JP3785685B2 - Valve timing control device - Google Patents

Valve timing control device Download PDF

Info

Publication number
JP3785685B2
JP3785685B2 JP20228896A JP20228896A JP3785685B2 JP 3785685 B2 JP3785685 B2 JP 3785685B2 JP 20228896 A JP20228896 A JP 20228896A JP 20228896 A JP20228896 A JP 20228896A JP 3785685 B2 JP3785685 B2 JP 3785685B2
Authority
JP
Japan
Prior art keywords
camshaft
fluid
transmission member
flow path
rotation transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20228896A
Other languages
Japanese (ja)
Other versions
JPH1047022A (en
Inventor
良 直 樹 吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP20228896A priority Critical patent/JP3785685B2/en
Priority to DE69712992T priority patent/DE69712992T2/en
Priority to EP97305496A priority patent/EP0821138B1/en
Priority to US08/899,161 priority patent/US5979380A/en
Publication of JPH1047022A publication Critical patent/JPH1047022A/en
Application granted granted Critical
Publication of JP3785685B2 publication Critical patent/JP3785685B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34459Locking in multiple positions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34473Lock movement perpendicular to camshaft axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関のクランクプーリからの回転力がタイミングプーリを介して伝達されるカムシャフトとタイミングプーリとの間で運転状態に応じた位相の可変を行う内燃機関用の弁開閉時期制御装置に関するものである。
【0002】
【従来の技術】
従来より、タイミングプーリとカムシャフトとのタイミングを制御する弁開閉時期制御装置は多数紹介されており、その一例としてベーンタイプの弁開閉時期制御装置が知られている。
【0003】
例えば、ベーンタイプの弁開閉時期制御装置には、特開平1−92504号に開示されたものがある。
【0004】
この公報に開示された技術を図4及び図4のC−C断面図である図5により説明すると、1はタイミングプーリで図示しない内燃機関のクランクプーリを駆動源とし、環状ベルト、環状チェーン又はギア等によって回転力が伝えられるようになっている。4はカムシャフトでエンジンのシリンダーヘッド14に支承されており、ベーン2が内部ロータ3を介してカムシャフト4に固定されている。ベーン2にはカムシャフト4の軸方向に2つのスプリング受容孔2a,2bが形成されており、受容孔2a,2bにはコイルスプリング25a,25bが収容され、ベーン2をタイミングプーリ1の方向に付勢している。また、タイミングプーリ1のタイミングプーリ内周部1aには仕切壁1bが形成されており、仕切壁1b、1bの間に油圧室8が形成されている。この油圧室8にはそれぞれベーン2が挿入され、該ベーン2と外側板5とにより圧力作動室9,9aが形成され、かつ外側板5はプレート21及び固定ボルト20とにより位置決めされている。すなわち、ベーン2を含むカムシャフト4側と、油圧室8を含むタイミングプーリ1の側とは、相対回転可能に支承されている。また、この相対回転は、ベーン2がタイミングプーリ内周部に設けられた油圧室8の範囲で回転することによって達成され、その角度は図5に示すθの角度だけ回転することができる。カムシャフト4とタイミングプーリ1との相対回転は、ベーン2の両側に設けられた圧力作動室9,9aへ吸排する油圧によって、ベーン2を回転することによって行われている。なお、図5に矢印で示す回転方向に対して、ベーン2よりも上流側を圧力作動室9とし、ベーン2よりも下流側を圧力作動室9aとした。この油圧は図示しないオイルポンプを油圧源とし、その制御を切換バルブ15の制御によって行っている。この切換バルブ15は、ソレノイド13へ通電することによって弁スプール18をスプリング16に抗して図示右方向へ摺動させるものであり、オイルポンプから排出されたオイルを油路12から切換バルブ15へ採り入れ、油路10、11を介してベーン2の両側の油圧作動室9,9aの油圧を調節するものである。
【0005】
このような構造の従来技術の作動は、油路10は圧力作動室9へ連通しており、油路11は圧力作動室9aへ連通している。切換バルブ15を制御して油路10へオイルを供給し圧力作動室9の油圧を高めると、ベーン2が図8の矢印で示す方向に回転し、カムシャフト4の位相がタイミングプーリ1に対してベーン2の回転分だけ進ませることができ、カムシャフト4に回転に伴って開閉する吸気弁又は排気弁の開閉タイミングを進ませることができる。また、逆に切換バルブ15を制御して油路11へオイルを供給し圧力作動室9aの油圧を高めると、ベーン2が図8の矢印と逆方向に回転し、カムシャフト4の位相がタイミングプーリ1に対してベーン2の回転分だけ遅らせることができ、カムシャフト4に回転に伴って開閉する吸気弁又は排気弁の開閉タイミングを遅らせることができる。
【0006】
なお、図5に示す22はノックピンで、内部ロータ3に設けた穴24内にスプリング23の付勢力により挿入されている。この穴24の位置は、ベーン2のオイル溝8内の相対回転可能範囲の端部であり、タイミングプーリ1の回転方向に対して最も遅れた位置に設けられている。また、22aもノックピンでありノックピン22と対称位置に設けられており、図5に示す状態から角度θだけ相対回転すると、ノックピン22aは穴24aにスプリング23aの付勢力により挿入されるようになっている。
【0007】
【発明が解決しようとする課題】
上記の従来技術においては、2つのノックピン22、22aがタイミングプーリ1とカムシャフト4の位相変換範囲の最進角位置と最遅角位置に配置されており、タイミングプーリ1とカムシャフト4との位相が変化して最遅角位置となりノックピン22が穴24に対向する位置になるとノックピン22がスプリング23の付勢力により穴24に挿入されタイミングプーリ1とカムシャフト4との位相を固定する。この状態から、進角方向に油圧を制御すると、ノックピン22が穴24から排出され、最進角位置まで位相が変化すると、今度はノックピン22aがスプリング23aの付勢力により穴24aに挿入されタイミングプーリ1とカムシャフト4との位相を固定する。つまり、ノックピン22、22aは外周側からスプリング23、23aによって付勢されており、内周側から油圧によって付勢されて、穴24、24aに係合または解除の作動を行っている。ここで、内周側から供給されたオイルがノックピン22、22aの外周と穴24、24aとの間およびノックピン22、22aの外周とノックピン22、22aを保持するタイミングプーリ1の孔との間の隙間を経て、スプリング23、23aが配置されたノックピン22、22aの外周側へ洩れた場合には、ノックピン22、22aの作動を確保するためにタイミングプーリ1の外側へ放出する必要があった。また、放出されたオイルは、タイミングプーリ1に金属製の環状チェーンを用いる場合には、タイミングプーリ1の外側へ放出されたオイルが潤滑油としての利用も可能である。しかしながら、樹脂製またはゴム製の環状ベルトを用いる場合には、タイミングプーリ1の外側へ放出されたオイルが環状ベルトのタイミングプーリ1との係合をスリップさせて環状ベルトの回転をタイミングプーリ1に効率的に伝達させることができなくなったり、環状ベルトを劣化させたりする不具合が発生する。
【0008】
本発明は、上記の従来技術の問題点を解決した弁開閉時期制御装置を開示するものである。
【0009】
【課題を解決するための手段】
上記した課題を解決するために出願人らは、回転伝達部材とカムシャフトとの位相を保持又は解除する係合機構を流体作動室へ供給する流体圧によって作動することに着目した。
【0010】
上記した課題を解決するために請求項1の発明において講じた手段は、
内周部に複数の流体室を形成する仕切壁を備えた回転伝達部材と、流体室を区画するベーンを取り付けた吸気弁又は排気弁を開閉させるカムシャフトと、ベーンで区画される流体室をそれぞれ第1の流体作動室と第2の流体作動室とし、流体作動室への流体圧により回転伝達部材とカムシャフトとの位相を可変とする位相可変機構と、第1流体作動室へ流体を給排する第1流路と、第2流体作動室へ流体を給排する第2流路と、前記第1流路の流体圧により、前記回転伝達部材と前記カムシャフトとの位相を保持し、前記第2流路の流体圧により、前記回転伝達部材と前記カムシャフトとの位相を解除する係合機構とから構成したことである。従って、係合機構を介して第1流路と第2流路とが連通され、係合機構の内部に流体が滞留することを回避することが可能となる。
【0011】
請求項2の発明において講じた手段は、係合機構が、回転伝達部材又はカムシャフトの一方の部材に形成した支持孔に配置されたピンと、回転伝達部材又はカムシャフトの他方の部材に形成したピンが挿入される受容孔とから構成し、支持孔はカムシャフトの径方向に配置され、受容孔に第1流路及び第2流路の一方が連通し、支持孔に第1流路及び第2流路の他方が連通するようにしたことである。従って、ピンを作動させるための流体が、ピンと支持孔との間またはピンと受容孔との間の隙間にピンを作動させる流体が流入しても、対向する受容孔に連通する通路または対向する支持孔に連通する通路を介して排出することが可能となる。
【0012】
請求項3の発明において講じた手段は、受容孔へ連通する第1流路または第2流路のための通路として、受容孔と第1の流体作動室または第2の流体作動室との間を連通する通路を回転伝達部材に形成したことである。従って、弁開閉時期制御装置を小型化することが可能となる。
【0013】
請求項4の発明において講じた手段は、通路を、回転伝達部材のカムシャフトの軸方向表面に形成された凹部と、回転伝達部材の対向面に一体固定される板材との間に形成したことである。従って、ピンをカムシャフト側へ作動させる流体のための通路を用意に形成することが可能となる。
【0014】
請求項5の発明において講じた手段は、回転伝達部材に形成された支持孔または受容孔の外周端に、カムシャフトの径方向に延在する突起部を有する蓋を係合したことである。従って、ピンと回転伝達部材の外周との間に油圧室が形成されピンを作動するための流体が弁開閉時期制御装置の外部へ漏れることを防止することが可能となる。更に、突起部がピンのストッパを兼ねると共に、突起部が油圧室の容積を減少させるのでピンの作動性が向上する。
【0015】
【発明の実施の形態】
本発明に係る第1の実施の形態を図1〜3に基づいて説明する。
【0016】
図1は、本発明を用いた第1の実施の形態の弁開閉時期制御装置30を示す図面である。図1に示すように弁開閉時期制御装置30は、DOHCエンジンに適用したものである。シリンダヘッド32には、回転可能に支持された排気バルブ用カムシャフト34と吸気ハルブ用カムシャフト36が取り付けられている。排気バルブ用カムシャフト34の外周には相対回転可能に取り付けられたギヤ38と、吸気バルブ用カムシャフト36の外周には相対回転不能に取り付けられたギヤ40とがそれぞれ取り付けられており、ギヤ38とギヤ40とが噛み合うことにより排気バルブ用カムシャフト34と吸気ハルブ用カムシャフト36とが連結している。本実施の形態の弁開閉時期制御装置30は、排気バルブ用カムシャフト34(回転軸、以下、カムシャフト34という)に取り付けられている。
【0017】
タイミングプーリ42は、シリンダーヘッド32から突出したカムシャフト34の端部にボルト44によって固定され、ストッパピン46によって位置決めされ相対回転不能に固定されている。
【0018】
カムシャフト34の外周には、ギヤ38、フロントプレートハウジング48、環状ハウジング50、リアプレートハウジング52(板材)がボルト54によって一体に締結され回転伝達部材56を形成し、カムシャフト14と相対回転可能に装着されている。フロントプレートハウジング48とリアプレートハウジング52に挟まれた環状ハウジング50の内部には、図2に示すように仕切壁58、58の間に5つの油圧室(圧力室)60と、環状ハウジング50の外側から切削した支持孔62が設けられている。
【0019】
カムシャフト34の外表面には、内周ロータ68がピン70によって相対回転不能に固定され、ナット72によってカムシャフト34の段部35との間で締めつけられて固着している。5つのベーン74は、内周ロータ68に形成されたベーン受容溝76に内周側の端部を係止して放射方向に延びている。ベーン74の内周側には受容溝76との間に隙間78が形成されており、この隙間78には図示しない板バネが配置されておりベーン74を外側へ付勢している。ベーン74は、それぞれの油圧室60を進角油圧室80と遅角油圧室82とに区画している。内周ロータ68に取り付けたベーン74と、環状ハウジング50に設けた進角油圧室80および遅角油圧室82とによって位相可変機構を形成している。
【0020】
カムシャフト34の内部には、進角油圧室80と遅角油圧室82とにそれぞれ連通した進角油路84と遅角油路86が形成されている。図2に示すように、遅角油路86はカムシャフト34の内部に2本形成されている。進角油路84と遅角油路86とは、それぞれカムシャフト34とシリンダーヘッド32との間に形成した進角油路接続リング88と遅角油路接続リング90を介して制御バルブ92と連通している。制御バルブ92は、エンジンの回転数やエンジンの出力等の情報を受ける中央制御装置(ECU)94からの信号によって作動する92a、92b、92cの3つの室を備えた電磁弁である。制御バルブ92は、更に、オイルパン96からオイルポンプ98を介して油圧を導入する通路100とオイルパン96へ油圧を排出する通路102とに連結されている。
【0021】
図2、図3に示す104は位相保持機構であり、環状ハウジング50の支持孔62内に、支持孔62の断面と略同一径のピン106が配置されている。内周ロータには、支持孔62の断面と同一形状又は支持孔62の断面よりも若干大きめの形状の受容孔108が形成されている。受容孔108は、ベーン74が油圧室60内を回転する範囲の最遅角位置(図2に示す位置、つまりカムシャフト34が環状ハウジング50の回転方向に回転した位置)で支持孔62と一致するように形成されている。受容孔108は進角油路84と連通しており、進角油路84に供給されるオイルの一部が受容孔108に導かれるようになっている。支持孔62の外周端は段部110を備えた蓋112によって水密的に閉鎖しており、支持孔62のオイルが外部へ洩れないようになっている。支持孔62の内部空間114は、蓋112に隣接して設けられる通路116によって位相保持機構104に隣接する遅角油圧室83と連通している。従って、ピン106は、カムシャフト34側から受ける進角油路84の油圧と、環状ハウジング50の外側から受ける遅角油圧室83を介した遅角油路86の油圧とによって両側から付勢されており、双方の油圧差によってカムシャフト34の径方向に摺動することができる。
【0022】
上記の弁開閉時期制御装置30の作動について説明する。図示しないタイミングプーリの回転がチェーンベルト等を介してタイミングプーリ42に伝達されると、タイミングプーリ42の回転はタイミングプーリ42と一体となったカムシャフト34を図2に矢印で示す方向に回転させると共に、内周ロータ68、ベーン74、回転伝達部56(ギヤ38、フロントプレートハウジング48、環状ハウジング50、リアプレートハウジング52)、ギヤ40を介して吸気バルブ用カムシャフト36にも伝達される。
【0023】
ここで、ベーン74は油圧室60内で回動可能であり、カムシャフト34の位相変化が可能である。エンジンの回転数やエンジンの出力状態によってECU94によって制御バルブ92を切り換えて、カムシャフト34の回転位相と吸気バルブ用カムシャフト36の回転位相を変化させる。具体的には、制御バルブ92を図1に示すように室90aにして通路100のオイルを進角油路84へ供給する。そして、進角油圧室80供給されるオイルの油圧によってベーン74を図2に示す矢印と逆の方向(時計の回転方向)へ回転させて、図3に示すように、カムシャフト34の回転に比べて吸気バルブ用カムシャフト36の回転を進角させる。
【0024】
逆に、図3に示す最進角位置から、制御バルブ92を室90cに切り換えて、遅角油路86を介して遅角油圧室82へオイルを供給し、進角油圧室80のオイルを進角油路84を介してオイルパン96へ排出して、ベーン74を図2に示す矢印の方向へ回転させて、カムシャフト34の回転に比べて吸気バルブ用カムシャフト36の回転を遅角させることができる。なお、制御バルブ92を室90bに切り換えて、ベーン74を挟む進角油圧室80と遅角油圧室82との油圧を調整し保持して、ベーン74を所望の位置で保持することもできる。
【0025】
なお、本実施の形態においては、オイルによる油圧で弁開閉時期制御装置30の位相を変換しているが、オイル以外にエアー等の流体によって位相を変換することも可能である。
【0026】
次に、図2、図3に基づき位相保持機構104の作動について説明する。制御バルブ92を制御し、遅角油路86へ油圧を供給し、進角油路84の油圧を排出すると、環状ハウジング50と、カムシャフト34と一体で回転する内周ロータ68との位相が遅角方向に変化する。そして、図2に示すように、ピン106が内周ロータ68に設けた受容孔108と一致したとき(最遅角状態)に、ピン106が遅角油路86の油圧による付勢力によって受容孔108に挿入され、環状ハウジング50と内周ロータ68との位相を固定することができる。また、制御バルブ92の制御により、進角油路84へ油圧を供給し、遅角油路86の油圧を排出すると、ピン106が受容孔108から排出されて支持孔62内に格納されると共に、環状ハウジング50と、カムシャフト34と一体で回転する内周ロータ68との位相が進角方向に変化する。このとき、ピン106は蓋112に設けた段部110によりストッパとして位置決めされると共に、段部110と内周ロータ68との間に保持される。
【0027】
このようにピン106は、ピン106の摺動方向の両側から進角油路84の油圧と、遅角油路86の油圧とでそれぞれ付勢することによって、進角油路84のオイルがピン106と支持孔62との隙間又はピン106と受容孔108との隙間を経てピン106の反対側に位置する内部空間114に漏れ出ても、通路116及び遅角油圧室83を介して遅角油路86に環流させることができるので、漏れ出たオイルを弁開閉時期制御装置30から排出する必要がない。また、ピン106は支持孔62内において蓋112に設けた段部110によって位置決めして保持されるので、環状ハウジング50の回転数が変化するなどしても、ピン106の位置が固定されるので異音の発生を防止することができる。更に、通路116の内部空間114側の端部を図2、図3に示すように蓋112に設けた段部110よりも蓋112に隣接することによって、段部110の回りに内部空間114が確保でき、遅角油路86の油圧がピン106に確実に作用することができる。
【0028】
なお、エンジンの始動時に進角油圧室80または遅角油圧室82へオイルポンプ98から十分な油圧の供給を得られずに、ベーン74が油圧室60内で打音を発生することを防止するために、エンジンの停止時にはECU94によって制御バルブ92を室92cに切り換えて、オイルポンプ98の残圧によってベーン74を最遅角位置にして、ピン106を受容孔108に挿入しておくことが好ましい。
【0029】
【発明の効果】
上記した請求項1の発明によれば、 内周部に複数の流体室を形成する仕切壁を備えた回転伝達部材と、流体室を区画するベーンを取り付けた吸気弁又は排気弁を開閉させるカムシャフトと、ベーンで区画される流体室をそれぞれ第1の流体作動室と第2の流体作動室とし、流体作動室への流体圧により回転伝達部材とカムシャフトとの位相を可変とする位相可変機構と、第1流体作動室へ流体を給排する第1流路と、第2流体作動室へ流体を給排する第2流路と、前記第1流路の流体圧により、前記回転伝達部材と前記カムシャフトとの位相を保持し、前記第2流路の流体圧により、前記回転伝達部材と前記カムシャフトとの位相を解除する係合機構とから構成したので、係合機構を介して第1流路と第2流路とが連通され、係合機構の内部に流体が滞留することを回避することができる。
【0030】
請求項2の発明によれば、係合機構が、回転伝達部材又はカムシャフトの一方の部材に形成した支持孔に配置されたピンと、回転伝達部材又はカムシャフトの他方の部材に形成したピンが挿入される受容孔とから構成し、支持孔はカムシャフトの径方向に配置され、受容孔に第1流路及び第2流路の一方が連通し、支持孔に第1流路及び第2流路の他方が連通するようにしたので、ピンを作動させるための流体が、ピンと支持孔との間またはピンと受容孔との間の隙間にピンを作動させる流体が流入しても、対向する受容孔に連通する通路または対向する支持孔に連通する通路を介して排出することができる。
【0031】
請求項3の発明によれば、受容孔へ連通する第1流路または第2流路のための通路として、受容孔と第1の流体作動室または第2の流体作動室との間を連通する通路を回転伝達部材に形成したので、弁開閉時期制御装置を小型化することができる。
【0032】
請求項4の発明によれば、通路を、回転伝達部材のカムシャフトの軸方向表面に形成された凹部と、回転伝達部材の対向面に一体固定される板材との間に形成したので、ピンをカムシャフト側へ作動させる流体のための通路を用意に形成することができる。
【0033】
請求項5の発明によれば、回転伝達部材に形成された支持孔または受容孔の外周端に、カムシャフトの径方向に延在する突起部を有する蓋を係合したので、ピンと回転伝達部材の外周との間に油圧室が形成されピンを作動するための流体が弁開閉時期制御装置の外部へ漏れることを防止することができる。更に、突起部がピンのストッパを兼ねると共に、突起部が油圧室の容積を減少させるのでピンの作動性を向上することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態である弁開閉時期制御装置の断面を示したものである。
【図2】図1のA−A断面図の最遅角状態を示したものである。
【図3】図1のA−A断面図の最進角状態を示したものである。
【図4】従来技術の弁開閉時期制御装置の断面を示したものである。
【図5】図4のC−C断面図を示したものである。
【符号の説明】
30・・・弁開閉時期制御装置
34・・・カムシャフト
56・・・回転伝達部材
58・・・仕切壁
60・・・油圧室(流体室)
74・・・ベーン
80・・・進角油圧室(第2の流体作動室)
82・・・遅角油圧室(第1の流体作動室)
84・・・進角油路(第1流路)
86・・・遅角油路(第2流路)
104・・・位相保持機構(係合機構)
106・・・ピン
108・・・受容孔
110・・・段部
112・・・蓋
116・・・通路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a valve opening / closing timing control device for an internal combustion engine that varies a phase according to an operating state between a camshaft to which a rotational force from a crank pulley of the internal combustion engine is transmitted via a timing pulley and a timing pulley. It is about.
[0002]
[Prior art]
Many valve opening / closing timing control devices that control the timing between the timing pulley and the camshaft have been introduced, and a vane type valve opening / closing timing control device is known as an example.
[0003]
For example, a vane type valve opening / closing timing control device is disclosed in Japanese Patent Laid-Open No. 1-92504.
[0004]
The technique disclosed in this publication will be described with reference to FIG. 5 which is a sectional view taken along the line CC in FIGS. 4 and 4. Reference numeral 1 denotes a timing pulley, and a crank pulley of an internal combustion engine (not shown) is used as a drive source. The rotational force can be transmitted by gears. A camshaft 4 is supported by a cylinder head 14 of the engine, and a vane 2 is fixed to the camshaft 4 via an internal rotor 3. Two spring receiving holes 2a and 2b are formed in the vane 2 in the axial direction of the camshaft 4. Coil springs 25a and 25b are received in the receiving holes 2a and 2b, and the vane 2 is moved in the direction of the timing pulley 1. Energized. A partition wall 1b is formed on the timing pulley inner peripheral portion 1a of the timing pulley 1, and a hydraulic chamber 8 is formed between the partition walls 1b and 1b. A vane 2 is inserted into each of the hydraulic chambers 8, pressure working chambers 9 and 9 a are formed by the vanes 2 and the outer plate 5, and the outer plate 5 is positioned by a plate 21 and a fixing bolt 20. That is, the camshaft 4 side including the vane 2 and the timing pulley 1 side including the hydraulic chamber 8 are supported so as to be relatively rotatable. This relative rotation is achieved by the rotation of the vane 2 in the range of the hydraulic chamber 8 provided in the inner periphery of the timing pulley, and the angle can be rotated by the angle θ shown in FIG. The relative rotation between the camshaft 4 and the timing pulley 1 is performed by rotating the vane 2 by the hydraulic pressure sucked into and discharged from the pressure working chambers 9 and 9 a provided on both sides of the vane 2. In addition, with respect to the rotation direction indicated by the arrow in FIG. 5, the pressure working chamber 9 is located upstream of the vane 2 and the pressure working chamber 9 a is located downstream of the vane 2. This hydraulic pressure is controlled by a switching valve 15 using an oil pump (not shown) as a hydraulic pressure source. The switching valve 15 is for energizing the solenoid 13 to slide the valve spool 18 in the right direction in the figure against the spring 16. The oil discharged from the oil pump is transferred from the oil passage 12 to the switching valve 15. The hydraulic pressure of the hydraulic working chambers 9 and 9 a on both sides of the vane 2 is adjusted through the intake passages 10 and 11.
[0005]
In the operation of the prior art having such a structure, the oil passage 10 communicates with the pressure working chamber 9, and the oil passage 11 communicates with the pressure working chamber 9a. When the switching valve 15 is controlled to supply oil to the oil passage 10 to increase the hydraulic pressure in the pressure working chamber 9, the vane 2 rotates in the direction indicated by the arrow in FIG. 8, and the phase of the camshaft 4 is relative to the timing pulley 1. Thus, the rotation of the vane 2 can be advanced, and the opening / closing timing of the intake valve or the exhaust valve that opens and closes with the rotation of the camshaft 4 can be advanced. Conversely, when the switching valve 15 is controlled to supply oil to the oil passage 11 to increase the hydraulic pressure in the pressure working chamber 9a, the vane 2 rotates in the direction opposite to the arrow in FIG. The rotation of the vane 2 can be delayed with respect to the pulley 1, and the opening / closing timing of the intake valve or the exhaust valve that opens / closes with the rotation of the camshaft 4 can be delayed.
[0006]
Note that reference numeral 22 shown in FIG. 5 denotes a knock pin which is inserted into a hole 24 provided in the internal rotor 3 by the urging force of the spring 23. The position of the hole 24 is the end of the relative rotatable range in the oil groove 8 of the vane 2, and is provided at the position most delayed with respect to the rotation direction of the timing pulley 1. Further, 22a is also a knock pin and is provided at a symmetrical position with respect to the knock pin 22. When the relative rotation is performed by an angle θ from the state shown in FIG. 5, the knock pin 22a is inserted into the hole 24a by the urging force of the spring 23a. Yes.
[0007]
[Problems to be solved by the invention]
In the above prior art, the two knock pins 22 and 22a are arranged at the most advanced angle position and the most retarded angle position in the phase conversion range of the timing pulley 1 and the camshaft 4, and the timing pulley 1 and the camshaft 4 When the phase changes to the most retarded angle position and the knock pin 22 faces the hole 24, the knock pin 22 is inserted into the hole 24 by the urging force of the spring 23, and the phase between the timing pulley 1 and the camshaft 4 is fixed. When the hydraulic pressure is controlled in this advance direction from this state, the knock pin 22 is ejected from the hole 24, and when the phase changes to the most advanced position, the knock pin 22a is inserted into the hole 24a by the urging force of the spring 23a. 1 and the camshaft 4 are fixed in phase. That is, the knock pins 22 and 22a are urged by the springs 23 and 23a from the outer peripheral side, and are urged by the hydraulic pressure from the inner peripheral side to engage or release the holes 24 and 24a. Here, the oil supplied from the inner periphery side is between the outer periphery of the knock pins 22 and 22a and the holes 24 and 24a, and between the outer periphery of the knock pins 22 and 22a and the hole of the timing pulley 1 that holds the knock pins 22 and 22a. When leaking to the outer peripheral side of the knock pins 22 and 22a on which the springs 23 and 23a are disposed through the gap, it is necessary to discharge to the outside of the timing pulley 1 in order to ensure the operation of the knock pins 22 and 22a. In addition, when a metal annular chain is used for the timing pulley 1, the oil released to the outside of the timing pulley 1 can be used as a lubricating oil. However, when using a resin-made or rubber-made annular belt, the oil released to the outside of the timing pulley 1 slips the engagement of the annular belt with the timing pulley 1 to rotate the annular belt to the timing pulley 1. Problems such as inability to transmit efficiently and deterioration of the annular belt occur.
[0008]
The present invention discloses a valve opening / closing timing control apparatus that solves the above-described problems of the prior art.
[0009]
[Means for Solving the Problems]
In order to solve the above-described problems, the applicants have focused on the fact that the engagement mechanism that maintains or releases the phase between the rotation transmission member and the camshaft is operated by the fluid pressure supplied to the fluid working chamber.
[0010]
In order to solve the above problem, the means taken in the invention of claim 1 is:
A rotation transmission member having a partition wall that forms a plurality of fluid chambers on the inner periphery, a camshaft that opens and closes an intake valve or an exhaust valve to which a vane that partitions the fluid chamber is attached, and a fluid chamber that is partitioned by the vane A first fluid working chamber and a second fluid working chamber, respectively, and a phase variable mechanism that varies the phase between the rotation transmission member and the camshaft by fluid pressure to the fluid working chamber, and fluid to the first fluid working chamber The phase of the rotation transmission member and the camshaft is maintained by the first flow path for supplying and discharging, the second flow path for supplying and discharging fluid to the second fluid working chamber, and the fluid pressure of the first flow path. And an engagement mechanism that releases the phase between the rotation transmission member and the camshaft by the fluid pressure in the second flow path . Therefore, the first flow path and the second flow path are communicated with each other via the engagement mechanism, and it is possible to avoid the fluid from staying inside the engagement mechanism.
[0011]
The means taken in the invention of claim 2 is that the engaging mechanism is formed on a pin disposed in a support hole formed in one member of the rotation transmission member or the camshaft and on the other member of the rotation transmission member or the camshaft. consist of a receiving bore in which the pin is inserted, the supporting holes are arranged in the radial direction of the camshaft, communicates one is communication with the first flow path and second flow path into the receiving hole, the first flow path into the supporting hole and That is, the other of the second flow paths communicates. Therefore, even if the fluid for operating the pin flows into the gap between the pin and the support hole or between the pin and the reception hole, the passage communicating with the opposing reception hole or the opposing support It becomes possible to discharge through the passage communicating with the hole.
[0012]
The means taken in the invention of claim 3 is the passage between the receiving hole and the first fluid working chamber or the second fluid working chamber as a passage for the first flow path or the second flow path communicating with the receiving hole. Is formed in the rotation transmission member. Therefore, the valve opening / closing timing control device can be reduced in size.
[0013]
The means taken in the invention of claim 4 is that the passage is formed between a recess formed in the axial surface of the camshaft of the rotation transmission member and a plate material integrally fixed to the opposing surface of the rotation transmission member. It is. Accordingly, it is possible to prepare a passage for the fluid that operates the pin toward the camshaft.
[0014]
The means taken in the invention of claim 5 is that a lid having a protruding portion extending in the radial direction of the camshaft is engaged with the outer peripheral end of the support hole or the receiving hole formed in the rotation transmitting member. Therefore, a hydraulic chamber is formed between the pin and the outer periphery of the rotation transmitting member, and it is possible to prevent the fluid for operating the pin from leaking outside the valve timing control device. Furthermore, since the protrusion serves as a stopper for the pin and the protrusion reduces the volume of the hydraulic chamber, the operability of the pin is improved.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment according to the present invention will be described with reference to FIGS.
[0016]
FIG. 1 is a view showing a valve timing control apparatus 30 according to a first embodiment using the present invention. As shown in FIG. 1, the valve timing control device 30 is applied to a DOHC engine. An exhaust valve camshaft 34 and an intake valve camshaft 36 that are rotatably supported are attached to the cylinder head 32. A gear 38 is attached to the outer periphery of the exhaust valve camshaft 34 so as to be relatively rotatable, and a gear 40 is attached to the outer periphery of the intake valve camshaft 36 so as not to be relatively rotatable. And the gear 40 are engaged with each other, the exhaust valve camshaft 34 and the intake valve camshaft 36 are connected. The valve timing control device 30 of the present embodiment is attached to an exhaust valve camshaft 34 (rotary shaft, hereinafter referred to as camshaft 34).
[0017]
The timing pulley 42 is fixed to the end portion of the camshaft 34 protruding from the cylinder head 32 by a bolt 44, is positioned by a stopper pin 46, and is fixed so as not to be relatively rotatable.
[0018]
On the outer periphery of the camshaft 34, a gear 38, a front plate housing 48, an annular housing 50, and a rear plate housing 52 (plate material) are integrally fastened by bolts 54 to form a rotation transmission member 56, which can rotate relative to the camshaft 14. It is attached to. Inside the annular housing 50 sandwiched between the front plate housing 48 and the rear plate housing 52, there are five hydraulic chambers (pressure chambers) 60 between the partition walls 58 and 58 as shown in FIG. A support hole 62 cut from the outside is provided.
[0019]
An inner circumferential rotor 68 is fixed to the outer surface of the camshaft 34 by a pin 70 so as not to be relatively rotatable, and is fastened and fixed to a step portion 35 of the camshaft 34 by a nut 72. The five vanes 74 extend in the radial direction by locking the inner peripheral end portions of the vane receiving grooves 76 formed in the inner peripheral rotor 68. A gap 78 is formed between the vane 74 and the receiving groove 76 on the inner peripheral side, and a leaf spring (not shown) is arranged in the gap 78 to urge the vane 74 outward. The vane 74 partitions each hydraulic chamber 60 into an advance hydraulic chamber 80 and a retard hydraulic chamber 82. The vane 74 attached to the inner circumferential rotor 68 and the advance hydraulic chamber 80 and the retard hydraulic chamber 82 provided in the annular housing 50 form a phase variable mechanism.
[0020]
Inside the camshaft 34, an advance oil passage 84 and a retard oil passage 86 are formed which communicate with the advance hydraulic chamber 80 and the retard hydraulic chamber 82, respectively. As shown in FIG. 2, two retarded oil passages 86 are formed inside the camshaft 34. The advance oil passage 84 and the retard oil passage 86 are connected to the control valve 92 via an advance oil passage connection ring 88 and a retard oil passage connection ring 90 formed between the camshaft 34 and the cylinder head 32, respectively. Communicate. The control valve 92 is an electromagnetic valve having three chambers 92a, 92b, and 92c that are operated by a signal from a central control unit (ECU) 94 that receives information such as the engine speed and engine output. The control valve 92 is further connected to a passage 100 for introducing hydraulic pressure from the oil pan 96 via an oil pump 98 and a passage 102 for discharging hydraulic pressure to the oil pan 96.
[0021]
Reference numeral 104 shown in FIGS. 2 and 3 denotes a phase holding mechanism, and a pin 106 having a diameter substantially the same as the cross section of the support hole 62 is disposed in the support hole 62 of the annular housing 50. A receiving hole 108 having the same shape as the cross section of the support hole 62 or slightly larger than the cross section of the support hole 62 is formed in the inner circumferential rotor. The receiving hole 108 coincides with the support hole 62 at the most retarded position (the position shown in FIG. 2, that is, the position where the camshaft 34 is rotated in the rotation direction of the annular housing 50) in the range in which the vane 74 rotates in the hydraulic chamber 60. It is formed to do. The receiving hole 108 communicates with the advance oil passage 84, and a part of the oil supplied to the advance oil passage 84 is guided to the reception hole 108. The outer peripheral end of the support hole 62 is watertightly closed by a lid 112 provided with a stepped portion 110 so that oil in the support hole 62 does not leak to the outside. The internal space 114 of the support hole 62 communicates with the retarded hydraulic chamber 83 adjacent to the phase holding mechanism 104 by a passage 116 provided adjacent to the lid 112. Accordingly, the pin 106 is biased from both sides by the hydraulic pressure of the advance oil passage 84 received from the camshaft 34 side and the hydraulic pressure of the retard oil passage 86 received from the outside of the annular housing 50 via the retard hydraulic chamber 83. Thus, the camshaft 34 can slide in the radial direction due to the difference in hydraulic pressure between the two.
[0022]
The operation of the valve timing control device 30 will be described. When rotation of a timing pulley (not shown) is transmitted to the timing pulley 42 via a chain belt or the like, the rotation of the timing pulley 42 rotates the camshaft 34 integrated with the timing pulley 42 in the direction indicated by the arrow in FIG. At the same time, it is also transmitted to the intake valve camshaft 36 via the inner circumferential rotor 68, the vane 74, the rotation transmission portion 56 (gear 38, front plate housing 48, annular housing 50, rear plate housing 52), and gear 40.
[0023]
Here, the vane 74 is rotatable in the hydraulic chamber 60 and the phase of the camshaft 34 can be changed. The control valve 92 is switched by the ECU 94 according to the engine speed and the engine output state to change the rotational phase of the camshaft 34 and the rotational phase of the intake valve camshaft 36. Specifically, the control valve 92 is set to a chamber 90 a as shown in FIG. 1 and the oil in the passage 100 is supplied to the advance oil passage 84. Then, the vane 74 is rotated in the direction opposite to the arrow shown in FIG. 2 (clockwise rotation direction) by the hydraulic pressure of the oil supplied to the advance hydraulic chamber 80 to rotate the camshaft 34 as shown in FIG. In comparison, the rotation of the intake valve camshaft 36 is advanced.
[0024]
Conversely, from the most advanced position shown in FIG. 3, the control valve 92 is switched to the chamber 90c to supply oil to the retarded hydraulic chamber 82 via the retarded oil passage 86, and the oil in the advanced hydraulic chamber 80 is discharged. The oil pan 96 is discharged through the advance oil passage 84 and the vane 74 is rotated in the direction of the arrow shown in FIG. 2 to retard the rotation of the intake valve camshaft 36 relative to the rotation of the camshaft 34. Can be made. The vane 74 can also be held at a desired position by switching the control valve 92 to the chamber 90b to adjust and hold the hydraulic pressure in the advance hydraulic chamber 80 and the retard hydraulic chamber 82 that sandwich the vane 74.
[0025]
In the present embodiment, the phase of the valve opening / closing timing control device 30 is converted by oil pressure by oil, but the phase can also be converted by a fluid such as air other than oil.
[0026]
Next, the operation of the phase holding mechanism 104 will be described with reference to FIGS. When the control valve 92 is controlled to supply hydraulic pressure to the retard oil passage 86 and the hydraulic oil in the advance oil passage 84 is discharged, the phase between the annular housing 50 and the inner peripheral rotor 68 that rotates integrally with the camshaft 34 is changed. It changes in the retard direction. As shown in FIG. 2, when the pin 106 is aligned with the receiving hole 108 provided in the inner circumferential rotor 68 (most retarded state), the pin 106 is received by the urging force by the hydraulic pressure of the retarded oil passage 86. The phase between the annular housing 50 and the inner circumferential rotor 68 can be fixed. Further, when the hydraulic pressure is supplied to the advance oil passage 84 and the hydraulic oil in the retard oil passage 86 is discharged by the control of the control valve 92, the pin 106 is discharged from the receiving hole 108 and stored in the support hole 62. The phases of the annular housing 50 and the inner rotor 68 that rotates integrally with the camshaft 34 change in the advance direction. At this time, the pin 106 is positioned as a stopper by the step portion 110 provided on the lid 112 and is held between the step portion 110 and the inner peripheral rotor 68.
[0027]
In this way, the pin 106 is energized by the hydraulic pressure of the advance oil passage 84 and the hydraulic oil pressure of the retard oil passage 86 from both sides in the sliding direction of the pin 106, so that the oil of the advance oil passage 84 is pinned. Even if the air leaks into the internal space 114 located on the opposite side of the pin 106 through the gap between the pin 106 and the support hole 62 or the gap between the pin 106 and the receiving hole 108, the retardation is caused through the passage 116 and the retardation hydraulic chamber 83. Since the oil can be circulated through the oil passage 86, it is not necessary to discharge the leaked oil from the valve opening / closing timing control device 30. Further, since the pin 106 is positioned and held in the support hole 62 by the step portion 110 provided in the lid 112, the position of the pin 106 is fixed even if the rotational speed of the annular housing 50 is changed. Generation of abnormal noise can be prevented. Further, the end portion of the passage 116 on the inner space 114 side is adjacent to the lid 112 rather than the step portion 110 provided on the lid 112 as shown in FIGS. This ensures that the oil pressure of the retarded oil passage 86 can act on the pin 106 reliably.
[0028]
It is to be noted that, when the engine is started, the vane 74 is prevented from generating sound in the hydraulic chamber 60 without obtaining sufficient hydraulic pressure from the oil pump 98 to the advance hydraulic chamber 80 or the retard hydraulic chamber 82. Therefore, it is preferable that the control valve 92 is switched to the chamber 92c by the ECU 94 when the engine is stopped, the vane 74 is set to the most retarded position by the residual pressure of the oil pump 98, and the pin 106 is inserted into the receiving hole 108. .
[0029]
【The invention's effect】
According to the first aspect of the present invention, the cam for opening and closing the intake valve or the exhaust valve having the rotation transmission member provided with the partition wall forming the plurality of fluid chambers in the inner peripheral portion and the vane partitioning the fluid chamber. The fluid chamber defined by the shaft and the vane is a first fluid working chamber and a second fluid working chamber, respectively, and the phase is variable so that the phases of the rotation transmitting member and the camshaft are variable by the fluid pressure to the fluid working chamber. The rotation is transmitted by a mechanism, a first flow path for supplying and discharging fluid to and from the first fluid working chamber, a second flow path for supplying and discharging fluid to and from the second fluid working chamber, and fluid pressure in the first flow path. Since the engagement mechanism that holds the phase of the member and the camshaft and releases the phase of the rotation transmission member and the camshaft by the fluid pressure of the second flow path is provided. The first flow path and the second flow path communicate with each other, and the inside of the engagement mechanism It is possible to prevent the fluid from staying in the tank.
[0030]
According to the invention of claim 2, the engaging mechanism includes a pin disposed in a support hole formed in one member of the rotation transmission member or the camshaft and a pin formed in the other member of the rotation transmission member or the camshaft. consist of the inserted the receiving hole, the support hole is disposed in the radial direction of the camshaft, communicates one is communication with the first flow path and second flow path into the receiving hole, the first flow path into the supporting hole and the second Since the other of the flow paths is in communication, the fluid for operating the pin is opposed even if the fluid for operating the pin flows into the gap between the pin and the support hole or between the pin and the receiving hole. The discharge can be made through a passage communicating with the receiving hole or a passage communicating with the opposite support hole.
[0031]
According to the invention of claim 3, the passage between the receiving hole and the first fluid working chamber or the second fluid working chamber is communicated as a passage for the first flow path or the second flow path communicating with the receiving hole. Since the passage to be formed is formed in the rotation transmission member, the valve timing control device can be reduced in size.
[0032]
According to the invention of claim 4, since the passage is formed between the concave portion formed on the surface in the axial direction of the camshaft of the rotation transmission member and the plate material integrally fixed to the opposing surface of the rotation transmission member, A passage for the fluid that operates the camshaft toward the camshaft can be easily formed.
[0033]
According to the fifth aspect of the present invention, since the lid having the protruding portion extending in the radial direction of the camshaft is engaged with the outer peripheral end of the support hole or the receiving hole formed in the rotation transmission member, the pin and the rotation transmission member It is possible to prevent a fluid for operating the pin from leaking to the outside of the valve opening / closing timing control device by forming a hydraulic chamber with the outer periphery of the valve. Furthermore, since the protrusion serves as a stopper for the pin and the protrusion reduces the volume of the hydraulic chamber, the operability of the pin can be improved.
[Brief description of the drawings]
FIG. 1 shows a cross section of a valve timing control apparatus according to a first embodiment of the present invention.
FIG. 2 shows the most retarded state of the AA sectional view of FIG. 1;
FIG. 3 shows the most advanced state of the AA cross-sectional view of FIG. 1;
FIG. 4 shows a cross section of a prior art valve opening / closing timing control device.
5 is a cross-sectional view taken along the line CC of FIG.
[Explanation of symbols]
30 ... Valve opening / closing timing control device 34 ... Camshaft 56 ... Rotation transmission member 58 ... Partition wall 60 ... Hydraulic chamber (fluid chamber)
74 ... Vane 80 ... Advance hydraulic chamber (second fluid working chamber)
82 ... retarded hydraulic chamber (first fluid working chamber)
84 ... Advance oil passage (first passage)
86 ... retarded oil passage (second passage)
104: Phase holding mechanism (engaging mechanism)
106 ... pin 108 ... receiving hole 110 ... step 112 ... lid 116 ... passage

Claims (5)

内周部に複数の流体室を形成する仕切壁を備えた回転伝達部材と、前記流体室を区画するベーンを取り付けた吸気弁又は排気弁を開閉させるカムシャフトと、前記ベーンで区画される流体室をそれぞれ第1の流体作動室と第2の流体作動室とし、該流体作動室への流体圧により前記回転伝達部材と前記カムシャフトとの位相を可変とする位相可変機構と、前記第1流体作動室へ流体を給排する第1流路と、前記第2流体作動室へ流体を給排する第2流路と、前記第1流路の流体圧により、前記回転伝達部材と前記カムシャフトとの位相を保持し、前記第2流路の流体圧により、前記回転伝達部材と前記カムシャフトとの位相を解除する係合機構とからなる弁開閉時期制御装置。  A rotation transmission member having a partition wall that forms a plurality of fluid chambers on the inner periphery, a camshaft that opens and closes an intake valve or an exhaust valve to which a vane that partitions the fluid chamber is attached, and a fluid that is partitioned by the vane A phase variable mechanism for making the phases of the rotation transmission member and the camshaft variable by fluid pressure to the fluid working chamber, respectively, and a first fluid working chamber and a second fluid working chamber, The rotation transmission member and the cam are formed by a first flow path for supplying and discharging fluid to the fluid working chamber, a second flow path for supplying and discharging fluid to the second fluid working chamber, and a fluid pressure of the first flow path. A valve opening / closing timing control device comprising an engagement mechanism that maintains a phase with a shaft and releases a phase between the rotation transmission member and the camshaft by a fluid pressure in the second flow path. 前記係合機構は、前記回転伝達部材又は前記カムシャフトの一方の部材に形成した支持孔に配置されたピンと、前記回転伝達部材又は前記カムシャフトの他方の部材に形成した前記ピンが挿入される受容孔とから構成され、前記支持孔は前記カムシャフトの径方向に配置され、前記受容孔に前記第1流路及び前記第2流路の一方が連通し、前記支持孔に前記第1流路及び前記第2流路の他方が連通する請求項1記載の弁開閉時期制御装置。In the engagement mechanism, a pin disposed in a support hole formed in one member of the rotation transmission member or the camshaft and the pin formed in the rotation transmission member or the other member of the camshaft are inserted. The support hole is disposed in the radial direction of the camshaft, one of the first flow path and the second flow path communicates with the reception hole, and the first flow is communicated with the support hole. The valve opening / closing timing control device according to claim 1, wherein the other of the passage and the second flow path communicates. 前記受容孔へ連通する前記第1流路または前記第2流路のための通路として、前記受容孔と前記第1の流体作動室または前記第2の流体作動室との間を連通する通路を前記回転伝達部材に形成した請求項2記載の弁開閉時期制御装置。  A passage communicating between the receiving hole and the first fluid working chamber or the second fluid working chamber as a passage for the first flow path or the second flow path communicating with the receiving hole. The valve timing control apparatus according to claim 2, wherein the valve timing control apparatus is formed on the rotation transmission member. 前記通路は、前記回転伝達部材の前記カムシャフトの軸方向表面に形成された凹部と、前記回転伝達部材の対向面に一体固定される板材との間に形成した請求項3記載の弁開閉時期制御装置。  The valve opening / closing timing according to claim 3, wherein the passage is formed between a recess formed in an axial surface of the camshaft of the rotation transmission member and a plate material integrally fixed to a facing surface of the rotation transmission member. Control device. 前記回転伝達部材に形成された前記支持孔または前記受容孔の外周端に、前記カムシャフトの径方向に延在する突起部を有する蓋を係合した請求項1から請求項4のいずれか1項記載の弁開閉時期制御装置。  5. The lid according to claim 1, wherein a lid having a protruding portion extending in a radial direction of the camshaft is engaged with an outer peripheral end of the support hole or the receiving hole formed in the rotation transmission member. The valve opening / closing timing control device according to item.
JP20228896A 1996-07-23 1996-07-31 Valve timing control device Expired - Lifetime JP3785685B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP20228896A JP3785685B2 (en) 1996-07-31 1996-07-31 Valve timing control device
DE69712992T DE69712992T2 (en) 1996-07-23 1997-07-23 Valve timing control devices
EP97305496A EP0821138B1 (en) 1996-07-23 1997-07-23 Valve timing control devices
US08/899,161 US5979380A (en) 1996-07-23 1997-07-23 Valve timing control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20228896A JP3785685B2 (en) 1996-07-31 1996-07-31 Valve timing control device

Publications (2)

Publication Number Publication Date
JPH1047022A JPH1047022A (en) 1998-02-17
JP3785685B2 true JP3785685B2 (en) 2006-06-14

Family

ID=16455066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20228896A Expired - Lifetime JP3785685B2 (en) 1996-07-23 1996-07-31 Valve timing control device

Country Status (1)

Country Link
JP (1) JP3785685B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3760568B2 (en) * 1997-06-05 2006-03-29 アイシン精機株式会社 Valve timing control device
JP3760566B2 (en) * 1997-06-05 2006-03-29 アイシン精機株式会社 Valve timing control device
JP3823451B2 (en) * 1997-06-24 2006-09-20 アイシン精機株式会社 Valve timing control device
JP3824110B2 (en) * 1997-06-30 2006-09-20 アイシン精機株式会社 Valve timing control device
JP3801747B2 (en) * 1997-09-29 2006-07-26 アイシン精機株式会社 Valve timing control device
DE19844646C2 (en) 1997-09-29 2003-04-10 Aisin Seiki Valve timing control device
JP5954056B2 (en) * 2012-09-03 2016-07-20 アイシン精機株式会社 Valve timing control device
CN113338477B (en) * 2021-06-22 2022-08-26 重庆大学 Assembled antidetonation wallboard suitable for honeycomb building

Also Published As

Publication number Publication date
JPH1047022A (en) 1998-02-17

Similar Documents

Publication Publication Date Title
JP3744594B2 (en) Valve timing control device
US6053139A (en) Valve timing control device
JP3888395B2 (en) Valve timing control device
JP3760566B2 (en) Valve timing control device
JP3787899B2 (en) Valve timing control device
JPH11182215A (en) Valve opening/closing timing control device
JP3823451B2 (en) Valve timing control device
EP1357260B1 (en) VCT lock pin having a tortuous path providing a hydraulic delay
JP3785685B2 (en) Valve timing control device
JP3812689B2 (en) Valve timing control device
JPH08121122A (en) Valve-timing adjusting device for internal combustion engine
JP5136852B2 (en) Valve timing control device
JP2001107711A (en) Valve timing varying device for internal combustion engine
JP2004143971A (en) Valve timing controller
JPH09250310A (en) Valve timing changing device for internal combustion engine
JPH08121123A (en) Valve-timing adjusting device for internal combustion engine
JP4389259B2 (en) Valve timing adjustment device
JP2000282821A (en) Valve opening/closing timing control device
JP3627364B2 (en) Valve timing control device
JP3744666B2 (en) Valve timing control device
JP3058080B2 (en) Valve timing changing device for internal combustion engine
JPH10331614A (en) Valve opening and closing timing controller
JPH10339114A (en) Valve opening/closing timing controller
JP3774060B2 (en) Variable valve mechanism
JPH09250311A (en) Valve timing changing device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140331

Year of fee payment: 8

EXPY Cancellation because of completion of term