A is a cross-sectional view of an essential part in a short direction showing an example in which a resistance bar is formed in a U-shape and nuts are fastened to a lower flange while being inserted into an upper flange of a steel material, and B is a cross-sectional view of an essential part in the longitudinal direction. FIG.
FIG. 7 is a short direction cross-sectional view showing an example in which a concrete inflow interval is formed between steel materials.
FIG. 8 is a cross-sectional view in a short direction showing another example of forming a concrete inflow interval between steel materials.
FIG. 9 is a cross-sectional view in a short direction showing still another example of forming a concrete inflow interval between steel materials.
10 is a cross-sectional view in the short direction showing a specific example of the joint plate of FIG.
11 is a longitudinal sectional view showing a specific example of the joint plate shown in FIG. 9;
FIG. 12 is a cross-sectional view in a short direction of a floor slab bridge showing an example in which a resistance rod is used as a bending resistance material, that is, a cross-sectional view of a bridged floor structure.
FIG. 13 is a longitudinal sectional view of a floor slab bridge showing an example in which a resistance rod is used as a bending resistance material, that is, the same sectional view of a bridge floor structure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Steel material, 2 ... Upper flange, 3 ... Abdominal plate, 4 ... Lower flange, 5 ... Bridge pier, 6 ... Lower floor concrete layer, 7 ... Spacing, 8 ... Upper floor concrete layer, 9 ... Resistance material, 10 ... Leg part 11 ... Resistance rod, 12 ... Through hole, 13 ... Head, 14 ... Nut, 15 ... Through hole, 16 ... U-bend, 17 ... Nut, 24 ... Rubber support, 25 ... Joint plate, 26 ... Reinforcement plate, 27 ... top, 28 ... bolt

Claims (4)

腹板の上端に上部フランジを有すると共に下端に下部フランジを有する複数本の鋼材を並設し、該鋼材の上部フランジと下部フランジと腹板間に画成されたスペース内に打設された下部床コンクリート層を有し、上記上部フランジ上に打設され且つ上記上部フランジ間の間隔を介して上記下部床コンクリート層と互いに結合された上部床コンクリート層を有する床構造体において、上記鋼材の上部フランジから上記上部床コンクリート層中に埋入せる抵抗棒を有し、該抵抗棒をU字形にし、該抵抗棒を鋼材の長手方向に亘って間隔的に配設し、該抵抗棒の脚部を上部フランジに貫設した貫通孔に貫挿して該脚部に螺合したナットにより上部床コンクリート層中への埋入深さを調整可能な構成を有し、該脚部を上記下部床コンクリート層中に埋入し、該抵抗棒と脚部により上記鋼材と上部床コンクリート層と下部床コンクリート層の長手方向におけるベンディング抗力を生起せしめる構成としたことを特徴とする床構造体。A plurality of steel materials having an upper flange at the upper end of the belly plate and a lower flange at the lower end, and a lower floor placed in a space defined between the upper flange, the lower flange and the belly plate of the steel material A floor structure having a concrete layer, and having an upper floor concrete layer that is placed on the upper flange and is coupled to the lower floor concrete layer via a space between the upper flanges. A resistance rod that can be embedded in the upper floor concrete layer, the resistance rod is U-shaped, the resistance rods are disposed at intervals along the longitudinal direction of the steel material, and the legs of the resistance rod are It has a configuration in which the depth of insertion into the upper floor concrete layer can be adjusted by a nut that is inserted into a through-hole formed in the upper flange and screwed into the leg portion, and the leg portion is formed by the lower floor concrete layer. Buried in And, floor structure, characterized in that where the structure allowed to rise to bending force in the longitudinal direction of the steel material and an upper floor concrete layer and the lower floor concrete layer by the resistance bar and the leg. 上記抵抗棒の脚部の下端を上記下部フランジに貫設した貫通孔に挿入したことを特徴とする請求項1記載の床構造体。2. The floor structure according to claim 1, wherein the lower end of the leg portion of the resistance rod is inserted into a through-hole penetrating the lower flange. 腹板の上端に上部フランジを有すると共に下端に下部フランジを有する複数本の鋼材を並設し、該鋼材の上部フランジと下部フランジと腹板間に画成されたスペース内に打設された下部床コンクリート層を有し、上記上部フランジ上に打設され且つ上記上部フランジ間の間隔を介して上記下部床コンクリート層と互いに結合された上部床コンクリート層を有する床構造体において、上記鋼材の上部フランジから上記上部床コンクリート層中に埋入せる抵抗棒を有し、該抵抗棒を鋼材の長手方向に亘って間隔的に配設し、該抵抗棒の脚部を上部フランジに貫設した貫通孔に貫挿すると共に該脚部の下端を下部フランジに貫設した貫通孔に挿入し、該脚部下端に螺合したナットにより上部床コンクリート層中への埋入深さを調整可能な構成を有し、上記上部フランジと下部フランジ間に延在する脚部を上記下部床コンクリート層中に埋入し、該抵抗棒と脚部により上記鋼材と上部床コンクリート層と下部床コンクリート層の長手方向におけるベンディング抗力を生起せしめる構成としたことを特徴とする床構造体。A plurality of steel materials having an upper flange at the upper end of the belly plate and a lower flange at the lower end, and a lower floor placed in a space defined between the upper flange, the lower flange and the belly plate of the steel material A floor structure having a concrete layer, and having an upper floor concrete layer that is placed on the upper flange and is coupled to the lower floor concrete layer via a space between the upper flanges. Through-holes having resistance rods embedded in the upper floor concrete layer from above, the resistance rods being disposed at intervals along the longitudinal direction of the steel material, and leg portions of the resistance rods penetrating the upper flange The bottom end of the leg portion is inserted into a through-hole penetrating the lower flange, and the depth of insertion into the upper floor concrete layer can be adjusted by a nut screwed to the bottom end of the leg portion. Possess A leg portion extending between the upper flange and the lower flange is embedded in the lower floor concrete layer, and the bending rod drag in the longitudinal direction of the steel material, the upper floor concrete layer, and the lower floor concrete layer by the resistance rod and the leg portion. A floor structure characterized in that it is configured to cause a rust. 上記抵抗棒をU字形にしたことを特徴とする請求項3記載の床構造体。4. The floor structure according to claim 3, wherein the resistance bar is U-shaped.
JP2002330437A 2002-11-14 2002-11-14 Floor structure Expired - Lifetime JP3786202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002330437A JP3786202B2 (en) 2002-11-14 2002-11-14 Floor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002330437A JP3786202B2 (en) 2002-11-14 2002-11-14 Floor structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005182411A Division JP3850428B2 (en) 2005-06-22 2005-06-22 Floor structure

Publications (2)

Publication Number Publication Date
JP2004162412A JP2004162412A (en) 2004-06-10
JP3786202B2 true JP3786202B2 (en) 2006-06-14

Family

ID=32808127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002330437A Expired - Lifetime JP3786202B2 (en) 2002-11-14 2002-11-14 Floor structure

Country Status (1)

Country Link
JP (1) JP3786202B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4913005B2 (en) * 2007-10-02 2012-04-11 公益財団法人鉄道総合技術研究所 Steel rivet girder repair method and gibberized synthetic girder constructed thereby
KR101068682B1 (en) 2009-02-05 2011-09-28 주식회사 장헌산업 Inverted T Concrete Girder, Rahmen Bridge using Inverted T Concrete Girders and Constructing Method for Rahmen Bridge
CN107700728A (en) * 2017-09-30 2018-02-16 沈阳建筑大学 Easy connect band shear key reinforced concrete slab structure and connection method
JP7265343B2 (en) * 2018-11-09 2023-04-26 株式会社竹中工務店 steel building

Also Published As

Publication number Publication date
JP2004162412A (en) 2004-06-10

Similar Documents

Publication Publication Date Title
KR100976847B1 (en) Precast concrete deck structure
JP3708517B2 (en) Floor structure
KR101823492B1 (en) Steel plate girder through bridge and the construction method thereof
KR101272116B1 (en) Connection structure of prestressed concrete composite girder having corrugated steel plate web
KR101954727B1 (en) Steel plate girder through bridge for noise reduction and the construction method thereof
KR101797988B1 (en) Truss through bridge and the construction method thereof
JP4359697B2 (en) Ramen bridge structure
JP4491820B2 (en) Precast bridge
JP6709914B2 (en) Composite girder and bridge constructed using it
JP3850428B2 (en) Floor structure
JP3708495B2 (en) Structure of floor slab bridge
JP3786202B2 (en) Floor structure
JP5833616B2 (en) Construction method of joint structure of concrete precast slab for bridge
JP4585614B1 (en) Method for constructing synthetic steel slab bridge, ribbed steel slab, and synthetic steel slab bridge
JP7266808B1 (en) Main girder continuous rigid connection method
KR20180091582A (en) Composite through bridge and the construction method thereof
JP4437064B2 (en) Construction method and formwork structure of concrete floor slab for composite floor slab bridge
KR101752285B1 (en) Hybrid beam with wide PSC lower flange and enlarged section upper flange and structure frame using the same
JP2009127316A (en) Bridge floor slab formed of steel pipes, bridge floor slab structure, and steel pipes
JP4697739B2 (en) Bridge girder reinforcement structure for girder bridges
KR100984248B1 (en) Bridge construction method using strength connector detail for curing pannel of upper strength reinforcing block
KR20080111578A (en) The support material for a tunnel and support structure
KR20080004752U (en) Composite bridge
JP2001172916A (en) Corrugated synthetic floor slab
KR100685725B1 (en) Structure of floor slab bridge

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060314

R150 Certificate of patent or registration of utility model

Ref document number: 3786202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150331

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150331

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150331

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term