JP3785015B2 - Mold lubrication method in hot forging of sintered alloys. - Google Patents

Mold lubrication method in hot forging of sintered alloys. Download PDF

Info

Publication number
JP3785015B2
JP3785015B2 JP2000028521A JP2000028521A JP3785015B2 JP 3785015 B2 JP3785015 B2 JP 3785015B2 JP 2000028521 A JP2000028521 A JP 2000028521A JP 2000028521 A JP2000028521 A JP 2000028521A JP 3785015 B2 JP3785015 B2 JP 3785015B2
Authority
JP
Japan
Prior art keywords
lubricant
mold
oil
forging
solid lubricant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000028521A
Other languages
Japanese (ja)
Other versions
JP2001219236A (en
Inventor
善三 石島
隆 岩間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Powdered Metals Co Ltd
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2000028521A priority Critical patent/JP3785015B2/en
Publication of JP2001219236A publication Critical patent/JP2001219236A/en
Application granted granted Critical
Publication of JP3785015B2 publication Critical patent/JP3785015B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Forging (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、焼結合金の素材を熱間鍛造するときの金型潤滑方法に関するものであり、特に高密度の焼結アルミニウム合金製の機械部品を製造する際に有効な方法である。
【0002】
【従来の技術】
機械部品を製作する方法の一つとして、粉末冶金法と鍛造とを組合せる方法がある。すなわち、まず粉末冶金法により製品の機能に必要な材料設計を行なって近似した形状の素材を作り、次いで素材中の気孔を減少させて必要な強度を得るために熱間鍛造を行なう。
熱間鍛造時においては、素材と工具の面は高温高圧の状態にあり、素材が金型のキャビティ面に付着し易いために、摩擦剪断係数を低下させる必要がある。そのために金型の内面に潤滑剤を塗布する。金型の潤滑は、特に軽合金の焼結素材を扱う場合には必須である。潤滑剤の塗布には、均一な塗布が可能でありかつ自動化し易いという理由からスプレーを用いることが多い。
潤滑剤としては、被膜形成機能に優れ、かつ500℃程度まで摩擦係数が低い固体潤滑剤である黒鉛が最も多く使用されている。特にアルミニウム鍛造における潤滑には固体潤滑剤として黒鉛を含有するものが優れているといわれている。潤滑剤としては、流動性の分散媒に黒鉛等の固体潤滑剤粒子を沈殿しないように分散させたものが用いられる。分散媒としては油性、水性およびエマルジョン系のものがある。
【0003】
これらの潤滑剤のうち、油を分散媒として用い固体潤滑剤粒子を分散させた油性潤滑剤は、広範囲の金型温度において成膜が迅速に進行することが利点とされている。すなわち、潤滑成分が高温の金型に接する際に金型内面を濡らし、油の表面張力により適用面に十分に広がり、固体潤滑剤粒子を均一に分散させること、油が蒸発して生ずるガスのクッション効果を伴い潤滑すること、また固体潤滑剤粒子に油が吸着するので粒子の潤滑機能がより効果的に発揮されることなどの理由により、特にアルミニウム合金の熱間鍛造の温度範囲において良好な潤滑性を示すと言われている。一方、油性潤滑剤には燃焼油煙が発生し、発火し易いという点に問題がある。
【0004】
黒鉛等の固体潤滑剤粒子を分散した水性潤滑剤は、分散媒として水を主成分とし、固体潤滑剤粒子の分散性を良好にするために分散剤や粘度調整剤等を添加したものである。水性潤滑剤の場合には、水分が蒸発するために、ほとんど固体潤滑剤粒子の乾燥被膜による潤滑が行なわれる。また、水性潤滑剤は金型の冷却効果が大きいので、金型が局部的に軟化変形する懸念は少ない。
いずれの潤滑剤においても、金型温度が高い状態では、金型内面で液をはじく現象が起こって塗膜厚さが不均一になり易く、摩擦剪断係数が大きくなることがあるが、金型冷却効果によって比較的低い温度に維持すれば、均一な潤滑塗膜を形成することができる。さらに、水性潤滑剤は油性潤滑剤に比べて発火性などの面で安全である。
【0005】
黒鉛等の固体潤滑剤粒子を分散させたエマルジョン系潤滑剤は、油性潤滑油が有する潤滑性と水性潤滑油が有する清浄で安全な利点とを併有している。分散媒は水が主成分であるが、潤滑油が乳化されているので、金型内面に付着した被膜はやや油性潤滑剤に似た特性を示す。しかし前記水性潤滑剤に比べて冷却効果は劣る。一方、水性潤滑剤よりも過冷却を防ぐことができるので、場合によっては油性潤滑剤の代替とすることがある。
【0006】
熱間鍛造における潤滑剤の使用条件は、希釈倍率、塗布量、金型温度などと潤滑性能との関係が定式化されていないため、経験により適宜定めている。焼結合金素材がアルミニウム、マグネシウム等の軽金属であり、金型温度が比較的低い場合には、水性潤滑剤を使用し、精密鍛造などのように金型温度が比較的高い場合には油性潤滑剤を用いることが好ましいとされている。また、鉄系の焼結合金素材を処理する場合には水性潤滑剤を主として用いる。
【0007】
【発明が解決しようとする課題】
200から400℃程度の温度に加熱した金型内面に、上記のような固体潤滑剤粒子を分散させた潤滑剤を噴霧塗布する場合、一般的には温度が高いほど金型内面に対する濡れが悪いので、広い温度範囲で比較的均一な塗布を行ない鍛造欠陥の生じ難いものを製造する場合には、油性潤滑剤が好ましい。
しかし、油性潤滑剤は、噴霧後短時間で油分が発煙したり発火するために、その対策として大規模な装置が必要になる。そのほか、焼結合金素材の気孔に油の一部が含浸して鍛造された表面に材料欠陥を生じることがあり、また潤滑剤の汚れを除去し難いため、取り扱いに手間が掛かるという問題もあるので、使用を避けることが好ましい。さらに、塗布した潤滑剤は、鍛造を繰り返す間に金型キャビティの角部等に堆積し、鍛造したワークに欠肉などが生ずるため、堆積物の除去が必要であり、生産性を低下させるという問題点も挙げられる。
【0008】
固体潤滑剤粒子を分散させた潤滑剤が水性またはエマルジョン系であれば発煙や発火の問題は改善されるが、金型の温度が比較的高いときには潤滑剤の金型内面に対する濡れが劣るため、潤滑被膜が不均一になり、潤滑効果が減少する。また、金型のキャビティ内に潤滑剤が堆積することは上記の油性潤滑剤の場合と同様である。
【0009】
例えば、焼結アルミニウム合金の場合には、鉄合金よりも熱伝導率が良好なため、熱間鍛造を行なう際に金型の加熱が必要になる。鍛造温度を高くすると、必要な変形量にするための鍛造加圧力を低くし得る利点はあるが、高温に加熱した金型に対する潤滑剤の濡れが低温のときよりも劣るため、潤滑被膜が不均一になったり、金型の損傷等が生ずるので好ましくない。
そのため、金型を比較的低い温度に加熱し、必要な鍛造変形量にする手段としてフリクションプレス機のように加圧速度が速い装置を用いて素材の温度が著しく低下する前に鍛造を行う手段が用いられている。このようにした場合にも、水性またはエマルジョン系の潤滑剤を適用するときには、数回の熱間鍛造の繰り返しにより鍛造されたワークにカジリを生じ、しかも金型のダイに嵌合しているパンチの作動が滑らかでなくなり、さらに固体潤滑剤粒子を分散させた潤滑剤が金型キャビティの角部に堆積するために金型の清掃が必要になる等の問題が発生する。
この発明は、上記のような従来の課題を背景として、比較的低い温度の熱間鍛造で連続的に鍛造することができる潤滑方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記の目的を達成するため、この発明においては、加熱した金型内面に液状潤滑剤を噴霧した後、加熱した焼結合金の素材を導入して熱間鍛造を行なう場合に、上記液状潤滑剤の噴霧が(1)固体潤滑剤粒子を含まないエマルジョン潤滑剤を噴霧する工程と、(2)その後、固体潤滑剤粒子を水に分散させた水性潤滑剤を1回または複数回噴霧する工程とからなることを特徴としており、固体潤滑剤粒子としては、黒鉛、二硫化モリブデン、二硫化タングステン、弗化黒鉛等を利用することができる。
上記(1)において噴霧するエマルジョン潤滑剤が油(好ましくはイオウ系、リン系および塩素系の極圧添加剤からなる群から選ばれる少なくとも1種を含む油)0.5〜30質量%を含有するO/Wエマルジョンであり、次いで噴霧する水性潤滑剤は固体潤滑粒子として黒鉛1〜25質量%を含有するものである場合に好適な結果が得られる。このような潤滑方法は、焼結合金の素材がアルミニウム合金である場合に特に適するものである。
上記のイオウ系極圧添加剤としては、硫化油脂、硫化オレフィン、硫化鉱油、ジアルキルジサルファイド、ジアルキルポリサルファイドなどを例示することができる。リン系極圧添加剤としては、リン酸エステル(塩)系、亜リン酸エステル(塩)系、チオリン酸エステル(塩)系、ホスフィン系などの例を挙げることができる。また、塩素系極圧添加剤としては塩素化パラフィンなどを使用することができる。
【0011】
上記のようにエマルジョン潤滑剤および水性潤滑剤を噴霧塗布することによって連続的に鍛造することが可能になる。この理由は明らかではないが、次のように考えられる。
温度250℃程度に加熱した金型に、従来の固体潤滑剤粒子を分散した水性潤滑剤または固体潤滑剤粒子を分散したO/Wエマルジョン潤滑剤を噴霧すると、前者の場合には、粘性の高い油分を含まないため噴霧する際にミストを細かくすることができる。細かいミストは複雑な形状の金型においてもキャビティ内部に均一に塗膜を形成することができる。また、水の気化により金型内面が冷却され金型の濡れが向上し、薄く均一な塗膜を形成できる。この塗膜は、上記水性潤滑剤に粘度の調整および固体潤滑剤粒子の分散性改善のために添加したカルボキシメチルセルロース(CMC)などの有機化合物、あるいは水ガラス(珪酸ナトリウム)などの無機化合物が粘着剤として作用するため、金型内面への密着性が良好である。一方、アルミニウム等の軽金属類を鍛造する場合には、固体潤滑剤の乾燥被膜のみでは潤滑性が不足し、それを補うために多量の噴霧を行なうことが必要になり、その結果鍛造ワークの表面が荒れて、金型キャビティに潤滑剤が堆積し易くなる。
【0012】
後者のO/Wエマルジョン潤滑剤の場合には、初期段階では水が沸騰気化して水分が減少し、固体潤滑剤と油分の塗膜になった後、油分が気化する過程で、金型内面の濡れは改善される。しかしながら、固体潤滑剤の濃度が高い部分と低い部分が生じることおよび水性のものはミストを細かくすることができないので、形成された塗膜の厚みに不均一な個所が生ずる。また、水性潤滑剤に比べて被膜の密着性が悪いため、素材投入時には、形成された被膜が剥離し易い。以上の理由により、油の潤滑効果が加わっているにも拘わらず、十分な潤滑効果が得られないものと考えられる。また、油分が残っている状態で、加熱した素材を金型に導入して加圧すると、油と固体潤滑剤の潤滑被膜には粘性が残っているため、素材の気孔中に潤滑被膜が侵入して鍛造体表面近傍を汚損し、表面欠陥の原因となる懸念もある。
【0013】
一方、本発明の潤滑方法によれば、最初にエマルジョン潤滑剤(固体潤滑剤粒子を含まない)を噴霧することにより、水が気化して金型内面が冷却されるために金型面の濡れは向上し、油分は金型内面を薄く覆う状態になる。気化した水は金型キャビティに充満しており、油の蒸発を抑制する役割も果たす。引き続き固体潤滑剤粒子を分散させた水性潤滑剤を噴霧すると、水が気化して乾燥した固体潤滑剤の塗膜が油膜面の上に形成されるものと考えられる。
この方法により形成する潤滑被膜は、金型内面側から順に、それぞれ均一かつ完全に形成された油層および固体潤滑剤層の2層からなる。被膜の密着性も良好であるため、素材の気孔中に潤滑剤が侵入することは少ない。また、金型内面側に多く存在する油分により良好な潤滑効果を与えると共に離型性もよいので、金型とワークとの摩擦が減少し、型カジリが発生しない。さらに固体潤滑剤が金型キャビティに付着残留することもなく、その結果、連続鍛造が可能になるものと考えられる。
【0014】
金型の内面が油層で被覆され、その上に固体潤滑剤の塗膜が形成された潤滑被膜を形成する場合に、例えば、最初に油のみまたは油性潤滑剤を噴霧し、その後に水性潤滑剤を噴霧しても、先に噴霧した油は加熱された金型に直接散布したものであるから、金型の温度低下は比較的少ないため、濡れが不十分で塗布が不均一になる。また、金型キャビティの空間も高温状態にあるから、短時間で発煙し易い状態となり、その後に水性潤滑剤の噴霧を行なっても所期の塗膜を形成することはできない。
また、手順を逆にして、最初に固体潤滑剤粒子を分散した水性潤滑剤を噴霧した後、エマルジョン潤滑剤を噴霧する方法では、上記水性潤滑剤に、水の粘度を調整しかつ固体潤滑剤粒子の分散性を改善するために添加したカルボキシメチルセルロース(CMC)などの有機化合物あるいは水ガラス(珪酸ナトリウム)などの無機化合物が粘着剤として作用するため、固体潤滑剤が金型内面に堆積し易くなる。
【0015】
エマルジョン潤滑剤は、水と油の乳化液である。油は鉱油や合成油等の潤滑油でもよいが、前記極圧添加剤の少なくとも1種を含むものが高温高圧下における潤滑特性に優れているため好ましい。
水と油の量は、1回の噴霧において、金型内面の冷却に必要な適度の量の蒸気を発生する水の量と、その水により冷却された金型表面温度において、金型内面に均一に塗布されるために必要な油の量とをそれぞれ満たすことが必要であり、油分が0.5〜30質量%の範囲のO/Wエマルジョン潤滑剤が適当である。油分が少ないと必要な油量を供給するために多量のエマルジョンを噴霧しなければならず、かつ水分が比較的多いために金型の冷却が進行し、水の蒸発に長時間を要する。一方、油分が多すぎると、噴霧量は少なくて済む反面、塗布が不均一になり易く、かつ水分の量が少ないため油だけを塗布した状態に近くなる。なお、乳化剤は数%程度添加する。
【0016】
固体潤滑剤粒子を分散させた水性潤滑剤は、水に固体潤滑剤粒子を分散させたものである。固体潤滑剤の濃度は可能な限り高く、固体潤滑剤粒子が沈降し難く、しかも噴霧装置のノズルを閉塞しないものであることが必要である。水の粘度調整と固体潤滑剤粒子の分散性改善のために、カルボキシメチルセルロース(CMC)などの有機化合物、あるいは水ガラス(珪酸ナトリウム)などの無機化合物を0.1〜5質量%程度添加する。水性潤滑剤に含まれる固体潤滑剤は、1〜25質量%が適当である。
固体潤滑剤含有量の少ない潤滑剤液は、ミストを細かくすることができ、噴霧性が良好であるため、薄く均一な被膜を形成することができる。金型に必要な固体潤滑剤の量に応じて1回もしくは複数回噴霧すればよい。固体潤滑剤含有量が極端に少ない潤滑剤液の場合には、多量の潤滑剤液を噴霧する結果になるため、必要以上に金型温度の低下を招き、水分の蒸発に長時間を要するので好ましくない。
一方、固体潤滑剤の濃度が高い場合には噴霧量は少なくて済むが、濃度が高すぎると噴霧ノズルを閉塞し易くなり、連続的な鍛造作業が困難になる。
【0017】
【発明の実施の形態】
以下、実施例により本発明をさらに詳しく説明する。
【実施例】
(焼結体の製造)
熱間鍛造を行なう焼結体はアルミニウム合金からなり、形状は棒の両端に軸受孔を有する連接棒である。これを以下の方法により作成した。
まず純Al粉:38質量%、Si20質量%−Al合金粉:57質量%、Ni4質量%−Cu合金粉:4質量%、およびMg50質量%−Al合金粉:1質量%の混合粉を作成した。全体組成は計算値でSi:11.4質量%、Cu:3.84質量%、Mg:0.5質量%、Ni:0.16質量%およびAl:残部である。
この混合粉を連接棒の形状に圧粉成形し、成形体を非酸化ガス中で温度400℃に加熱して成形潤滑剤の脱ろうを行なった後、温度540℃で焼結した。焼結体は密度比が80%であり、鍛造金型のキャビティより小さく形成されている。
【0018】
(鍛造装置)
鍛造装置として、フリクションプレス機に、キャビティを形成するダイ、下パンチ、コアロッドおよび上パンチからなる金型を用い、金型には加熱手段と温度制御手段を付設する。プレス機に併設して、プレス機の作動に同期して金型キャビティの上部に前進し、かつ金型領域から退避する潤滑剤噴霧ノズル2組を設置し、それぞれリザーブタンクから潤滑剤を給送する手段、圧縮空気の導入手段、および作動制御手段を備える。また、焼結体素材を所定の温度に加熱する非酸化ガス雰囲気の炉、ならびに加熱した素材を金型キャビティに移送および挿入する素材供給装置を設ける。
金型は温度250℃に保温する。また、噴霧ノズルは、キャビティの各所に噴霧液が行き渡るように設置する。
以下に示す各潤滑剤を用いて、焼結体素材の熱間鍛造を連続して行なった。鍛造体の密度比が100%になり、かつ鍛造バリが発生する圧力を加えた。
【0019】
<比較例1>
鍛造用潤滑剤として、黒鉛含有量10質量%の黒鉛分散油性潤滑剤(日立粉末冶金株式会社製、商品名:ヒタゾルGO−102)を用いた。
潤滑剤の噴霧直後から発煙したため、噴霧塗布後数分間放置するか、またはバーナー等により発生ガスを燃焼させることが必要であった。また、数個を連続して鍛造すると、下パンチ側の隅に潤滑剤や素材の削り残渣が堆積し、鍛造体の角部に欠肉が認められた。さらに鍛造体のパンチに接した面の断面を観察すると、油および黒鉛が気孔中に侵入した形跡が認められた。
【0020】
<比較例2>
鍛造用潤滑剤として、黒鉛含有量17質量%の黒鉛分散水性潤滑剤(日立粉末冶金株式会社製、商品名:ヒタゾルGA−361)を用いた。
この場合には、数回の鍛造を繰返して行なうと鍛造体の側面に掻きむしられたようなカジリが生じ、下パンチの作動が不良になった。噴霧後に下パンチ面を観察するとミストは全面に散布されていた。黒鉛のみの潤滑被膜では潤滑性が不足していたものと思われる。
【0021】
<比較例3>
鍛造用潤滑剤として硫化油含有量20質量%のO/Wエマルジョン潤滑剤(日立粉末冶金株式会社製、商品名:ヒタゾルWA−337PH)を用いた。
この場合には、カジリ、金型作動ともに前者より悪い結果であった。量の少ない油のみによる潤滑であるためと考えられる。
【0022】
<比較例4>
鍛造用潤滑剤として、最初に黒鉛分散水性潤滑剤を噴霧し、約1秒間経過後に前記O/Wエマルジョン潤滑剤を塗布した。金型作動および鍛造体の離型が良好であったが、連続して鍛造を行なうと、下パンチ側の隅に潤滑剤や素材の削り残渣が堆積し、鍛造体の角部に欠肉が認められた。
【0023】
<実施例1>
鍛造用潤滑剤として、最初に前記O/Wエマルジョン潤滑剤を噴霧し、約1秒間経過後に黒鉛分散水性潤滑剤を塗布した。金型作動および鍛造体の離型が良好であり、鍛造を連続して継続することができた。噴霧後の下パンチ面を観察すると、黒鉛により隙間の少ない状態で被覆されていることが認められた。
【0024】
以上、素材が焼結アルミニウム合金であり、固体潤滑剤が黒鉛である例について説明したが、上記の最適な潤滑方法は、最初に金型内面に水と油をエマルジョンの形態で噴霧塗布して油膜を形成しておき、続いて水性の固体潤滑剤液を噴霧塗布して固体潤滑剤被膜を設けることにより、金型と鍛造体との摩擦を少なくするものである。すなわち、金型に固体潤滑剤が付着堆積することなく、鍛造素材の気孔に潤滑剤が含浸することが少ないため、連続して鍛造することが可能である。従って、金型の温度やダイキャビティの大きさ等に合わせて噴霧量を調整することにより、その他の焼結軽合金や鉄系焼結合金の素材に対しても適用することが可能である。
【0025】
【発明の効果】
この発明の熱間鍛造潤滑方法によれば、鍛造作業の保守作業を少なくすることができるため、生産能率が向上し、表面欠陥がなく外観に優れた鍛造体を安定して提供することができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mold lubrication method for hot forging a sintered alloy material, and is an effective method for producing a machine part made of a sintered aluminum alloy having a high density.
[0002]
[Prior art]
One method of manufacturing machine parts is to combine powder metallurgy and forging. That is, the material design necessary for the function of the product is first performed by powder metallurgy to create a material having an approximate shape, and then hot forging is performed in order to reduce the pores in the material and obtain the required strength.
At the time of hot forging, since the surface of the material and the tool is in a high temperature and high pressure state and the material is likely to adhere to the cavity surface of the mold, it is necessary to reduce the frictional shear coefficient. For that purpose, a lubricant is applied to the inner surface of the mold. Mold lubrication is essential, especially when dealing with light alloy sintered materials. For the application of the lubricant, a spray is often used because it can be applied uniformly and is easy to automate.
As the lubricant, graphite, which is a solid lubricant having an excellent film forming function and having a low friction coefficient up to about 500 ° C., is most often used. In particular, it is said that a lubricant containing graphite as a solid lubricant is excellent for lubrication in aluminum forging. As the lubricant, a lubricant dispersed in a fluid dispersion medium so as not to precipitate solid lubricant particles such as graphite is used. Dispersion media include oily, aqueous and emulsion types.
[0003]
Among these lubricants, an oil-based lubricant in which solid lubricant particles are dispersed using oil as a dispersion medium has an advantage that film formation proceeds rapidly in a wide range of mold temperatures. That is, when the lubricating component comes into contact with the high-temperature mold, the mold inner surface is wetted, and the surface tension of the oil sufficiently spreads to the application surface to uniformly disperse the solid lubricant particles. Lubricating with a cushioning effect, and because the oil is adsorbed to the solid lubricant particles, the lubrication function of the particles is exhibited more effectively, especially in the temperature range of hot forging of aluminum alloys. It is said to show lubricity. On the other hand, oil-based lubricants have a problem in that combustion oil smoke is generated and is easily ignited.
[0004]
Water-based lubricants in which solid lubricant particles such as graphite are dispersed are those in which water is a main component as a dispersion medium, and a dispersant, a viscosity modifier or the like is added to improve the dispersibility of the solid lubricant particles. . In the case of an aqueous lubricant, since the water evaporates, the solid lubricant particles are almost lubricated with a dry film. In addition, since the water-based lubricant has a great cooling effect on the mold, there is little concern that the mold is locally softened and deformed.
In any lubricant, when the mold temperature is high, a phenomenon of repelling liquid occurs on the inner surface of the mold, and the coating thickness tends to be uneven, and the frictional shear coefficient may increase. If the temperature is maintained at a relatively low temperature by the cooling effect, a uniform lubricating coating film can be formed. Furthermore, water-based lubricants are safer in terms of ignition and the like than oil-based lubricants.
[0005]
Emulsion lubricants in which solid lubricant particles such as graphite are dispersed have both the lubricity of oil-based lubricants and the clean and safe advantages of water-based lubricants. Although the dispersion medium contains water as a main component, since the lubricating oil is emulsified, the film attached to the inner surface of the mold exhibits characteristics similar to those of an oil-based lubricant. However, the cooling effect is inferior to that of the aqueous lubricant. On the other hand, since supercooling can be prevented more than water-based lubricants, in some cases, it may be an alternative to oil-based lubricants.
[0006]
The conditions for using the lubricant in the hot forging are appropriately determined by experience since the relationship between the dilution ratio, the coating amount, the mold temperature, etc. and the lubrication performance are not formulated. If the sintered alloy material is a light metal such as aluminum or magnesium and the mold temperature is relatively low, use a water-based lubricant, and if the mold temperature is relatively high, such as precision forging, oil lubrication It is considered preferable to use an agent. In the case of processing an iron-based sintered alloy material, an aqueous lubricant is mainly used.
[0007]
[Problems to be solved by the invention]
When spraying a lubricant in which solid lubricant particles as described above are dispersed on the inner surface of a mold heated to a temperature of about 200 to 400 ° C., generally, the higher the temperature, the worse the wetting of the inner surface of the mold. Therefore, an oil-based lubricant is preferable when relatively uniform coating is performed over a wide temperature range to produce a forging defect that is difficult to occur.
However, oil-based lubricants smoke or ignite in a short time after spraying, so a large-scale device is required as a countermeasure. In addition, some of the oil in the pores of the sintered alloy material may cause material defects on the forged surface, and it may be difficult to remove the dirt of the lubricant, which may be troublesome to handle. Therefore, it is preferable to avoid use. Furthermore, the applied lubricant is deposited at the corners of the mold cavity during repeated forging, and the forged workpiece is thinned, etc., which requires removal of deposits and reduces productivity. There are also problems.
[0008]
If the lubricant in which the solid lubricant particles are dispersed is water-based or emulsion-based, the problem of smoke generation and ignition is improved, but when the mold temperature is relatively high, the wettability of the lubricant to the mold inner surface is poor. The lubricating coating becomes non-uniform and the lubricating effect is reduced. Further, the deposition of the lubricant in the mold cavity is the same as in the case of the oil-based lubricant described above.
[0009]
For example, in the case of a sintered aluminum alloy, the thermal conductivity is better than that of an iron alloy, so that it is necessary to heat a mold when performing hot forging. Increasing the forging temperature has the advantage of lowering the forging pressure to achieve the required deformation amount, but the lubricant coating is not good because the wetness of the lubricant to the mold heated to a high temperature is inferior to that at a low temperature. This is not preferable because it becomes uniform and damage to the mold occurs.
For this reason, means for forging before the temperature of the material drops significantly using a device with a high pressurization speed such as a friction press as a means for heating the mold to a relatively low temperature and making the required amount of forging deformation. Is used. Even in such a case, when applying a water-based or emulsion-based lubricant, a punch that is galvanized by the repeated hot forging several times and that is fitted to the die of the die. This causes problems such as the need to clean the mold because the lubricant in which the solid lubricant particles are dispersed accumulates on the corners of the mold cavity.
An object of this invention is to provide the lubrication method which can be continuously forged by the hot forging of comparatively low temperature against the background of the above conventional subjects.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, when the liquid lubricant is sprayed on the inner surface of the heated mold, and then hot forging is performed by introducing a material of the heated sintered alloy, the liquid lubricant is used. (1) a step of spraying an emulsion lubricant containing no solid lubricant particles, and (2) a step of spraying an aqueous lubricant in which solid lubricant particles are dispersed in water one or more times thereafter. As the solid lubricant particles, graphite, molybdenum disulfide, tungsten disulfide, graphite fluoride, or the like can be used.
The emulsion lubricant sprayed in the above (1) contains 0.5 to 30% by mass of oil (preferably an oil containing at least one selected from the group consisting of sulfur-based, phosphorus-based and chlorine-based extreme pressure additives). Suitable results are obtained when the aqueous lubricant to be sprayed and then sprayed contains 1-25% by weight of graphite as solid lubricating particles. Such a lubrication method is particularly suitable when the sintered alloy material is an aluminum alloy.
Examples of the sulfur-based extreme pressure additive include sulfurized fats and oils, sulfurized olefins, sulfide mineral oil, dialkyl disulfide, dialkyl polysulfide and the like. Examples of the phosphorus extreme pressure additive include phosphate ester (salt), phosphite (salt), thiophosphate (salt), and phosphine. Moreover, chlorinated paraffin etc. can be used as a chlorine-type extreme pressure additive.
[0011]
As described above, continuous forging can be performed by spray-coating the emulsion lubricant and the aqueous lubricant. The reason for this is not clear, but is thought to be as follows.
When a conventional aqueous lubricant in which solid lubricant particles are dispersed or an O / W emulsion lubricant in which solid lubricant particles are dispersed is sprayed on a mold heated to a temperature of about 250 ° C., the former is highly viscous. Since it does not contain oil, mist can be made finer when spraying. A fine mist can form a uniform coating film inside the cavity even in a complicated mold. Moreover, the inner surface of the mold is cooled by the vaporization of water, so that wetting of the mold is improved and a thin and uniform coating film can be formed. This coating film adheres to the above-mentioned aqueous lubricant with an organic compound such as carboxymethylcellulose (CMC) or water glass (sodium silicate) added to adjust the viscosity and improve the dispersibility of the solid lubricant particles. Since it acts as an agent, it has good adhesion to the inner surface of the mold. On the other hand, when forging light metals such as aluminum, lubrication is insufficient with only a dry coating film of a solid lubricant, and it is necessary to perform a large amount of spraying to make up for it. As a result, the lubricant is easily deposited in the mold cavity.
[0012]
In the case of the latter O / W emulsion lubricant, water is boiled and vaporized in the initial stage to reduce moisture, and after forming a solid lubricant and oil coating film, the oil is vaporized in the process. Wetting is improved. However, a portion where the concentration of the solid lubricant is high and a portion where the concentration is low, and a water-based one cannot make the mist fine, resulting in uneven portions in the thickness of the formed coating film. In addition, since the adhesion of the film is poorer than that of the aqueous lubricant, the formed film is easily peeled when the material is charged. For the above reasons, it is considered that a sufficient lubricating effect cannot be obtained despite the fact that the lubricating effect of oil is added. In addition, if the heated material is introduced into the mold and pressurized with the oil remaining, the lubricating film of oil and solid lubricant remains viscous, so the lubricating film penetrates into the pores of the material. Then, there is also a concern that the vicinity of the forged body surface is fouled and causes surface defects.
[0013]
On the other hand, according to the lubrication method of the present invention, the emulsion surface (not including solid lubricant particles) is first sprayed to evaporate water and cool the inner surface of the mold, so that the mold surface is wetted. Is improved, and the oil becomes thinly covering the inner surface of the mold. The vaporized water fills the mold cavity and plays a role in suppressing oil evaporation. When an aqueous lubricant in which solid lubricant particles are dispersed is subsequently sprayed, it is considered that a solid lubricant coating film is formed on the oil film surface by evaporation of water and drying.
The lubricating film formed by this method is composed of two layers, an oil layer and a solid lubricant layer, which are uniformly and completely formed in order from the inner surface of the mold. Since the adhesion of the coating is also good, the lubricant hardly enters the pores of the material. In addition, the oil present on the inner surface side of the mold provides a good lubricating effect and good releasability, so that the friction between the mold and the work is reduced, and mold galling does not occur. Further, the solid lubricant does not remain attached to the mold cavity, and as a result, it is considered that continuous forging is possible.
[0014]
When forming a lubricating film in which the inner surface of the mold is coated with an oil layer and a solid lubricant film is formed thereon, for example, first, only oil or an oil-based lubricant is sprayed, and then an aqueous lubricant Even when sprayed, since the oil sprayed first is sprayed directly on the heated mold, the temperature drop of the mold is relatively small, so that wetting is insufficient and the coating becomes uneven. Moreover, since the space of the mold cavity is also in a high temperature state, it becomes a state where it is likely to emit smoke in a short time, and the desired coating film cannot be formed even if spraying of the aqueous lubricant is performed thereafter.
Further, in the method of reversing the procedure and first spraying the aqueous lubricant in which the solid lubricant particles are dispersed and then spraying the emulsion lubricant, the viscosity of water is adjusted to the aqueous lubricant and the solid lubricant is used. An organic compound such as carboxymethylcellulose (CMC) added to improve the dispersibility of the particles or an inorganic compound such as water glass (sodium silicate) acts as an adhesive, so that the solid lubricant is easily deposited on the inner surface of the mold. Become.
[0015]
An emulsion lubricant is an emulsion of water and oil. The oil may be a lubricating oil such as a mineral oil or a synthetic oil, but an oil containing at least one of the extreme pressure additives is preferable because it has excellent lubricating properties under high temperature and pressure.
The amount of water and oil is determined by the amount of water that generates an appropriate amount of steam necessary for cooling the inner surface of the mold in one spray and the mold surface temperature cooled by the water. It is necessary to satisfy the amount of oil necessary for uniform application, and an O / W emulsion lubricant having an oil content in the range of 0.5 to 30% by mass is suitable. If the oil content is low, a large amount of emulsion must be sprayed to supply the required amount of oil, and the mold is cooled because of the relatively high water content, and it takes a long time to evaporate the water. On the other hand, if the amount of oil is too much, the amount of spraying can be reduced, but the application is likely to be uneven and the amount of water is small, so that it is close to the state where only oil is applied. In addition, about several percent of emulsifier is added.
[0016]
The aqueous lubricant in which solid lubricant particles are dispersed is obtained by dispersing solid lubricant particles in water. It is necessary that the concentration of the solid lubricant is as high as possible, the solid lubricant particles are difficult to settle, and do not block the nozzle of the spraying device. In order to adjust the viscosity of water and improve the dispersibility of the solid lubricant particles, an organic compound such as carboxymethyl cellulose (CMC) or an inorganic compound such as water glass (sodium silicate) is added in an amount of about 0.1 to 5% by mass. The solid lubricant contained in the aqueous lubricant is suitably 1 to 25% by mass.
A lubricant liquid with a small solid lubricant content can make mist fine and has good sprayability, so that a thin and uniform film can be formed. What is necessary is just to spray once or several times according to the quantity of the solid lubricant required for a metal mold | die. In the case of a lubricant solution with an extremely low solid lubricant content, a large amount of the lubricant solution is sprayed, resulting in a lower mold temperature than necessary and a long time for evaporation of moisture. It is not preferable.
On the other hand, when the concentration of the solid lubricant is high, the spray amount may be small. However, when the concentration is too high, the spray nozzle is easily blocked, and continuous forging work becomes difficult.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to examples.
【Example】
(Manufacture of sintered body)
The sintered body for hot forging is made of an aluminum alloy, and the shape is a connecting rod having bearing holes at both ends of the rod. This was created by the following method.
First, mixed powder of 38% by mass of pure Al powder, 20% by mass of Si-Al alloy powder: 57% by mass, 4% by mass of Ni-Cu alloy powder: 4% by mass, and 50% by mass of Mg-Al alloy powder: 1% by mass is prepared. did. The total composition is calculated as follows: Si: 11.4% by mass, Cu: 3.84% by mass, Mg: 0.5% by mass, Ni: 0.16% by mass, and Al: balance.
The mixed powder was compacted into the shape of a connecting rod, and the compact was heated in a non-oxidizing gas to a temperature of 400 ° C. to dewax the molding lubricant, and then sintered at a temperature of 540 ° C. The sintered body has a density ratio of 80% and is formed smaller than the cavity of the forging die.
[0018]
(Forging equipment)
As a forging device, a friction press is used with a die comprising a die forming a cavity, a lower punch, a core rod, and an upper punch, and a heating means and a temperature control means are attached to the die. Along with the press machine, two sets of lubricant spray nozzles that move forward from the mold cavity in synchronism with the operation of the press machine and withdraw from the mold area are installed, and the lubricant is fed from the reserve tank, respectively. Means for introducing compressed air, means for introducing compressed air, and means for controlling operation. Further, a non-oxidizing gas atmosphere furnace for heating the sintered body material to a predetermined temperature and a material supply device for transferring and inserting the heated material into the mold cavity are provided.
The mold is kept at a temperature of 250 ° C. In addition, the spray nozzle is installed so that the spray liquid spreads through the cavity.
Using the lubricants shown below, hot forging of the sintered body material was continuously performed. A pressure at which the density ratio of the forged body was 100% and forging burrs were generated was applied.
[0019]
<Comparative Example 1>
As a forging lubricant, a graphite dispersed oil lubricant (made by Hitachi Powdered Metallurgy Co., Ltd., trade name: HITAZOL GO-102) having a graphite content of 10% by mass was used.
Since smoke was generated immediately after spraying the lubricant, it was necessary to leave it for several minutes after spray application, or to burn the generated gas with a burner or the like. Further, when several pieces were continuously forged, scraping residues of lubricant and raw material were accumulated at the corners on the lower punch side, and thinning was observed at the corners of the forged body. Further, when the cross section of the surface of the forged body in contact with the punch was observed, there was evidence of oil and graphite entering the pores.
[0020]
<Comparative example 2>
As a forging lubricant, a graphite-dispersed aqueous lubricant having a graphite content of 17% by mass (trade name: Hitachi GA-361, manufactured by Hitachi Powdered Metals Co., Ltd.) was used.
In this case, when the forging was repeated several times, galling occurred on the side surface of the forged body, resulting in poor lower punch operation. When the lower punch surface was observed after spraying, the mist was spread over the entire surface. It seems that the lubricating film of graphite only lacked lubricity.
[0021]
<Comparative Example 3>
As a forging lubricant, an O / W emulsion lubricant having a sulfurized oil content of 20% by mass (manufactured by Hitachi Powdered Metallurgy Co., Ltd., trade name: HITAZOL WA-337PH) was used.
In this case, both galling and mold operation were worse than the former. This is thought to be due to lubrication using only a small amount of oil.
[0022]
<Comparative Example 4>
As the forging lubricant, a graphite-dispersed aqueous lubricant was first sprayed, and the O / W emulsion lubricant was applied after about 1 second. Die operation and release of the forged body were good, but if forging was performed continuously, scraping residue of lubricant and material accumulated in the corner on the lower punch side, and there was a lack of thickness in the corner of the forged body. Admitted.
[0023]
<Example 1>
First, the O / W emulsion lubricant was sprayed as a forging lubricant, and after about 1 second, a graphite-dispersed aqueous lubricant was applied. The mold operation and release of the forged body were good, and forging could be continued continuously. When the lower punched surface after spraying was observed, it was found that it was coated with graphite with a small gap.
[0024]
As described above, the example in which the material is a sintered aluminum alloy and the solid lubricant is graphite has been described. However, the optimal lubrication method described above is to first spray and apply water and oil in the form of an emulsion to the inner surface of the mold. By forming an oil film and then spray-coating an aqueous solid lubricant solution to provide a solid lubricant film, the friction between the mold and the forged body is reduced. That is, the solid lubricant does not adhere to and accumulate on the mold, and the pores of the forging material are rarely impregnated with the lubricant, so that continuous forging is possible. Therefore, by adjusting the spray amount in accordance with the mold temperature, the size of the die cavity, etc., it can be applied to other sintered light alloys and iron-based sintered alloy materials.
[0025]
【The invention's effect】
According to the hot forging lubrication method of the present invention, since the maintenance work of the forging work can be reduced, the production efficiency can be improved, and a forged body having no surface defects and excellent in appearance can be stably provided. .

Claims (4)

加熱した金型内面に液状潤滑剤を噴霧した後、加熱した焼結合金の素材を導入して熱間鍛造を行なう場合において、前記液状潤滑剤の噴霧が(1)固体潤滑剤粒子を含まないエマルジョン潤滑剤を噴霧する工程と、(2)その後、固体潤滑剤粒子を水に分散させた水性潤滑剤を1回もしくは複数回噴霧する工程とからなることを特徴とする焼結合金の熱間鍛造における金型潤滑方法。In the case of performing hot forging by introducing a heated sintered alloy material after spraying a liquid lubricant on the heated inner surface of the mold, the spray of the liquid lubricant is (1) free of solid lubricant particles A step of spraying an emulsion lubricant, and (2) a step of spraying an aqueous lubricant in which solid lubricant particles are dispersed in water once or a plurality of times. Mold lubrication method in forging. 前記固体潤滑剤粒子を含まないエマルジョン潤滑剤が、油0.5〜30質量%を含有するO/Wエマルジョンであり、前記水性潤滑剤が固体潤滑剤粒子として黒鉛粒子1〜25質量%を含有するものであることを特徴とする請求項1に記載の焼結合金の熱間鍛造における金型潤滑方法。The emulsion lubricant not containing the solid lubricant particles is an O / W emulsion containing 0.5 to 30% by mass of oil, and the aqueous lubricant contains 1 to 25% by mass of graphite particles as solid lubricant particles. The die lubrication method in the hot forging of the sintered alloy according to claim 1, wherein the die is lubricated. 前記O/Wエマルジョン潤滑剤中の油がイオウ系、リン系および塩素系の極圧添加剤からなる群から選ばれる少なくとも1種の添加剤を含むものであることを特徴とする請求項2に記載の焼結合金の熱間鍛造における金型潤滑方法。  The oil in the O / W emulsion lubricant contains at least one additive selected from the group consisting of sulfur-based, phosphorus-based and chlorine-based extreme pressure additives. Mold lubrication method in hot forging of sintered alloy. 前記焼結合金の素材がアルミニウム合金である請求項1から請求項3のいずれかに記載の焼結合金の熱間鍛造における金型潤滑方法。  The die lubrication method in hot forging of a sintered alloy according to any one of claims 1 to 3, wherein a material of the sintered alloy is an aluminum alloy.
JP2000028521A 2000-02-07 2000-02-07 Mold lubrication method in hot forging of sintered alloys. Expired - Lifetime JP3785015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000028521A JP3785015B2 (en) 2000-02-07 2000-02-07 Mold lubrication method in hot forging of sintered alloys.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000028521A JP3785015B2 (en) 2000-02-07 2000-02-07 Mold lubrication method in hot forging of sintered alloys.

Publications (2)

Publication Number Publication Date
JP2001219236A JP2001219236A (en) 2001-08-14
JP3785015B2 true JP3785015B2 (en) 2006-06-14

Family

ID=18553910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000028521A Expired - Lifetime JP3785015B2 (en) 2000-02-07 2000-02-07 Mold lubrication method in hot forging of sintered alloys.

Country Status (1)

Country Link
JP (1) JP3785015B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4611625B2 (en) * 2003-11-26 2011-01-12 本田技研工業株式会社 Forging method
CN103706741B (en) * 2013-12-18 2015-04-01 江西鸥迪铜业有限公司 Hot forging and molding process for oxygen free copper material

Also Published As

Publication number Publication date
JP2001219236A (en) 2001-08-14

Similar Documents

Publication Publication Date Title
KR100434573B1 (en) Aqueous lubricant for cold working of metal materials
CN102796594B (en) Cold-rolled sheet rolling emulsified oil containing modified nano copper and preparation method thereof
US5076339A (en) Solid lubricant for die casting process
JP5297742B2 (en) Powder-containing oil-based lubricant for molds, electrostatic coating method using the same, and electrostatic coating apparatus
US2588625A (en) Forging lubricant and method of using same
CN101809131B (en) For the lubricant of heat forged application
TW201402803A (en) Water-soluble lubricating agent for plastic working, metal material for plastic working, and worked metal article
CA2418942C (en) Aqueous lubricant used for plastic working of metallic material and method of lubricative film processing
WO2005095563A1 (en) Lubricant composition for plastic working
JP3785015B2 (en) Mold lubrication method in hot forging of sintered alloys.
DE19935164C2 (en) Process for simultaneous cleaning and flux treatment of aluminum engine block cylinder bore surfaces for fastening thermally sprayed coatings
US5495737A (en) Elevated temperature metal forming lubrication
US3925214A (en) Hot forming lubricant composition, system and method
US9809777B2 (en) Process for producing lubricants containing nanoparticles
JP2011067837A (en) Water-based releasing agent for die casting, and method of manufacturing die cast product using the same
JP5121661B2 (en) Die casting method
PL101948B1 (en) A LUBRICANT FOR HOT-FORMING OF METALS
JP2005240167A (en) Molding method for powder molding and molding apparatus for powder molding
CN104479819A (en) Composition of aluminum and aluminum alloy hot forging lubricant
US2868671A (en) Process of lubrication
JP2004099949A (en) Method for manufacturing metallic material for plastic working having two-layered lubricating film of gradient type
EP0829528B1 (en) Lubricating material for mandrel bars containing no graphite
US2419713A (en) Saw blade lubricant
JP2001240887A (en) Oily lubricant
JP2001348585A (en) Lubricant for high-speed superplastic processing and lubricating method for high-speed superplastic processing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060316

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3785015

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term