JP3783765B2 - EGR device for turbocharged engine - Google Patents

EGR device for turbocharged engine Download PDF

Info

Publication number
JP3783765B2
JP3783765B2 JP2000217565A JP2000217565A JP3783765B2 JP 3783765 B2 JP3783765 B2 JP 3783765B2 JP 2000217565 A JP2000217565 A JP 2000217565A JP 2000217565 A JP2000217565 A JP 2000217565A JP 3783765 B2 JP3783765 B2 JP 3783765B2
Authority
JP
Japan
Prior art keywords
valve
exhaust
egr
engine
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000217565A
Other languages
Japanese (ja)
Other versions
JP2002030980A (en
Inventor
正宏 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2000217565A priority Critical patent/JP3783765B2/en
Publication of JP2002030980A publication Critical patent/JP2002030980A/en
Application granted granted Critical
Publication of JP3783765B2 publication Critical patent/JP3783765B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0242Variable control of the exhaust valves only
    • F02D13/0249Variable control of the exhaust valves only changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0257Independent control of two or more intake or exhaust valves respectively, i.e. one of two intake valves remains closed or is opened partially while the other is fully opened
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/42Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Supercharger (AREA)
  • Valve Device For Special Equipments (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、過給機付きエンジンのEGR装置に関するものである。
【0002】
【関連する背景技術】
周知のようにNOx(窒素酸化物)を低減する手法の1つとして、エンジンから排出された排ガスの一部を吸気側に還流して燃焼温度を低下させるEGR制御が実施されている。このEGRの還流は、排気通路と吸気通路との圧力差を利用して行われるため、吸気を過給する過給機付きのエンジンでは、エンジンの運転領域によっては吸気通路の圧力が排気通路の圧力より高くなって、EGRが不能となる場合がある。
【0003】
排気圧を増加させる手法として、例えば特開平6−33803号公報に記載の技術を挙げることができる。このEGR装置は、過給機を備えたエンジンを想定したものではないが、排気系に設けた制御弁を閉操作して排気圧を増加させ、もってEGRの還流を図っている。詳述すると、このエンジンでは、各気筒に通常の吸排弁に加えて補助的な吸気弁であるタイミング弁を設け、各タイミング弁をそれぞれの気筒の排気ポートに対して混合気供給ポートおよび連通路を介して接続すると共に、排気ポート内の接続箇所より下流側に制御弁を設けている。
【0004】
エンジンからの排気ポートに排出された排ガスの一部は、連通路から混合気供給ポートへと案内され、この混合気供給ポートに設けられた燃料噴射弁からの噴射燃料を混合された後に、タイミング弁の開弁に伴って燃焼室内に導入され、これによりEGRの還流が実現される。そして、制御弁を閉側に操作して排ガスを絞ると、排気圧が増加することから必要なEGR量を確保可能となる。
【0005】
【発明が解決しようとする課題】
しかしながら、上記公報記載のEGR装置は、各気筒の排気ポート内に制御弁を設けていることから、制御弁および開閉駆動用のアクチュエータを気筒分だけ必要として、製造コストを高騰させてしまう不具合がある。また、燃焼室に近接した排気ポートに制御弁を設けているため、排出直後の流速が高い排ガスを制御弁で絞ることになり、大きな排気抵抗を生じてエンジンの効率を低下させてしまうという不具合もある。
【0006】
本発明の目的は、構成を簡略化して製造コストを低減できると共に、排気抵抗の増加によるエンジンの効率低下を引き起こすことなく確実にEGRを還流させることができる過給機付きエンジンのEGR装置を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するため、請求項1の発明は、各気筒に第1および第2の複数の排気弁を有すると共に、吸入空気を過給する過給機を備えた多気筒エンジンのEGR装置であって、各気筒の第1の排気弁と連通する排気ポートを接続集合し、集合部が過給機と接続された第1の排気マニホールドと、各気筒の第2の排気弁と連通する排気ポートを接続集合し、集合部が過給機より上流位置での排気マニホールドの集合部と接続された第2の排気マニホールドと、第2の排気マニホールドの集合部に開閉可能に装着された制御弁と、第2の排気マニホールドの集合部の制御弁より上流位置とエンジンの吸気通路とを接続し、EGR弁により開閉されるEGR通路と、第2の排気の開閉時期を制御可能とする可変バルブタイミング手段と、EGR弁が開作動され、且つEGR通路の吸気側圧力が排気側圧力を上回るエンジンの運転状態のときに、制御弁を閉作動させると共に、可変バルブタイミング手段により第2の排気弁を第1の排気弁より早期に開弁させる制御手段とを備えたものである。
【0008】
従って、EGR通路の吸気側圧力が排気側圧力を上回ってEGRが不能なときには、制御弁が閉作動されて排ガスが絞られて、制御弁より上流側の排気圧が増加すると共に、第2の排気弁を早期に開弁させることにより、ブローダウンによる高い圧力を有する排ガスが排出されて排気圧はより増加され、EGRが確実に可能となる。
【0009】
そして、第2の排気マニホールドの集合部に設けた単一の制御弁により排気圧を増加させることから、その製造コストが低減され、且つ、制御弁が燃焼室から離間しているため、十分に流速が低下した排ガスを制御弁で絞ることになり、排気抵抗がほとんど増加しない。
また、請求項2の発明は、制御手段を、EGR弁が開作動され、且つEGR通路の吸気側圧力が排気側圧力を上回るエンジンの運転状態のときに、制御弁を閉作動させると共に、可変バルブタイミング手段により、第2の排気弁の開弁タイミングを第1の排気弁の開弁タイミングより進角させると共に、第2の排気弁の閉弁タイミングを第1の排気弁の閉弁タイミングより進角させるようにしたものである。
【0010】
従って、第1の排気弁の開弁に伴って排ガスが排出され始めると、ブローダウンで高められた排気圧が急激に低下するが、第2排気弁が早期に閉弁されるため、第2排気マニホールドの集合部内を常に高い排気圧に保持可能となる。
【0011】
【発明の実施の形態】
[第1実施形態]
以下、本発明を過給機付きディーゼルエンジンのEGR装置に具体化した第1実施形態を説明する。
図1は本実施形態の過給機付きディーゼルエンジンのEGR装置を示す全体構成図、図2は吸排気弁周辺と弁駆動装置の構成を示す詳細図、図3は吸排気弁の開閉タイミングを示す説明図である。図1および図2に示すように、本実施形態のエンジン1は4弁式の動弁機構を備えている。シリンダヘッド2には各気筒に一対の吸気ポート3が形成され、これらの吸気ポート3に設けられた吸気弁4は図示しないカムシャフトにより、エンジン1のクランク角に同期して図3に示すタイミングINで開閉駆動される。各気筒の吸気ポート3は吸気マニホールド5にて集合されて共通の吸気通路6と連通し、この吸気通路6には過給機としてのターボチャージャ7のコンプレッサ7aおよびインタクーラ9が設けられている。図示しないエアクリーナから吸入された空気はコンプレッサ7aにて圧縮された後にインタークーラ9にて冷却され、吸気弁4の開弁に伴って図示しない燃焼室内に導入される。
【0012】
また、シリンダヘッド2には各気筒に一対の排気ポート10a,10bが形成され、これらの排気ポート10a,10bには排気弁11a,11bが設けられている。以下、説明の便宜上、一方を第1の排気ポート10aおよび第1の排気弁11aとし、他方を第2の排気ポート10bおよび第2の排気弁11bとする。各気筒の第1の排気弁11aは上記した吸気弁4と同様に、カムシャフトにより図3に示すタイミングEX1で開閉駆動され、各気筒の第2の排気弁11bは、後述するように可変バルブタイミング手段としての弁駆動装置12により開閉駆動される。
【0013】
各気筒の第1の排気ポート10aには第1の排気マニホールド13が接続され、この第1の排気マニホールド13の集合部13aは、前記コンプレッサ7aと同軸上に連結されたタービン7bを介して図示しない排気通路と接続されている。また、各気筒の第2の排気ポート10bには第2の排気マニホールド14が接続され、この第2の排気マニホールド14の集合部14aは、前記第1の排気マニホールド13の集合部13aと接続されている。図示しない燃料噴射弁からの噴射燃料により燃焼後の排ガスは、燃焼室から第1の排気ポート10aおよび第1の排気マニホールド13を経て集合部13aに案内される一方で、第2の排気ポート10bおよび第2の排気マニホールド14を経て集合部14aに案内されて、相互に合流してタービン7bを駆動した後に排気通路を経て外部に排出される。
【0014】
第2の排気マニホールド14側の集合部14bには制御弁15が設けられ、この制御弁15はステップモータ16により開閉駆動される。集合部14bの制御弁15より上流側にはEGR通路17の一端が接続され、このEGR通路17の他端は前記吸気通路6に接続されている。EGR通路17には図示しないアクチュエータにて開閉されるEGR弁18が設けられると共に、EGRクーラ19が設けられている。
【0015】
一方、前記した弁駆動装置12は、図2に示すように、第2の排気弁11bを閉弁側に付勢するバルブスプリング20と、そのバルブスプリング20の付勢力に抗して第2の排気弁11bを開弁側に駆動するソレノイド21から構成されている。ソレノイド21を励磁する電流値やデューティ率に応じて第2の排気弁11bのリフト量が変化し、その電流値やデューティ率をエンジン1のクランク角に同期して制御することにより、第2の排気弁11bを任意のタイミングで開閉駆動し得るようになっている。
【0016】
車室内には、図示しない入出力装置、制御プログラムや制御マップ等の記憶に供される記憶装置(ROM,RAM等)、中央処理装置(CPU)、タイマカウンタ等を備えた制御手段としてのECU31(電子制御ユニット)が設置されており、このECU31はEGR制御を含めたエンジン1の総合的な制御を行う。ECU31の入力側には、運転者によるアクセル操作量APSを検出するアクセルセンサ32、エンジン1の回転速度Neを検出する回転速度センサ33等の各種センサが接続され、ECU31の出力側には、前記制御弁15のステップモータ16、EGR弁18、各気筒の弁駆動装置12のソレノイド21等の各種アクチュエータが接続されている。
【0017】
本実施例のディーゼルエンジン1は、図示しない燃料噴射ポンプのスリーブ位置をアクチュエータで駆動して燃料噴射量を制御する電子制御式として構成されている。ECU31はアクセル操作量APS及びエンジン回転速度Neに基づいて、予め設定されたマップから燃料噴射量Qを決定し、その燃料噴射量Qが達成されるように燃料噴射ポンプのスリーブ位置をアクチュエータにて調整する。このときの燃料噴射量Qはエンジン回転速度Neと共にEGR制御に利用され、予め燃料噴射量Q(エンジン負荷に相当する)及びエンジン回転速度Neに基づいてマップとして設定された目標EGR量に基づいて、アクチュエータによりEGR弁18の開度が調整されてEGR制御が行われる。
【0018】
また、目標EGR量マップには、ターボチャージャ7の過給により吸気マニホールド5内の圧力(過給圧)が第2の排気マニホールド14内の圧力(排気圧)を上回ってEGRが不能となる運転領域(つまり、目標EGR量マップから求めたEGR量を達成できない領域)が設定されている。このEGR不能領域は、主に過給圧が上昇する高負荷域に設定されているのであるが、本実施形態では、このEGR不能領域において、EGRを還流させるべく排気圧を増加させる制御が行われる。そこで、この排気圧増加制御の詳細を説明する。
【0019】
まず、通常の運転領域、つまり、過給圧が排気圧を下回ってEGRを還流可能な運転領域では、ECU31にて制御されたステップモータ16により制御弁15が全開状態に保持されると共に、ECU31により弁駆動装置12が制御されて、図3に示す第1の排気弁11aと同一のタイミングEX1で第2の排気弁11bが開閉駆動される。従って、第2の排気ポート10bからは、第1の排気ポート10aと同様のタイミングで排ガスが排出される。この場合には排気圧の増加作用は奏されないものの、本来、過給圧より高い十分な排気圧が発生していることから、EGR弁18の開度に応じてEGRが還流されて目標EGR量が達成される。
【0020】
また、上記したEGR不能領域では、ステップモータ16により制御弁15が所定の閉側位置に制御されると共に、弁駆動装置12により図3に示す第1の排気弁11aより早いタイミングEX2で第2の排気弁11bが開閉駆動される。詳しくは、このときの第2の排気弁11bの開閉タイミングEX2は、第1の排気弁11aの開閉タイミングEX1を基準として、開弁および閉弁タイミングが共に進角されると共に、開弁タイミングに対して閉弁タイミングをより進角させることで、その開弁時間が短縮化されている。開閉タイミングEX1においても開弁は膨張行程の下死点以前に行われるが、このときの開閉タイミングEX2ではさらに早期の燃焼ガスの膨張中に開弁される。
【0021】
以上の制御により、第2の排気ポート10bから排出された排ガスは、以下に述べるように排気圧を増加させる作用を奏する。まず、制御弁15の閉操作により第2の排気マニホールド14の集合部14aを流通する際に排ガスが絞られることから、その上流側の排気圧は増加することになる。さらに、第2の排気弁11bを早期に開弁させることにより、膨張中の高い圧力を有する排ガスが排出される所謂ブローダウンが生じることから、制御弁15上流の排気圧はより増加される。
【0022】
第2の排気弁11bに続く第1の排気弁11aの開弁に伴って、第1の排気ポート10aからも排ガスが排出され始めると、ブローダウンで高められた排気圧が急激に低下するが、第2の排気弁11bが早期に閉弁されるため、第2の排気マニホールド14の集合部14a内は常に高い排気圧に保持される。よって、このEGR不能領域においても排気圧は過給圧を上回り、その圧力差によりEGRが確実に還流されて目標EGR量が達成される。
【0023】
なお、本実施形態では、EGR不能領域における制御弁15の開度や第2の排気弁11bの開閉タイミングEX2を予め設定された固定値に制御したが、例えばエンジン負荷、或いは過給圧と排気圧との差圧などに応じて、予め最適な制御弁開度や開閉タイミングEX2を設定しておき、その設定値に基づいて制御を実施してもよい。
【0024】
そして、以上の説明から明らかなように本実施形態では、各気筒の排ガスが集合する第2の排気マニホールド14の集合部14aに制御弁15を設けている。従って、単一の制御弁15により排気圧を増加可能であり、その製造コストを低減できる上に、制御弁15が燃焼室から離間しているため、十分に流速が低下した排ガスを制御弁15で絞ることになり、排気抵抗はほとんど増加しない。
【0025】
よって、本実施形態のEGR装置によれば、構成を簡略化して製造コストを低減できると共に、排気抵抗の増加によるエンジン1の効率低下を引き起こすことなく確実にEGRを還流させることができるという優れた効果を奏する。
[第2実施形態]
以下、本発明を過給機付きディーゼルエンジンのEGR装置に具体化した第2実施形態を説明する。ここで、本実施形態のEGR装置では、第1実施形態で用いた第2の排気弁11bに代えて専用のブローダウン弁43を備えていることが主な相違点である。そこで、相違点を重点的に説明する。
【0026】
図4は本実施形態の過給機付きディーゼルエンジンのEGR装置における吸排気弁周辺と弁駆動装置の構成を示す詳細図である。本実施形態のエンジン1では、第1の排気弁としての一対の排気弁41(第1実施形態の第1および第2排気弁11a,11bに相当)は共にカムシャフトにより開閉駆動されると共に、これらの排気弁41の開弁により排出された排気ガスは、共通の排気ポート42および排気マニホールドを経てタービンへと案内されるようになっている。つまり、以上の構成は通常のエンジンの排気系と同様である。
【0027】
そして、各気筒には排気弁41と共に第2の排気弁としての1本のブローダウン弁43が設けられ、これらのブローダウン弁43が設けられたブローダウンポート44は、図示しない共通のブローダウンマニホールドに接続されている。ブローダウンマニホールドは、第1実施形態で図1に基づいて説明した第2の排気マニホールド14と同一構成であり、その集合部には第1実施形態の制御弁15と同様の制御弁が備えられると共に、制御弁の上流側にEGR通路17の一端が接続され、集合部の下流側は上記した排気マニホールドの集合部と接続されている。従って、ブローダウン弁43の開弁に伴って排出された排ガスは、ブローダウンポート44を経てブローダウンマニホールドの集合部で集合された後に、排気マニホールド側の排ガスと合流してタービンへと案内される。
【0028】
ブローダウン弁43の上端には被動ピストン45が固定され、この被動ピストン45は油路46を介して駆動ピストン47と接続されている。油路46には逆止弁48aを介してポンプ48からの作動油が常時供給されると共に、油路46に介装されたソレノイド弁49が閉弁されてドレン側と連通すると、油路46内の油圧がドレン側にリリーフされるようになっている。前記駆動ピストン47は、エンジン1の動弁機構のカムシャフト上に形成されたブローダウン用のカム50上に配設され、このカム50により駆動ピストン47は上下動して、油路46内にエンジン1のクランク角に同期した油圧を発生させる。
【0029】
本実施形態では、以上の被動ピストン45、油路46、駆動ピストン47、ポンプ48、ソレノイド弁49、およびカム50により、可変バルブタイミング手段としての弁駆動装置51が構成されている。
ソレノイド弁49はECU31により制御され、EGRの非実行域では閉弁状態に保持される。ブローダウン用のカム50により駆動ピストン47は上下動されるものの、ソレノイド弁49により油路46内の油圧がリリーフされることから被動ピストン45が作動せず、ブローダウン弁43は図示しないバルブスプリングにより閉弁状態に保持される。従って、この場合の排ガスは、排気弁41の開弁に伴って排気ポート42および排気マニホールドを経て通常通りの経路で排出され、EGRの還流は行われない。なお、ブローダウン弁43を閉じているため、このときの制御弁はどのような開度に制御してもよい。
【0030】
また、EGRの実行域では、制御弁が閉側制御されると共に、ソレノイド弁49が開弁状態に保持されて上記した油圧のリリーフを停止する。従って、駆動ピストン47の上下動により発生した油圧が油路46を経て被動ピストン45側に伝達されて、被動ピストン45と共にブローダウン弁43がエンジン1のクランク角に同期して開閉される。ここで、ブローダウン用のカム50の形状は、第1実施形態の図3に示す第2の排気弁11bの進角側の開閉タイミングEX2と同様のタイミングでブローダウン弁43を開閉するように設定されている。その結果、制御弁による排ガスの絞りに加えて、膨張中のブローダウンの排ガスを利用して高い排気圧が確保され、EGR通路を経て排ガスが確実に還流される。
【0031】
なお、このときの制御弁の開度制御としては、例えば、上記したEGR不能領域では開度を小として排気圧の十分な増加を図り、負荷の低下と共にEGRの還流が容易になると開度を次第に開方向に変化させる。
そして、上記のようにブローダウンマニホールドおよび制御弁の構成は、第1実施形態の第2の排気マニホールド14および制御弁15の構成(図1に示す)と同一であるため、本実施形態においても、単一の制御弁により構成を簡略化して製造コストを低減できると共に、燃焼室から制御弁を離間させて、排ガスを絞る際の排気抵抗によりエンジン1の効率が低下する事態を防止することができる。
【0032】
なお、この第2実施形態においては、EGR実行域では常にブローダウン弁43を開閉させる構成としたが、EGR不能領域でのみ開閉させてもよい。この場合、EGRが容易に可能な領域では制御弁15を開状態とすることにより、排気マニホールドからブローダウンマニホールドの集合部を経てEGRガスがEGR通路17に導入される。
【0033】
以上で実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。例えば、上記各実施形態では、ディーゼルエンジン1用のEGR装置に具体化したが、適用するエンジンの種別はこれに限定されるものではなく、例えばガソリンエンジン用のEGR装置に具体化してもよい。また、エンジン1の動弁機構についても4弁式に限ることはなく、例えば3弁としてもよい。
【0034】
又、上記第1実施形態では、排ガスのブローダウンを利用するために第2の排気弁11bの開弁タイミングを進角させると共に、第1の排気弁11aの開弁に伴う排気圧の低下を防止するために、第2の排気弁11bの閉弁タイミングも進角させており、第2実施形態でも、同様のタイミングでブローダウン弁43を開閉させたが、閉弁タイミングについては、必ずしも進角させる必要はなく、例えば第1の排気弁11aと同時に閉弁させてもよい。この場合には、第1の排気弁11aの開弁に伴いある程度の圧力低下は生じるものの、ブローダウンの有効利用により通常の場合に比較して十分に高い排気圧を得ることができる。
【0035】
又、上記各実施形態では、過給機として排ガスを利用するターボチャージャ7を備えたエンジン1のEGR装置として具体化したが、過給機の種類は限定されず、例えばエンジン1のクランク軸により駆動されるルーツ式やスパイラル式の過給機を備えたエンジン用のEGR装置としてもよい。
【0036】
【発明の効果】
以上説明したように本発明の過給機付きエンジンのEGR装置によれば、構成を簡略化して製造コストを低減できると共に、排気抵抗の増加によるエンジンの効率低下を引き起こすことなく確実にEGRを還流させることができる。
【図面の簡単な説明】
【図1】第1実施形態の過給機付きディーゼルエンジンのEGR装置を示す全体構成図である。
【図2】吸排気弁周辺と弁駆動装置の構成を示す詳細図である。
【図3】吸排気弁の開閉タイミングを示す説明図である。
【図4】第2実施形態の過給機付きディーゼルエンジンのEGR装置における吸排気弁周辺と弁駆動装置の構成を示す詳細図である。
【符号の説明】
1 エンジン
7 ターボチャージャ(過給機)
10a 第1の排気ポート
10b 第2の排気ポート
11a 第1の排気弁
11b 第2の排気弁
12,51 弁駆動装置(可変バルブタイミング装置)
13 第1の排気マニホールド
14 第2の排気マニホールド
13a,14a 集合部
15 制御弁
17 EGR通路
18 EGR弁
31 ECU(制御手段)
41 排気弁(第1の排気弁)
43 ブローダウン弁(第2の排気弁)
44 ブローダウンポート
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an EGR device for a supercharged engine.
[0002]
[Related background]
As is well known, as one of the techniques for reducing NOx (nitrogen oxide), EGR control is performed in which part of the exhaust gas discharged from the engine is recirculated to the intake side to lower the combustion temperature. Since the EGR recirculation is performed by utilizing the pressure difference between the exhaust passage and the intake passage, in an engine with a supercharger that supercharges intake air, the pressure of the intake passage may vary depending on the operating region of the engine. It may become higher than the pressure and EGR may become impossible.
[0003]
As a technique for increasing the exhaust pressure, for example, a technique described in JP-A-6-33803 can be cited. Although this EGR device is not intended for an engine equipped with a supercharger, the control valve provided in the exhaust system is closed to increase the exhaust pressure, thereby recirculating the EGR. More specifically, in this engine, each cylinder is provided with a timing valve which is an auxiliary intake valve in addition to a normal intake / exhaust valve, and each timing valve is connected to an exhaust port of each cylinder with an air-fuel mixture supply port and a communication passage. And a control valve is provided on the downstream side of the connection location in the exhaust port.
[0004]
A part of the exhaust gas discharged to the exhaust port from the engine is guided from the communication path to the mixture supply port, and after the fuel injected from the fuel injection valve provided in the mixture supply port is mixed, the timing is As the valve is opened, it is introduced into the combustion chamber, whereby the recirculation of EGR is realized. If the exhaust gas is throttled by operating the control valve to the closed side, the exhaust pressure increases, so that the necessary EGR amount can be secured.
[0005]
[Problems to be solved by the invention]
However, since the EGR device described in the above publication is provided with a control valve in the exhaust port of each cylinder, the control valve and the actuator for opening / closing drive are required for the cylinder, which increases the manufacturing cost. is there. In addition, since a control valve is provided in the exhaust port close to the combustion chamber, exhaust gas with a high flow rate immediately after discharge is throttled by the control valve, resulting in a large exhaust resistance and a decrease in engine efficiency. There is also.
[0006]
An object of the present invention is to provide an EGR device for a supercharged engine that can reduce the manufacturing cost by simplifying the configuration and can reliably recirculate EGR without causing a decrease in engine efficiency due to an increase in exhaust resistance. There is to do.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, an invention according to claim 1 is an EGR device for a multi-cylinder engine having a plurality of first and second exhaust valves in each cylinder and a supercharger for supercharging intake air. An exhaust port connected to the first exhaust valve of each cylinder is connected and assembled , and a first exhaust manifold whose collection portion is connected to the supercharger and an exhaust gas connected to the second exhaust valve of each cylinder. The ports are connected and assembled, and the assembly part is mounted on the second exhaust manifold connected to the assembly part of the first exhaust manifold at a position upstream from the supercharger , and the assembly part of the second exhaust manifold can be opened and closed. The control valve is connected to a position upstream of the control valve of the collecting portion of the second exhaust manifold and the intake passage of the engine, and the EGR passage opened and closed by the EGR valve and the opening and closing timing of the second exhaust valve can be controlled. Variable valve timing means to When the GR valve is opened and the engine is in an operating state in which the intake side pressure in the EGR passage exceeds the exhaust side pressure, the control valve is closed and the second exhaust valve is turned on by the variable valve timing means. And control means for opening the valve earlier than the exhaust valve.
[0008]
Therefore, when the intake side pressure in the EGR passage exceeds the exhaust side pressure and EGR is impossible, the control valve is closed and exhaust gas is throttled, the exhaust pressure upstream from the control valve increases, and the second By opening the exhaust valve early, exhaust gas having a high pressure due to blowdown is discharged, the exhaust pressure is further increased, and EGR can be reliably performed.
[0009]
Since the exhaust pressure is increased by a single control valve provided at the collecting portion of the second exhaust manifold, the manufacturing cost is reduced, and the control valve is separated from the combustion chamber. The exhaust gas whose flow velocity is reduced is throttled by the control valve, and the exhaust resistance hardly increases.
Further, the invention of claim 2 allows the control means to be closed while the EGR valve is opened and the control valve is closed when the intake side pressure of the EGR passage exceeds the exhaust side pressure. The valve timing means advances the valve opening timing of the second exhaust valve from the valve opening timing of the first exhaust valve, and sets the valve closing timing of the second exhaust valve from the valve closing timing of the first exhaust valve. The angle is advanced .
[0010]
Therefore, when exhaust gas begins to be discharged as the first exhaust valve is opened, the exhaust pressure increased by the blow-down suddenly decreases, but the second exhaust valve is closed early, so that the second It is possible to keep the exhaust manifold at a high exhaust pressure at all times.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
[First Embodiment]
Hereinafter, a first embodiment in which the present invention is embodied in an EGR device for a diesel engine with a supercharger will be described.
FIG. 1 is an overall configuration diagram showing an EGR device of a turbocharged diesel engine according to the present embodiment, FIG. 2 is a detailed diagram showing the configuration of an intake / exhaust valve periphery and a valve drive device, and FIG. 3 is an intake / exhaust valve opening / closing timing. It is explanatory drawing shown. As shown in FIGS. 1 and 2, the engine 1 of this embodiment includes a four-valve valve mechanism. A pair of intake ports 3 is formed in each cylinder in the cylinder head 2, and an intake valve 4 provided in these intake ports 3 is synchronized with the crank angle of the engine 1 by a camshaft (not shown) and shown in FIG. It is opened and closed by IN. The intake ports 3 of the respective cylinders are gathered by an intake manifold 5 and communicated with a common intake passage 6, and a compressor 7 a and an intercooler 9 of a turbocharger 7 as a supercharger are provided in the intake passage 6. Air sucked from an air cleaner (not shown) is compressed by a compressor 7a, cooled by an intercooler 9, and introduced into a combustion chamber (not shown) when the intake valve 4 is opened.
[0012]
The cylinder head 2 is provided with a pair of exhaust ports 10a and 10b for each cylinder, and the exhaust ports 10a and 10b are provided with exhaust valves 11a and 11b. Hereinafter, for convenience of explanation, one is a first exhaust port 10a and a first exhaust valve 11a, and the other is a second exhaust port 10b and a second exhaust valve 11b. Like the intake valve 4 described above, the first exhaust valve 11a of each cylinder is opened / closed by a camshaft at a timing EX1 shown in FIG. 3, and the second exhaust valve 11b of each cylinder is a variable valve as will be described later. It is driven to open and close by a valve drive device 12 as timing means.
[0013]
A first exhaust manifold 13 is connected to the first exhaust port 10a of each cylinder, and a collective portion 13a of the first exhaust manifold 13 is illustrated via a turbine 7b coaxially connected to the compressor 7a. Not connected with the exhaust passage. A second exhaust manifold 14 is connected to the second exhaust port 10b of each cylinder, and a collecting portion 14a of the second exhaust manifold 14 is connected to a collecting portion 13a of the first exhaust manifold 13. ing. Exhaust gas after combustion by injected fuel from a fuel injection valve (not shown) is guided from the combustion chamber to the collecting portion 13a via the first exhaust port 10a and the first exhaust manifold 13, while the second exhaust port 10b. Then, they are guided to the collecting portion 14a through the second exhaust manifold 14 and merge with each other to drive the turbine 7b, and then discharged to the outside through the exhaust passage.
[0014]
A control valve 15 is provided in the collecting portion 14 b on the second exhaust manifold 14 side, and the control valve 15 is driven to open and close by a step motor 16. One end of the EGR passage 17 is connected to the upstream side of the control valve 15 of the collecting portion 14b, and the other end of the EGR passage 17 is connected to the intake passage 6. The EGR passage 17 is provided with an EGR valve 18 that is opened and closed by an actuator (not shown) and an EGR cooler 19.
[0015]
On the other hand, as shown in FIG. 2, the valve drive device 12 described above has a valve spring 20 that urges the second exhaust valve 11 b toward the valve closing side, and a second against the urging force of the valve spring 20. It is comprised from the solenoid 21 which drives the exhaust valve 11b to the valve opening side. The lift amount of the second exhaust valve 11b changes in accordance with the current value and duty ratio for exciting the solenoid 21, and the current value and duty ratio are controlled in synchronism with the crank angle of the engine 1 so that the second The exhaust valve 11b can be opened and closed at an arbitrary timing.
[0016]
In the vehicle compartment, an ECU 31 as a control means includes an input / output device (not shown), a storage device (ROM, RAM, etc.) used for storing control programs and control maps, a central processing unit (CPU), a timer counter, and the like. (Electronic control unit) is installed, and this ECU 31 performs comprehensive control of the engine 1 including EGR control. Various sensors such as an accelerator sensor 32 for detecting the accelerator operation amount APS by the driver and a rotational speed sensor 33 for detecting the rotational speed Ne of the engine 1 are connected to the input side of the ECU 31. Various actuators such as a step motor 16 of the control valve 15, an EGR valve 18, and a solenoid 21 of the valve driving device 12 of each cylinder are connected.
[0017]
The diesel engine 1 of the present embodiment is configured as an electronic control type that controls the fuel injection amount by driving the sleeve position of a fuel injection pump (not shown) with an actuator. The ECU 31 determines the fuel injection amount Q from a preset map based on the accelerator operation amount APS and the engine rotation speed Ne, and sets the sleeve position of the fuel injection pump with the actuator so that the fuel injection amount Q is achieved. adjust. The fuel injection amount Q at this time is used for EGR control together with the engine rotation speed Ne, and is based on a target EGR amount set as a map in advance based on the fuel injection amount Q (corresponding to the engine load) and the engine rotation speed Ne. The opening degree of the EGR valve 18 is adjusted by the actuator, and EGR control is performed.
[0018]
In the target EGR amount map, the turbocharger 7 is supercharged so that the pressure (supercharging pressure) in the intake manifold 5 exceeds the pressure (exhaust pressure) in the second exhaust manifold 14 and EGR is disabled. A region (that is, a region where the EGR amount obtained from the target EGR amount map cannot be achieved) is set. This EGR impossible region is set mainly in a high load region where the boost pressure rises. In the present embodiment, in this EGR impossible region, control is performed to increase the exhaust pressure to recirculate EGR. Is called. Therefore, details of the exhaust pressure increase control will be described.
[0019]
First, in a normal operation region, that is, an operation region in which the supercharging pressure is lower than the exhaust pressure and the EGR can be recirculated, the control valve 15 is held in a fully opened state by the step motor 16 controlled by the ECU 31 and the ECU 31 Thus, the valve drive device 12 is controlled, and the second exhaust valve 11b is driven to open and close at the same timing EX1 as the first exhaust valve 11a shown in FIG. Therefore, exhaust gas is discharged from the second exhaust port 10b at the same timing as the first exhaust port 10a. In this case, although the exhaust pressure increasing action is not achieved, since a sufficient exhaust pressure higher than the supercharging pressure is originally generated, the EGR is recirculated according to the opening degree of the EGR valve 18 and the target EGR amount Is achieved.
[0020]
Further, in the above-described EGR impossible region, the control valve 15 is controlled to a predetermined closed position by the step motor 16 and the second timing at the timing EX2 earlier than the first exhaust valve 11a shown in FIG. The exhaust valve 11b is opened and closed. Specifically, the opening / closing timing EX2 of the second exhaust valve 11b at this time is advanced both with respect to the opening / closing timing EX1 of the first exhaust valve 11a. On the other hand, the valve opening time is shortened by advancing the valve closing timing. Even at the opening / closing timing EX1, the valve opening is performed before the bottom dead center of the expansion stroke, but at this opening / closing timing EX2, the valve is opened during the earlier expansion of the combustion gas.
[0021]
By the above control, the exhaust gas discharged from the second exhaust port 10b has an effect of increasing the exhaust pressure as described below. First, exhaust gas is throttled when the control valve 15 is closed to flow through the collecting portion 14a of the second exhaust manifold 14, so that the exhaust pressure on the upstream side increases. Further, by opening the second exhaust valve 11b at an early stage, so-called blowdown occurs in which exhaust gas having a high pressure during expansion is discharged, so that the exhaust pressure upstream of the control valve 15 is further increased.
[0022]
When exhaust gas begins to be exhausted from the first exhaust port 10a as the first exhaust valve 11a is opened following the second exhaust valve 11b, the exhaust pressure increased by blow-down rapidly decreases. Since the second exhaust valve 11b is closed early, the inside of the collecting portion 14a of the second exhaust manifold 14 is always maintained at a high exhaust pressure. Therefore, even in this EGR impossible region, the exhaust pressure exceeds the supercharging pressure, and the EGR is reliably recirculated by the pressure difference to achieve the target EGR amount.
[0023]
In the present embodiment, the opening degree of the control valve 15 and the opening / closing timing EX2 of the second exhaust valve 11b in the EGR impossible region are controlled to preset fixed values. However, for example, engine load or supercharging pressure and exhaust pressure are controlled. An optimal control valve opening degree and opening / closing timing EX2 may be set in advance according to the pressure difference from the atmospheric pressure, and the control may be performed based on the set value.
[0024]
As is clear from the above description, in this embodiment, the control valve 15 is provided in the collecting portion 14a of the second exhaust manifold 14 where the exhaust gas of each cylinder collects. Therefore, the exhaust pressure can be increased by the single control valve 15, and the manufacturing cost can be reduced. Further, since the control valve 15 is separated from the combustion chamber, the exhaust gas whose flow rate is sufficiently lowered is controlled by the control valve 15. The exhaust resistance will hardly increase.
[0025]
Therefore, according to the EGR device of the present embodiment, the configuration can be simplified and the manufacturing cost can be reduced, and the EGR can be reliably recirculated without causing a reduction in efficiency of the engine 1 due to an increase in exhaust resistance. There is an effect.
[Second Embodiment]
Hereinafter, a second embodiment in which the present invention is embodied in an EGR device for a turbocharged diesel engine will be described. Here, the EGR device of the present embodiment is mainly different from the second exhaust valve 11b used in the first embodiment in that a dedicated blow-down valve 43 is provided. Therefore, the differences will be described mainly.
[0026]
FIG. 4 is a detailed view showing the configuration of the intake and exhaust valve periphery and the valve driving device in the EGR device of the turbocharged diesel engine of the present embodiment. In the engine 1 of the present embodiment, a pair of exhaust valves 41 (corresponding to the first and second exhaust valves 11a and 11b of the first embodiment) as the first exhaust valves are both opened and closed by a camshaft, The exhaust gas discharged by opening the exhaust valves 41 is guided to the turbine through a common exhaust port 42 and an exhaust manifold. That is, the above configuration is the same as that of a normal engine exhaust system.
[0027]
Each cylinder is provided with a single blow-down valve 43 as a second exhaust valve together with the exhaust valve 41. A blow-down port 44 provided with these blow-down valves 43 has a common blow-down valve (not shown). Connected to the manifold. The blowdown manifold has the same configuration as that of the second exhaust manifold 14 described in the first embodiment with reference to FIG. 1, and the same control valve as that of the control valve 15 of the first embodiment is provided in the assembly portion. At the same time, one end of the EGR passage 17 is connected to the upstream side of the control valve, and the downstream side of the collecting portion is connected to the collecting portion of the exhaust manifold. Therefore, the exhaust gas discharged when the blow-down valve 43 is opened is collected at the assembly portion of the blow-down manifold via the blow-down port 44, and then merged with the exhaust gas on the exhaust manifold side and guided to the turbine. The
[0028]
A driven piston 45 is fixed to the upper end of the blow-down valve 43, and this driven piston 45 is connected to a drive piston 47 through an oil passage 46. When the hydraulic fluid from the pump 48 is always supplied to the oil passage 46 via the check valve 48a and the solenoid valve 49 interposed in the oil passage 46 is closed and communicates with the drain side, the oil passage 46 is provided. The internal hydraulic pressure is relieved to the drain side. The drive piston 47 is disposed on a blow-down cam 50 formed on the camshaft of the valve mechanism of the engine 1, and the drive piston 47 moves up and down by the cam 50 to enter the oil passage 46. Hydraulic pressure synchronized with the crank angle of the engine 1 is generated.
[0029]
In the present embodiment, the driven piston 45, the oil passage 46, the drive piston 47, the pump 48, the solenoid valve 49, and the cam 50 constitute a valve drive device 51 as variable valve timing means.
The solenoid valve 49 is controlled by the ECU 31 and is kept closed in the non-execution region of EGR. Although the drive piston 47 is moved up and down by the blow-down cam 50, the hydraulic pressure in the oil passage 46 is relieved by the solenoid valve 49, so that the driven piston 45 does not operate and the blow-down valve 43 is a valve spring (not shown). To keep the valve closed. Accordingly, the exhaust gas in this case is discharged through the normal path through the exhaust port 42 and the exhaust manifold when the exhaust valve 41 is opened, and the EGR is not recirculated. Since the blow-down valve 43 is closed, the control valve at this time may be controlled to any opening degree.
[0030]
In the EGR execution region, the control valve is controlled to be closed, and the solenoid valve 49 is held in the open state to stop the hydraulic pressure relief described above. Accordingly, the hydraulic pressure generated by the vertical movement of the drive piston 47 is transmitted to the driven piston 45 side through the oil passage 46, and the blowdown valve 43 is opened and closed together with the driven piston 45 in synchronization with the crank angle of the engine 1. Here, the shape of the blowdown cam 50 is such that the blowdown valve 43 is opened and closed at the same timing as the opening / closing timing EX2 on the advance side of the second exhaust valve 11b shown in FIG. 3 of the first embodiment. Is set. As a result, in addition to throttling of the exhaust gas by the control valve, a high exhaust pressure is secured by using the blow-down exhaust gas during expansion, and the exhaust gas is reliably recirculated through the EGR passage.
[0031]
In addition, as the opening degree control of the control valve at this time, for example, in the above-mentioned EGR impossible region, the opening degree is made small to increase the exhaust pressure sufficiently, and when the EGR recirculation becomes easy as the load decreases, the opening degree is increased. Gradually change in the opening direction.
As described above, the configurations of the blowdown manifold and the control valve are the same as the configurations of the second exhaust manifold 14 and the control valve 15 (shown in FIG. 1) of the first embodiment. In addition to simplifying the configuration with a single control valve, the manufacturing cost can be reduced, and the control valve can be separated from the combustion chamber to prevent a situation where the efficiency of the engine 1 decreases due to exhaust resistance when the exhaust gas is throttled. it can.
[0032]
In the second embodiment, the blow-down valve 43 is always opened and closed in the EGR execution area, but may be opened and closed only in the EGR impossible area. In this case, the EGR gas is introduced into the EGR passage 17 from the exhaust manifold through the assembly portion of the blow-down manifold by opening the control valve 15 in an area where EGR can be easily performed.
[0033]
This is the end of the description of the embodiment, but the aspect of the present invention is not limited to this embodiment. For example, in each of the above embodiments, the EGR device for the diesel engine 1 is embodied. However, the type of the engine to be applied is not limited to this, and for example, the EGR device for a gasoline engine may be embodied. Further, the valve mechanism of the engine 1 is not limited to the four-valve type, and may be, for example, three valves.
[0034]
Further, in the first embodiment, the opening timing of the second exhaust valve 11b is advanced in order to use the exhaust gas blow-down, and the exhaust pressure is reduced due to the opening of the first exhaust valve 11a. In order to prevent this, the closing timing of the second exhaust valve 11b is also advanced. In the second embodiment, the blow-down valve 43 is opened and closed at the same timing, but the closing timing is not necessarily advanced. There is no need to make it square, for example, it may be closed simultaneously with the first exhaust valve 11a. In this case, although a certain pressure drop occurs with the opening of the first exhaust valve 11a, a sufficiently high exhaust pressure can be obtained by the effective use of blowdown compared to the normal case.
[0035]
Moreover, in each said embodiment, although it actualized as an EGR apparatus of the engine 1 provided with the turbocharger 7 which uses exhaust gas as a supercharger, the kind of supercharger is not limited, For example, by the crankshaft of the engine 1 It is good also as an EGR device for engines provided with a roots type or spiral type supercharger to be driven.
[0036]
【The invention's effect】
As described above, according to the EGR device for an engine with a supercharger according to the present invention, the manufacturing cost can be reduced by simplifying the configuration, and the EGR can be reliably recirculated without causing a decrease in engine efficiency due to an increase in exhaust resistance. Can be made.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram showing an EGR device of a diesel engine with a supercharger according to a first embodiment.
FIG. 2 is a detailed view showing the configuration of the periphery of the intake / exhaust valve and the valve drive device.
FIG. 3 is an explanatory diagram showing opening and closing timings of intake and exhaust valves.
FIG. 4 is a detailed view showing the configuration of an intake / exhaust valve periphery and a valve driving device in an EGR device of a turbocharged diesel engine according to a second embodiment.
[Explanation of symbols]
1 Engine 7 Turbocharger (supercharger)
10a 1st exhaust port 10b 2nd exhaust port 11a 1st exhaust valve 11b 2nd exhaust valve 12, 51 Valve drive device (variable valve timing device)
13 1st exhaust manifold 14 2nd exhaust manifold 13a, 14a Collection part 15 Control valve 17 EGR passage 18 EGR valve 31 ECU (control means)
41 Exhaust valve (first exhaust valve)
43 Blowdown valve (second exhaust valve)
44 Blowdown port

Claims (2)

各気筒に第1および第2の複数の排気弁を有すると共に、吸入空気を過給する過給機を備えた多気筒エンジンのEGR装置であって、
各気筒の上記第1の排気弁と連通する排気ポートを接続集合し、該集合部が上記過給機と接続された第1の排気マニホールドと、
各気筒の上記第2の排気弁と連通する排気ポートを接続集合し、該集合部が上記過給機より上流位置で上記第の排気マニホールドの集合部と接続された第2の排気マニホールドと、
上記第2の排気マニホールドの集合部に開閉可能に装着された制御弁と、
上記第2の排気マニホールドの集合部の制御弁より上流位置と上記エンジンの吸気通路とを接続し、EGR弁により開閉されるEGR通路と、
上記第2の排気の開閉時期を制御可能とする可変バルブタイミング手段と、
上記EGR弁が開作動され、且つ上記EGR通路の吸気側圧力が排気側圧力を上回るエンジンの運転状態のときに、上記制御弁を閉作動させると共に、上記可変バルブタイミング手段により上記第2の排気弁を上記第1の排気弁より早期に開弁させる制御手段と
を備えたことを特徴とする過給機付きエンジンのEGR装置。
An EGR device for a multi-cylinder engine having a first and a second plurality of exhaust valves in each cylinder and a supercharger for supercharging intake air,
Connecting and collecting exhaust ports communicating with the first exhaust valve of each cylinder , and a first exhaust manifold in which the collecting portion is connected to the supercharger ;
A second exhaust manifold that connects and collects exhaust ports that communicate with the second exhaust valve of each cylinder, and the collective portion is connected to the collective portion of the first exhaust manifold at a position upstream from the supercharger ; ,
A control valve mounted on the second exhaust manifold so as to be openable and closable;
An EGR passage that is connected to a position upstream from the control valve of the collecting portion of the second exhaust manifold and the intake passage of the engine, and is opened and closed by an EGR valve;
Variable valve timing means capable of controlling the opening and closing timing of the second exhaust valve ;
When the EGR valve is opened and the engine is in an operating state where the intake side pressure in the EGR passage exceeds the exhaust side pressure, the control valve is closed and the second exhaust valve is operated by the variable valve timing means. And a control means for opening the valve earlier than the first exhaust valve. An EGR device for an engine with a supercharger.
上記制御手段は、上記EGR弁が開作動され、且つ上記EGR通路の吸気側圧力が排気側圧力を上回るエンジンの運転状態のときに、上記制御弁を閉作動させると共に、上記可変バルブタイミング手段により、上記第2の排気弁の開弁タイミングを上記第1の排気弁の開弁タイミングより進角させると共に、上記第2の排気弁の閉弁タイミングを上記第1の排気弁の閉弁タイミングより進角させることを特徴とする請求項1に記載の過給機付きエンジンのEGR装置。The control means closes the control valve when the EGR valve is opened and the intake side pressure of the EGR passage exceeds the exhaust side pressure, and the variable valve timing means The opening timing of the second exhaust valve is advanced from the opening timing of the first exhaust valve, and the closing timing of the second exhaust valve is advanced from the closing timing of the first exhaust valve. The EGR device for a supercharged engine according to claim 1, wherein the angle is advanced .
JP2000217565A 2000-07-18 2000-07-18 EGR device for turbocharged engine Expired - Fee Related JP3783765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000217565A JP3783765B2 (en) 2000-07-18 2000-07-18 EGR device for turbocharged engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000217565A JP3783765B2 (en) 2000-07-18 2000-07-18 EGR device for turbocharged engine

Publications (2)

Publication Number Publication Date
JP2002030980A JP2002030980A (en) 2002-01-31
JP3783765B2 true JP3783765B2 (en) 2006-06-07

Family

ID=18712651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000217565A Expired - Fee Related JP3783765B2 (en) 2000-07-18 2000-07-18 EGR device for turbocharged engine

Country Status (1)

Country Link
JP (1) JP3783765B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005068802A2 (en) * 2004-01-14 2005-07-28 Lotus Cars Limited An internal combustion engine
DE102005001757A1 (en) * 2005-01-14 2006-07-20 Daimlerchrysler Ag Internal combustion engine with a cylinder associated with the gas pressure vessel and method for operating the internal combustion engine
JP4757009B2 (en) * 2005-12-15 2011-08-24 本田技研工業株式会社 Multi-cylinder internal combustion engine
JP4769566B2 (en) * 2005-12-15 2011-09-07 本田技研工業株式会社 Engine system
JP5040747B2 (en) * 2008-03-14 2012-10-03 マツダ株式会社 Turbocharged engine
US8069663B2 (en) * 2010-09-09 2011-12-06 Ford Global Technologies, Llc Method and system for turbocharging an engine
JP5581996B2 (en) * 2010-11-30 2014-09-03 日産自動車株式会社 Internal combustion engine
FR2992356B1 (en) * 2012-06-21 2016-04-15 Peugeot Citroen Automobiles Sa ENGINE GROUP WITH RECIRCULATION LINE
JP6032802B2 (en) * 2012-11-02 2016-11-30 日野自動車株式会社 EGR device
SE537013C2 (en) * 2013-03-06 2014-12-02 Scania Cv Ab Exhaust gas return by facilitating the opening of at least one cylinder exhaust valves
JP6194870B2 (en) * 2014-10-21 2017-09-13 マツダ株式会社 Exhaust system for turbocharged engine
US10190507B2 (en) * 2016-12-16 2019-01-29 Ford Global Technologies, Llc Systems and methods for a split exhaust engine system
US10138822B2 (en) * 2016-12-16 2018-11-27 Ford Global Technologies, Llc Systems and methods for a split exhaust engine system
US10683817B2 (en) * 2016-12-16 2020-06-16 Ford Global Technologies, Llc Systems and methods for a split exhaust engine system
US10107220B2 (en) * 2016-12-16 2018-10-23 Ford Global Technologies, Llc Systems and methods for a split exhaust engine system
US10393039B2 (en) * 2016-12-16 2019-08-27 Ford Global Technologies, Llc Systems and methods for a split exhaust engine system

Also Published As

Publication number Publication date
JP2002030980A (en) 2002-01-31

Similar Documents

Publication Publication Date Title
US7201121B2 (en) Combustion engine including fluidically-driven engine valve actuator
US7644586B2 (en) Control of supercharged engine
JP4623064B2 (en) Control device for an internal combustion engine with a supercharger
JP3783765B2 (en) EGR device for turbocharged engine
US8316827B2 (en) Engine intake quantity control apparatus
CN101849091B (en) Internal combustion engine controller
US7290524B2 (en) Control apparatus and method for four-stroke premixed compression ignition internal combustion engine
US20070062193A1 (en) Combustion engine including fluidically-controlled engine valve actuator
US8448616B2 (en) Internal combustion engine cycle
JP4032398B2 (en) Power unit of turbocharged engine and vehicles equipped with turbocharged engine
JP5459106B2 (en) Automotive diesel engine
JP2010024974A (en) Control device of internal combustion engine with supercharger
JP5803326B2 (en) Lean burn engine with turbocharger
EP3730770A1 (en) Internal combustion engine and method of controlling same
JP5034849B2 (en) Control device for internal combustion engine
JP5842406B2 (en) Lean burn engine with turbocharger
JP4736969B2 (en) Diesel engine control device
CN109595085B (en) Control device for internal combustion engine
JP2009299623A (en) Control device for internal combustion engine
JP2008038606A (en) Engine with supercharger
JP6046918B2 (en) Valve timing control device
JP3426417B2 (en) Exhaust gas recirculation system
JP3184247B2 (en) Intake device for engine with mechanical supercharger
JP2009052505A (en) Internal combustion engine
JP4946782B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060307

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees