JP3786051B2 - Polyimide, polyamic acid and interlayer insulation film - Google Patents
Polyimide, polyamic acid and interlayer insulation film Download PDFInfo
- Publication number
- JP3786051B2 JP3786051B2 JP2002152177A JP2002152177A JP3786051B2 JP 3786051 B2 JP3786051 B2 JP 3786051B2 JP 2002152177 A JP2002152177 A JP 2002152177A JP 2002152177 A JP2002152177 A JP 2002152177A JP 3786051 B2 JP3786051 B2 JP 3786051B2
- Authority
- JP
- Japan
- Prior art keywords
- polyimide
- polyamic acid
- mmol
- bis
- phenyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Organic Insulating Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、ポリイミド、ポリアミック酸およびこれらを用いた層間絶縁膜に関し、より詳細には、各種基材との接着性に優れ、優れた耐熱性と低い誘電率特性を有し、LSI(大規模集積回路)における層間絶縁膜として最適なポリイミド、該ポリイミドを形成しうる前駆体としてのポリアミック酸および該ポリイミドからなる層間絶縁膜に関する。
【0002】
【従来の技術】
近年、LSI(大規模集積回路)は、微細加工技術の進歩によって、高集積化、多機能化、高性能化の一途を辿っている。その結果、回路抵抗や配線間のコンデンサー容量(以下、それぞれ「寄生抵抗」、「寄生容量」という。)が増大し、それに伴って消費電力が増すだけではなく、入力信号に対する遅延時間も増大している。したがって、寄生抵抗や寄生容量の増加は、LSIにおける信号スピードが低下する大きな要因となっており、その解決が大きな課題となっている。
【0003】
そこで、LSIにおける層間絶縁膜を低誘電性有機材料から構成し、層間絶縁膜の比誘電率を低下させることにより、高周波特性を向上させ、結果として寄生抵抗や寄生容量を減少させ、LSIにおける信号のスピード化が図られている。具体的に、LSIにおける層間絶縁膜用の低誘電性有機材料として、ポリテトラフルオロエチレン(PTFE)に代表されるふっ素樹脂が使用されている。
しかしながら、かかるふっ素樹脂は比誘電率の値は比較的低いものの、層間絶縁膜用有機材料としては、耐熱性や機械的強度が不十分であるという問題が見られた。また、ふっ素樹脂は、一般的に基材に対する接着性が乏しく、LSIの層間絶縁膜に使用した場合に、基板あるいは配線との接着力が低いために層間絶縁膜が剥がれてしまい、LSIにおける長期信頼性が乏しいという問題も見られた。
【0004】
また、LSIの層間絶縁膜用の有機材料として、ポリイミドの使用も提案されている。しかしながら、一般的なポリイミドの比誘電率の値は3.0〜3.5の範囲内であり、信号スピードの高速化を図ったLSIの層間絶縁膜用有機材料としては未だ不十分である。また、ポリイミドも、基材に対する接着性に乏しく、半導体装置や回路基板など高温高湿下での高い信頼性を維持することが必要とされる分野では、ポリイミドと基板あるいは配線との接着力が低いために、長期信頼性が乏しいという問題が見られた。
【0005】
そこで接着性を改良する手法として、ポリイミドにおける主鎖中にシロキサン結合を導入することが提案されている(特開平5−112760、特開平9−255780等)。
しかしながら、これらのポリイミドは、密着性に優れているものの、比誘電率の値が3を超えてしまい、層間絶縁膜の用途には使用できないという問題点が見られた。
【0006】
【発明が解決しようとする課題】
本発明は、ポリイミドの分子内に、アダマンタン骨格を導入することにより、本発明を完成するに至った。
すなわち、本発明は、比誘電率の値が低く、かつ優れた耐熱性を有する、LSIにおける層間絶縁膜として最適なポリイミド、および該ポリイミドを形成しうる前駆体としてのポリアミック酸、並びに該ポリイミドを溶媒に溶解させたポリイミドワニスを提供することを目的とする。
【0007】
【発明を解決するための手段】
【0008】
本発明は、1,3−ビス[4−(4−アミノフェノキシ)フェニル]アダマンタンまたは3,3’−ビス[4−(3−アミノフェノキシ)フェニル]− 1,1’−ビアダマンタンと、環状脂肪族テトラカルボン酸二無水物とを有機溶媒中で重縮合させることにより得られるポリアミック酸、好ましくは下記一般式(4)で表される繰り返し単位からなることを特徴とするポリアミック酸、1,3−ビス[4−(4−アミノフェノキシ)フェニル]アダマンタンまたは3,3’−ビス[4−(3−アミノフェノキシ)フェニル]− 1,1’−ビアダマンタンと、環状脂肪族テトラカルボン酸二無水物とを有機溶媒中で重縮合させることにより得られるポリアミック酸を脱水閉環してイミド化することにより得 られるポリイミド、好ましくは下記一般式(2)で表される繰り返し単位からなることを特徴とするポリイミド、ならびに前記ポリアミック酸からなる層間絶縁膜を提供するものである。
一般式(4)
【化8】
(式中、Xは4価の環状脂肪族基を示す)
一般式(2)
【化6】
(式中、Xは4価の環状脂肪族基を示す)
【0009】
本発明のポリアミック酸は1,3−ビス[4−(4−アミノフェノキシ)フェニル]アダマンタン(一般式(5))または3,3’−ビス[4−(3−アミノフェノキシ)フェニル]− 1,1’−ビアダマンタンと、環状脂肪族テトラカルボン酸二無水物とを有機溶媒中で重縮合させることにより製造することができる。
一般式(5)
【化9】
【0010】
環状脂肪族テトラカルボン酸二無水物としては、1,2,3,4−シクロブタンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物、ビシクロ[2.2.1]ヘプタン−2−メタンカルボン酸二無水物、1,2,3,4−シクロブタンテトラカルボン酸二無水物、2,3,5−トリカルボキシ酢酸二無水物、ビシクロ[2.2.1]ヘプタン−2,3,5,6−テトラカルボン酸二無水物、ビシクロ[2.2.1]ヘプタン−2,3,5−トリカルボキシ酢酸二無水物、ビシクロ[2.2.2]オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物、ビシクロ[2.2.2]オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物、5−(2,5−ジオキソテトラヒドロフルフリル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物、3−オキサビシクロ[3.2.1]オクタン−2,4−ジオン−6−スピロ−3’−(テトラヒドロフラン−2’,5’−ジオン)、デカヒドロ−1,4,5,8−ジメタノナフタレン−2,3,6,7−テトラカルボン酸二無水物などを挙げることができる。
1,3−ビス[4−(4−アミノフェノキシ)フェニル]アダマンタンまたは3,3’−ビス[4−(3−アミノフェノキシ)フェニル]− 1,1’−ビアダマンタンおよび環状脂肪族テトラカルボン酸二無水物とはほぼ等モルずつ反応させ、反応温度は50〜90℃程度である。
【0011】
なお、上記製造条件を適宜調節することにより、ポリアミック酸の対数粘度〔ηinh 〕(N,N−ジメチルホルムアミド溶媒、温度30℃、濃度0.5g/dl)を、0.1〜4dl/gとすることが好ましく、0.3〜2dl/gとすることがより好ましい。
その他、上記製造条件を適宜調節することにより、得られるポリアミック酸において、イミド化率が50%を超えない範囲内で、部分的にイミド化されていてもよい。
本発明のポリイミドは、上述したポリアミック酸を、脱水閉環してイミド化することにより製造することができる。このイミド化に際しては、以下に示すような加熱イミド化法または化学イミド化法を採用することができる。
【0012】
(1)加熱イミド化法
(A)ポリアミック酸溶液をガラス、金属等の表面平滑な基材上に流延して加熱する方法、あるいは
(B)ポリアミック酸溶液をそのまま加熱する方法
等が適用される。
【0013】
(A)の加熱イミド化法では、ポリアミック酸溶液を基板上に流延して形成された薄膜を、常圧下または減圧下で加熱することにより、フィルム状のポリイミドを得ることができる。
この場合の加熱温度は、通常、100〜450℃の範囲内の値であり、好ましくは150〜400℃の範囲内の値であり、反応中徐々に温度を上げることが好ましい。
【0014】
また、(B)の加熱イミド化法では、ポリアミック酸溶液を加熱することにより、ポリイミドが粉末ないし溶液として得られる。この場合の加熱温度は、通常、80〜300℃の範囲内の値であり、好ましくは100〜250℃の範囲内の値である。
また、(B)の加熱イミド化法に際しては、副生する水の除去を容易とするため、水と共沸し、特に反応系外で水と容易に分離しうる成分、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒を脱水剤として存在させることも好ましい。
また、(B)の加熱イミド化法に際しては、脱水閉環を促進するため、第三級アミン、例えば、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン等の脂肪族第三級アミン類;N,N−ジメチルアニリン、N,N−ジエチルアニリン等の芳香族第三級アミン類;ピリジン、キノリン、イソキノリン等の複素環式第三級アミン類等の触媒を添加することが好ましい。そして、かかる触媒の添加量を、ポリアミック酸100重量部当たり、例えば10〜400重量部の範囲内の値とすることが好ましい。
さらに、(B)の加熱イミド化法に際して、クレゾール、クロロフェノール等のフェノール系溶媒中で加熱することも好ましい。このようにポリアミック酸を反応させることにより、一段階でポリイミドとすることができる。
また、(A)および(B)の加熱イミド化法を実施する際に、均一に反応を生じさせるために、有機溶媒を使用することが好ましい。例えば、ポリアミック酸の製造に使用される有機溶媒と同一の有機溶媒を使用することが好ましい。
その他、加熱イミド化法により得られたポリイミドが粉末の場合には、ろ過、噴霧乾燥、水蒸気蒸留等の適宜の方法により、ポリイミド粉末を有機溶媒から分離回収することができる。なお、この点は、化学イミド化法により得られたポリイミドの場合も同様である。
(2)化学イミド化法
次に、ポリイミドを作成するための化学イミド化法について説明する。この化学イミド化法として、例えば、
(C)ポリアミック酸を脱水環化させる閉環剤を用い、溶液状態でイミド化する方法を採用することができる。
【0015】
この(C)の化学イミド化法によれば、ポリイミドが粉末あるいは溶液として得られる点に特徴がある。また、この化学イミド化法において、溶媒を使用することが好ましく、例えば、ポリアミック酸の製造に使用されるものと同様の有機溶媒を挙げることができる。
【0016】
また、(C)の化学イミド化法に使用される閉環剤としては、例えば、無水酢酸、無水プロピオン酸、無水酪酸の如き酸無水物を挙げることができる。これらの閉環剤は、単独で使用することができるし、あるいは2種以上を混合して使用することもできる。
また、閉環剤の使用量を、前記一般式(2)で表される繰返し単位1モル当たり、通常、2〜100モルの範囲内の値とするのが好ましく、2〜50モルの範囲内の値とすることがより好ましい。
また、(C)の化学イミド化法における反応温度についても、特に制限されるものではないが、通常、0〜200℃範囲内の値とするのが好ましい。
また、(C)の化学イミド化法において、加熱イミド化法の場合と同様に第三級アミンを触媒として使用することも好ましい。
【0017】
本発明のポリイミドは、上述した層間絶縁膜以外の用途、例えば、LSIにおけるパッシベーション膜(ストレスバッファー膜)、α線遮断膜、フレキソ印刷版のカバーレイフィルム、フレキソ印刷版のオーバーコート等として使用することもできる。
また、ダイボンディング用接着剤、リード−オンチップ(LOC)用接着テープ、リードフレーム固定用テープ、多層リードフレーム用接着フィルム等を挙げることもできる。
【0018】
ポリイミドからなる層間絶縁膜を形成する際には、その前駆体であるポリアミック酸のワニスやペースト、あるいはポリイミドからなるフィルムやポリイミドワニス等を使用することができる。
ここで、層間絶縁膜の形成法は特に制限されるものではないが、例示すると下記のとおりである。
【0019】
(イ)ポリアミック酸のワニスをLSIの層間に流延し、ワニス中の過剰の有機溶媒を加熱下および減圧下あるいはいずれか一方の条件で除去して、該ポリアミック酸の薄膜を形成する。次いで、常圧下または加圧下で、一例として100〜450℃の範囲内の温度で加熱し、ポリアミック酸を脱水閉環してイミド化し、層間絶縁膜とする方法。
(ロ)フィルム状のポリイミドをLSIの層間に配置し、常圧下または加圧下で、例えば、100〜450℃の範囲内の温度で加熱することにより熱圧着して、層間絶縁膜とする方法。
【0020】
また、ポリイミドをフィルム状で取得する方法としては、例えば、
(ハ)予め離型処理した基板、例えば、ガラス、テフロン(登録商標)、ポリエステル等の基板上に、ポリアミック酸のワニスを流延し、次いで、徐々に加熱して溶媒を除去しつつ脱水閉環し、イミド化して、フィルム状とする方法。
(ニ)ポリイミドの粉末を、プレス成形、射出成形等の適宜の方法によりフィルム状に成形する方法。
(ホ)第1発明のポリアミック酸あるいは第2発明のポリイミドのワニスを基板上に流延したのち、加熱し、乾燥することによって、厚さ数十〜数百μmのポリイミドのドライフィルムとする方法。
【0021】
【実施例】
以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
【0022】
[合成例1]
(1)1,3−ジブロモアダマンタンの合成
窒素導入管、コールドトラップを備え付けた三口フラスコ(100mL)に窒素気流下、臭素48.8mL (0.952 mol)、アルミホイル9.71mg (0.36 mmol)を入れ赤色の光が消えるまで室温で撹拌し、10分後三臭化ホウ素9.43 mL (99.8 mmol)を加え、室温で10分撹拌した。その後1−ブロモアダマンタン6.84g (31.8 mmol)を加え、85℃で2時間撹拌した。撹拌終了後、氷水で冷却し、反応溶液を氷水に投入し、亜硫酸水素ナトリウムを臭素の色が消えるまで加えた後、クロロホルムで抽出した。得られた粗生成物をメタノールにより再結晶した。収量は6.90 g(収率74%)、融点108−109℃ (lit. 110℃)であった。構造確認は1H−NMR、13C−NMRにより行った。
(2)1,3−ビス(4−ヒドロキシフェニル)アダマンタンの合成
1,3−ジブロモアダマンタン1.90g (6.46 mmol)、フェノール19.0g (202 mmol)、塩化アルミニウム2.15g (16.1 mmol)を三口フラスコに加え、80℃で16時間撹拌した。撹拌終了後、お湯(80℃)で2回洗浄した。収量は1.92g (収率93%)、融点は198−200℃ (lit. 199−201℃)であった。構造確認は元素分析、1H−NMR、13C−NMRにより行った。
(3)1,3−ビス[4−(4−ニトロフェノキシ)フェニル]アダマンタンの合成
1,3−ビス(4−ヒドロキシフェニル)アダマンタン0.940g (2.93 mmol)、4−クロロニトロベンゼン1.01g (6.42 mmol)、炭酸カリウム0.890g (6.44 mmol)をジメチルホルムアミド (28.2 mL)に加え、160℃で12時間撹拌した。撹拌終了後、室温まで冷却し、蒸留水に投じた。ろ別後減圧乾燥した。収量は1.62g (収率98%)、融点は216−218℃ (lit. 216−218℃)であった。構造確認は元素分析、1H−NMRにより行った。
(4)1,3−ビス[4−(4−アミノフェノキシ)フェニル]アダマンタンの合成
1,3−ビス[4−(4−ニトロフェノキシ)フェニル]アダマンタン8.24g (14.7 mmol)をジメチルホルムアミド/エタノール混合溶媒 (275 mL)に加え、ここにヒドラジン一水和物 (82.4 mL)、Pd−C(10 %) 0.165gを加え、80℃で16時間撹拌した。撹拌終了後、セライトでろ過し、反応溶液を100mL程度まで濃縮した。その後、蒸留水に投じて1時間撹拌し、ろ別乾燥した。さらにこの生成物をエタノール中で1時間還流を行い、ろ別後減圧乾燥した。収率62%、融点182−184℃ (lit. 191−193℃)。構造確認は1H−NMRにより行った(図1)。
(5)3,3’−ビス[4−(3(or 4)−アミノフェノキシ)フェニル]−1,1’−ビアダマンタンの合成
(5−1)1,1’−ビアダマンタンの合成
窒素気流下、1−ブロモアダマンタン25.1g (117 mmol)をm−キシレン(50 mL)に溶解させ、還流させた。還流開始後、ナトリウム2.71g (118 mmol)を少しずつ4時間かけて加え、その後12時間還流した。還流後、溶液を熱時ろ過し、析出した固体をろ別乾燥後、トルエンにより再結晶を行った。収量6.78 g (収率 43%)、融点288−290℃ (lit. 288−290℃)。構造確認は1H−NMR、13C−NMRにより行った。
(5−2)3,3’−ジブロモ−1,1’−ビアダマンタンの合成
窒素導入管、コールドトラップを備え付けた三口フラスコ(100mL)に窒素気流下、1,1’−ビアダマンタン5.29g (19.6 mmol)を入れ、ここに臭素28.1mL (0.549 mol)を加え、室温で15分撹拌した。その後還流を2時間行った。反応終了後、反応物を氷水で冷却し、クロロホルムと氷水を加えた。亜硫酸水素ナトリウムを臭素の色が消えるまで加え、その後クロロホルムで抽出した。さらにクロロホルム溶液を重曹水で洗浄し、クロロホルム溶液に溶けている臭化水素を中和した後、硫酸マグネシウムを加えて乾燥させた。ろ別後、クロロホルム溶液を濃縮し、得られた固体を1,4−ジオキサンにより再結晶した。収量7.03g (収率84%)、融点237−239℃ (lit. 236−237℃)。構造確認は1H−NMR、13C−NMRにより行った。
(5−3)3,3’−ジ−(4−ヒドロキシフェニル)−1,1’−ビアダマンタンの合成
3,3’−ジブロモ−1,1’−ビアダマンタン4.31g (10.1 mmol)、フェノール37.9g (402 mmol)、塩化アルミニウム3.35g (25.2 mmol)を三口フラスコに加え、80℃で16時間撹拌した。撹拌終了後、水(80℃)で2回洗浄しろ別後減圧乾燥した。得られた固体を酢酸エチルにより再結晶した。収量4.00g (収率87%)、融点343−344℃。構造確認は1H−NMRにより行った。
(5−4)3,3’−ビス[4−(3(or 4)−ニトロフェノキシ)フェニル]−1,1’−ビアダマンタンの合成
3,3’−ジ−(4−ヒドロキシフェニル)−1,1’−ビアダマンタン4.07g (8.95 mmol)、1,3−ジニトロベンゼン(or 4−クロロニトロベンゼン)3.29g (19.6 mmol)、炭酸カリウム2.71g (19.6 mmol)をDMF (122 mL)に加え、160℃で12時間撹拌した。撹拌終了後、室温まで冷却し、蒸留水に投じた。ろ別後減圧乾燥した。得られた固体をDMAcにより再結晶した。収量5.18g (収率83%)。構造確認は、1H−NMRにより行った。
(5−5)3,3’−ビス[4−(3−アミノフェノキシ)フェニル]−1,1’−ビアダマンタンの合成
3,3’−ビス[4−(3−ニトロフェノキシ)フェニル]−1,1’−ビアダマンタン5.15g (7.39 mmol)をDMAc:エタノール=3:1混合溶媒 (172 mL)に加え、ここにヒドラジン一水和物 (30 mL)、Pd−C(10 %) 0.103gを加え、80℃で16時間撹拌した。撹拌終了後、セライトでろ過し、反応溶液を100mL程度まで濃縮した。その後、蒸留水に投じて1時間撹拌し、ろ別乾燥した。得られた固体をDMAcにより再結晶した。収量3.28g (収率70%)。構造確認は1H−NMRにより行った。
【0023】
[実施例1]
1,3−ビス[4−(4−アミノフェノキシ)フェニル]アダマンタン0.506g (1.01 mmol)をN−メチルピロリドン(2.81 g)に溶解させ、ここに1,2,3,4−シクロブタンテトラカルボン酸二無水物(CBDA) 0.197g (1.01 mmol)を加え、窒素雰囲気下、室温で7時間、80℃で23時間反応させた。反応終了後、重合溶液をNMPで希釈し、水:メタノール混合溶液(100 mL)に投じ、室温で1時間撹拌した。撹拌終了後、ろ別し、減圧乾燥し、ポリアミック酸を得た。収率は89%であった。構造確認はIRスペクトルにより行った。ポリアミック酸を、窒素気流下70℃で2時間、160℃で1時間、250℃で30分、300℃で1時間熱処理することによりポリイミドを得た。
IRスペクトルはHoriba FT−720により測定した。1H NMR、13C−NMRはBruker DPX300 (300MHz)により測定した。熱分析は、SeikoTG/DTA 6300により測定した。屈折率はPC−2000プリズムカプラーにより測定した。
ポリマーの構造確認はIRスペクトルにより行った。ここで得られたポリアミド酸はNMP、DMAc、DMF、DMSO等の溶媒に可溶であった。また、窒素気流下でイミド化を行い、構造確認はIRスペクトルにより行った。
【0024】
[実施例2]
1,2,3,4−シクロブタンテトラカルボン酸二無水物(CBDA) 0.197g (1.01 mmol)の代りにビシクロ[2.2.2]オクト−7−エン−2,3;5,6−テトラカルボン酸二無水物(BCDA)1.01mmolを使用した以外は実施例1と同様にして重合を行い、ポリアミック酸およびポリイミドを得た。
[実施例3]
1,2,3,4−シクロブタンテトラカルボン酸二無水物(CBDA) 0.197g (1.01 mmol)の代りにビシクロ[2.2.1]ヘプタン−2−メタンカルボン酸二無水物(NDA)1.01mmolを使用した以外は実施例1と同様にして重合を行い、ポリアミック酸およびポリイミドを得た。
【0025】
評価結果
実施例1で得られたポリイミドのガラス転移点(チッ素雰囲気下、昇温温度10℃/分、DSC測定)は検出されず、分解開始温度は387℃、5%重量損失温度は464℃、100%重量損失温度は482℃であった。
また、実施例1〜3で得られたポリイミドの屈折率から算出した比誘電率は2.78(実施例1)、2.74(実施例2)および2.69(実施例3)であった。
【0026】
[実施例4]
3,3’−ビス[4−(3−アミノフェノキシ)フェニル]−1,1’−ビアダマンタン0.646g (1.01 mmol)をNMP(3.38 g)に溶解させ、ここに1,2,3,4−シクロブタンテトラカルボン酸二無水物(CBDA) 0.199g (1.01 mmol)を加え、窒素雰囲気下、室温で7時間、80℃で23時間反応させた。反応終了後、重合溶液をNMPで希釈し、水:メタノール混合溶液(100 mL)に投じ、室温で1時間撹拌した。撹拌終了後、ろ別し、減圧乾燥した。収率80%。構造確認はIRスペクトルにより行った。熱イミド化は、窒素気流下70℃で2時間、160℃で1時間、250℃で30分、300℃で1時間熱処理することにより行った。
熱分析は、SeikoTG/DTA 6300により測定した。屈折率はPC−2000プリズムカプラーにより測定した。
得られたポリイミドのガラス転移温度は288℃、5%重量減少温度が472℃、10%重量減少温度が489℃と比較的高い耐熱性を示し、比誘電率を屈折率から換算したところ2.7であった。
【0027】
【発明の効果】
本発明のポリイミドは比誘電率が低く、耐熱性にも優れるので半導体の層間絶縁膜などの電子材料として好適である。
【図面の簡単な説明】
【図1】 1,3−ビス[4−(4−アミノフェノキシ)フェニル]アダマンタンの1H−NMRスペクトル。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to polyimide, polyamic acid, and interlayer insulating films using these, and more specifically, has excellent adhesion to various base materials, excellent heat resistance and low dielectric constant characteristics, and LSI (Large Scale). The present invention relates to an optimum polyimide as an interlayer insulating film in an integrated circuit), a polyamic acid as a precursor capable of forming the polyimide, and an interlayer insulating film made of the polyimide.
[0002]
[Prior art]
In recent years, LSIs (Large Scale Integrated Circuits) have been steadily increasing in integration, multifunction, and performance due to advances in microfabrication technology. As a result, the circuit resistance and the capacitance between the wires (hereinafter referred to as “parasitic resistance” and “parasitic capacitance”, respectively) increase, which not only increases the power consumption, but also increases the delay time for the input signal. ing. Therefore, the increase in parasitic resistance and parasitic capacitance is a major factor that decreases the signal speed in LSI, and its solution is a major issue.
[0003]
Therefore, the interlayer insulating film in LSI is made of a low dielectric organic material, and the relative dielectric constant of the interlayer insulating film is lowered to improve the high frequency characteristics. As a result, the parasitic resistance and the parasitic capacitance are reduced, and the signal in the LSI is reduced. Speeding up. Specifically, a fluorine resin represented by polytetrafluoroethylene (PTFE) is used as a low dielectric organic material for an interlayer insulating film in LSI.
However, although such a fluororesin has a relatively low value of relative dielectric constant, there has been a problem that heat resistance and mechanical strength are insufficient as an organic material for an interlayer insulating film. Fluorine resin generally has poor adhesion to a substrate, and when used as an interlayer insulating film of an LSI, the interlayer insulating film is peeled off due to low adhesion to the substrate or wiring, resulting in long-term use in LSIs. There was also a problem of poor reliability.
[0004]
Also, the use of polyimide as an organic material for an interlayer insulating film of LSI has been proposed. However, the value of the relative dielectric constant of a general polyimide is in the range of 3.0 to 3.5, which is still insufficient as an organic material for an interlayer insulating film of an LSI for increasing the signal speed. Polyimide also has poor adhesion to substrates, and in fields where high reliability is required under high temperatures and high humidity, such as semiconductor devices and circuit boards, the adhesion between polyimide and the substrate or wiring is low. There was a problem that the long-term reliability was poor due to the low level.
[0005]
Therefore, as a technique for improving adhesiveness, it has been proposed to introduce a siloxane bond into the main chain of polyimide (Japanese Patent Laid-Open Nos. 5-112760 and 9-255780, etc.).
However, although these polyimides are excellent in adhesiveness, the relative dielectric constant value exceeds 3 and there is a problem that they cannot be used for the use of an interlayer insulating film.
[0006]
[Problems to be solved by the invention]
The present invention has been completed by introducing an adamantane skeleton into the polyimide molecule.
That is, the present invention provides a polyimide having a low relative dielectric constant and excellent heat resistance, which is optimal as an interlayer insulating film in LSI, a polyamic acid as a precursor capable of forming the polyimide, and the polyimide. An object is to provide a polyimide varnish dissolved in a solvent.
[0007]
[Means for Solving the Invention]
[0008]
The present invention relates to 1,3-bis [4- (4-aminophenoxy) phenyl] adamantane or 3,3′-bis [4- (3-aminophenoxy) phenyl] -1,1′-biadamantane, and cyclic A polyamic acid obtained by polycondensation of an aliphatic tetracarboxylic dianhydride in an organic solvent, preferably a polyamic acid comprising a repeating unit represented by the following general formula (4), 3-bis [4- (4-aminophenoxy) phenyl] adamantane or 3,3′-bis [4- (3-aminophenoxy) phenyl] -1,1′-biadamantane and two cyclic aliphatic tetracarboxylic acids Polyimide obtained by dehydrating cyclization and imidization of polyamic acid obtained by polycondensation of an anhydride with an organic solvent , preferably the following general The present invention provides an interlayer insulating film comprising a polyimide comprising the repeating unit represented by the formula (2) and the polyamic acid.
General formula (4)
[Chemical 8]
(Wherein X represents a tetravalent cyclic aliphatic group)
General formula (2)
[Chemical 6]
(Wherein X represents a tetravalent cyclic aliphatic group)
[0009]
The polyamic acid of the present invention is 1,3-bis [4- (4-aminophenoxy) phenyl] adamantane (general formula (5)) or 3,3′-bis [4- (3-aminophenoxy) phenyl] -1 , 1′-biadamantane and cycloaliphatic tetracarboxylic dianhydride can be produced by polycondensation in an organic solvent.
General formula (5)
[Chemical 9]
[0010]
Examples of the cycloaliphatic tetracarboxylic dianhydride include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, bicyclo [2.2.2] oct-7-ene-2,3,5,6- Tetracarboxylic dianhydride, bicyclo [2.2.1] heptane-2-methanecarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 2,3,5-tricarboxy Acetic dianhydride, bicyclo [2.2.1] heptane-2,3,5,6-tetracarboxylic dianhydride, bicyclo [2.2.1] heptane-2,3,5-tricarboxyacetic acid Anhydride, bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, bicyclo [2.2.2] oct-7-ene-2,3 5,6-tetracarboxylic dianhydride, 5- (2,5-dioxy Tetrahydrofurfuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, 3-oxabicyclo [3.2.1] octane-2,4-dione-6-spiro-3 ′-(tetrahydrofuran) -2 ', 5'-dione), decahydro-1,4,5,8-dimethanonaphthalene-2,3,6,7-tetracarboxylic dianhydride and the like.
1,3-bis [4- (4-aminophenoxy) phenyl] adamantane or 3,3′-bis [4- (3-aminophenoxy) phenyl] -1,1′-biadamantane and cycloaliphatic tetracarboxylic acid The dianhydride is reacted with approximately equimolar amounts, and the reaction temperature is about 50 to 90 ° C.
[0011]
In addition, the logarithmic viscosity [η inh ] (N, N-dimethylformamide solvent, temperature 30 ° C., concentration 0.5 g / dl) of the polyamic acid is adjusted to 0.1 to 4 dl / g by appropriately adjusting the production conditions. It is preferable to be 0.3 to 2 dl / g.
In addition, by adjusting the said manufacturing conditions suitably, in the polyamic acid obtained, the imidation ratio may be partially imidized within the range which does not exceed 50%.
The polyimide of the present invention can be produced by dehydrating and ring-closing and imidizing the above-described polyamic acid. In the imidization, a heat imidization method or a chemical imidization method as described below can be employed.
[0012]
(1) Heat imidization method
(A) A method of casting and heating a polyamic acid solution on a surface-smooth substrate such as glass or metal, or
(B) A method of heating the polyamic acid solution as it is is applied.
[0013]
In the heating imidation method (A) , a film-like polyimide can be obtained by heating a thin film formed by casting a polyamic acid solution on a substrate under normal pressure or reduced pressure.
The heating temperature in this case is usually a value in the range of 100 to 450 ° C, preferably a value in the range of 150 to 400 ° C, and it is preferable to gradually increase the temperature during the reaction.
[0014]
Moreover, in the heating imidation method of (B) , a polyimide is obtained as a powder thru | or solution by heating a polyamic acid solution. The heating temperature in this case is usually a value within the range of 80 to 300 ° C, preferably a value within the range of 100 to 250 ° C.
In addition, in the heat imidization method of (B) , in order to facilitate removal of by-product water, components that azeotrope with water and can be easily separated from water particularly outside the reaction system, such as benzene and toluene. It is also preferable that an aromatic hydrocarbon solvent such as xylene is present as a dehydrating agent.
In the heat imidization method of (B) , in order to promote dehydration ring closure, tertiary amines such as aliphatic tertiary amines such as trimethylamine, triethylamine, tripropylamine, tributylamine; N, N A catalyst such as aromatic tertiary amines such as dimethylaniline and N, N-diethylaniline; heterocyclic tertiary amines such as pyridine, quinoline and isoquinoline is preferably added. And it is preferable to make the addition amount of this catalyst into the value within the range of 10-400 weight part per 100 weight part of polyamic acids, for example.
Furthermore, in the heating imidization method of (B) , it is also preferable to heat in a phenolic solvent such as cresol or chlorophenol. Thus, by making polyamic acid react, it can be set as a polyimide in one step.
Moreover, when implementing the heating imidation method of (A) and (B) , in order to produce a reaction uniformly, it is preferable to use an organic solvent. For example, it is preferable to use the same organic solvent as the organic solvent used for the production of polyamic acid.
In addition, when the polyimide obtained by the heating imidization method is a powder, the polyimide powder can be separated and recovered from the organic solvent by an appropriate method such as filtration, spray drying, steam distillation or the like. This also applies to the case of polyimide obtained by the chemical imidization method.
(2) Chemical imidization method Next, the chemical imidation method for producing a polyimide is demonstrated. As this chemical imidization method, for example,
(C) A method of imidizing in a solution state using a ring-closing agent for dehydrating and cyclizing polyamic acid can be employed.
[0015]
This chemical imidation method (C) is characterized in that polyimide is obtained as a powder or a solution. Moreover, in this chemical imidation method, it is preferable to use a solvent, for example, the organic solvent similar to what is used for manufacture of a polyamic acid can be mentioned.
[0016]
Examples of the ring-closing agent used in the chemical imidation method (C) include acid anhydrides such as acetic anhydride, propionic anhydride, and butyric anhydride. These ring closure agents can be used alone or in combination of two or more.
In addition, the amount of the ring-closing agent used is usually preferably in the range of 2 to 100 mol, preferably in the range of 2 to 50 mol, per mol of the repeating unit represented by the general formula (2). A value is more preferable.
Further, the reaction temperature in the chemical imidization method of (C) is not particularly limited, but it is usually preferably set to a value within the range of 0 to 200 ° C.
Further, in the chemical imidation method of (C) , it is also preferable to use a tertiary amine as a catalyst as in the case of the heat imidization method.
[0017]
The polyimide of the present invention is used for applications other than the interlayer insulating film described above, for example, a passivation film (stress buffer film) in LSI, an α-ray blocking film, a flexographic printing plate cover lay film, a flexographic printing plate overcoat, etc. You can also.
Also, die bonding adhesives, lead-on-chip (LOC) adhesive tapes, lead frame fixing tapes, multilayer lead frame adhesive films, and the like can be given.
[0018]
When an interlayer insulating film made of polyimide is formed, a precursor or polyamic acid varnish or paste, a polyimide film or polyimide varnish, or the like can be used.
Here, the method of forming the interlayer insulating film is not particularly limited, but is exemplified as follows.
[0019]
(A) A polyamic acid varnish is cast between LSI layers, and an excess organic solvent in the varnish is removed under heating and / or under reduced pressure to form a thin film of the polyamic acid. Next, a method of heating under normal pressure or under pressure, for example, at a temperature in the range of 100 to 450 ° C., and dehydrating and ring-closing the polyamic acid to imidize to form an interlayer insulating film.
(B) A method in which a film-like polyimide is disposed between LSI layers and thermocompression bonded by heating at a temperature within a range of 100 to 450 ° C. under normal pressure or under pressure to form an interlayer insulating film.
[0020]
Moreover, as a method of acquiring polyimide in a film form, for example,
(C) A polyamic acid varnish is cast on a substrate that has been previously subjected to a mold release treatment, such as glass, Teflon (registered trademark), polyester, etc., and then gradually heated to remove the solvent while dehydrating and closing the ring. And imidizing to form a film.
(D) A method of forming polyimide powder into a film by an appropriate method such as press molding or injection molding.
(E) A method of forming a polyimide dry film having a thickness of several tens to several hundreds μm by casting the polyamic acid of the first invention or the varnish of the polyimide of the second invention on a substrate and then heating and drying. .
[0021]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.
[0022]
[Synthesis Example 1]
(1) Synthesis of 1,3-dibromoadamantane In a three-necked flask (100 mL) equipped with a nitrogen introduction tube and a cold trap, bromine 48.8 mL (0.952 mol), aluminum foil 9.71 mg (0.36) The mixture was stirred at room temperature until the red light disappeared, and after 10 minutes, 9.43 mL (99.8 mmol) of boron tribromide was added, and the mixture was stirred at room temperature for 10 minutes. Thereafter, 6.84 g (31.8 mmol) of 1-bromoadamantane was added, and the mixture was stirred at 85 ° C. for 2 hours. After completion of the stirring, the reaction mixture was cooled with ice water, the reaction solution was poured into ice water, sodium bisulfite was added until the bromine color disappeared, and the mixture was extracted with chloroform. The obtained crude product was recrystallized from methanol. The yield was 6.90 g (74% yield), melting point 108-109 ° C. (lit. 110 ° C.). The structure was confirmed by 1 H-NMR and 13 C-NMR.
(2) Synthesis of 1,3-bis (4-hydroxyphenyl) adamantane 1.90 g (6.46 mmol) of 1,3-dibromoadamantane, 19.0 g (202 mmol) of phenol, 2.15 g of aluminum chloride (16. 1 mmol) was added to a three-necked flask and stirred at 80 ° C. for 16 hours. After completion of stirring, the mixture was washed twice with hot water (80 ° C.). The yield was 1.92 g (93% yield), and the melting point was 198-200 ° C. (lit. 199-201 ° C.). The structure was confirmed by elemental analysis, 1 H-NMR, and 13 C-NMR.
(3) Synthesis of 1,3-bis [4- (4-nitrophenoxy) phenyl] adamantane 1.40 g (2.93 mmol) of 1,3-bis (4-hydroxyphenyl) adamantane, 4-chloronitrobenzene 01 g (6.42 mmol) and 0.890 g (6.44 mmol) of potassium carbonate were added to dimethylformamide (28.2 mL), and the mixture was stirred at 160 ° C. for 12 hours. After completion of stirring, the mixture was cooled to room temperature and poured into distilled water. After filtration, it was dried under reduced pressure. The yield was 1.62 g (98% yield), and the melting point was 216-218 ° C. (lit. 216-218 ° C.). The structure was confirmed by elemental analysis and 1 H-NMR.
(4) Synthesis of 1,3-bis [4- (4-aminophenoxy) phenyl] adamantane 8.24 g (14.7 mmol) of 1,3-bis [4- (4-nitrophenoxy) phenyl] adamantane was converted to dimethyl In addition to formamide / ethanol mixed solvent (275 mL), hydrazine monohydrate (82.4 mL) and 0.165 g of Pd—C (10%) were added thereto, and the mixture was stirred at 80 ° C. for 16 hours. After completion of the stirring, the mixture was filtered through celite, and the reaction solution was concentrated to about 100 mL. Thereafter, it was poured into distilled water, stirred for 1 hour, and filtered and dried. The product was further refluxed in ethanol for 1 hour, filtered and dried under reduced pressure. Yield 62%, mp 182-184 ° C. (lit. 191-193 ° C.). The structure was confirmed by 1 H-NMR (FIG. 1).
(5) Synthesis of 3,3′-bis [4- (3 (or 4) -aminophenoxy) phenyl] -1,1′-biadamantane (5-1) Synthesis of 1,1′-biadamantane Nitrogen stream Below, 25.1 g (117 mmol) of 1-bromoadamantane was dissolved in m-xylene (50 mL) and refluxed. After the start of reflux, 2.71 g (118 mmol) of sodium was added little by little over 4 hours, and then refluxed for 12 hours. After refluxing, the solution was filtered while hot, and the precipitated solid was filtered and dried, and then recrystallized with toluene. Yield 6.78 g (43% yield), mp 288-290 ° C. (lit. 288-290 ° C.). The structure was confirmed by 1 H-NMR and 13 C-NMR.
(5-2) Synthesis of 3,3'-dibromo-1,1'-biadamantane 5.29 g of 1,1'-biadamantane under a nitrogen stream in a three-necked flask (100 mL) equipped with a nitrogen introduction tube and a cold trap (19.6 mmol) was added, and 28.1 mL (0.549 mol) of bromine was added thereto, followed by stirring at room temperature for 15 minutes. Thereafter, refluxing was performed for 2 hours. After completion of the reaction, the reaction product was cooled with ice water, and chloroform and ice water were added. Sodium bisulfite was added until the bromine color disappeared, and then extracted with chloroform. Further, the chloroform solution was washed with an aqueous sodium bicarbonate solution to neutralize hydrogen bromide dissolved in the chloroform solution, and then dried by adding magnesium sulfate. After filtration, the chloroform solution was concentrated, and the resulting solid was recrystallized from 1,4-dioxane. Yield 7.03 g (84% yield), mp 237-239 ° C. (lit. 236-237 ° C.). The structure was confirmed by 1 H-NMR and 13 C-NMR.
Synthesis of (5-3) 3,3′-di- (4-hydroxyphenyl) -1,1′-biadamantane 4.33 g (10.1 mmol) of 3,3′-dibromo-1,1′-biadamantane ), 37.9 g (402 mmol) of phenol, and 3.35 g (25.2 mmol) of aluminum chloride were added to a three-necked flask and stirred at 80 ° C. for 16 hours. After completion of stirring, the mixture was washed twice with water (80 ° C.), filtered, and dried under reduced pressure. The obtained solid was recrystallized from ethyl acetate. Yield 4.00 g (yield 87%), mp 343-344 ° C. The structure was confirmed by 1 H-NMR.
Synthesis of (5-4) 3,3′-bis [4- (3 (or 4) -nitrophenoxy) phenyl] -1,1′-biadamantane 3,3′-di- (4-hydroxyphenyl)- 1,1′-biadamantane 4.07 g (8.95 mmol), 1,3-dinitrobenzene (or 4-chloronitrobenzene) 3.29 g (19.6 mmol), potassium carbonate 2.71 g (19.6 mmol) ) Was added to DMF (122 mL) and stirred at 160 ° C. for 12 hours. After completion of stirring, the mixture was cooled to room temperature and poured into distilled water. After filtration, it was dried under reduced pressure. The obtained solid was recrystallized from DMAc. Yield 5.18 g (83% yield). The structure was confirmed by 1 H-NMR.
(5-5) Synthesis of 3,3′-bis [4- (3-aminophenoxy) phenyl] -1,1′-biadamantane 3,3′-bis [4- (3-nitrophenoxy) phenyl]- 1,1′-biadamantane 5.15 g (7.39 mmol) was added to DMAc: ethanol = 3: 1 mixed solvent (172 mL), and hydrazine monohydrate (30 mL), Pd—C (10 %) 0.103 g was added and stirred at 80 ° C. for 16 hours. After completion of the stirring, the mixture was filtered through celite, and the reaction solution was concentrated to about 100 mL. Thereafter, it was poured into distilled water, stirred for 1 hour, and filtered and dried. The obtained solid was recrystallized from DMAc. Yield 3.28 g (70% yield). The structure was confirmed by 1 H-NMR.
[0023]
[Example 1]
0.56-g (1.01 mmol) of 1,3-bis [4- (4-aminophenoxy) phenyl] adamantane was dissolved in N-methylpyrrolidone (2.81 g), and 1,2,3,4 -0.197 g (1.01 mmol) of cyclobutanetetracarboxylic dianhydride (CBDA) was added, and the mixture was reacted at room temperature for 7 hours and at 80 ° C for 23 hours in a nitrogen atmosphere. After completion of the reaction, the polymerization solution was diluted with NMP, poured into a water: methanol mixed solution (100 mL), and stirred at room temperature for 1 hour. After completion of stirring, the mixture was filtered and dried under reduced pressure to obtain a polyamic acid. The yield was 89%. The structure was confirmed by IR spectrum. Polyamic acid was heat-treated under a nitrogen stream at 70 ° C. for 2 hours, 160 ° C. for 1 hour, 250 ° C. for 30 minutes, and 300 ° C. for 1 hour to obtain a polyimide.
The IR spectrum was measured by Horiba FT-720. 1 H NMR and 13 C-NMR were measured by Bruker DPX300 (300 MHz). Thermal analysis was measured by SeikoTG / DTA 6300. The refractive index was measured with a PC-2000 prism coupler.
The structure of the polymer was confirmed by IR spectrum. The polyamic acid obtained here was soluble in solvents such as NMP, DMAc, DMF, and DMSO. Further, imidization was performed under a nitrogen stream, and the structure was confirmed by IR spectrum.
[0024]
[Example 2]
Bicyclo [2.2.2] oct-7-ene-2,3 instead of 0.197 g (1.01 mmol) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride (CBDA); Polymerization was carried out in the same manner as in Example 1 except that 1.01 mmol of 6-tetracarboxylic dianhydride (BCDA) was used to obtain polyamic acid and polyimide.
[Example 3]
Bicyclo [2.2.1] heptane-2-methanecarboxylic dianhydride (NDA) instead of 0.197 g (1.01 mmol) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride (CBDA) ) Polymerization was carried out in the same manner as in Example 1 except that 1.01 mmol was used to obtain polyamic acid and polyimide.
[0025]
Evaluation Results The glass transition point of the polyimide obtained in Example 1 (in a nitrogen atmosphere,
The relative dielectric constants calculated from the refractive indices of the polyimides obtained in Examples 1 to 3 were 2.78 (Example 1), 2.74 (Example 2), and 2.69 (Example 3). It was.
[0026]
[Example 4]
0.63 g (1.01 mmol) of 3,3′-bis [4- (3-aminophenoxy) phenyl] -1,1′-biadamantane was dissolved in NMP (3.38 g). 0.199 g (1.01 mmol) of 2,3,4-cyclobutanetetracarboxylic dianhydride (CBDA) was added, and the mixture was reacted under a nitrogen atmosphere at room temperature for 7 hours and at 80 ° C. for 23 hours. After completion of the reaction, the polymerization solution was diluted with NMP, poured into a water: methanol mixed solution (100 mL), and stirred at room temperature for 1 hour. After completion of stirring, the mixture was filtered and dried under reduced pressure. Yield 80%. The structure was confirmed by IR spectrum. Thermal imidization was performed by heat treatment under a nitrogen stream at 70 ° C. for 2 hours, 160 ° C. for 1 hour, 250 ° C. for 30 minutes, and 300 ° C. for 1 hour.
Thermal analysis was measured by SeikoTG / DTA 6300. The refractive index was measured with a PC-2000 prism coupler.
The obtained polyimide has a glass transition temperature of 288 ° C., a 5% weight loss temperature of 472 ° C. and a 10% weight loss temperature of 489 ° C., which are relatively high heat resistance, and a relative dielectric constant converted from a refractive index. 7.
[0027]
【The invention's effect】
Since the polyimide of the present invention has a low relative dielectric constant and excellent heat resistance, it is suitable as an electronic material such as a semiconductor interlayer insulating film.
[Brief description of the drawings]
FIG. 1 is a 1 H-NMR spectrum of 1,3-bis [4- (4-aminophenoxy) phenyl] adamantane.
Claims (5)
一般式(4)General formula (4)
一般式(2)General formula (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002152177A JP3786051B2 (en) | 2002-05-08 | 2002-05-27 | Polyimide, polyamic acid and interlayer insulation film |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002132334 | 2002-05-08 | ||
JP2002152177A JP3786051B2 (en) | 2002-05-08 | 2002-05-27 | Polyimide, polyamic acid and interlayer insulation film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004026850A JP2004026850A (en) | 2004-01-29 |
JP3786051B2 true JP3786051B2 (en) | 2006-06-14 |
Family
ID=31190121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002152177A Expired - Fee Related JP3786051B2 (en) | 2002-05-08 | 2002-05-27 | Polyimide, polyamic acid and interlayer insulation film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3786051B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4499391B2 (en) * | 2003-03-26 | 2010-07-07 | ダイセル化学工業株式会社 | Insulating film forming material and insulating film |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0726017A (en) * | 1993-07-12 | 1995-01-27 | Sumitomo Chem Co Ltd | Polyimide and its production |
JPH09132710A (en) * | 1995-11-09 | 1997-05-20 | Sumitomo Chem Co Ltd | Polyimide resin composition and its use |
JP2002020486A (en) * | 2000-07-04 | 2002-01-23 | Manac Inc | Novel polyimide and its manufacturing method |
-
2002
- 2002-05-27 JP JP2002152177A patent/JP3786051B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004026850A (en) | 2004-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4053603B2 (en) | Soluble polyimide resin, its production method and polyimide resin solution composition | |
JP2008239820A (en) | Polyamic acid's imidized polymer electrical insulation film and film-forming composition and method for producing the composition | |
JP2008308551A (en) | Novel polyamic acid, polyimide, and its use | |
US6040418A (en) | Fluorinated polyimides, laminated substrates and polyamic acid solutions | |
JP5270865B2 (en) | Adhesive and its use | |
JPH0214365B2 (en) | ||
JPH11292968A (en) | Electronic part and its production | |
JP3786051B2 (en) | Polyimide, polyamic acid and interlayer insulation film | |
JPS614730A (en) | Production of organic solvent-soluble polyimide compound | |
JP3627413B2 (en) | Aromatic diamine compound and polyamic acid and polyimide using the same | |
JP3633238B2 (en) | Aromatic bis (ether anhydride), polyamic acid and polyimide | |
JP3641901B2 (en) | Polyamic acid and polyimide | |
JPH0315660B2 (en) | ||
JP3932674B2 (en) | Polyimide resin, polyamic acid and interlayer insulation film | |
JPS6128526A (en) | Production of organic solvent-soluble polyimide compound | |
JPH0562893B2 (en) | ||
JP2535527B2 (en) | Polyimide | |
JPH11228693A (en) | Polyimide resin solution and its production | |
JP2002060488A (en) | Method for manufacturing polyamic acid and polyimide, and adhesive tape obtained by using them | |
JPH0770539A (en) | Adhesive for cover lay and cover lay film | |
JP3653888B2 (en) | Polyamic acid and polyimide | |
JP2001181390A (en) | Polyamic acid, polyimide and insulating film-forming material | |
JP2001323061A (en) | Low-dielectric constant polyimide composition | |
JPH06172737A (en) | Film adhesive and its production | |
JPH08143668A (en) | New aromatic polyamic acid copolymer and copolyimide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040730 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051003 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051018 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051214 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060112 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060228 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060313 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3786051 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090331 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100331 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100331 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110331 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110331 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120331 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120331 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130331 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130331 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140331 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |