JP3785105B2 - Dissimilar metal member joining method - Google Patents

Dissimilar metal member joining method Download PDF

Info

Publication number
JP3785105B2
JP3785105B2 JP2002074434A JP2002074434A JP3785105B2 JP 3785105 B2 JP3785105 B2 JP 3785105B2 JP 2002074434 A JP2002074434 A JP 2002074434A JP 2002074434 A JP2002074434 A JP 2002074434A JP 3785105 B2 JP3785105 B2 JP 3785105B2
Authority
JP
Japan
Prior art keywords
metal member
joining
metal
protrusion
rotary tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002074434A
Other languages
Japanese (ja)
Other versions
JP2003275876A5 (en
JP2003275876A (en
Inventor
正樹 熊谷
晃二 田中
直 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2002074434A priority Critical patent/JP3785105B2/en
Publication of JP2003275876A publication Critical patent/JP2003275876A/en
Publication of JP2003275876A5 publication Critical patent/JP2003275876A5/ja
Application granted granted Critical
Publication of JP3785105B2 publication Critical patent/JP3785105B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【0001】
【技術分野】
本発明は,摩擦撹拌接合法を用いて異種金属を接合する方法及び異種金属接合部材に関する。
【0002】
【従来技術】
例えば,鉄鋼材料とアルミニウム合金材料という異種金属部材を接合して使用したい場合がある。この場合に,従来の融接によって両者を接合した場合には,接合界面に脆い金属間化合物(Fe2Al5等)が生成するので接合強度が低いという問題がある。このような問題は,アルミニウム合金とマグネシウム合金との接合,その他の異種金属部材の接合においても同様である。そのため,融接以外の異種金属部材の接合方法として,爆着,接着,回転摩擦圧接,リベット又はボルトによる接合,かしめなどが採用されてきた。
【0003】
【解決しようとする課題】
しかしながら,上記従来の異種金属部材の接合方法においては,次の問題がある。
即ち,上記爆着は,大がかりな設備が必要であり,さらに爆音が問題とならない環境が必要となる。また,上記接着は,その養生に長時間かかり,かつ,長期信頼性が低い。上記回転摩擦圧接も信頼性に問題がある。リベット又はボルトによる機械的接合は,これらボルト等の第3部材が必要であるうえ,緩み発生のおそれがある。また,かしめによる接合も,接合強度が低く,緩み発生のおそれがある。
【0004】
このような背景のもと,異種金属部材を従来よりも容易かつ確実に接合することができる方法の開発が求められていた。
本発明はかかる従来の問題点に鑑みてなされたもので,異種金属部材を容易かつ確実に接合することができる接合方法及びその接合方法により接合してなる異種金属接合部材を提供しようとするものである。
【0005】
【課題の解決手段】
第1の発明は,融点の異なる異種金属よりなる2種類の金属部材を接合する方法であって,
融点の高い方の第1金属部材と,融点の低い方の第2金属部材とを重ね合せ,
肩面と該肩面から突出させた突起部とを先端に有すると共に上記第2金属部材よりも硬質の回転工具を用い,
該回転工具を回転させながら上記突起部を上記第2金属部材の表面から差し込み,上記突起部の先端と上記第1金属部材との間に間隔を保持すると共に,上記第2金属部材の金属を摩擦熱を発生させた状態で撹拌し,その撹拌域を上記第1金属部材に達する範囲に形成することにより,上記第1金属部材と上記第2金属部材とを接合するに当たり,
上記突起部を上記第2金属部材に差し込んだ際には,上記肩面をも該第2金属部材内部に差し込み,かつ上記肩面の差し込み量は,上記第2金属部材における上記肩面を差し込む部位の厚みの30%以下であり,
上記突起部の先端と上記第1金属部材との間の間隔は0.05mm以上0.5mm未満であることを特徴とする異種金属部材の接合方法にある(請求項1)。
【0006】
本発明の接合方法においては,いわゆる摩擦撹拌接合方法に用いられる回転工具と同様の上記回転工具を用いて,上記第1金属部材と第2金属部材を重ね合わせて接合を行う。このとき,上記回転工具は,上記のごとく,その突起部を融点の低い方の第2金属部材に差し込み,これが第1金属部材には直接接触しないように,間隔を保持して位置させる。
【0007】
そして,上記回転工具によって,上記第2金属部材の金属を摩擦熱を発生させた状態で攪拌し,その攪拌域を上記第1金属部材の表面,すなわち第1金属部材と第2金属部材との接合界面にまで到達させる。これにより,撹拌された第2金属部材の金属が第1金属部材に強固に接合される。
【0008】
そして,この第1金属部材と第2金属部材の接合部は,溶融することなく形成されるので,融接を行った場合のように脆い金属間化合物が生成して接合強度が低くなるといったような問題が生じない。さらに,従来の他の接合法における問題点も解消することができ,異種金属である第1金属部材と第2金属部材とを容易かつ確実に接合することができる。
【0009】
また,本発明においては,上記回転工具を上記第1金属部材に直接接触させることなく接合を行う。そのため,第1金属部材が非常に高硬度のものであっても,第1金属部材や回転工具にダメージを与えることなく接合を実現することができる。
【0010】
このように本発明によれば,異種金属部材を容易かつ確実に接合することができる接合方法を提供することができる。
【0011】
第2の発明は,融点の異なる異種金属よりなる2種類の金属部材を接合する方法であって,
融点の高い方の第1金属部材と,融点の低い方の第2金属部材とを重ね合せ,
肩面と該肩面から突出させた突起部とを先端に有すると共に上記第1金属部材よりも硬質の回転工具を用い,
該回転工具を回転させながら上記突起部を上記第2金属部材の表面から差し込み,上記突起部を上記第1金属部材に直接接触させてその表面粗さを粗くすると共に,上記第2金属部材の金属を摩擦熱を発生させた状態で撹拌し,その撹拌域を上記第1金属部材に達する範囲に形成し,かつ,上記回転工具を上記第1金属部材と上記第2金属部材との接合界面に平行に移動させることにより,上記第1金属部材と上記第2金属部材とを線接合するに当たり,
上記突起部を上記第2金属部材に差し込んだ際には,上記肩面をも該第2金属部材内部に差し込み,かつ上記肩面の差し込み量は,上記第2金属部材における上記肩面を差し込む部位の厚みの30%以下であり,
上記突起部と上記第1金属部材との接触深さが100μm以下であることを特徴とする異種金属部材の接合方法にある(請求項10)。
【0012】
本発明の接合方法においては,上記のごとく,上記回転工具として第1金属部材よりも硬質のものを用いる。そして,上記回転工具を回転させながら融点の低い方の第2金属部材に差し込み,上記第1金属部材に突起部を直接接触させる。これにより,上記突起部によって第1金属部材の表面を面粗しすることができる。
【0013】
そして,上記回転工具を回転させながら接合界面に平行に移動させることによって,上記第2金属部材の金属を摩擦熱を発生させた状態で攪拌し,その攪拌域を上記第1金属部材における面粗しした面に到達させる。これにより,撹拌された第2金属部材の金属が第1金属部材に強固に接合され,回転工具の移動に沿った線状の接合部が形成される。
【0014】
特に本発明では,上記回転工具によって第1金属部材の表面を面粗しして,この面を接合界面とすることができるので,より強固な接合効果を得ることができる。また第1金属部材の面粗しを予めやっておく必要もない。その他は,上記第1の発明と同様の作用効果を得ることができる。
このように上記第2の発明によっても,異種金属部材を容易かつ確実に接合することができる接合方法を提供することができる。
【0015】
融点の異なる異種金属よりなる2種類の金属部材を接合してなる異種金属接合部材であって,上記第1の発明又は第2の発明の接合方法により接合してなることを特徴とする異種金属接合部材がある。
この異種金属接合部材は,上記の第1の発明又は第2の発明の優れた接合方法により接合してある。そのため,融接あるいはその他の接合方法により接合した異種金属接合部材に比べて,接合の信頼性が高く,また緩みの発生もない。そしてそのため,本発明の異種金属接合部材は,その適用範囲を従来よりも拡大することもできる。
【0016】
【発明の実施の形態】
まず上記第1の発明(請求項1)の好ましい実施の形態につき説明する。
上記突起部を上記第2金属部材に差し込んだ際の上記突起部の先端と上記第1金属部材との間隔は,上記第2金属部材における上記突起部を差し込む部位の厚みの50%以下であることが好ましい(請求項2)。
【0017】
上記間隔が50%を超えると,上記回転工具の回転により形成される撹拌域が第1金属部材に達しない,あるいは達しても接触面積が小さくなり,十分な接合が得られないおそれがある。そのため,より好ましくは上記間隔を上記第2金属部材における上記突起部を差し込む部位の厚みの30%以下とするのがよい。
また,特に上記間隔の絶対値としては0.5mm未満とすることが好ましい。0.5mmを超えると,上述したような撹拌域が第1金属部材に接する面積が小さくなって接合強度が弱くなるという不具合が生じやすくなる。なお,安定した接合作業を実現するためには,上記間隔を0.05mm以上に設定することが好ましい。
【0018】
上記回転工具の上記突起部は,その突出量が上記第2金属部材における上記突起部を差し込む部位の厚みより小さいことが好ましい(請求項3)。この場合には,上記回転工具を第2金属部材に差し込んだ際に上記突起部が第1金属部材に接触することをより確実に回避することができる。
【0019】
また,上記突起部を上記第2金属部材に差し込んだ際には,上記肩面をも該第2金属部材内部に差し込み,かつ上記肩面の差し込み量は,上記第2金属部材における上記肩面を差し込む部位の厚みの30%以下とする。この場合には,上記肩面を差し込んでの回転によって上記撹拌域を広くすることができ,接合部の強度を高めることができる。一方,上記肩面の差し込み量がその差し込み部位の厚みの30%を超える場合には,接合部分の厚みが薄くなり,接合強度向上効果が低下してくるという問題がある。それ故,より好ましくは,上記肩面の差し込み量をその差し込み部位の厚みの10%以下とすることがよい。
【0020】
上記突起部を上記第2金属部材に差し込んだ後,その差し込み方向と逆方向に引き抜くことにより点接合を行うことが好ましい(請求項)。この場合には,上記回転工具を回転させながら第2金属部材に差し込み,これをそのまま後退させて引き抜くことにより,容易に接合を実現することができる。そのため,接合装置の構造,接合作業等を簡単にすることができる。
【0021】
また,上記突起部を上記第2金属部材に差し込んだ状態で,上記回転工具を上記第1金属部材と上記第2金属部材との接合界面に平行に移動させることにより線接合を行うこともできる(請求項)。この場合には,線状の接合部分を形成することができ,より強固な接合を実現することができる。
【0022】
また,上記第2金属部材の端面が上記第1金属部材の表面上に位置するように該第2金属部材を配置し,上記回転工具の上記突起部を,上記第2金属部材の端面又はその近傍から,上記第1金属部材と上記第2金属部材との接合界面に対する垂直方向から所定角度傾斜させた状態で差し込むこともできる(請求項)。この場合には,いわゆる隅肉接合を実現することができる。
【0023】
また,上記第1金属部材は鋼部材であり,上記第2金属部材はアルミニウム合金部材であることが好ましい(請求項)。この場合には,上記接合方法の作用効果を特に有効に発現させることができ,従来困難であった鋼部材とアルミニウム合金部材との接合を容易かつ強固に行うことができる。
【0024】
また,少なくとも上記第2金属部材との接合界面における上記第1金属部材の表面粗さはRzで1〜20μmの範囲内にあることが好ましい(請求項)。ここでいうRzは,JIS B0601−1982に示されている十点平均粗さであって,その測定方法も上記JIS規格に規定された方法を用いる。
【0025】
また,上記表面粗さを調整する方法としては,ペーパーややすり等の研磨具による研磨,エッチング,レーザ等の高密度エネルギービームの照射による面粗し,凹凸のあるロールを用いた圧延等,様々な方法を用いることができる。なお,この表面粗さの調整は,少なくとも接合界面となる表面に行えばよい。
【0026】
上記第1金属部材の表面粗さがRzで1μm未満の場合には,上記接合方法による接合力が十分に得られない場合があり,それ故,より好ましくは2μm以上がよい。一方,上記Rzが20μmを超える場合には,接合界面に空気層(隙間)が残り接合強度が低下するという問題があり,それ故,より好ましくは10μm以下がよい。
【0027】
また,少なくとも上記第2金属部材との接合界面における上記第1金属部材の表面粗さはRmaxで5〜100μmの範囲内にあることが好ましい(請求項)。ここでいうRmaxは,JIS B0601−1982に示されている最大高さであって,その測定方法も上記JIS規格に規定された方法を用いる。
【0028】
上記第1金属部材の表面粗さがRmaxで5μm未満の場合には,上記接合方法による接合力が十分に得られない場合があり,それ故,より好ましくは10μm以上がよい。一方,上記Rmaxが100μmを超える場合には,接合界面に空気層(隙間)が残り接合強度が低下するという問題があり,それ故,より好ましくは50μm以下がよい。
【0029】
次に,上記第2の発明(請求項10)の好ましい実施の形態について説明する。
上記第2の発明においては,上記のごとく,回転工具の突起部を第2金属部材から差し込み,これを第1金属部材の表面に接触させてその面粗しを実施する。この際,上記突起部と第1金属部材との接触が強すぎると,面粗しの目的を外れ,第1金属部材あるいは回転工具にダメージを与えるおそれがある。そのため,上記第2の発明においては,上記突起部と上記第1金属部材との接触深さが100μm以下であることが好ましい。
【0030】
また,第2の発明においても,上記と同様の理由により,上記突起部を上記第2金属部材に差し込んだ際には,上記肩面をも該第2金属部材内部に差し込み,かつ上記肩面の差し込み量は,上記第2金属部材における上記肩面を差し込む部位の厚みの30%以下とする
【0031】
また,上記第2の発明においても,第1の発明と同様に,上記第1金属部材は鋼部材であり,上記第2金属部材はアルミニウム合金部材であることが好ましい(請求項11)。
【0032】
また,上記いずれの発明においても,上記回転工具としては,高硬度の工具鋼又は超硬等の材料より構成したものを用いることができる。
【0033】
【実施例】
本発明の実施例に係る異種金属接合部材及び異種金属部材の接合方法につき,図1〜図7を用いて説明する。
(実施例1)
本例は,図1,図2に示すごとく,融点の異なる異種金属よりなる2種類の金属部材として,第1金属部材1と第2金属部材2を準備し,点接合をした例である。第1金属部材1は厚さT1が1mmの冷延鋼板(SPCC)であり,第2金属部材2は厚さT2が1mmのアルミニウム合金板(5182)である。
本例では,冷延鋼板よりなる第1金属部材1の接合界面となる表面をあらかじめペーパーで研磨し,表面粗さがRaで5μm,Rmaxで20μmになっていることを確認した。
【0034】
また,回転工具5としては,図1,図2に示すごとく,肩面51と該肩面51から突出させた突起部55とを先端に有すると共に上記第2金属部材2よりも硬質の回転工具を用いた。より具体的には,本例の回転工具5は,図2に示すごとく,突起部52の長さLが0.9mm,外径D1が3mm,肩面51の肩径D2が12mmの硬質回転工具である。
【0035】
上記2つの異種金属材料を接合するに当たっては,図1に示すごとく,まず,第1金属部材1と第2金属部材2とを,融点の低い方のアルミニウム合金板よりなる第2金属部材2を上にして重ね合わせる。
次に,回転工具5を回転数1500rpmで回転させながら突起部52を第2金属部材2の表面から差し込み,肩面51がその表面に当接するまで前進させる。そして,その後すぐに回転工具5を後退させて引き抜く。
【0036】
このとき,回転工具5が差し込まれた状態においては,図2に示すごとく,突起部52は第1金属部材1と直接接触することなく間隔を保っている。本例では,その間隔Kは約0.1mmに設定した。上記回転工具5の回転によって,第2金属部材2の金属が摩擦熱を発生させた状態で撹拌され,その撹拌域25が第1金属部材1に達する範囲に形成される。これにより,第1金属部材1と第2金属部材2とが接合され,冷延鋼板とアルミニウム合金板との異種金属を接合してなる異種金属接合部材が得られる。
【0037】
次に,本例では,得られた異種金属接合部材の接合強度を引張剪断荷重を測定することにより評価した。
継手の引張剪断荷重の測定は,JIS Z 3136に規定されている方法により行った。その結果,継手の引張剪断荷重は4.1kNと非常に高かった。
【0038】
また,接合部の断面観察および分析も行った。断面観察は,観察部位を樹脂に埋め込み,観察断面を研磨して現出させ,その断面を5%フッ酸によりエッチングして組織観察した。また,分析では,断面観察したサンプルを用い,EPMA面分析により金属間化合物の元素の分析を行った。
その結果,接合界面では脆いFe−Al系の金属間化合物の層は1μm以上の厚さには成長しておらず,欠陥のない健全な接合部であった。
【0039】
なお,本例では,突起部52を差し込んだ際の回転工具5の肩面51の位置を,ほぼ第2金属部材2の表面位置と同じ位置に保持した。これに代えて,肩面51を第2金属部材2にめり込むように差し込むこともでき,この場合には撹拌領域25を大きくすることができるので,さらに接合強度の向上を図ることができる。
【0040】
(比較例1)
比較例1は,実施例1と同じ第1金属部材と第2金属部材を用い,これらをスポット溶接した例である。
即ち,まず厚さ1mmの冷延鋼板(SPCC)と厚さ1mmのアルミニウム合金板(5182)を重ねて拘束した。接合界面に当たる鋼板の表面は,あらかじめペーパーで研磨し,表面粗さがRaで5μm,Rmaxで20μmになっていることを確認しておいた。
【0041】
次いで,単相交流抵抗スポット溶接機を用いて25kA,270MPaで第1金属部材と第2金属部材との溶接を行った。
得られた異種金属接合部材の接合強度を実施例1と同様に引張剪断荷重を測定することにより評価した。その結果,継手の引張剪断荷重は1.5kNと低かった。
また,実施例1と同様に断面観察および分析を行った結果,界面では脆いFe−Al系等の金属間化合物の層が2〜8μm以上の厚さに成長していた。
【0042】
(実施例2)
本例では,実施例1における第1金属部材1の冷延鋼板に代えて,厚さ1mmの亜鉛めっき鋼板を用いて同様に点接合した。
そして,実施例1と同様に継手の引張剪断荷重を測定した結果,3.6kNと高かった。
【0043】
(実施例3)
本例では,実施例1における第1金属部材1の冷延鋼板に代えて,厚さ3mmのマグネシウム鋳物用い,第2金属部材2のアルミニウム合金板に代えて厚さ2mmのアルミニウム合金板(6N01)を用い,このアルミニウム合金板を上にして重ねて拘束し,実施例1と同様に点接合を行った。
【0044】
本例では,回転工具として,突起部の長さが1.9mm,外径が4mm,肩面の肩径が15mmの硬質回転工具を用いた。そして,この回転工具を,実施例1と同様に,アルミニウム合金板側から回転数2000rpmで回転させながら肩面がアルミニウム合金板の表面に当たるまで差し込み,すぐに抜いて重ね接合した。
【0045】
本例においても,実施例1と同様に得られた異種金属接合部材の接合強度を引張剪断荷重を測定すると共に,接合部の断面観察および分析を行った。
その結果,継手の引張剪断荷重は7.2kNと高かった。断面観察および分析の結果,界面では脆いAl−Mg系の金属間化合物の層は1μm以上の厚さには成長していなかった。
【0046】
(実施例4)
本例は,図3に示すごとく,異種金属部材を線接合により接合した例である。即ち,同図に示すごとく,まず第1金属部材1としての厚さ8mmの鋼板の上に,第2金属部材2としての厚さ3mmの1100アルミニウム合金板を載せて固定した。
【0047】
回転工具5としては,突起部の長さ2.8mm,突起部の外径5mm,肩面の肩径20mmの硬質回転工具を用いた。そしてこの回転工具5を第2金属部材2のアルミニウム合金板側から回転数3000rpmで回転させながら肩面が第2金属部材2の表面に当たるまで差し込んだ。そして回転工具5の突起部を第2金属部材2に差し込んだ状態で,第1金属部材2と第2金属部材2との接合界面に平行に,500mm/minの速度で移動させた。これにより,撹拌領域25の軌跡が線状の接合部として得られた。
【0048】
得られた異種金属接合部材について,その引張剪断荷重を測定すると共に,接合部の断面観察および分析を行った。本例での引張剪断荷重の測定は,JIS Z 3121の規定に従った。断面観察及び分析方法は実施例1と同様である。その結果,継手の引張剪断荷重は7.5kNと高かった。断面観察および分析の結果,接合部に欠陥はなく,界面では脆いAl−Mg系の金属間化合物の層は1μm以上の厚さには成長していなかった。
【0049】
(実施例5)
本例では,図4に示すごとく,第1金属部材1としての0.7mm×500mm×200mmの鋼板と,第2金属部材2としての1.0mm×500mm×700mmの6000系アルミニウム合金板の500mm側の端部を重ね代Sが15mmとなるように重ねて拘束して線接合した。
【0050】
接合界面に当たる鋼板(第1金属部材1)は,重なる部分の表面をあらかじめ凹凸のついた最終仕上げロールで圧延し,その部分の表面粗さがRaで3μm,Rmaxで15μmになっていることを確認した。
回転工具5としては,突起部の長さ0.9mm,突起部の外径3mm,肩面の肩径12mmの硬質回転工具を用いた。そして,回転工具5をアルミニウム合金板(第2金属部材2)側から回転数1500rpmで回転させながら肩面が第2金属部材の表面に当たるまで差し込み,重ねた部分に沿って直線的に移動した。これにより,重ねた部分に線接合部が形成された。
【0051】
得られた異種金属接合部材の断面観察および分析を行った結果,界面では脆いFe−Al系等の金属間化合物の層は1μm以上の厚さには成長しておらず,欠陥のない健全な接合部が得られていたことが分かった。
また,本例で得られた異種金属接合部材は,いわゆる異材差厚テーラードブランクとして用いることができる。そのため,これを自動車のドアインナーの形にプレス成形する試験を行った結果,割れを生じることなしに成形することができた。
【0052】
(実施例6)
本例は,図5に示すごとく,実施例4と同様に異種金属部材を線接合により接合した例であるが,実施例4の回転工具に代えて,突起部52が長い回転工具5を用いてその先端520を第1金属部材1に接触させた例である。
【0053】
即ち,同図に示すごとく,まず第1金属部材1としての厚さ8mmの鋼板の上に,第2金属部材2としての厚さ3mmの1100アルミニウム合金板を載せて固定した。
回転工具5としては,突起部52の長さ3.0mm,突起部52の外径5mm,肩面51の肩径20mmの硬質回転工具を用いた。そしてこの回転工具5を第2金属部材2のアルミニウム合金板側から回転数3000rpmで回転させながら肩面が第2金属部材2の表面に当たるまで差し込んだ。また,この状態で,突起部52の先端は第1金属部材1の表面にわずかに接触している。
【0054】
そして回転工具5を,第1金属部材2と第2金属部材2との界面に平行に,500mm/minの速度で移動させた。これにより,撹拌領域25の軌跡が線状の接合部として得られた。このとき,本例では,接合界面における第1金属部材1の表面が,順次回転工具5によって面粗しされ,その粗い表面に撹拌領域25が到達して線状の接合部が形成される。
【0055】
得られた異種金属接合部材について,その引張剪断荷重を測定すると共に,接合部の断面観察および分析を行った。
その結果,継手の引張剪断荷重は6.8kNと高かった。断面観察および分析の結果,接合部に欠陥はなく,界面では脆いAl−Mg系の金属間化合物の層は1μm以上の厚さには成長していなかった。
【0056】
(実施例7)
本例は,図6,図7に示すごとく,異種金属部材を線接合により隅肉接合した例である。
まず図6に示すごとく,第1金属部材1としての厚さ8mmの鋼板の上に,第2金属部材2としての厚さ3mmの1100アルミニウム合金板を載せて固定した。このとき,第2金属部材2の端面28が第1金属部材1の表面上に位置するように第2金属部材2を配置した。
【0057】
回転工具5としては,突起部52の長さ1mm,突起部52の外径5mm,肩面の肩径20mmの硬質回転工具を用いた。そしてこの回転工具5を第2金属部材2のアルミニウム合金板側から回転数3000rpmで回転させながら,第2金属部材2の端面28の近傍から,斜めに前進させて差し込んだ。具体的には,上記突起部52の方向,即ち回転工具5の軸線方向C2を,第1金属部材1と第2金属部材2との接合界面に対する垂直方向C1から8°傾斜させた状態で差し込んだ。
【0058】
図7に示すごとく,回転工具5を第2金属部材2に差し込んだ状態では,第1金属部材1と第2金属部材2との接合界面と肩面51とのなす角度βが上記傾斜角αと同じ8°となり,突起部52の先端と第1金属部材1との間隔Kが約0.1mmとなっている。
本例では,このように突起部52を差し込んで回転させることによって,断面くさび状の撹拌領域25が形成される。
【0059】
そして回転工具5の突起部52を第2金属部材2に差し込んだ状態で,第1金属部材2と第2金属部材2との接合界面に平行に,500mm/minの速度で移動させた。これにより,撹拌領域25の軌跡が,第2金属部材2の端面28に沿って線状に得られ,線状の接合部が形成された。
この場合には,いわゆる隅肉部の溶接を行うことができ実施例4とほぼ同様の接合特性が得られた。
【図面の簡単な説明】
【図1】実施例1における,異種金属部材の接合方法を示す説明図。
【図2】実施例1における,回転工具を第2金属部材に差し込んだ状態を示す説明図。
【図3】実施例4における,異種金属部材を線接合により接合している状態を示す説明図。
【図4】実施例5における,異種金属部材を線接合により接合している状態を示す説明図。
【図5】実施例6における,回転工具を第2金属部材に差し込んだ状態を示す説明図。
【図6】実施例7における,回転工具を第2金属部材に差し込む前の状態を示す説明図。
【図7】実施例7における,回転工具を第2金属部材に差し込んだ状態を示す説明図。
【符号の説明】
1...第1金属部材,
2...第2金属部材,
25...撹拌領域,
5...回転工具,
51...突起部,
52...肩面,
[0001]
【Technical field】
The present invention relates to a method for joining dissimilar metals using a friction stir welding method and a dissimilar metal joining member.
[0002]
[Prior art]
For example, there are cases where it is desired to use dissimilar metal members such as steel materials and aluminum alloy materials. In this case, when both are joined by conventional fusion welding, a brittle intermetallic compound (Fe 2 Al 5 or the like) is generated at the joint interface, which causes a problem of low joint strength. Such a problem also applies to joining of an aluminum alloy and a magnesium alloy and joining of other dissimilar metal members. For this reason, explosive bonding, adhesion, rotational friction welding, joining with rivets or bolts, and caulking have been adopted as joining methods for dissimilar metal members other than fusion welding.
[0003]
[Problems to be solved]
However, the conventional method for joining dissimilar metal members has the following problems.
That is, the above-mentioned explosion requires a large-scale facility, and further requires an environment where explosion noise is not a problem. In addition, the above-mentioned bonding takes a long time to cure and has low long-term reliability. The above rotational friction welding also has a problem in reliability. Mechanical joining with rivets or bolts requires a third member such as these bolts and may cause loosening. In addition, joining by caulking has low joining strength and may cause loosening.
[0004]
Against this background, there has been a demand for the development of a method capable of joining dissimilar metal members more easily and reliably than before.
The present invention has been made in view of such conventional problems, and intends to provide a joining method capable of easily and reliably joining dissimilar metal members and a dissimilar metal joining member formed by joining the joining methods. It is.
[0005]
[Means for solving problems]
The first invention is a method of joining two types of metal members made of different metals having different melting points,
The first metal member with the higher melting point and the second metal member with the lower melting point are overlapped,
Using a rotary tool having a shoulder surface and a protrusion protruding from the shoulder surface at the tip and harder than the second metal member,
The protrusion is inserted from the surface of the second metal member while rotating the rotary tool, and a gap is maintained between the tip of the protrusion and the first metal member, and the metal of the second metal member is inserted. In the state in which frictional heat is generated, stirring is performed, and the stirring region is formed in a range reaching the first metal member, thereby joining the first metal member and the second metal member,
When the protrusion is inserted into the second metal member, the shoulder surface is also inserted into the second metal member, and the shoulder surface is inserted into the shoulder surface of the second metal member. Ri der than 30% of the sites of thickness,
The dissimilar metal member joining method is characterized in that an interval between the tip of the protrusion and the first metal member is 0.05 mm or more and less than 0.5 mm (Claim 1).
[0006]
In the joining method of the present invention, the first metal member and the second metal member are overlapped and joined using the same rotary tool as the rotary tool used in the so-called friction stir welding method. At this time, as described above, the rotating tool is inserted into the second metal member having a lower melting point, and is positioned with a gap so that it does not directly contact the first metal member.
[0007]
Then, the metal of the second metal member is agitated by the rotary tool in a state in which frictional heat is generated, and the agitation zone is defined between the surface of the first metal member, that is, the first metal member and the second metal member. It reaches even the joint interface. Thereby, the agitated metal of the second metal member is firmly joined to the first metal member.
[0008]
And since the joined portion of the first metal member and the second metal member is formed without melting, a brittle intermetallic compound is generated and the joining strength is lowered as in the case of fusion welding. No problems arise. Furthermore, problems in other conventional joining methods can be solved, and the first metal member and the second metal member, which are different metals, can be joined easily and reliably.
[0009]
Moreover, in this invention, it joins, without making the said rotary tool contact the said 1st metal member directly. Therefore, even if the first metal member has a very high hardness, the joining can be realized without damaging the first metal member or the rotary tool.
[0010]
As described above, according to the present invention, it is possible to provide a joining method capable of easily and reliably joining dissimilar metal members.
[0011]
The second invention is a method of joining two types of metal members made of different metals having different melting points,
The first metal member with the higher melting point and the second metal member with the lower melting point are overlapped,
Using a rotary tool having a shoulder surface and a protrusion protruding from the shoulder surface at the tip and harder than the first metal member,
While rotating the rotary tool, the protrusion is inserted from the surface of the second metal member, and the protrusion is brought into direct contact with the first metal member to increase the surface roughness. The metal is agitated in a state where frictional heat is generated, the agitation zone is formed in a range reaching the first metal member, and the rotary tool is joined to the interface between the first metal member and the second metal member. When the first metal member and the second metal member are line-joined by moving in parallel to
When the protrusion is inserted into the second metal member, the shoulder surface is also inserted into the second metal member, and the shoulder surface is inserted into the shoulder surface of the second metal member. Ri der than 30% of the sites of thickness,
The contact depth between the protrusion and the first metal member is 100 μm or less .
[0012]
In the joining method of the present invention, as described above, the rotating tool is harder than the first metal member. Then, while rotating the rotary tool, the rotary tool is inserted into the second metal member having a lower melting point, and the protrusion is brought into direct contact with the first metal member. Thereby, the surface of the first metal member can be roughened by the protrusion.
[0013]
Then, the metal of the second metal member is stirred in a state in which frictional heat is generated by moving the rotary tool in parallel to the joining interface while rotating the rotary tool, and the stirring area is roughened on the surface of the first metal member. To reach the surface. As a result, the agitated metal of the second metal member is firmly joined to the first metal member, and a linear joint along the movement of the rotary tool is formed.
[0014]
In particular, in the present invention, the surface of the first metal member can be roughened by the rotary tool, and this surface can be used as a bonding interface, so that a stronger bonding effect can be obtained. Moreover, it is not necessary to roughen the surface of the first metal member in advance. In other respects, the same effects as those of the first invention can be obtained.
As described above, also according to the second aspect of the invention, it is possible to provide a joining method capable of easily and reliably joining dissimilar metal members.
[0015]
A dissimilar metal joining member obtained by joining two kinds of metal members made of dissimilar metals having different melting points, wherein the dissimilar metals are joined by the joining method of the first invention or the second invention. There is a joining member .
This dissimilar metal joining member is joined by the superior joining method of the first invention or the second invention. Therefore, compared to dissimilar metal joining members joined by fusion welding or other joining methods, the joining reliability is high and no loosening occurs. Therefore, the application range of the dissimilar metal joining member of the present invention can be expanded as compared with the conventional case.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
First, a preferred embodiment of the first invention (claim 1) will be described.
The distance between the tip of the protrusion and the first metal member when the protrusion is inserted into the second metal member is 50% or less of the thickness of the portion into which the protrusion is inserted in the second metal member. (Claim 2).
[0017]
When the interval exceeds 50%, the stirring area formed by the rotation of the rotary tool does not reach the first metal member, or even if it reaches, the contact area becomes small, and there is a possibility that sufficient joining cannot be obtained. Therefore, more preferably, the interval is set to 30% or less of the thickness of the portion into which the protruding portion of the second metal member is inserted.
In particular, the absolute value of the interval is preferably less than 0.5 mm. If the thickness exceeds 0.5 mm, the area where the stirring region as described above contacts the first metal member becomes small, and the problem that the bonding strength becomes weak tends to occur. In addition, in order to implement | achieve the stable joining operation | work, it is preferable to set the said space | interval to 0.05 mm or more.
[0018]
It is preferable that the protruding portion of the rotary tool has a protruding amount smaller than a thickness of a portion of the second metal member into which the protruding portion is inserted. In this case, when the rotary tool is inserted into the second metal member, it is possible to more reliably avoid the protrusion from coming into contact with the first metal member.
[0019]
Further, when the protrusion is inserted into the second metal member, the shoulder surface is also inserted into the second metal member, and the amount of insertion of the shoulder surface is the shoulder surface of the second metal member. 30% or less of the thickness of the part into which is inserted . In this case, the stirring region can be widened by rotation with the shoulder surface inserted, and the strength of the joint can be increased. On the other hand, when the insertion amount of the shoulder surface exceeds 30% of the thickness of the insertion portion, there is a problem that the thickness of the joint portion becomes thin and the effect of improving the joint strength is lowered. Therefore, more preferably, the insertion amount of the shoulder surface is 10% or less of the thickness of the insertion portion.
[0020]
After inserting the protruding portion into the second metal member, it is preferable to carry out the spot bonding by pulling in the direction of insertion opposite to the direction (claim 4). In this case, joining can be easily realized by inserting the second metal member into the second metal member while rotating the rotary tool, and pulling it back as it is. Therefore, the structure of the joining device, joining work, etc. can be simplified.
[0021]
In addition, it is possible to perform line bonding by moving the rotary tool in parallel to the bonding interface between the first metal member and the second metal member in a state where the protrusion is inserted into the second metal member. (Claim 5 ). In this case, a linear joining portion can be formed, and a stronger joining can be realized.
[0022]
In addition, the second metal member is arranged so that the end surface of the second metal member is located on the surface of the first metal member, and the protrusion of the rotary tool is connected to the end surface of the second metal member or the end thereof. It is also possible to insert from the vicinity in a state where the first metal member and the second metal member are inclined at a predetermined angle from the direction perpendicular to the bonding interface (Claim 6 ). In this case, so-called fillet joining can be realized.
[0023]
Further, the first metal member is a steel member, it is preferable that the second metal member is an aluminum alloy member (claim 7). In this case, the effect of the joining method can be expressed particularly effectively, and the steel member and the aluminum alloy member, which have been difficult in the past, can be easily and firmly joined.
[0024]
Further, it is preferable that at least that surface roughness of the first metal member at the bonding interface between the second metal member is in the range of 1~20μm in Rz (claim 8). Here, Rz is a ten-point average roughness shown in JIS B0601-1982, and the method defined in the JIS standard is used as the measuring method.
[0025]
In addition, there are various methods for adjusting the surface roughness, such as polishing with a polishing tool such as paper or file, etching, surface roughening by irradiation with a high-density energy beam such as a laser, rolling using an uneven roll, and the like. Can be used. The surface roughness may be adjusted at least on the surface that becomes the bonding interface.
[0026]
When the surface roughness of the first metal member is less than 1 μm in terms of Rz, the bonding force by the bonding method may not be sufficiently obtained, and therefore, more preferably 2 μm or more. On the other hand, when the Rz exceeds 20 μm, there is a problem that an air layer (gap) remains at the bonding interface and the bonding strength is lowered. Therefore, the thickness is preferably 10 μm or less.
[0027]
Further, it is preferable that at least that surface roughness of the first metal member at the bonding interface between the second metal member is in the range of 5~100μm in Rmax (claim 9). Here, Rmax is the maximum height shown in JIS B0601-1982, and the measurement method uses the method defined in the JIS standard.
[0028]
When the surface roughness of the first metal member is less than 5 μm in Rmax, the bonding force by the bonding method may not be sufficiently obtained, and therefore, more preferably 10 μm or more. On the other hand, when the above Rmax exceeds 100 μm, there is a problem that an air layer (gap) remains at the bonding interface and the bonding strength is lowered. Therefore, the thickness is preferably 50 μm or less.
[0029]
Next, a preferred embodiment of the second invention (claim 10 ) will be described.
In the second invention, as described above, the protrusion of the rotary tool is inserted from the second metal member and brought into contact with the surface of the first metal member to roughen the surface. At this time, if the contact between the protrusion and the first metal member is too strong, the purpose of surface roughening may be lost, and the first metal member or the rotary tool may be damaged. Therefore, in the second invention, it is preferable that a contact depth between the protrusion and the first metal member is 100 μm or less.
[0030]
In the second invention, for the same reason as described above, when the protrusion is inserted into the second metal member, the shoulder surface is also inserted into the second metal member, and the shoulder surface is also inserted. amount insertion of is 30% or less of the thickness of the portion inserted the shoulder surface in the second metal member.
[0031]
Further, the in the second invention, similar to the first invention, the first metal member is a steel member, it is preferable that the second metal member is an aluminum alloy member (claim 11).
[0032]
In any of the above inventions, the rotary tool may be made of a material such as high hardness tool steel or carbide.
[0033]
【Example】
A dissimilar metal joining member and a dissimilar metal member joining method according to an embodiment of the present invention will be described with reference to FIGS.
Example 1
In this example, as shown in FIGS. 1 and 2, the first metal member 1 and the second metal member 2 are prepared as two types of metal members made of different metals having different melting points, and are spot-joined. The first metal member 1 is a cold-rolled steel plate (SPCC) having a thickness T 1 of 1 mm, and the second metal member 2 is an aluminum alloy plate (5182) having a thickness T 2 of 1 mm.
In this example, the surface which becomes the joint interface of the first metal member 1 made of cold-rolled steel plate was previously polished with paper, and it was confirmed that the surface roughness was 5 μm Ra and 20 μm Rmax.
[0034]
As shown in FIGS. 1 and 2, the rotary tool 5 has a shoulder surface 51 and a protrusion 55 projecting from the shoulder surface 51 at the tip, and is harder than the second metal member 2. Was used. More specifically, the rotating tool 5 according to this embodiment, as shown in FIG. 2, the length L of the protrusion 52 is 0.9 mm, an outer diameter D 1 is 3 mm, Kata径D 2 of the shoulder surface 51 is 12mm in It is a hard rotating tool.
[0035]
In joining the two dissimilar metal materials, as shown in FIG. 1, first, the first metal member 1 and the second metal member 2 are combined with the second metal member 2 made of an aluminum alloy plate having a lower melting point. Superimpose up.
Next, while rotating the rotary tool 5 at a rotational speed of 1500 rpm, the protrusion 52 is inserted from the surface of the second metal member 2 and advanced until the shoulder surface 51 comes into contact with the surface. Then, immediately after that, the rotary tool 5 is retracted and pulled out.
[0036]
At this time, in the state in which the rotary tool 5 is inserted, as shown in FIG. 2, the protrusions 52 are kept in contact with the first metal member 1 without being in direct contact therewith. In this example, the interval K is set to about 0.1 mm. By the rotation of the rotary tool 5, the metal of the second metal member 2 is agitated in a state in which frictional heat is generated, and the agitation region 25 is formed in a range reaching the first metal member 1. Thereby, the 1st metal member 1 and the 2nd metal member 2 are joined, and the dissimilar metal joining member formed by joining the dissimilar metal of a cold-rolled steel plate and an aluminum alloy plate is obtained.
[0037]
Next, in this example, the joining strength of the obtained dissimilar metal joining member was evaluated by measuring the tensile shear load.
The tensile shear load of the joint was measured by the method specified in JIS Z 3136. As a result, the tensile shear load of the joint was very high at 4.1 kN.
[0038]
We also performed cross-sectional observation and analysis of the joint. In the cross-sectional observation, the observation site was embedded in a resin, the observation cross section was polished and revealed, and the cross section was etched with 5% hydrofluoric acid to observe the structure. In the analysis, an element of an intermetallic compound was analyzed by EPMA surface analysis using a sample observed in a cross section.
As a result, the brittle Fe—Al intermetallic compound layer did not grow to a thickness of 1 μm or more at the joint interface, and was a healthy joint with no defects.
[0039]
In this example, the position of the shoulder surface 51 of the rotary tool 5 when the projection 52 is inserted is held at substantially the same position as the surface position of the second metal member 2. Instead of this, the shoulder surface 51 can be inserted into the second metal member 2, and in this case, the agitation region 25 can be enlarged, so that the joint strength can be further improved.
[0040]
(Comparative Example 1)
Comparative Example 1 is an example in which the same first metal member and second metal member as in Example 1 were used, and these were spot welded.
That is, first, a cold rolled steel plate (SPCC) having a thickness of 1 mm and an aluminum alloy plate (5182) having a thickness of 1 mm were stacked and restrained. The surface of the steel sheet which hits the bonding interface was previously polished with paper, and it was confirmed that the surface roughness was 5 μm for Ra and 20 μm for Rmax.
[0041]
Next, the first metal member and the second metal member were welded at 25 kA and 270 MPa using a single-phase AC resistance spot welder.
The joint strength of the obtained dissimilar metal joint member was evaluated by measuring the tensile shear load in the same manner as in Example 1. As a result, the tensile shear load of the joint was as low as 1.5 kN.
Further, as a result of cross-sectional observation and analysis in the same manner as in Example 1, a brittle intermetallic compound layer such as an Fe—Al-based layer grew to a thickness of 2 to 8 μm or more at the interface.
[0042]
(Example 2)
In this example, instead of the cold-rolled steel plate of the first metal member 1 in Example 1, a point-joint was similarly made using a galvanized steel plate having a thickness of 1 mm.
And as a result of measuring the tensile shear load of the joint as in Example 1, it was as high as 3.6 kN.
[0043]
Example 3
In this example, instead of the cold-rolled steel plate of the first metal member 1 in Example 1, a 3 mm-thick magnesium casting was used, and instead of the aluminum alloy plate of the second metal member 2, a 2 mm-thick aluminum alloy plate (6N01 The aluminum alloy plate was placed on top and restrained, and spot joining was performed in the same manner as in Example 1.
[0044]
In this example, a hard rotary tool having a projection length of 1.9 mm, an outer diameter of 4 mm, and a shoulder diameter of 15 mm was used as the rotary tool. Then, in the same manner as in Example 1, this rotating tool was inserted from the aluminum alloy plate side while rotating at a rotational speed of 2000 rpm until the shoulder surface contacted the surface of the aluminum alloy plate, and was immediately removed and overlapped.
[0045]
Also in this example, the tensile strength of the joint strength of the dissimilar metal joint member obtained in the same manner as in Example 1 was measured, and the cross section of the joint was observed and analyzed.
As a result, the tensile shear load of the joint was as high as 7.2 kN. As a result of cross-sectional observation and analysis, the brittle Al—Mg intermetallic compound layer did not grow to a thickness of 1 μm or more at the interface.
[0046]
(Example 4)
In this example, as shown in FIG. 3, dissimilar metal members are joined by wire joining. That is, as shown in the figure, first, a 1100 aluminum alloy plate having a thickness of 3 mm as the second metal member 2 was placed and fixed on a steel plate having a thickness of 8 mm as the first metal member 1.
[0047]
As the rotary tool 5, a hard rotary tool having a projection length of 2.8 mm, a projection outer diameter of 5 mm, and a shoulder diameter of 20 mm was used. Then, the rotary tool 5 was inserted from the side of the aluminum alloy plate of the second metal member 2 at a rotational speed of 3000 rpm until the shoulder surface contacted the surface of the second metal member 2. Then, with the protruding portion of the rotary tool 5 inserted into the second metal member 2, the rotary tool 5 was moved at a speed of 500 mm / min in parallel with the joining interface between the first metal member 2 and the second metal member 2. Thereby, the locus | trajectory of the stirring area | region 25 was obtained as a linear junction part.
[0048]
About the obtained dissimilar metal joint member, the tensile shear load was measured, and the cross-section observation and analysis of the joint part were performed. The tensile shear load in this example was measured according to JIS Z 3121. The cross-sectional observation and analysis method is the same as in Example 1. As a result, the tensile shear load of the joint was as high as 7.5 kN. As a result of cross-sectional observation and analysis, there was no defect at the joint, and a brittle Al—Mg-based intermetallic compound layer did not grow to a thickness of 1 μm or more at the interface.
[0049]
(Example 5)
In this example, as shown in FIG. 4, a steel plate of 0.7 mm × 500 mm × 200 mm as the first metal member 1 and a 500 mm of a 6000 series aluminum alloy plate of 1.0 mm × 500 mm × 700 mm as the second metal member 2. The side ends were overlapped and restrained so that the overlap margin S was 15 mm, and line joining was performed.
[0050]
The steel plate (first metal member 1) that hits the joint interface is rolled with a final finish roll with irregularities in advance, and the surface roughness of that part is 3 μm Ra and 15 μm Rmax. confirmed.
As the rotary tool 5, a hard rotary tool having a projection length of 0.9 mm, an outer diameter of the projection of 3 mm, and a shoulder diameter of 12 mm was used. Then, the rotating tool 5 was inserted from the aluminum alloy plate (second metal member 2) side at a rotation speed of 1500 rpm until the shoulder surface contacted the surface of the second metal member, and moved linearly along the overlapped portion. As a result, a line junction was formed in the overlapped portion.
[0051]
As a result of cross-sectional observation and analysis of the obtained dissimilar metal joining member, the layer of the intermetallic compound such as Fe-Al based which is brittle at the interface does not grow to a thickness of 1 μm or more, and there is no defect. It was found that a joint was obtained.
Moreover, the dissimilar metal joining member obtained in this example can be used as a so-called dissimilar material difference thickness tailored blank. Therefore, as a result of performing a test of press molding this into the shape of an automobile door inner, it was possible to mold without causing cracks.
[0052]
(Example 6)
As shown in FIG. 5, this example is an example in which dissimilar metal members are joined by wire joining in the same manner as in Example 4. However, instead of the rotating tool of Example 4, a rotating tool 5 having a long protrusion 52 is used. This is an example in which the tip 520 of the lever is brought into contact with the first metal member 1.
[0053]
That is, as shown in the figure, first, a 1100 aluminum alloy plate having a thickness of 3 mm as the second metal member 2 was placed and fixed on a steel plate having a thickness of 8 mm as the first metal member 1.
As the rotary tool 5, a hard rotary tool having a length of the projection 52 of 3.0 mm, an outer diameter of the projection 52 of 5 mm, and a shoulder diameter of 20 mm of the shoulder surface 51 was used. Then, the rotary tool 5 was inserted from the side of the aluminum alloy plate of the second metal member 2 at a rotational speed of 3000 rpm until the shoulder surface contacted the surface of the second metal member 2. In this state, the tip of the projection 52 is slightly in contact with the surface of the first metal member 1.
[0054]
Then, the rotary tool 5 was moved at a speed of 500 mm / min parallel to the interface between the first metal member 2 and the second metal member 2. Thereby, the locus | trajectory of the stirring area | region 25 was obtained as a linear junction part. At this time, in this example, the surface of the first metal member 1 at the bonding interface is sequentially roughened by the rotary tool 5, and the stirring region 25 reaches the rough surface to form a linear bonding portion.
[0055]
About the obtained dissimilar metal joint member, the tensile shear load was measured, and the cross-section observation and analysis of the joint part were performed.
As a result, the tensile shear load of the joint was as high as 6.8 kN. As a result of cross-sectional observation and analysis, there was no defect at the joint, and a brittle Al—Mg-based intermetallic compound layer did not grow to a thickness of 1 μm or more at the interface.
[0056]
(Example 7)
In this example, as shown in FIGS. 6 and 7, different metal members are fillet joined by wire joining.
First, as shown in FIG. 6, an 1100 aluminum alloy plate having a thickness of 3 mm as the second metal member 2 was placed on and fixed to a steel plate having a thickness of 8 mm as the first metal member 1. At this time, the second metal member 2 was arranged so that the end face 28 of the second metal member 2 was positioned on the surface of the first metal member 1.
[0057]
As the rotary tool 5, a hard rotary tool having a length of the projection 52 of 1 mm, an outer diameter of the projection 52 of 5 mm, and a shoulder diameter of 20 mm was used. Then, while rotating the rotary tool 5 from the aluminum alloy plate side of the second metal member 2 at a rotational speed of 3000 rpm, the rotary tool 5 was inserted obliquely from the vicinity of the end face 28 of the second metal member 2. Specifically, the direction of the protrusion 52, that is, the axial direction C2 of the rotary tool 5 is inserted with an inclination of 8 ° with respect to the vertical direction C1 with respect to the joining interface between the first metal member 1 and the second metal member 2. It is.
[0058]
As shown in FIG. 7, in the state where the rotary tool 5 is inserted into the second metal member 2, the angle β formed by the joint interface between the first metal member 1 and the second metal member 2 and the shoulder surface 51 is the inclination angle α. The angle K between the front end of the protrusion 52 and the first metal member 1 is about 0.1 mm.
In this example, the stirring region 25 having a wedge-shaped cross section is formed by inserting and rotating the protrusion 52 in this manner.
[0059]
The protrusion 52 of the rotary tool 5 was inserted into the second metal member 2 and moved at a speed of 500 mm / min parallel to the joining interface between the first metal member 2 and the second metal member 2. Thereby, the locus | trajectory of the stirring area | region 25 was obtained linearly along the end surface 28 of the 2nd metal member 2, and the linear junction part was formed.
In this case, the so-called fillet portion could be welded, and substantially the same joining characteristics as in Example 4 were obtained.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a method for joining dissimilar metal members in Example 1. FIG.
FIG. 2 is an explanatory view showing a state where a rotary tool is inserted into a second metal member in the first embodiment.
FIG. 3 is an explanatory view showing a state where dissimilar metal members are joined by wire joining in Example 4.
4 is an explanatory view showing a state where dissimilar metal members are joined by wire joining in Example 5. FIG.
FIG. 5 is an explanatory view showing a state where a rotary tool is inserted into a second metal member in Embodiment 6.
6 is an explanatory view showing a state before the rotary tool is inserted into the second metal member in Embodiment 7. FIG.
7 is an explanatory view showing a state where a rotary tool is inserted into a second metal member in Embodiment 7. FIG.
[Explanation of symbols]
1. . . First metal member,
2. . . Second metal member,
25. . . Stirring zone,
5. . . Rotating tool,
51. . . protrusion,
52. . . Shoulder,

Claims (11)

融点の異なる異種金属よりなる2種類の金属部材を接合する方法であって,
融点の高い方の第1金属部材と,融点の低い方の第2金属部材とを重ね合せ,
肩面と該肩面から突出させた突起部とを先端に有すると共に上記第2金属部材よりも硬質の回転工具を用い,
該回転工具を回転させながら上記突起部を上記第2金属部材の表面から差し込み,上記突起部の先端と上記第1金属部材との間に間隔を保持すると共に,上記第2金属部材の金属を摩擦熱を発生させた状態で撹拌し,その撹拌域を上記第1金属部材に達する範囲に形成することにより,上記第1金属部材と上記第2金属部材とを接合するに当たり,
上記突起部を上記第2金属部材に差し込んだ際には,上記肩面をも該第2金属部材内部に差し込み,かつ上記肩面の差し込み量は,上記第2金属部材における上記肩面を差し込む部位の厚みの30%以下であり,
上記突起部の先端と上記第1金属部材との間の間隔は0.05mm以上0.5mm未満であることを特徴とする異種金属部材の接合方法。
A method of joining two kinds of metal members made of different metals having different melting points,
The first metal member with the higher melting point and the second metal member with the lower melting point are overlapped,
Using a rotary tool having a shoulder surface and a protrusion protruding from the shoulder surface at the tip and harder than the second metal member,
The protrusion is inserted from the surface of the second metal member while rotating the rotary tool, and a gap is maintained between the tip of the protrusion and the first metal member, and the metal of the second metal member is inserted. In the state in which frictional heat is generated, stirring is performed, and the stirring region is formed in a range reaching the first metal member, thereby joining the first metal member and the second metal member,
When the protrusion is inserted into the second metal member, the shoulder surface is also inserted into the second metal member, and the shoulder surface is inserted into the shoulder surface of the second metal member. 30% or less of the thickness of the part,
The dissimilar metal member joining method, wherein a distance between the tip of the protrusion and the first metal member is 0.05 mm or more and less than 0.5 mm.
請求項1において,上記突起部を上記第2金属部材に差し込んだ際の上記突起部の先端と上記第1金属部材との間隔は,上記第2金属部材における上記突起部を差し込む部位の厚みの50%以下であることを特徴とする異種金属部材の接合方法。  The distance between the tip of the protrusion and the first metal member when the protrusion is inserted into the second metal member is the thickness of the portion of the second metal member where the protrusion is inserted. 50% or less, The joining method of the dissimilar metal member characterized by the above-mentioned. 請求項1において,上記回転工具の上記突起部は,その突出量が上記第2金属部材における上記突起部を差し込む部位の厚みより小さいことを特徴とする異種金属部材の接合方法。  2. The method for joining different metal members according to claim 1, wherein the protrusions of the rotary tool have a protrusion amount smaller than a thickness of a portion of the second metal member into which the protrusions are inserted. 請求項1〜3のいずれか1項において,上記突起部を上記第2金属部材に差し込んだ後,その差し込み方向と逆方向に引き抜くことにより点接合を行うことを特徴とする異種金属部材の接合方法。  The joining of dissimilar metal members according to any one of claims 1 to 3, wherein the protrusions are inserted into the second metal member, and then point joining is performed by pulling out in a direction opposite to the insertion direction. Method. 請求項1〜3のいずれか1項において,上記突起部を上記第2金属部材に差し込んだ状態で,上記回転工具を上記第1金属部材と上記第2金属部材との接合界面に平行に移動させることにより線接合を行うことを特徴とする異種金属部材の接合方法。  4. The rotary tool according to claim 1, wherein the rotating tool is moved in parallel to a bonding interface between the first metal member and the second metal member in a state where the protrusion is inserted into the second metal member. A method for joining dissimilar metal members, characterized in that line joining is performed. 請求項5において,上記第2金属部材の端面が上記第1金属部材の表面上に位置するように該第2金属部材を配置し,上記回転工具の上記突起部を,上記第2金属部材の端面又はその近傍から,上記第1金属部材と上記第2金属部材との接合界面に対する垂直方向から所定角度傾斜させた状態で差し込むことを特徴とする異種金属部材の接合方法。  In Claim 5, this 2nd metal member is arrange | positioned so that the end surface of the said 2nd metal member may be located on the surface of the said 1st metal member, The said projection part of the said rotary tool is used for the said 2nd metal member. A method for joining dissimilar metal members, wherein the dissimilar metal member is inserted in a state inclined at a predetermined angle from a direction perpendicular to a joining interface between the first metal member and the second metal member from an end face or the vicinity thereof. 請求項1〜6のいずれか1項において,上記第1金属部材は鋼部材であり,上記第2金属部材はアルミニウム合金部材であることを特徴とする異種金属部材の接合方法。  7. The method for joining different metal members according to claim 1, wherein the first metal member is a steel member and the second metal member is an aluminum alloy member. 請求項1〜7のいずれか1項において,少なくとも上記第2金属部材との接合界面における上記第1金属部材の表面粗さは,Rzで1〜20μmの範囲内にあることを特徴とする異種金属部材の接合方法。  8. The heterogeneity according to claim 1, wherein at least a surface roughness of the first metal member at a joint interface with the second metal member is in a range of 1 to 20 μm in terms of Rz. Metal member joining method. 請求項1〜8のいずれか1項において,少なくとも上記第2金属部材との接合界面における上記第1金属部材の表面粗さは,Rmaxで5〜100μmの範囲内にあることを特徴とする異種金属部材の接合方法。  9. The heterogeneity according to claim 1, wherein at least a surface roughness of the first metal member at a joint interface with the second metal member is in a range of 5 to 100 μm in terms of Rmax. Metal member joining method. 融点の異なる異種金属よりなる2種類の金属部材を接合する方法であって,
融点の高い方の第1金属部材と,融点の低い方の第2金属部材とを重ね合せ,
肩面と該肩面から突出させた突起部とを先端に有すると共に上記第1金属部材よりも硬質の回転工具を用い,
該回転工具を回転させながら上記突起部を上記第2金属部材の表面から差し込み,上記突起部を上記第1金属部材に直接接触させてその表面粗さを粗くすると共に,上記第2金属部材の金属を摩擦熱を発生させた状態で撹拌し,その撹拌域を上記第1金属部材に達する範囲に形成し,かつ,上記回転工具を上記第1金属部材と上記第2金属部材との接合界面に平行に移動させることにより,上記第1金属部材と上記第2金属部材とを線接合するに当たり,
上記突起部を上記第2金属部材に差し込んだ際には,上記肩面をも該第2金属部材内部に差し込み,かつ上記肩面の差し込み量は,上記第2金属部材における上記肩面を差し込む部位の厚みの30%以下であり,
上記突起部と上記第1金属部材との接触深さが100μm以下であることを特徴とする異種金属部材の接合方法。
A method of joining two kinds of metal members made of different metals having different melting points,
The first metal member with the higher melting point and the second metal member with the lower melting point are overlapped,
Using a rotary tool having a shoulder surface and a protrusion protruding from the shoulder surface at the tip and harder than the first metal member,
While rotating the rotary tool, the protrusion is inserted from the surface of the second metal member, and the protrusion is brought into direct contact with the first metal member to increase the surface roughness. The metal is agitated in a state where frictional heat is generated, the agitation zone is formed in a range reaching the first metal member, and the rotary tool is joined to the interface between the first metal member and the second metal member. When the first metal member and the second metal member are line-joined by moving in parallel to
When the protrusion is inserted into the second metal member, the shoulder surface is also inserted into the second metal member, and the shoulder surface is inserted into the shoulder surface of the second metal member. Ri der than 30% of the sites of thickness,
The method for joining dissimilar metal members, wherein a contact depth between the protrusion and the first metal member is 100 μm or less .
請求項10において,上記第1金属部材は鋼部材であり,上記第2金属部材はアルミニウム合金部材であることを特徴とする異種金属部材の接合方法。  11. The method for joining dissimilar metal members according to claim 10, wherein the first metal member is a steel member and the second metal member is an aluminum alloy member.
JP2002074434A 2002-03-18 2002-03-18 Dissimilar metal member joining method Expired - Lifetime JP3785105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002074434A JP3785105B2 (en) 2002-03-18 2002-03-18 Dissimilar metal member joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002074434A JP3785105B2 (en) 2002-03-18 2002-03-18 Dissimilar metal member joining method

Publications (3)

Publication Number Publication Date
JP2003275876A JP2003275876A (en) 2003-09-30
JP2003275876A5 JP2003275876A5 (en) 2005-10-27
JP3785105B2 true JP3785105B2 (en) 2006-06-14

Family

ID=29203828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002074434A Expired - Lifetime JP3785105B2 (en) 2002-03-18 2002-03-18 Dissimilar metal member joining method

Country Status (1)

Country Link
JP (1) JP3785105B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008006451A (en) * 2006-06-27 2008-01-17 Sumitomo Light Metal Ind Ltd Friction stir spot-welded body

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4404052B2 (en) 2003-06-12 2010-01-27 株式会社日立製作所 Friction stir welding method
JP4314985B2 (en) 2003-12-05 2009-08-19 マツダ株式会社 Spot welding method for metal parts
JP4335702B2 (en) * 2004-01-22 2009-09-30 三菱重工業株式会社 Clad material manufacturing method
JP4507835B2 (en) * 2004-11-04 2010-07-21 マツダ株式会社 Friction spot welding method and structure obtained thereby
JP4496942B2 (en) * 2004-11-30 2010-07-07 マツダ株式会社 Friction spot welding method
JP2006159217A (en) * 2004-12-03 2006-06-22 Mazda Motor Corp Apparatus for friction spot welding
JP4856943B2 (en) * 2004-12-14 2012-01-18 昭和電工株式会社 Method for forming lap joint, method for joining rolling plate, method for joining rib material to plate material, and method for producing hollow body
WO2007086885A2 (en) * 2005-02-15 2007-08-02 Sii Megadiamond Tool geometries for friction stir spot welding of high melting temperature alloys
JP2006224146A (en) * 2005-02-17 2006-08-31 Kobe Steel Ltd Method for joining different kinds of material
JP4602796B2 (en) * 2005-03-02 2010-12-22 住友軽金属工業株式会社 Dissimilar metal member joining method
JP4643319B2 (en) * 2005-03-15 2011-03-02 株式会社東芝 COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND COMPOSITE MATERIAL MANUFACTURING DEVICE
DE102005019758B4 (en) * 2005-04-28 2007-12-13 Hydro Aluminium Deutschland Gmbh Method and apparatus for joining at least two components made of dissimilar materials
JP5044128B2 (en) * 2006-03-22 2012-10-10 本田技研工業株式会社 Friction stir welding method and friction stir welding member for aluminum alloy and steel plate
JP2007313550A (en) * 2006-05-29 2007-12-06 Toyohashi Univ Of Technology Method for joining ceramic, and joined member obtained thereby
JP4770661B2 (en) * 2006-09-19 2011-09-14 マツダ株式会社 Friction spot welding method
JP4923970B2 (en) * 2006-11-16 2012-04-25 マツダ株式会社 Friction spot joint evaluation method and apparatus
JP5019163B2 (en) * 2007-03-08 2012-09-05 マツダ株式会社 Friction spot joint structure
JP2008307584A (en) * 2007-06-15 2008-12-25 Honda Motor Co Ltd Manufacturing method of edge-bending connection structure
JP5117546B2 (en) * 2010-07-15 2013-01-16 本田技研工業株式会社 Automotive structures
JP4937386B2 (en) * 2010-07-22 2012-05-23 住友軽金属工業株式会社 Dissimilar metal member joining method
CN104284750B (en) * 2012-04-30 2017-10-20 鲁汶大学 Method for welding at least two layers
JP5465763B2 (en) * 2012-10-17 2014-04-09 本田技研工業株式会社 Automotive structures
US10695811B2 (en) 2013-03-22 2020-06-30 Battelle Memorial Institute Functionally graded coatings and claddings
US11045851B2 (en) 2013-03-22 2021-06-29 Battelle Memorial Institute Method for Forming Hollow Profile Non-Circular Extrusions Using Shear Assisted Processing and Extrusion (ShAPE)
US11383280B2 (en) 2013-03-22 2022-07-12 Battelle Memorial Institute Devices and methods for performing shear-assisted extrusion, extrusion feedstocks, extrusion processes, and methods for preparing metal sheets
JP2015139808A (en) * 2014-01-29 2015-08-03 株式会社総合車両製作所 Metal member jointing method, and metal member jointing device
KR101783891B1 (en) * 2016-05-04 2017-10-10 (주)세원물산 Method for manufacturing dissimilar metals car element and dissimilar metals car element using the same, and apparatus for manufacturing dissimilar metals car element
FR3058119B1 (en) 2016-10-27 2019-01-25 Alstom Transport Technologies BODY STRUCTURE FOR A VEHICLE ON RAILS AND METHOD FOR MANUFACTURING SUCH A BODY STRUCTURE
JP6958099B2 (en) * 2017-08-10 2021-11-02 日本製鉄株式会社 Join joint
US11549532B1 (en) 2019-09-06 2023-01-10 Battelle Memorial Institute Assemblies, riveted assemblies, methods for affixing substrates, and methods for mixing materials to form a metallurgical bond
US20210205919A1 (en) * 2020-01-02 2021-07-08 The Regents Of The University Of Michigan Methods Of Joining Dissimilar Metals Without Detrimental Intermetallic Compounds
US11890788B2 (en) 2020-05-20 2024-02-06 The Regents Of The University Of Michigan Methods and process for producing polymer-metal hybrid components bonded by C—O-M bonds
US11919061B2 (en) 2021-09-15 2024-03-05 Battelle Memorial Institute Shear-assisted extrusion assemblies and methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008006451A (en) * 2006-06-27 2008-01-17 Sumitomo Light Metal Ind Ltd Friction stir spot-welded body

Also Published As

Publication number Publication date
JP2003275876A (en) 2003-09-30

Similar Documents

Publication Publication Date Title
JP3785105B2 (en) Dissimilar metal member joining method
JP4602796B2 (en) Dissimilar metal member joining method
JP4937386B2 (en) Dissimilar metal member joining method
Rao et al. Effect of process parameters on mechanical properties of friction stir spot welded magnesium to aluminum alloys
Bakavos et al. Effect of reduced or zero pin length and anvil insulation on friction stir spot welding thin gauge 6111 automotive sheet
Liu et al. Effects of process parameters on friction self-piercing riveting of dissimilar materials
JP2003275876A5 (en)
JP4577620B2 (en) Metal joining method
Okamura et al. Joining of dissimilar materials with friction stir welding
US20100083483A1 (en) Double-action clinching method and tool for performing the same
EP1902810A1 (en) Friction stir spot welding method
JP2005034879A (en) Friction welding method and friction welding structure
US8936186B2 (en) Rotary tool
Miles et al. Spot welding of aluminum and cast iron by friction bit joining
Lyu et al. Double-sided friction stir spot welding of steel and aluminum alloy sheets
JP3543267B2 (en) Aluminum driven rivets
JP4413677B2 (en) Point joining method for dissimilar metal parts
KR20180003878A (en) Method For Welding Dissimilar Materials of Different Thickness by Friction Stir Welding
JP4858763B2 (en) Friction stir spot assembly
JP4543204B2 (en) Friction stir welding method
JP2008137048A (en) Friction spot welding method
JP3940984B2 (en) Metal joining method
WO2017072735A1 (en) Joined incompatible metallic parts and method of joining
JP4196158B2 (en) Friction stir welding method
JP3268207B2 (en) Friction welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050706

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050706

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060222

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060316

R150 Certificate of patent or registration of utility model

Ref document number: 3785105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250