JP3784592B2 - Heat fusion method and heat fusion heating device - Google Patents

Heat fusion method and heat fusion heating device Download PDF

Info

Publication number
JP3784592B2
JP3784592B2 JP28965899A JP28965899A JP3784592B2 JP 3784592 B2 JP3784592 B2 JP 3784592B2 JP 28965899 A JP28965899 A JP 28965899A JP 28965899 A JP28965899 A JP 28965899A JP 3784592 B2 JP3784592 B2 JP 3784592B2
Authority
JP
Japan
Prior art keywords
hot air
polyester
heat
polyolefin
heat fusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28965899A
Other languages
Japanese (ja)
Other versions
JP2001105498A (en
Inventor
陽一郎 津名
強 内藤
栄 三野
修 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP28965899A priority Critical patent/JP3784592B2/en
Publication of JP2001105498A publication Critical patent/JP2001105498A/en
Application granted granted Critical
Publication of JP3784592B2 publication Critical patent/JP3784592B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/10Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using hot gases (e.g. combustion gases) or flames coming in contact with at least one of the parts to be joined
    • B29C65/103Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using hot gases (e.g. combustion gases) or flames coming in contact with at least one of the parts to be joined direct heating both surfaces to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/131Single flanged joints, i.e. one of the parts to be joined being rigid and flanged in the joint area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/135Single hemmed joints, i.e. one of the parts to be joined being hemmed in the joint area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/432Joining a relatively small portion of the surface of said articles for making tubular articles or closed loops, e.g. by joining several sheets ; for making hollow articles or hollow preforms
    • B29C66/4322Joining a relatively small portion of the surface of said articles for making tubular articles or closed loops, e.g. by joining several sheets ; for making hollow articles or hollow preforms by joining a single sheet to itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • B29C66/712General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined the composition of one of the parts to be joined being different from the composition of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • B29C66/7232General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer
    • B29C66/72321General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer consisting of metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • B29C66/7232General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer
    • B29C66/72327General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer consisting of natural products or their composites, not provided for in B29C66/72321 - B29C66/72324
    • B29C66/72328Paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7371General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined oriented or heat-shrinkable
    • B29C66/73711General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined oriented or heat-shrinkable oriented
    • B29C66/73713General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined oriented or heat-shrinkable oriented bi-axially or multi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91431Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being kept constant over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91931Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91931Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined
    • B29C66/91933Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined higher than said fusion temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7377General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline
    • B29C66/73771General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being amorphous
    • B29C66/73772General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being amorphous the to-be-joined areas of both parts to be joined being amorphous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7377General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline
    • B29C66/73773General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being semi-crystalline
    • B29C66/73774General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being semi-crystalline the to-be-joined areas of both parts to be joined being semi-crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7162Boxes, cartons, cases
    • B29L2031/7166Cartons of the fruit juice or milk type, i.e. containers of polygonal cross sections formed by folding blanks into a tubular body with end-closing or contents-supporting elements, e.g. gable type containers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Composite Materials (AREA)
  • Making Paper Articles (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、容器用構成材料の熱融着方法並びにこの方法に用いられる加熱装置、更に詳しくは、ポリオレフィン部分とポリエステル部分からなる表面と、ポリエステル部分からなる表面とを同時に熱融着する方法とそのための加熱装置に関する。
【0002】
【従来の技術】
乳飲料、果実飲料、酒などの液体飲料用容器としては、その衛生性、耐水性、防湿性及び熱封緘が可能であることなどから、従来、紙を基材とし、内面をポリオレフィン類などで加工した容器構成材料が採用されている。
【0003】
このような容器構成材料のうち、例えば図4に示されるような胴部を有する容器においては、特に内容物が酒などの場合、その接合部は構成材料端面が容器内部に露出して内容物に接触することのないように構成されている。すなわち、図4(A)で示す部分は、図5に拡大断面図として示すように、一方の材料端部を接着に必要な所定長さで内側に折り曲げ、該折り曲げ部分の外面とこれに対応する他方の材料端部の内面とを接着させる際、予め、前記折り曲げ部分に相当する部分の先端から厚み方向の中心付近、すなわち、紙の部分の外側部分を先端から一定長さで除去し、残った内側の半分の厚み部分を外側の除去部分へ折り込んでおく方法が通常採用されている。したがって、図中Xで示される部分においては構成材料の内面同志が接着され、Yで示される部分においては構成材料の外面と内面が接着されることになる。
【0004】
従来、前記の如き容器構成材料としては、内面、外面のいずれもポリオレフィンが採用されていた。しかしながら、容器内面にポリオレフィンを採用した場合、ポリオレフィンが飲料の香味成分を吸着又は透過するという性質を有しているため、飲料本来の香り、味などが維持されないという問題があり、更に上記材料をポリオレフィンの押し出しコーティングにより作成する場合、酸化がおこりやすく、このため異臭が発生するという問題も生じていた。
【0005】
上記問題点を解決するために、近年容器内面層としてポリオレフィンのかわりにポリエステル、特にヒートシール性に優れたポリエステルを用いたものが容器構成材料として採用されている。
【0006】
【発明が解決しようとする課題】
上記のごとくヒートシール性ポリエステルを用いた場合においても、紙を主体とした構成材料の場合、端部の接着部分を形成するためにヒートシールをおこなおうとしても、紙が断熱材として作用するため、現実には熱融着は困難であった。このため、熱融着させるべき両方の面をガスバーナーなどであぶり、加熱溶融した後、重ね合わせ融着する、いわゆるフレーム処理が行われるが、前記のごとく、一方の表面が二種以上の材質、すなわち、ポリエステル部分とポリオレフィン部分を有する場合、フレーム処理により、ポリエステル表面に低級酸化物が生成し、該酸化物がポリエステル同志の接着を阻害するため、図5におけるXの部分の接着が不十分であった。 更に、この直接火炎を接触させる手段では、直火の局部加熱により熱ダメージを紙が受け、紙を主体とする構成材料の熱融着後の品質を一定に保てない欠点がある。
【0007】
また、ポリオレフィン部分とポリエステル部分からなる表面とポリエステル表面を同時に熱融着する方法として、ポリオレフィン部分とポリエステル部分からなる表面をフレーム処理した後にホットエアー処理し、一方、ポリエステル表面をホットエアー処理し、次いで該両面を互いに圧着して熱融着する方法が提案されている。しかし、この手段もポリオレフィン部分とポリエステル部分からなる表面をフレーム処理することにより、ポリエステル部分が酸化または、加水分解され、ポリエステル同志の熱融着性に悪影響を及ぼすという欠点があった(一例として特公平7−77770号公報参照)。この酸化反応は次のとおりである。CmHn+O2 →mCO2 +1/2H2
【0008】
また、以上考察してきたように、従来の熱融着手段のうちホットエアー処理のための具体的な構造は、電熱ヒーターにエアーを吹き込んて熱風を発生させ、その熱風を走行する紙を主体とした構成材料に吹きつけることによりポリオレフィン部分及びポリエステル部分を溶融させるようにしていた。しかし、ブロアーの風圧がヒーター保護の上から3mmqといった、ほんのゆらぎ程度の風圧でしか供給できなかったために、ラインスピードが110m/minと大変遅く、かつ、ホットエアーの供給時間も1.5秒以上でないと所期の好ましい熱融着が得られず、熱容量が低く生産速度が上がらなかったり、熱源が電気であるためコストアップを招来するなどの欠点もあった。
【0009】
従って、この発明は、ポリオレフィン部分とポリエステル部分からなる表面とポリエステル表面を同時に良好な接着強度をもって熱融着できるようにすることと、併せて低廉なコストで品質の安定した製品を高速で生産できるようにすることを課題とする。
【0010】
【課題を解決するための手段】
請求項1記載の発明は、少なくともポリオレフィン部分とポリエステル部分からなる表面を有する部材とポリエステル表面を有する部材を、該両面で熱融着する方法において、前記少なくともポリオレフィン部分とポリエステル部分からなる表面並びに前記ポリエステル表面に共に、50m/s〜70m/sの高速で200mmAqの風圧でかつ500〜800゜Cの高温の熱風を吹きつけてこれらを溶融させ、次いで該両表面を互いに圧着して熱融着することを特徴とするものである。
【0011】
また、請求項2記載の発明は、少なくともポリオレフィン部分とポリエステル部分からなる表面を有する部材とポリエステル表面を有する部材を、該両面で熱融着する方法に採用される熱融着用加熱装置であって、前記少なくともポリオレフィン部分とポリエステル部分からなる表面とポリエステル表面とに向けて熱風を吹きつけるための複数個の熱風吹き出し部と、これら複数個の熱風吹き出し部の夫々に向けて50m/s〜70m/sの高速で200mmAqの風圧でかつ500〜800゜Cの高温の熱風を供給する熱源部を前記複数個の熱風吹き出し部夫々に対応して備え、これら熱風吹き出し部と熱源部を夫々熱風供給配管で接続してあることを特徴とするものである。
【0012】
【発明実施の形態】
以下に本発明を更に詳細に説明する。
図3(A)〜(C)は本発明の熱融着方法による容器胴部の製造の一例を示す概略工程図である。図3において、容器内面に相当するポリエステル表面2及びその裏面に容器外面に相当するポリオレフィン表面3とその一方の端部4にポリエステル面2を有する積層体フィルム1を、図3(A)に示すように、端部4のポリオレフィン部分並びにポリエステル部分を共に、熱風吹き出し部の一例である熱風処理ノズル5から吹き出される熱風により加熱溶融し、更にこの積層体フィルム1の移送方向下手に設けられた今一つの熱風処理ノズル6により再度熱風処理する。一方、ポリエステル面の他の端部も、積層体フィルム1の移送方向に沿って設けられた前後一対の熱風処理ノズル7,8による熱風処理が施される。このような処理を施した後に、前記端部4を接着に必要な所定長さを内側に折り込み、その外面と、図3(B)に示すような熱風処理した他の一端のポリエステル面とを互いに合わせ、圧着して熱融着を行い、図3(C)に示すような接着された容器胴部を得る。
【0013】
本発明において、ポリオレフィン部分とポリエステル部分からなる表面とポリエステル表面を共に熱風処理するのは、それらの表面部分を軟化溶融させるために行われる。このような熱風処理としては、図1の概念図に示すような熱源部としての熱融着加熱装置が採用される。この熱融着加熱装置9による熱風発生の具体的な構成は、例えば給気ファン10より圧送された空気を熱風発生炉11内に送り、この供給空気をこの熱風発生炉11に接続されたガス燃焼炉12でLPGや都市ガスなどを燃焼することによって得られた熱で加熱することによって得る。この熱風発生炉11では送り込まれた空気は約00〜800°Cまで昇温される。
【0014】
更に具体的には、ガス燃焼炉12にはガス供給配管13を介して送り込まれるLPGや都市ガスを炉内バーナー14で直接燃焼させる。また、熱風発生炉11から前記熱風処理ノズル5(6,7,8)に熱風供給配管15が接続されていて、この熱風発生炉11の高温の熱風が熱風処理ノズル5(6,7,8)に送られ、50m/s〜70m/sの高速で積層フィルム1に吹き付けられる。このような熱風処理によると、ポリオレフィン部分並びにポリエステル部分を酸化反応させることなく瞬間的に若しくはほとんど瞬間的に溶融できる。前記熱風処理ノズル5(6,7,8)のダクト16には、その積層体フィルム1の移送方向の前後で所定間隔を開けて、前記熱風供給配管15につながる一対の熱風供給分岐管17が接続され、熱風処理ノズル5(6,7,8)の全域から均等な圧力、風量そして風速で熱風が吹き出るように構成されている。つまり、熱風処理ノズル5(6,7,8)と熱風発生炉11を分離して、両者の間を熱風供給配管15で接続することによって、この熱風供給配管15にバッファー(緩衝器)としての機能を発揮させることができ、その結果風量、風速、風圧ともにムラがなく均一で理想的な熱風を得ることができる。
【0015】
なお、図1中18は前記給気ファン10から熱風発生炉11へ大気を送り込むための送気配管、19はガス燃焼炉12へ燃焼用空気を供給するために給気ファン10から分岐させた送気用分岐配管である。
【0016】
本発明においては、少なくとも前記両面を熱風処理した後、好ましくは速やかに両面を重ねて圧着して熱融着を行い、軟化状態の両面を接着する。この際、圧着は0.05Kg/cm2 以上の圧力で行うことが好ましい。
【0017】
本発明において、少なくともポリオレフィン部分とポリエステル部分からなる表面を有する部材とは、少なくともポリオレフィンが表面に露出する部分、例えば図5におけるX部分を有するものである。このようなポリオレフィンとしてはポリエチレン、ポリプロピレンなどが用いられ、ポリエステルとしては、容器の形成を考慮すると、ヒートシール性に優れたヒートシール性ポリエステル樹脂が好ましい。ヒートシール性ポリエステル樹脂としては、例えばガラス移転温度Tgが50〜150°Cである低結晶性又は非結晶性ポリエステル樹脂が挙げられる。
【0018】
ガラス移転温度Tgが50°C以下のポリエステル樹脂を用いた場合、包材加工中又は保管中などに樹脂が軟化ベタツキによるブロッキングなどが発生し作業上問題になる場合があり、ガラス移転温度が150°C以上のポリエステル樹脂を用いると、ヒートシール時の製袋・製函が困難となる場合がある。また結晶性の高いポリエステル樹脂はヒートシール性が低下し、脆いという欠点有している。
【0019】
ポリエステル樹脂は、多塩基酸と多価アルコールの共重合体からなる。このような多塩基酸としては、テレフタール酸を主成分として含むものが好ましく、また、多価アルコールとしてはエチレングリコールを主成分として含むものが好ましい。上記多塩基酸及び多価アルコールはそれぞれコモノマー成分として他の多塩基酸及び他の多価アルコールを含むことができる。
【0020】
本発明においては、上記ヒートシール性ポリエステルとしては具体的には、(1)主としてテレフタル酸を含む2種以上の二塩基酸と二価アルコールとの共縮合重合体、(2)テレフタル酸と2種以上の二価アルコールとの共縮合重合体、(3)ポリエチレンテレフタレート又は前記(1)若しくは(2)の共縮合重合体と変性ポリオレフィンのポリマーアロイが挙げられる。
【0021】
テレフタル酸とコモノマー成分として含むことのできる他の二塩基酸としてはイソフタール酸、ナフタリンジカルボン酸、ジフェニルジカルボン酸、ジフェノキシエタンジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェニルスルホンジカルボン酸などの芳香族ジカルボン酸;ヘキサヒドロテレフタール酸、ヘキサヒドロイソフタール酸などの脂環族ジカルボン酸;アジピン酸、セバシン酸、アゼライン酸などの脂肪族ジカルボン酸;P−β−ヒドロキシエトキシ安息香酸、P−オキシ安息香酸、ε−オキシカプロン酸などのオキシ酸などが挙げられる。
【0022】
また、二価アルコールとしては、例えばエチレングリコール、プロピレングリコール、1,4−ブタンジオール、1,4−ジシクロヘキサンジメタノール、トリメチレングリコール、テトラメチレングリコール、ヘキサメチレングリコール、デカメチレングリコール、ネオペンチレングリコール、ジエチレングリコール、1,1−シクロヘキサンジメチロール、1,4−シクロヘキサンジメチロール、2,2−ビス(4−β−ヒドロキシエトキシフェニル)プロパン、ビス−(4−β−ヒドロキシエトキシフェニル)スルホンシクロヘキサンジオール、1,4−ビス(β−ヒドロキシエトキシ)ベンゼン、1,3−ビス(β−ヒドロキシエトキシ)ベンゼンなどのグリコール類などが挙げられる。
【0023】
変性ポリオレフィンとしてはエチレンとの共重合体、又は飽和カルボン酸若しくはそのエステルとの共重合体、又はアイオノマーが挙げられる。不飽和カルボン酸若しくはそのエステルとしては、例えばアクリル酸、メタクリル酸、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチルなどが挙げられる。エチレンと不飽和カルボン酸若しくはそのエステルとの共重合体としては、不飽和カルボン酸の含有量が3〜20重量%であるものが好ましく、エステルの場合はエステル成分の含有量が1〜20重量%であるものが好ましい。
【0024】
本発明においては上記ポリエステル樹脂に核剤又は種々の添加剤、例えば滑剤、アンチブロッキング剤、安定剤、防曇剤、着色剤などを含有してもよい。このような核剤としては2〜10μmの粒状を有するポリオレフィン類又は無機物の微粒子が用いられる。ポリオレフィン類としては例えば低密度ポリエチレン、高密度のポリエチレン、線状低密度ポリエチレン、ポリプロピレンなどが挙げられ、無機物としては例えばカーボンブラック、タルク、石膏、シリカ、アルミナ、炭酸カルシウム、二酸チタン、グラスファイト、粉末ガラス、粉末金属などが挙げられる。
【0025】
また、本発明においてポリエステル表面を有する部材とは、表面がポリエステルのみからなるものを指し、このようなポリエステルとは前記ヒートシール性ポリエステル樹脂と同様のものが用いられる。
【0026】
本発明における、少なくともポリオレフィン部分とポリエステル部分からなる表面を有する部材とポリエステル表面を有する部材とは、各々別個のフィルム部材であってもよいが、好ましくは容器の製造上、基体上の一方の面側にポリエステル表面層を有し、他方の面側に図5に示されるようなポリエステル面とポリオレフィン面からなる端部を有するポリオレフィン表面層を有する積層体フィルムが使用される。図5におけるポリエステル表面を含む部分の折り返しの幅、すなわち、X部分の長さとしては1〜15mmが容器製造上好ましい。上記の積層体フィルムとしては、例えば、ポリエステル/接着層/延伸プラスチック/金属箔/接着性樹脂/紙/ポリエチレンなどの層構成を有するものが用いられる。上記層構成において、ポリエステル層及びポリエチレン層の各々には前記のものが用いられるが、その厚さとしてはそれぞれ5〜60μm、5〜50μmが好ましい。
【0027】
また、接着層とは接着性樹脂、該接着性樹脂とポリオレフィンとの積層体、または接着剤あるいはプライマーコート剤などからなるものが用いられる。前記接着性樹脂としては、例えば密度0.910以下のエチレン−αオレフィン共重合体、不飽和カルボン酸変性ポリオレフィンなどが挙げられる。ポリオレフィンとしては、ポリエチレン、ポリプロピレン、ポリブテン、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体、エチレン−αオレフィン共重合体などが挙げられる。ここで、不飽和カルボン酸変性ポリオレフィンとは、カルボン酸基、酸無水物基及びこれらの誘導体と共重合体又はグラフト重合させた上記ポリオレフィンを意味し、カルボン酸基、酸無水物基及びこれらの誘導体として具体的には、メタクリル酸、マレイン酸、フマル酸、メタクリル酸無水物、無水マレイン酸、メタクリル酸エチル、アクリル酸グリシジル、メタクリル酸ジグリシジルなどが挙げられる。接着剤としては、例えば1液又は2液反応型ウレタン系接着剤、ポリエステル系接着剤、アクリル−ウレタン系接着剤、エポキシ−ウレタン系接着剤などが挙げられ、プライマーコート剤としては、例えばポリエチレンイミン、アルキルチタネートなどが挙げられる。
【0028】
金属箔のクラックによる内容物の透過を防止するなどのために、延伸プラスチック層を設けることができる。延伸プラスチック層に含有される延伸プラスチックとしてはポリエステル樹脂又はナイロン樹脂を成形後、縦方向に4〜6倍、横方向に4〜6倍二軸延伸ポリエステル樹脂又は二軸延伸ナイロン樹脂を採用するのが好ましい。
【0029】
また本発明に係る積層体フィルムを構成する基材には、容器の構造的支持体として用いられうるものであれは特に限定はないが、好ましくは基材の層構成中に紙を含むものが望ましい。上記基材を構成する紙としては、坪量100〜400g/m2 の白板紙、ミルクカートン用原紙、耐酸紙などを採用するのが好ましい。
【0030】
前記紙上には飲料の浸透防止などのため通常金属箔が設けられており、金属箔としては厚さ6〜200μmのアルミニウムからなるものを採用するのが好ましい。このような金属箔は、例えば前述の接着性樹脂として用いられたと同様の不飽和カルボン酸変性ポリオレフィン、アイオノマー樹脂などにより上記紙上に設けられる。また、金属箔のかわりに、ガラス蒸着を施したプラスチックフィルムを用いることもできる。
【0031】
本発明の熱融着方法並びに熱融着用加熱装置を好ましく適用しうる容器としては、浸透性の高い液体飲料、例えば酒、ウィスキー、ジュース、コーヒー、麦茶、ウーロン茶、ミネラルウォーター、スープ類などを内容物とする種々の形態の容器が挙げられる。
【0032】
【作用】
請求項1記載の容器の熱融着方法において、ポリオレフィンもポリエステルも共に50m/s〜70m/sの高速で200mmAqの風圧でかつ500〜800゜Cの高温の熱風を吹きつけて溶融させて接着を行うことによって、従来のフレーム処理と違って、ポリエステル部分が酸化または、加水分解されるおそれが全くなくなり、ポリエステル同志の熱融着性が格段に改善され、熱ダメージを紙が受けるおそれもなくなる。また、ホットエアー処理と違って、熱源部で得られる熱風温度が500〜800°Cであり、しかも、ヒーター保護を考慮する必要が全く無くなるので、熱風吹き出し部からは50〜70m/sの高速度で熱風を積層体フィルム表面に供給でき、積層体フィルム1が搬送ライン上を190m/minのスピードで移行しても、わずか1秒以内でこの積層体フィルム1の表面温度を130〜150°Cに昇温することができた。
【0033】
また、請求項2記載の熱融着用加熱装置において、前記少なくともポリオレフィン部分とポリエステル部分からなる表面とポリエステル表面とに向けて熱風を吹きつけるための複数個の熱風吹き出し部と、これら複数個の熱風吹き出し部の夫々に向けて50m/s〜70m/sの高速で200mmAqの風圧でかつ500〜800゜Cの高温の熱風を供給する熱源部と分離し、しかも複数個の熱風吹き出し部に対応して夫々前記熱源部を備え、これら複数個の熱風吹き出し部とこれらに夫々対応して設けられる前記熱源部を熱風供給配管で接続させることによって、この熱風供給配管をバッファー(緩衝器)としてうまく機能させることができる。
【0034】
また、この熱融着用加熱装置においては、請求項3記載のように、熱源部を給気ファンとバーナーを備えたガス燃焼炉からなる熱風発生炉で構成することができる。
構成が簡素である上に、燃費の低減に貢献できるからである。
【0035】
更に、この熱融着用加熱装置においては、請求項4記載のように、熱風吹き出し部はライン状の熱風吹き出し口で構成されたノズルであるのが望ましい。
熱風の吹き出し範囲を、所定のポリオレフィン部分とポリエステル部分からなる表面とポリエステル表面とに的確に絞って行え、この部位を的確に熱溶融させ、周辺部位に不必要な熱ダメージを与えるおそれを可及的になくすことができるからである。
【0036】
【実施例】
先ず、本発明に採用される積層体フィルムの具体構成を説明する。
下記層構成を有する積層体フィルムの一端部を内層の紙の層からポリエチレン層側を端から一定長さ除去し、図5に示すようにポリエステル側の残部をポリエステル層が外層となるように折り返し幅8mmで折り返し、ポリエステル面2とポリエチレン面3からなる表面を有する積層体フィルム1を作成した。層構成は以下のとおりである。
ポリエステル層20(PET,厚さ60μm)/2軸延伸ポリエステル21(OPET,厚さ12μm)/アルミニウム箔22(Al,厚さ9μm)/アイオノマー23(厚さ20μm)/紙24(坪量320g/m2 )/ポリエチレン層25(PE,厚さ20μm)
但し、ポリエステルとしてはテレフタル酸、イソフタル酸及びエチレングリコールからなるシーラー(Selar)PTX207(三井・デュポンポリケミカル社製)を用いた。
【0037】
次に、上記の構成を備える積層体フィルム1に熱風処理を施す,熱源部9である熱融着加熱装置109の具体構成を説明する。
図2,図3(A)に示されるように、積層体フィルム1の搬送ライン26を挟んで、上方と下方とに、この搬送ライン26の搬送方向に沿ったライン状の熱風処理ノズル5,6,7,8が搬送ライン26上を搬送される積層体フィルム1に向けて、前後一対づつ設けられている。下方の熱風処理ノズル5,6は、ポリエチレン部分とポリエステル部分からなる表面3に対応してこの搬送ライン26の他側に、また、上方の熱風処理ノズル7,8はポリエステル面2に対応してこの搬送ライン26の一側に設けられている。
【0038】
この熱風処理ノズル5,6,7,8それぞれには、図2に示すように熱風を供給する熱風発生炉111がそれぞれ接続されている。この熱風発生炉111には、当該炉111内に大気を送り込む給気ファン110が給気配管118を介して接続されているとともに、LPG(或いは都市ガス)を炉内バーナー114で燃焼させてその高温燃焼ガスを当該炉111内に送り込むガス燃焼炉112が接続されている。また、前記給気ファン110からはこのガス燃焼炉112に大気を供給する送気用分岐配管119が設けられていて、給気ファン110から送り出される大気の一部を燃焼用空気としてこのガス燃焼炉112内に供給するように構成されている。
【0039】
前記熱風発生炉111から前記熱風ノズル5,6,7,8それぞれに向かって熱風供給配管115がそれぞれ延設されている。この熱風供給配管115の延設端は二本に分岐された熱風供給分岐管117を介して熱風ノズル5,6,7,8のダクト116に接続されている。供給された熱風がダクト116内において、その量、圧、熱量ともに可及的に均等になるようにするためである。
【0040】
次に上記実施例構造の具体的な作用を詳述する。
先ず、熱源部9である熱融着加熱装置109を作動させ、熱風発生炉111内で700°Cの熱風を得、これを熱風供給配管115を介して各熱風処理ノズル5,6,7,8に供給するとともに、上記作成した積層体フィルム1を、図1〜図3(A)に示すように、ライン上を190m/minのスピードで搬送し、この搬送される積層体フィルム1のポリエステル面とポエチレン面とからなる表面3と一方のポリエステル面2に対して、前記熱風処理ノズル5,6,7,8から熱風を風圧200mmq、風速60m/sの高圧、高速で吹き付けて熱風処理を行った。次いで、熱風処理した両面を0.2Kg/cm3 の圧力で圧着し、熱融着を行った。
【0041】
ポリエチレン及びポリエステルの軟化点(融点)は130°Cであるため、積層体フィルム1の表面温度を少なくとも130〜150°Cにさせる必要がある。従来のホットエアー処理の熱源は電気ヒーターを採用していて、ホットエアーそのものの温度は700°Cほどに昇温される。しかし、積層体フィルム1にこのホットエアーを吹き付けるに際しては、ブロアーの風圧がヒーター保護の上から3mmqといった、ほんのゆらぎ程度の風圧でしか供給できなかった。その結果、この従来の構造ではラインスピードが110m/minと大変遅く、かつ、ホットエアーの供給時間も1.5秒以上でないと所期の好ましい熱融着温度まで積層体フィルム1の表面を昇温できなかった。
【0042】
このような従来のホットエアー処理構造に比べて、本発明に係るこの熱融着加熱装置109では、熱風発生炉111内で得られる熱風温度が500°C〜800°Cであり、しかも、ヒーター保護を考慮する必要が全く無くなるので、給気ファン110から圧力を効果的に働かせて、この熱風は熱風処理ノズル5,6,7,8から50〜70m/sの高速度で供給できるようになった。その結果、積層体フィルム1が搬送ライン上を190m/minのスピードで移行しても、わずか1秒以内でこの積層体フィルム1の表面温度を130〜150°Cの所期の望ましい温度に昇温することができた。
【0043】
また、熱風処理ノズル5,6,7,8と熱風発生炉111とを分離し、両者を熱風供給配管115で接続するようにしたことにより、この熱風供給配管115をバッファー(緩衝器)としてうまく機能させることができ、その結果、熱風処理ノズル5,6,7,8には均一で安定した、しかも高カロリーの熱風を供給できるようになった。
【0044】
全体として見ると、従来の各種構成と対比して、品質の安定した製品を、生産スピードを約60%も向上しながら得られることがわかった。また、フレーム処理のような酸化反応がなくなるから、対象製品のヴァリエーションも豊富になり幅広い生産展開が可能になった。更に、光熱量も1/5にも低減できた。
【0045】
なお、図1中27、図2中127は給気ファン10、110からガス燃焼炉12、112にわたって設けられている送気用分岐配管19,119内に装備されたバタフライ弁である。また、図1中28、図2中128は前記ガス供給配管13、113の管路途中に設けられた絞り弁である。したがって、前記熱風発生炉11、111から延設された熱風供給配管15、115内の温度を検知するセンサー29、129とこれら両弁27、28,127、128とを連動連結させることによって、熱風発生炉11、111内の温度の高低をこのセンサーで検知し、その出力情報に基づいて前記両弁の開閉度合いを種々制御させることによって、この熱風発生炉11、111から熱風処理ノズル5,6,7,8に供給される熱風の温度を所期通りの範囲に保つようにすることもできる。
【0046】
また、本発明における、熱源部9は本発明実施例の熱融着加熱装置109に対応し、給気ファン10は給気ファン110に、熱風発生炉11は熱風発生炉111に、ガス燃焼炉12は ガス燃焼炉112に、ガス供給配管13はガス供給配管113に、炉内バーナー14は炉内バーナー114に、熱風供給配管15は熱風供給配管115に、ダクト16はダクト116に、熱風供給分岐管17は熱風供給分岐管117に、給気配管18は給気配管118に、送気用分岐配管19は送気用分岐配管119に、バタフライ弁27はバタフライ弁127に、絞り弁28は絞り弁128に、温度検知センサー29は温度検知センサー129にそれぞれ対応する。
【0047】
【発明の効果】
以上詳細に説明したように、本発明に係る熱融着方法により、ポリオレフィン部分とポリエステル部分とからなる表面と、ポリエステル表面とを、同時にかつインラインにより、良好な接着強度をもって熱融着できる。殊に、従来のフレーム処理やホットエアー処理と違って、熱ダメージを紙に与えたり、ポリオレフィン及びポリエステルの酸化反応が生じるおそれがなく、熱融着後の製品の品質を常に一定にでき、対象製品のヴァーリエーションも豊富になり、幅広い生産展開が可能になり、併せて短時間で高能率に接着部位を昇温して熱溶融できるので、生産スピードを従来のものに比べて60%もレベルアップでき、生産性を格段に向上でき、また、製造コストの低減にも大きく貢献することができるようになった。
【0048】
また、本発明に係る熱融着用加熱装置は、少なくともポリオレフィン部分とポリエステル部分からなる表面とポリエステル表面とに向けて熱風を吹きつけるための複数個の熱風吹き出し部と、これら複数個の熱風吹き出し部の夫々に向けて50m/s〜70m/sの高速で200mmAqの風圧でかつ500〜800゜Cの高温の熱風を供給する熱源部と分離し、しかも複数個の熱風吹き出し部に対応して夫々前記熱源部を備え、これら複数個の熱風吹き出し部とこれらに夫々対応して設けられる前記熱源部を熱風供給配管で接続させることによって、この熱風供給配管をバッファー(緩衝器)としてうまく機能させることができるので、熱風吹き出し部には均一で安定した、しかも高カロリーの熱風を供給でき、ポリオレフィン及びポリエステルを瞬時若しくは瞬時に溶融でき、熱融着後の製品の品質を常に一定にでき、品質の安定した製品を高速で生産できるようになった。
【図面の簡単な説明】
【図1】 本発明熱融着用加熱装置の概念図である。
【図2】 本発明熱融着用加熱装置の具体的な一実施例の説明図である。
【図3】 本発明熱融着方法の一実施例を示す概略工程図である。
【図4】 本発明方法並びに装置により作成される容器の一例の胴部を示す概略斜視図である。
【図5】 図4のA部拡大断面図であり、本願発明の方法並びに装置により接着される部分の一例を示す。
【符号の説明】
1…積層体フィルム、2…ポリエステル表面,3…ポリオレフィン表面,4…一方の端部,5、6、7、8…熱風吹き出し部,9、109…熱源部,10、110…給気ファン,11、111…熱風発生炉,12、112…ガス燃焼炉,14、114…炉内バーナー,15、115…熱風供給配管。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for heat-sealing a container constituent material and a heating device used in this method, more specifically, a method for simultaneously heat-sealing a surface comprising a polyolefin part and a polyester part and a surface comprising a polyester part. It is related with the heating apparatus for that.
[0002]
[Prior art]
As a container for liquid drinks such as milk drinks, fruit drinks, and liquor, it has traditionally been based on paper and the inner surface is made of polyolefins because of its hygiene, water resistance, moisture resistance and heat sealing. Processed container components are used.
[0003]
Among such container constituent materials, for example, in a container having a trunk as shown in FIG. 4, particularly when the contents are alcohol or the like, the joint material is exposed with the end faces of the constituent materials exposed inside the container. It is comprised so that it may not touch. That is, as shown in FIG. 5 as an enlarged cross-sectional view, the portion shown in FIG. 4A is bent inward at a predetermined length necessary for bonding, and corresponds to the outer surface of the bent portion. When adhering to the inner surface of the other material end to remove in advance from the tip of the portion corresponding to the bent portion from the vicinity of the center in the thickness direction, i.e., the outer portion of the paper portion at a certain length from the tip, A method of folding the remaining inner half-thickness portion into the outer removal portion is usually employed. Accordingly, the inner surfaces of the constituent materials are bonded at the portion indicated by X in the figure, and the outer surface and the inner surface of the constituent material are bonded at the portion indicated by Y.
[0004]
Conventionally, as the container constituting material as described above, polyolefin has been adopted for both the inner surface and the outer surface. However, when polyolefin is used on the inner surface of the container, since the polyolefin has the property of adsorbing or transmitting the flavor components of the beverage, there is a problem that the original fragrance, taste, etc. of the beverage cannot be maintained. In the case of producing by extrusion coating of polyolefin, there is a problem that oxidation is likely to occur and, therefore, a bad odor is generated.
[0005]
In order to solve the above problems, in recent years, a material using polyester, particularly polyester excellent in heat sealability, as a container inner layer has been adopted as a container inner layer instead of polyolefin.
[0006]
[Problems to be solved by the invention]
Even when heat-sealable polyester is used as described above, in the case of a paper-based constituent material, even if heat sealing is performed to form an adhesive portion at the end, the paper acts as a heat insulating material. Therefore, in reality, heat fusion has been difficult. For this reason, a so-called flame treatment is performed in which both surfaces to be heat-sealed are blown with a gas burner, etc., heated and melted, and then superposed and fused. As described above, one surface is made of two or more kinds of materials. That is, when the polyester part and the polyolefin part are included, a lower oxide is generated on the surface of the polyester by the frame treatment, and the oxide inhibits the adhesion between the polyesters. Met. Further, the means for bringing the direct flame into contact has a drawback that the paper receives heat damage due to the local heating of the direct fire, and the quality of the constituent material mainly composed of paper cannot be kept constant.
[0007]
In addition, as a method of thermally fusing the surface comprising the polyolefin portion and the polyester portion and the polyester surface simultaneously, the surface comprising the polyolefin portion and the polyester portion is treated with hot air, and the polyester surface is treated with hot air, Next, a method has been proposed in which the both surfaces are bonded to each other and thermally fused. However, this method also has a drawback in that the surface of the polyolefin part and the polyester part are subjected to a frame treatment, whereby the polyester part is oxidized or hydrolyzed to adversely affect the heat-sealing property of the polyesters (as an example, No. 7-77770). This oxidation reaction is as follows. CmHn + O 2 → mCO 2 + 1 / 2H 2 O
[0008]
In addition, as discussed above, the specific structure for the hot air treatment among the conventional heat fusion means is mainly composed of paper that travels the hot air by blowing air into the electric heater to generate hot air. The polyolefin portion and the polyester portion were melted by spraying on the constituent materials. However, the wind pressure of the blower is 3mm from the top of the heater protection A Because it was able to supply only with a wind pressure of about fluctuation such as q, the line speed is very slow at 110 m / min, and the hot air supply time is not longer than 1.5 seconds, the desired heat fusion can be obtained. In other words, the heat capacity is low and the production rate cannot be increased, and the heat source is electricity, resulting in increased costs.
[0009]
Therefore, the present invention can simultaneously heat-bond the surface comprising the polyolefin portion and the polyester portion and the polyester surface with good adhesive strength, and at the same time, can produce a product with stable quality at a low cost. The challenge is to do so.
[0010]
[Means for Solving the Problems]
The invention according to claim 1 is a method in which a member having a surface comprising at least a polyolefin portion and a polyester portion and a member having a polyester surface are heat-sealed on both sides, and the surface comprising at least the polyolefin portion and the polyester portion, and Together on the polyester surface, 50 m / s to 70 m / s At high speed At a wind pressure of 200 mmAq And 500-800 ° C A hot hot air is blown to melt them, and then both surfaces are pressure-bonded to each other and heat-sealed.
[0011]
The invention according to claim 2 is a heating apparatus for heat fusion employed in a method of heat-sealing a member having a surface comprising at least a polyolefin portion and a polyester portion and a member having a polyester surface on both sides. , For blowing hot air toward the surface comprising at least the polyolefin part and the polyester part and the polyester surface Multiple Hot air blowing part and this Multiple of these Hot air blowing part Each Towards 50 m / s to 70 m / s At high speed At a wind pressure of 200 mmAq And 500-800 ° C Heat source that supplies hot hot air Corresponding to each of the plurality of hot air blowing portions Equipped with these hot air blowing parts and heat source parts Respectively It is connected by hot air supply piping.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in further detail below.
3A to 3C are schematic process diagrams showing an example of manufacturing a container body by the heat fusion method of the present invention. In FIG. 3, a laminated film 1 having a polyester surface 2 corresponding to the inner surface of the container and a polyolefin surface 3 corresponding to the outer surface of the container on the rear surface and the polyester surface 2 at one end 4 thereof is shown in FIG. As described above, both the polyolefin portion and the polyester portion of the end portion 4 were heated and melted by hot air blown from a hot air treatment nozzle 5 which is an example of a hot air blowing portion, and further provided below the laminated film 1 in the transport direction. The hot air treatment is performed again by the single hot air treatment nozzle 6. On the other hand, the other end of the polyester surface is also subjected to hot air treatment by a pair of front and rear hot air treatment nozzles 7 and 8 provided along the transfer direction of the laminate film 1. After performing such treatment, the end portion 4 is folded inward at a predetermined length necessary for adhesion, and the outer surface thereof and the polyester surface at the other end subjected to hot air treatment as shown in FIG. They are aligned with each other and pressed and heat-sealed to obtain a bonded container body as shown in FIG.
[0013]
In the present invention, the surface of the polyolefin portion and the polyester portion and the polyester surface are both treated with hot air in order to soften and melt those surface portions. As such hot air treatment, a heat fusion heating device as a heat source unit as shown in the conceptual diagram of FIG. 1 is employed. The specific configuration of the hot air generation by the heat fusion heating device 9 is such that, for example, air pressure-fed from the air supply fan 10 is sent into the hot air generating furnace 11, and the supplied air is connected to the hot air generating furnace 11. It is obtained by heating with heat obtained by burning LPG or city gas in the combustion furnace 12. In the hot air generating furnace 11, the air sent in is about 5 The temperature is raised to 00 to 800 ° C.
[0014]
More specifically, LPG or city gas fed into the gas combustion furnace 12 through the gas supply pipe 13 is directly burned by the furnace burner 14. A hot air supply pipe 15 is connected from the hot air generating furnace 11 to the hot air processing nozzle 5 (6, 7, 8), and the hot air of the hot air generating furnace 11 is heated to the hot air processing nozzle 5 (6, 7, 8). ) And sprayed onto the laminated film 1 at a high speed of 50 m / s to 70 m / s. According to such hot air treatment, the polyolefin part and the polyester part can be melted instantaneously or almost instantaneously without causing an oxidation reaction. The duct 16 of the hot air treatment nozzle 5 (6, 7, 8) has a pair of hot air supply branch pipes 17 connected to the hot air supply pipe 15 at a predetermined interval before and after the laminate film 1 in the transfer direction. It is connected and configured so that hot air is blown out from the entire area of the hot air treatment nozzle 5 (6, 7, 8) with uniform pressure, air volume, and wind speed. That is, by separating the hot-air treatment nozzle 5 (6, 7, 8) and the hot-air generating furnace 11 and connecting them with the hot-air supply pipe 15, the hot-air supply pipe 15 has a buffer (buffer). The function can be exhibited, and as a result, uniform and ideal hot air can be obtained without any unevenness in air volume, wind speed, and wind pressure.
[0015]
In FIG. 1, reference numeral 18 denotes an air supply pipe for sending air from the air supply fan 10 to the hot air generator 11, and 19 denotes a branch from the air supply fan 10 for supplying combustion air to the gas combustion furnace 12. Branch piping for air supply.
[0016]
In the present invention, at least the both surfaces are subjected to hot air treatment, and preferably, both surfaces are quickly overlapped and pressure-bonded to perform heat fusion to bond the softened surfaces. At this time, crimping is 0.05 kg / cm. 2 It is preferable to carry out at the above pressure.
[0017]
In the present invention, the member having a surface comprising at least a polyolefin portion and a polyester portion has at least a portion where the polyolefin is exposed on the surface, for example, an X portion in FIG. As such a polyolefin, polyethylene, polypropylene, or the like is used, and as the polyester, a heat-sealable polyester resin excellent in heat-sealability is preferable in consideration of formation of a container. Examples of the heat-sealable polyester resin include a low crystalline or non-crystalline polyester resin having a glass transition temperature Tg of 50 to 150 ° C.
[0018]
When a polyester resin having a glass transfer temperature Tg of 50 ° C. or lower is used, the resin may be blocked due to softening and sticking during processing of the packaging material or during storage, and the glass transfer temperature may be 150. If a polyester resin having a temperature of ° C or higher is used, it may be difficult to make a bag or box at the time of heat sealing. In addition, polyester resin having high crystallinity has a drawback that heat sealability is lowered and brittle.
[0019]
The polyester resin is made of a copolymer of a polybasic acid and a polyhydric alcohol. As such a polybasic acid, one containing terephthalic acid as a main component is preferable, and as a polyhydric alcohol, one containing ethylene glycol as a main component is preferable. Each of the polybasic acid and the polyhydric alcohol may contain another polybasic acid and another polyhydric alcohol as a comonomer component.
[0020]
In the present invention, the heat-sealable polyester specifically includes (1) a cocondensation polymer of two or more dibasic acids mainly containing terephthalic acid and a dihydric alcohol, and (2) terephthalic acid and 2 Examples thereof include a co-condensation polymer with at least two kinds of dihydric alcohol, (3) polyethylene terephthalate, or a polymer alloy of the above-mentioned (1) or (2) co-condensation polymer and a modified polyolefin.
[0021]
Other dibasic acids that can be included as a comonomer component with terephthalic acid include aromatic dicarboxylic acids such as isophthalic acid, naphthalene dicarboxylic acid, diphenyl dicarboxylic acid, diphenoxyethane dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenyl sulfone dicarboxylic acid; Alicyclic dicarboxylic acids such as hydroterephthalic acid and hexahydroisophthalic acid; Aliphatic dicarboxylic acids such as adipic acid, sebacic acid and azelaic acid; P-β-hydroxyethoxybenzoic acid, P-oxybenzoic acid, ε- And oxyacids such as oxycaproic acid.
[0022]
Examples of the dihydric alcohol include ethylene glycol, propylene glycol, 1,4-butanediol, 1,4-dicyclohexanedimethanol, trimethylene glycol, tetramethylene glycol, hexamethylene glycol, decamethylene glycol, neopentylene. Glycol, diethylene glycol, 1,1-cyclohexanedimethylol, 1,4-cyclohexanedimethylol, 2,2-bis (4-β-hydroxyethoxyphenyl) propane, bis- (4-β-hydroxyethoxyphenyl) sulfone cyclohexanediol 1, 4-bis (β-hydroxyethoxy) benzene, 1,3-bis (β-hydroxyethoxy) benzene and other glycols.
[0023]
Examples of the modified polyolefin include a copolymer with ethylene, a copolymer with a saturated carboxylic acid or an ester thereof, and an ionomer. Examples of the unsaturated carboxylic acid or ester thereof include acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, ethyl acrylate, and ethyl methacrylate. As a copolymer of ethylene and an unsaturated carboxylic acid or an ester thereof, one having an unsaturated carboxylic acid content of 3 to 20% by weight is preferable. In the case of an ester, the content of an ester component is 1 to 20% by weight. % Is preferred.
[0024]
In the present invention, the polyester resin may contain a nucleating agent or various additives such as a lubricant, an antiblocking agent, a stabilizer, an antifogging agent, and a coloring agent. As such a nucleating agent, polyolefin or inorganic fine particles having a particle size of 2 to 10 μm are used. Examples of polyolefins include low-density polyethylene, high-density polyethylene, linear low-density polyethylene, and polypropylene. Examples of inorganic substances include carbon black, talc, gypsum, silica, alumina, calcium carbonate, titanium dioxide, and glass fight. , Powder glass, powder metal and the like.
[0025]
Further, in the present invention, the member having a polyester surface refers to a material whose surface is made only of polyester, and such a polyester is the same as the heat-sealable polyester resin.
[0026]
In the present invention, the member having a surface composed of at least a polyolefin portion and a polyester portion and the member having a polyester surface may each be a separate film member. A laminate film having a polyester surface layer on the side and a polyolefin surface layer having an end portion composed of a polyester surface and a polyolefin surface as shown in FIG. 5 on the other surface side is used. The width of the folded portion including the polyester surface in FIG. 5, that is, the length of the X portion is preferably 1 to 15 mm in terms of container production. As said laminated body film, what has layer structure, such as polyester / adhesion layer / stretched plastic / metal foil / adhesive resin / paper / polyethylene, is used, for example. In the above layer structure, the above-mentioned layers are used for each of the polyester layer and the polyethylene layer, and the thickness is preferably 5 to 60 μm and 5 to 50 μm, respectively.
[0027]
The adhesive layer is made of an adhesive resin, a laminate of the adhesive resin and polyolefin, or an adhesive or primer coating agent. Examples of the adhesive resin include an ethylene-α olefin copolymer having a density of 0.910 or less, and an unsaturated carboxylic acid-modified polyolefin. Examples of the polyolefin include polyethylene, polypropylene, polybutene, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, and ethylene-α olefin copolymer. Here, the unsaturated carboxylic acid-modified polyolefin means the above polyolefin copolymerized or graft-polymerized with a carboxylic acid group, an acid anhydride group and a derivative thereof, and includes a carboxylic acid group, an acid anhydride group, and these Specific examples of the derivative include methacrylic acid, maleic acid, fumaric acid, methacrylic anhydride, maleic anhydride, ethyl methacrylate, glycidyl acrylate, and diglycidyl methacrylate. Examples of the adhesive include one-component or two-component reactive urethane adhesive, polyester adhesive, acrylic-urethane adhesive, epoxy-urethane adhesive, and the like. Examples of the primer coating agent include polyethylene imine. And alkyl titanates.
[0028]
A stretched plastic layer can be provided to prevent permeation of contents due to cracks in the metal foil. As the stretched plastic contained in the stretched plastic layer, a polyester resin or nylon resin is molded, and then a biaxially stretched polyester resin or a biaxially stretched nylon resin is employed 4 to 6 times in the longitudinal direction and 4 to 6 times in the lateral direction. Is preferred.
[0029]
Further, the base material constituting the laminate film according to the present invention is not particularly limited as long as it can be used as a structural support of a container, but preferably includes a paper in the layer structure of the base material. desirable. The paper constituting the base material has a basis weight of 100 to 400 g / m. 2 It is preferable to employ white paperboard, base paper for milk carton, acid-resistant paper and the like.
[0030]
A metal foil is usually provided on the paper to prevent the penetration of beverages, and it is preferable to employ a metal foil made of aluminum having a thickness of 6 to 200 μm. Such a metal foil is provided on the paper with, for example, the same unsaturated carboxylic acid-modified polyolefin, ionomer resin, or the like used as the adhesive resin described above. Further, a plastic film subjected to glass vapor deposition can be used instead of the metal foil.
[0031]
The container to which the heat fusion method and the heat fusion heating apparatus of the present invention can be preferably applied includes highly permeable liquid drinks such as liquor, whiskey, juice, coffee, barley tea, oolong tea, mineral water, soups, etc. Examples of various forms of containers are listed.
[0032]
[Action]
The method of claim 1 wherein both polyolefin and polyester are used. 50 m / s to 70 m / s At high speed At a wind pressure of 200 mmAq And 500-800 ° C Unlike conventional flame treatment, by blowing high temperature hot air to melt and bonding, there is no possibility that the polyester part will be oxidized or hydrolyzed, and the heat fusion property between the polyesters will be greatly improved. This eliminates the risk of the paper receiving heat damage. Also, unlike hot air treatment, the hot air temperature obtained at the heat source part is 500 to 800 ° C., and since there is no need to consider protection of the heater, the hot air blowing part has a high temperature of 50 to 70 m / s. Hot air can be supplied to the surface of the laminate film at a speed, and even if the laminate film 1 moves on the transport line at a speed of 190 m / min, the surface temperature of the laminate film 1 can be changed to 130 to 150 ° within only one second. The temperature could be raised to C.
[0033]
Further, in the heat fusion heating apparatus according to claim 2, for blowing hot air toward the surface of the at least polyolefin portion and the polyester portion and the polyester surface. Multiple Hot air blowing part and this Multiple of these Hot air blowing part Each Towards 50 m / s to 70 m / s At high speed At a wind pressure of 200 mmAq And 500-800 ° C Separated from the heat source that supplies hot hot air, In addition, each of the plurality of hot air blowing portions and the heat source portion provided corresponding to each of the plurality of hot air blowing portions are provided corresponding to the plurality of hot air blowing portions. By connecting the hot air supply pipes with the hot air supply pipe, the hot air supply pipe can function well as a buffer (buffer).
[0034]
Further, in this heat fusion heating apparatus, as described in claim 3, the heat source part can be constituted by a hot air generating furnace comprising a gas combustion furnace provided with an air supply fan and a burner.
This is because the structure is simple and the fuel consumption can be reduced.
[0035]
Furthermore, in this heat fusion heating apparatus, as described in claim 4, it is desirable that the hot air blowing portion is a nozzle constituted by a line-shaped hot air blowing port.
The hot air blowing range can be precisely restricted to the surface of the specified polyolefin part and polyester part and the polyester surface, and this part can be accurately melted by heat, causing unnecessary thermal damage to surrounding parts. This is because it can be eliminated.
[0036]
【Example】
First, the specific structure of the laminated body film employ | adopted for this invention is demonstrated.
One end of the laminate film having the following layer structure is removed from the inner paper layer by a certain length from the end to the polyethylene layer side, and the remaining polyester side is folded so that the polyester layer becomes the outer layer as shown in FIG. The laminate film 1 having a surface composed of a polyester surface 2 and a polyethylene surface 3 was formed by folding back at a width of 8 mm. The layer structure is as follows.
Polyester layer 20 (PET, thickness 60 μm) / 2-axis stretched polyester 21 (OPET, thickness 12 μm) / aluminum foil 22 (Al, thickness 9 μm) / ionomer 23 (thickness 20 μm) / paper 24 (basis weight 320 g / m 2 ) / Polyethylene layer 25 (PE, thickness 20 μm)
However, as polyester, Sealer PTX207 (Mitsui / DuPont Polychemical) made of terephthalic acid, isophthalic acid and ethylene glycol was used.
[0037]
Next, a specific configuration of the heat fusion heating device 109 that is the heat source unit 9 for performing hot air treatment on the laminated film 1 having the above configuration will be described.
As shown in FIG. 2 and FIG. 3 (A), a line-shaped hot air treatment nozzle 5 along the transport direction of the transport line 26 is disposed above and below the transport line 26 of the laminated film 1. 6, 7 and 8 are provided one by one in the front-rear direction toward the laminated film 1 conveyed on the conveyance line 26. The lower hot air treatment nozzles 5 and 6 correspond to the surface 3 consisting of a polyethylene portion and a polyester portion on the other side of the conveying line 26, and the upper hot air treatment nozzles 7 and 8 correspond to the polyester surface 2. It is provided on one side of the transport line 26.
[0038]
As shown in FIG. 2, hot air generating furnaces 111 for supplying hot air are connected to the hot air processing nozzles 5, 6, 7 and 8, respectively. An air supply fan 110 for sending air into the furnace 111 is connected to the hot air generating furnace 111 through an air supply pipe 118, and LPG (or city gas) is burned by an in-furnace burner 114. A gas combustion furnace 112 for feeding high temperature combustion gas into the furnace 111 is connected. An air supply branch pipe 119 for supplying air to the gas combustion furnace 112 is provided from the air supply fan 110, and a part of the air sent from the air supply fan 110 is used as combustion air for this gas combustion. It is configured to be supplied into the furnace 112.
[0039]
Hot air supply pipes 115 extend from the hot air generating furnace 111 toward the hot air nozzles 5, 6, 7, and 8, respectively. The extended end of the hot air supply pipe 115 is connected to the duct 116 of the hot air nozzles 5, 6, 7, 8 through a hot air supply branch pipe 117 that is branched into two. This is because the supplied hot air is made uniform in the duct 116 as much as possible in terms of the amount, pressure, and amount of heat.
[0040]
Next, the specific operation of the above embodiment structure will be described in detail.
First, the heat fusion heating device 109 as the heat source unit 9 is operated to obtain 700 ° C. hot air in the hot air generating furnace 111, and this hot air processing nozzles 5, 6, 7, As shown in FIG. 1 to FIG. 3 (A), the laminated film 1 prepared above is conveyed on the line at a speed of 190 m / min, and the polyester of the laminated film 1 conveyed. A hot air is blown from the hot air treatment nozzles 5, 6, 7 and 8 on the surface 3 composed of a surface and a polyethylene surface and one polyester surface 2 at a wind pressure of 200 mm. A The hot air treatment was performed by spraying at a high pressure of q and a wind speed of 60 m / s. Next, both sides treated with hot air were 0.2 kg / cm. Three The film was pressure-bonded and heat-sealed.
[0041]
Since the softening point (melting point) of polyethylene and polyester is 130 ° C, the surface temperature of the laminate film 1 needs to be at least 130 to 150 ° C. A conventional heat source for hot air treatment employs an electric heater, and the temperature of the hot air itself is raised to about 700 ° C. However, when this hot air is blown onto the laminate film 1, the blower wind pressure is 3 mm from the top of the heater protection. A It was possible to supply only with a wind pressure of a slight fluctuation such as q. As a result, with this conventional structure, the line speed is as extremely low as 110 m / min, and the hot air supply time is not longer than 1.5 seconds. I couldn't warm it.
[0042]
Compared to such a conventional hot air processing structure, in the heat fusion heating apparatus 109 according to the present invention, the hot air temperature obtained in the hot air generating furnace 111 is 500 ° C. to 800 ° C., and the heater Since there is no need to consider protection, the hot air can be supplied at a high speed of 50 to 70 m / s from the hot air processing nozzles 5, 6, 7, 8 by effectively applying pressure from the air supply fan 110. became. As a result, even if the laminated film 1 moves on the conveyance line at a speed of 190 m / min, the surface temperature of the laminated film 1 is increased to an expected desired temperature of 130 to 150 ° C. within only one second. I was able to warm it.
[0043]
Further, the hot air treatment nozzles 5, 6, 7, and 8 and the hot air generating furnace 111 are separated, and both are connected by the hot air supply pipe 115, so that the hot air supply pipe 115 can be successfully used as a buffer (buffer). As a result, the hot air treatment nozzles 5, 6, 7 and 8 can be supplied with uniform, stable and high-calorie hot air.
[0044]
As a whole, it was found that a product with stable quality can be obtained while improving the production speed by about 60% as compared with various conventional configurations. In addition, since there is no oxidation reaction such as flame treatment, the variation of the target products has become abundant, enabling a wide range of production development. Furthermore, the amount of light heat could be reduced to 1/5.
[0045]
Reference numeral 27 in FIG. 1 and reference numeral 127 in FIG. 2 denote butterfly valves installed in the air supply branch pipes 19 and 119 provided from the air supply fans 10 and 110 to the gas combustion furnaces 12 and 112. 1 and 128 in FIG. 2 are throttle valves provided in the middle of the gas supply pipes 13 and 113. Accordingly, by connecting the sensors 29 and 129 for detecting the temperature in the hot air supply pipes 15 and 115 extending from the hot air generating furnaces 11 and 111 and these valves 27, 28, 127 and 128, By detecting the level of temperature in the generating furnaces 11 and 111 with this sensor and controlling the degree of opening and closing of both valves based on the output information, the hot air generating nozzles 5 and 6 , 7 and 8 can be maintained in a desired range.
[0046]
Further, in the present invention, the heat source unit 9 corresponds to the heat fusion heating device 109 of the embodiment of the present invention, the air supply fan 10 to the air supply fan 110, the hot air generator 11 to the hot air generator 111, and the gas combustion furnace. Reference numeral 12 denotes a gas combustion furnace 112, gas supply pipe 13 to a gas supply pipe 113, furnace burner 14 to a furnace burner 114, hot air supply pipe 15 to a hot air supply pipe 115, duct 16 to a duct 116, hot air supply The branch pipe 17 is a hot air supply branch pipe 117, the air supply pipe 18 is an air supply pipe 118, the air supply branch pipe 19 is an air supply branch pipe 119, the butterfly valve 27 is a butterfly valve 127, and the throttle valve 28 is The temperature detection sensor 29 corresponds to the throttle valve 128 and the temperature detection sensor 129, respectively.
[0047]
【The invention's effect】
As described above in detail, by the heat sealing method according to the present invention, the surface composed of the polyolefin portion and the polyester portion and the polyester surface can be heat-sealed with good adhesive strength simultaneously and in-line. In particular, unlike conventional flame treatment and hot air treatment, there is no risk of heat damage to the paper or oxidation reaction of polyolefin and polyester, and the quality of the product after heat fusion can always be kept constant. Product variations are also abundant and a wide range of production can be developed, and at the same time, the bonding part can be heated and melted with high efficiency in a short time, so the production speed is 60% higher than the conventional one. It can improve productivity, and can greatly contribute to the reduction of manufacturing cost.
[0048]
Moreover, the heating apparatus for heat fusion according to the present invention is for blowing hot air toward the surface comprising at least the polyolefin portion and the polyester portion and the polyester surface. Multiple Hot air blowing part and this Multiple of these Hot air blowing part Each Towards 50 m / s to 70 m / s At high speed At a wind pressure of 200 mmAq And 500-800 ° C Separated from the heat source that supplies hot hot air, In addition, each of the plurality of hot air blowing portions and the heat source portion provided corresponding to each of the plurality of hot air blowing portions are provided corresponding to the plurality of hot air blowing portions. By connecting the hot air supply pipe with the hot air supply pipe, the hot air supply pipe can function well as a buffer (buffer), so that the hot air blowing section can be supplied with a uniform, stable and high-calorie hot air. Polyester instantly or Associate The product can be melted instantly, and the quality of the product after heat-sealing can be kept constant, and a product with stable quality can be produced at high speed.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a heating apparatus for heat fusion of the present invention.
FIG. 2 is an explanatory view of a specific embodiment of the heat fusion heating apparatus of the present invention.
FIG. 3 is a schematic process diagram showing an embodiment of the heat fusion method of the present invention.
FIG. 4 is a schematic perspective view showing a trunk portion of an example of a container created by the method and apparatus of the present invention.
FIG. 5 is an enlarged cross-sectional view of a part A in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Laminated body film, 2 ... Polyester surface, 3 ... Polyolefin surface, 4 ... One edge part, 5, 6, 7, 8 ... Hot-air blowing part, 9, 109 ... Heat source part, 10, 110 ... Air supply fan, DESCRIPTION OF SYMBOLS 11, 111 ... Hot air generation furnace, 12, 112 ... Gas combustion furnace, 14, 114 ... In-furnace burner, 15, 115 ... Hot air supply piping.

Claims (4)

少なくともポリオレフィン部分とポリエステル部分からなる表面を有する部材とポリエステル表面を有する部材を、該両面で熱融着する方法において、前記少なくともポリオレフィン部分とポリエステル部分からなる表面並びに前記ポリエステル表面に共に、50m/s〜70m/sの高速で200mmAqの風圧でかつ500〜800゜Cの高温の熱風を吹きつけてこれらを溶融させ、次いで該両表面を互いに圧着して熱融着することを特徴とする熱融着方法。In the method of heat-sealing a member having a surface comprising at least a polyolefin portion and a polyester portion and a member having a polyester surface on both sides, both the surface comprising at least the polyolefin portion and the polyester portion and the polyester surface are each 50 m / s. A heat fusion characterized in that a hot air of 200 mmAq and a high temperature of 500 to 800 ° C. is blown at a high speed of ˜70 m / s to melt them, and then both surfaces are pressure-bonded to each other and heat-sealed. How to wear. 少なくともポリオレフィン部分とポリエステル部分からなる表面を有する部材とポリエステル表面を有する部材を、該両面で熱融着する方法に採用される熱融着用加熱装置であって、前記少なくともポリオレフィン部分とポリエステル部分からなる表面とポリエステル表面とに向けて熱風を吹きつけるための複数個の熱風吹き出し部と、これら複数個の熱風吹き出し部の夫々に向けて50m/s〜70m/sの高速で200mmAqの風圧でかつ500〜800゜Cの高温の熱風を供給する熱源部を前記複数個の熱風吹き出し部夫々に対応して備え、これら熱風吹き出し部と熱源部を夫々熱風供給配管で接続してあることを特徴とする熱融着用加熱装置。A heating apparatus for heat fusion employed in a method of heat-sealing a member having a surface comprising at least a polyolefin portion and a polyester portion and a member having a polyester surface on both sides, comprising the at least polyolefin portion and the polyester portion and a plurality of hot air balloon portion for blowing hot air toward the surface and the polyester surface, towards each of these plurality of hot-air balloon unit in the high speed of 50m / s~70m / s in the wind pressure of 200mmAq A heat source section for supplying hot air of high temperature of 500 to 800 ° C. is provided corresponding to each of the plurality of hot air blowing sections, and the hot air blowing section and the heat source section are connected to each other by hot air supply piping. Heating apparatus for heat fusion. 熱源部が給気ファンとバーナーを備えたガス燃焼炉からなる熱風発生炉である請求項2記載の熱融着用加熱装置。  The heating apparatus for heat fusion according to claim 2, wherein the heat source part is a hot air generating furnace comprising a gas combustion furnace provided with an air supply fan and a burner. 熱風吹き出し部がライン状の熱風吹き出し口で構成されたノズルである請求項2記載の熱融着用加熱装置。  The heating apparatus for heat fusion according to claim 2, wherein the hot air blowing portion is a nozzle composed of a line-shaped hot air blowing port.
JP28965899A 1999-10-12 1999-10-12 Heat fusion method and heat fusion heating device Expired - Fee Related JP3784592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28965899A JP3784592B2 (en) 1999-10-12 1999-10-12 Heat fusion method and heat fusion heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28965899A JP3784592B2 (en) 1999-10-12 1999-10-12 Heat fusion method and heat fusion heating device

Publications (2)

Publication Number Publication Date
JP2001105498A JP2001105498A (en) 2001-04-17
JP3784592B2 true JP3784592B2 (en) 2006-06-14

Family

ID=17746089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28965899A Expired - Fee Related JP3784592B2 (en) 1999-10-12 1999-10-12 Heat fusion method and heat fusion heating device

Country Status (1)

Country Link
JP (1) JP3784592B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4582328B2 (en) * 2005-05-31 2010-11-17 凸版印刷株式会社 Carton blank sheet heat seal area heating device
DE102006048278B4 (en) * 2006-10-04 2008-11-20 Fortuna Spezialmaschinen Gmbh Device for folding and bonding of plastic-laminated blanks
CN103042691A (en) * 2012-12-20 2013-04-17 盐城师范学院 Plastic hot-air composite melting and welding integrated machine
DK2983893T3 (en) * 2013-04-10 2019-08-05 Tetra Laval Holdings & Finance PROCEDURE FOR PROCESSING WRAPPING LAMINATE AND DEVICE FOR IMPLEMENTATION OF THE PROCEDURE
JP6554756B2 (en) * 2013-09-13 2019-08-07 大日本印刷株式会社 Non-adsorptive sealant film

Also Published As

Publication number Publication date
JP2001105498A (en) 2001-04-17

Similar Documents

Publication Publication Date Title
TWI381946B (en) A polymer film, a packaging laminate comprising the polymer film, a packaging container formed from the packaging laminate and a process for the production of the polymer film
EP1326746B2 (en) A packaging laminate for a retortable packaging container
AU2001292497A1 (en) A packaging laminate for a retortable packaging container
JP3784592B2 (en) Heat fusion method and heat fusion heating device
WO1992001559A1 (en) Method of making cylindrical member for paper container
ES2119963T5 (en) MULTIPLE LAYERS PRODUCT.
US20140034539A1 (en) Film for wrapping, methods of making and using
JPH0777770B2 (en) Heat fusion method
JP2661427B2 (en) Heat fusion method of container body
JP5415160B2 (en) Insulation sheet, insulation container
JPH03227619A (en) Hot fusing method
JP2007176539A (en) Paper container, and method for manufacturing paper container
JPH05254042A (en) Thermal fusing method
EP0529336B1 (en) Method of thermal fusion
JPH03243332A (en) Heat-fusing method of polyester
JPH03243331A (en) Heat-fusing method of polyester
JP3747676B2 (en) Container body joining method and container produced by the body joining method
FI119018B (en) Heat Sealing Method
JP2002144467A (en) Laminated material for paper container and paper container using laminated material
JPH05269893A (en) Thermal welding method
JPH0440908Y2 (en)
JP2006224977A (en) Preliminary heater of paper container for liquid, and heating quantity control method
RU99114447A (en) PROCESSABLE THERMAL WELDABLE MULTILAYERED MATERIAL AND CONTAINER FROM IT
JPH05305937A (en) Manufacture of container
JPH09254951A (en) Paper container

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060315

R150 Certificate of patent or registration of utility model

Ref document number: 3784592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees