JP3782906B2 - Crude bis-β-hydroxyethyl terephthalate purification method - Google Patents
Crude bis-β-hydroxyethyl terephthalate purification method Download PDFInfo
- Publication number
- JP3782906B2 JP3782906B2 JP22266499A JP22266499A JP3782906B2 JP 3782906 B2 JP3782906 B2 JP 3782906B2 JP 22266499 A JP22266499 A JP 22266499A JP 22266499 A JP22266499 A JP 22266499A JP 3782906 B2 JP3782906 B2 JP 3782906B2
- Authority
- JP
- Japan
- Prior art keywords
- bis
- hydroxyethyl terephthalate
- distillation
- evaporation
- terephthalate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 24
- 238000000746 purification Methods 0.000 title claims description 10
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 100
- 238000001704 evaporation Methods 0.000 claims description 42
- 238000004821 distillation Methods 0.000 claims description 40
- 230000008020 evaporation Effects 0.000 claims description 37
- 239000000203 mixture Substances 0.000 claims description 22
- -1 polyethylene terephthalate Polymers 0.000 claims description 21
- 238000009835 boiling Methods 0.000 claims description 16
- 150000001450 anions Chemical class 0.000 claims description 14
- 238000000199 molecular distillation Methods 0.000 claims description 14
- 150000001768 cations Chemical class 0.000 claims description 13
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 12
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 12
- 150000001875 compounds Chemical class 0.000 claims description 10
- 229910052787 antimony Inorganic materials 0.000 claims description 3
- 229910052732 germanium Inorganic materials 0.000 claims description 3
- 229910052736 halogen Inorganic materials 0.000 claims description 3
- 150000002367 halogens Chemical class 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 229910052708 sodium Inorganic materials 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 229920000728 polyester Polymers 0.000 description 26
- 239000000243 solution Substances 0.000 description 16
- 239000000047 product Substances 0.000 description 9
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 8
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 8
- 238000002242 deionisation method Methods 0.000 description 8
- 150000002500 ions Chemical class 0.000 description 8
- 239000003456 ion exchange resin Substances 0.000 description 7
- 229920003303 ion-exchange polymer Polymers 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000002685 polymerization catalyst Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229920001429 chelating resin Polymers 0.000 description 4
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium dioxide Chemical compound O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 4
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 4
- 125000000962 organic group Chemical group 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical group N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 238000004042 decolorization Methods 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000011550 stock solution Substances 0.000 description 3
- BCBHDSLDGBIFIX-UHFFFAOYSA-N 4-[(2-hydroxyethoxy)carbonyl]benzoic acid Chemical compound OCCOC(=O)C1=CC=C(C(O)=O)C=C1 BCBHDSLDGBIFIX-UHFFFAOYSA-N 0.000 description 2
- JFFQXJXLNZADOF-UHFFFAOYSA-N 4-ethoxycarbonylbenzenecarboperoxoic acid Chemical compound CCOC(=O)C1=CC=C(C(=O)OO)C=C1 JFFQXJXLNZADOF-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 125000005907 alkyl ester group Chemical group 0.000 description 2
- 239000003957 anion exchange resin Substances 0.000 description 2
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- KZTYYGOKRVBIMI-UHFFFAOYSA-N diphenyl sulfone Chemical compound C=1C=CC=CC=1S(=O)(=O)C1=CC=CC=C1 KZTYYGOKRVBIMI-UHFFFAOYSA-N 0.000 description 2
- 229940119177 germanium dioxide Drugs 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- YPFDHNVEDLHUCE-UHFFFAOYSA-N propane-1,3-diol Chemical compound OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 238000005809 transesterification reaction Methods 0.000 description 2
- PXGZQGDTEZPERC-UHFFFAOYSA-N 1,4-cyclohexanedicarboxylic acid Chemical compound OC(=O)C1CCC(C(O)=O)CC1 PXGZQGDTEZPERC-UHFFFAOYSA-N 0.000 description 1
- ISPYQTSUDJAMAB-UHFFFAOYSA-N 2-chlorophenol Chemical compound OC1=CC=CC=C1Cl ISPYQTSUDJAMAB-UHFFFAOYSA-N 0.000 description 1
- QLIQIXIBZLTPGQ-UHFFFAOYSA-N 4-(2-hydroxyethoxy)benzoic acid Chemical compound OCCOC1=CC=C(C(O)=O)C=C1 QLIQIXIBZLTPGQ-UHFFFAOYSA-N 0.000 description 1
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 1
- 229920001634 Copolyester Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- ORLQHILJRHBSAY-UHFFFAOYSA-N [1-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1(CO)CCCCC1 ORLQHILJRHBSAY-UHFFFAOYSA-N 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 150000001463 antimony compounds Chemical class 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001944 continuous distillation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- BTVWZWFKMIUSGS-UHFFFAOYSA-N dimethylethyleneglycol Natural products CC(C)(O)CO BTVWZWFKMIUSGS-UHFFFAOYSA-N 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 150000002291 germanium compounds Chemical class 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- KYTZHLUVELPASH-UHFFFAOYSA-N naphthalene-1,2-dicarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 KYTZHLUVELPASH-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000012643 polycondensation polymerization Methods 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- IBBQVGDGTMTZRA-UHFFFAOYSA-N sodium;2-sulfobenzene-1,3-dicarboxylic acid Chemical compound [Na].OC(=O)C1=CC=CC(C(O)=O)=C1S(O)(=O)=O IBBQVGDGTMTZRA-UHFFFAOYSA-N 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J11/00—Recovery or working-up of waste materials
- C08J11/04—Recovery or working-up of waste materials of polymers
- C08J11/10—Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
- C08J11/18—Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
- C08J11/22—Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
- C08J11/24—Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing hydroxyl groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/48—Separation; Purification; Stabilisation; Use of additives
- C07C67/52—Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
- C07C67/54—Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Polyesters Or Polycarbonates (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、粗ビス−β−ヒドロキシエチルテレフタレートの新規なる精製方法に関するものである。ビス−β−ヒドロキシエチルテレフタレートは、繊維、フィルム、樹脂など各種成形品分野で極めて有用なポリエステルであるポリエチレンテレフタレートの原料などとして、工業的に広く用いられているものである。
【0002】
【従来の技術】
ポリエステル、ことにポリエチレンテレフタレートを主たる構成成分とするポリエステルは、上述のごとく、各種用途に広く用いられている。その製造方法としては、テレフタル酸とエチレングリコールとの直接エステル化によるか、テレフタル酸の低級アルキルエステル、ことにジメチルテレフタレートとエチレングリコールとのエステル交換反応を経由して、ビス−β−ヒドロキシエチルテレフタレートを含む中間体を経たのち、通常はそれをそのまま高温、高真空下に縮合重合を行わせる工程に供する方法が、現在、主として実用的に実施されている。ポリエステルの用途は、その優れた性能に基づき、近年、ますます多岐にわたり、従って、その高品質化への要求性能も多様化かつ高度化しつつある。
【0003】
【発明が解決しようとする課題】
ポリエチレンテレフタレートは、基本的に前述のごとく高温、高真空下に重合触媒として各種金属化合物を存在させ、長時間溶融状態に保たれることにより高重合度化されることが通常必須であり、各種要求品質を網羅的に満たすことは容易ではない。かかるポリエステルを高度化させる手段として、従来、ポリエステル中に新規な共重合成分を加えたり、重合触媒を改良したり、各種添加物を加えるなどの方法が提案されてきたが、抜本的なものとはなり得ていない。
【0004】
【課題を解決するための手段】
本発明者は、ポリエステルの高品質化には、まずポリエステル原料の高品質化が基本であり、それによって本質的に高品質化されたポリエステルを得ることが可能となるのであって、前述した各種高度化手段は必要に応じて併用する補助的なものと位置付けるべきであるとの信念のもとに種々検討を重ねた。ポリエステルの原料として、テレフタル酸、あるいは、その低級アルキルエステルであるジメチルテレフタレートの精製については、従来から各種の提案がなされているが、より最終ポリマーに近い側にあるビス−β−ヒドロキシエチルテレフタレートについては、高品質化を達成する実用的手段が解明されておらず、それが達成されれば、それは本質的に高品質化されたポリエステルを得るための極めて有用な手段となると考え、鋭意研究を重ねた結果、ついに本発明を完成するに到った。
【0005】
すなわち、本発明によれば、ポリエチレンテレフタレートのエチレングリコール解重合により得られ、溶質中の(i)Na、Mg、Ca、Fe、Co、Zn、Ti、Sn、Sb、GeおよびPよりなるカチオン並びに(ii)ハロゲン、NO2、NO3、PO4およびSO4よりなるアニオンの合計含有量が50ppm以下であり、かつエチレングリコールの含有量が10重量%を超える粗ビス−β−ヒドロキシエチルテレフタレート含有混合物を、
(1)初期蒸発または蒸留してビス−β−ヒドロキシエチルテレフタレートよりも低沸点の化合物をエチレングリコールと共に留去せしめて、エチレングリコール含有量が5重量%以下の粗ビス−β−ヒドロキシエチルテレフタレート含有蒸発または蒸留残渣を得、次いで
(2)その蒸発または蒸留残渣を、分子蒸留せしめて、精製ビス−β−ヒドロキシエチルテレフタレートを分離せしめることを特徴とする粗ビス−β−ヒドロキシエチルテレフタレートの精製方法が提供される。
【0006】
従来、粗ビス−β−ヒドロキシエチルテレフタレートは、蒸発または蒸留によらず、再結晶操作により高品質化する提案が種々なされている。しかし、このような手法によっては、外見上あたかも高品質化したかのように見えるものの、実際には、なお不純物が残存し、それが高品質化されたポリエステルを得るうえでの障害となる場合が多かった。ことに、ポリエステルを回収し、エチレングリコールによってビス−β−ヒドロキシエチルテレフタレートに解重合して再度ポリエステルを得ようとする場合にあっては、その弊害が顕著に認められやすかった。一方、蒸発または蒸留精製により精製ビス−β−ヒドロキシエチルテレフタレートを得ようとする提案もなされているが、その場合にあっては、通常、粗ビス−β−ヒドロキシエチルテレフタレートは、蒸発または蒸留操作にかけられた場合、障害となる縮合反応が顕著に起こり、ビス−β−ヒドロキシエチルテレフタレート溜分を実用的に得ることが困難であった。
【0007】
本発明者の検討結果によれば、ビス−β−ヒドロキシエチルテレフタレートの蒸発または蒸留におけるかかる弊害は、その蒸発または蒸留操作に到るまでにおいて、脱カチオンおよび/または脱アニオン処理し、さらに、ビス−β−ヒドロキシエチルテレフタレートの沸点より低い沸点の物質を実質的に除去し、しかるのち、130〜250℃というビス−β−ヒドロキシエチルテレフタレートが品質劣化を起こしにくい温度領域において減圧下蒸発または蒸留することによって、実質的に抑止することが可能となり、高品質化されたポリエステルを得るに好適な精製ビス−β−ヒドロキシエチルテレフタレートを得ることができることを見出し既に提案した。
【0008】
かかる特殊な状態の粗ビス−β−ヒドロキシエチルテレフタレートから精製されたビス−β−ヒドロキシエチルテレフタレート溜分を実用的に得るには、減圧下に蒸発または蒸留を実施することが必須であり、また、それを実用的に実施するには、粗ビス−β−ヒドロキシエチルテレフタレートの蒸発または蒸留を蒸発または蒸留温度・圧力下における沸点蒸発または蒸留すなわち平衡蒸発または蒸留ではなく、一度蒸発したビス−β−ヒドロキシエチルテレフタレートの分子が実質的に再び蒸発面へ戻ることなく、蒸発面から凝縮面への分子の一方的移動が起こる非平衡蒸発または蒸留を行うことが必要となり、それに適した特殊な蒸発または蒸留手段が必要である。かかる蒸発または蒸留操作は、一般に分子蒸留という名称で呼ばれることがある。
さらに、粗ビス−β−ヒドロキシエチルテレフタレートを実用的に分子蒸留するためには、分子蒸留にかける前の粗ビス−β−ヒドロキシエチルテレフタレートを含む組成物が実質的に脱カチオンおよび/または脱アニオンされ、特定のカチオンおよびアニオンの合計含有量が一定量以下であることが必要である。
【0009】
本発明者は、かかる特殊な環境下での蒸発または蒸留操作を実施するにあたって、粗ビス−β−ヒドロキシエチルテレフタレートからの精製ビス−β−ヒドロキシエチルテレフタレートの収率を実用的に一層有利なレベルに得ようとすれば、蒸発または蒸留にかける粗ビス−β−ヒドロキシエチルテレフタレートを含む組成物が、実質的に脱カチオンおよび/または脱アニオンされたものであり、かつ、ビス−β−ヒドロキシエチルテレフタレートの沸点より低い沸点の物質が予め初期蒸発または蒸留によって、十分に除去されていることが必要であることを見出したのである。
【0010】
すなわち、粗ビス−β−ヒドロキシエチルテレフタレートを含む組成物は、一定割合量のエチレングリコールを含有していること、この組成物は脱カチオンおよび/または脱アニオン操作が容易にかつ安定して実施されること、かくして脱カチオンおよび/または脱アニオンされた前記組成物を初期蒸発または蒸留して、低沸点の化合物をエチレングリコールと共に留去して濃縮すること、かくして得られた濃縮物を減圧下に蒸発または蒸留することにより高度に精製されたビス−β−ヒドロキシエチルテレフタレートが工業的に有利に高い収率で得られることが見出された。
【0011】
本発明において、ビス−β−ヒドロキシエチルテレフタレートを減圧下に蒸発または蒸留し、その蒸発または蒸留操作を安定して実施し、高度に精製するためには、蒸発または蒸留に供する前に脱カチオンおよび/または脱アニオンされ、溶質中における(i)Na、Mg、Ca、Fe、Co、Zn、Ti、Sn、Sb、GeおよびPよりなるカチオンおよび(ii)ハロゲン、NO2、NO3、PO4およびSO4よりなるアニオンの合計イオン含有量が50ppm以下まで脱イオンされているべきである。
この合計イオン含有量は40ppm以下が好ましく、より好ましくは30ppm以下である。合計イオン含有量は少ない程有利であるが、10ppmより少なくするには、より煩雑な脱イオン工程が必要となり不経済となる。合計イオン含有量が下限が30ppm程度であれば、蒸発または蒸留に実質的に支障を与えない。最も好ましい合計イオン含有量は10ppm以下である。またアニオンの合計含有量は1ppm以下が適当である。
【0012】
前記のごとく特定カチオンおよびアニオン合計イオン含有量とするためには、イオン交換体、ことにイオン交換樹脂を用いることが好適である。その場合、ことにビス−β−ヒドロキシエチルテレフタレートを含む組成物が、エチレングリコールを主たる溶媒としてビス−β−ヒドロキシエチルテレフタレートを主たる溶質とする溶液において実質的に脱カチオンおよび/または脱アニオン処理することが実用的である。その際、脱カチオン処理および/または脱アニオン処理は、順序は関係なく、どちらが先でも後でもよい。そのような態様に適する脱カチオン用イオン交換樹脂の例としては、アンバーライトの陽イオン交換樹脂(オルガノ社製)を、脱アニオン用イオン交換樹脂の例としてはアンバーライトの陰イオン交換樹脂(オルガノ社製)等を挙げることができる。かかるイオン交換樹脂を用いた工程は、それ自体公知の方法を適用して実施することが可能であるが、脱カチオンおよび/または脱アニオンの操作を行う際に、エチレングリコールを主たる溶媒としビス−β−ヒドロキシエチルテレフタレートを主たる溶質とする溶液中でビス−β−ヒドロキシエチルテレフタレートが析出することなく、かつ、イオン交換樹脂が安定に使用に耐え得るような温度条件と溶液中のビス−β−ヒドロキシエチルテレフタレート濃度を選択することが好適である。
【0013】
すなわち、イオン交換樹脂処理を実施するに当って、粗ビス−β−ヒドロキシエチルテレフタレート含有混合物は、その中にエチレングリコールを10重量%を超えて、好ましくは30重量%を超えて含有していることが有利である。このエチレングリコールの含有量は、脱イオン処理において、ビス−β−ヒドロキシエチルテレフタレートが析出することなく溶液状態を保持し、しかも脱イオン効果を達成し、その上脱イオン操作を安定して実施するために望ましい。
さらに前記脱イオンの処理の前または後に(望ましくは前に)脱色処理することが好ましい。その脱色処理は活性炭処理などの吸着剤処理が有利である。
【0014】
脱イオン処理して得られた粗ビス−β−ヒドロキシエチルテレフタレート含有混合物は、なおエチレングリコールを前記範囲で含有しているが前記カチオンおよびアニオンの合計含有量が50ppm以下に低減されている。この混合物を直接減圧蒸発または蒸留機へ供給し、ビス−β−ヒドロキシエチルテレフタレートを蒸発または蒸留精製に供することは、蒸発または蒸留操作を効率的に進行させることが困難であり、しかも高品質の目的物を得るうえで有利ではない。そこで本発明においては、前記混合物を初期蒸発または蒸留によって、粗ビス−β−ヒドロキシエチルテレフタレートよりも低沸点の化合物をエチレングリコールと共に留去させる。
【0015】
この温度および圧力は、前記混合物中のエチレングリコールを含めて低沸点の化合物が留去する条件が選択される。具体的には、170℃以下の温度、好ましくは100〜150℃の温度が望ましく、さらに圧力は絶対圧として20,000Pa(150mmHg)以下、好ましくは130Pa(1mmHg)〜13,300(100mmHg)が望ましい。
この初期蒸発または蒸留は、混合物に含まれるエチレングリコール含有量が5重量%以下となるように実施される。かかる範囲にエチレングリコールを留去することによって、エチレングリコール以外の低沸点化合物が十分除去され、しかも次の蒸発または蒸留工程(分子蒸留工程)を有利に実施することができる程度に濃縮された蒸留残渣が得られる。
【0016】
また、該初期減圧蒸発または蒸留してビス−β−ヒドロキシエチルテレフタレートよりも低沸点物をエチレングリコールと共に留去せしめる過程で、ポリエステルに共重合されていた成分の少なくともその一部が除去される利点もある。かかる第3成分の例としては、後述する各種成分に挙げられたものの中のものがあるが、それらの中でも、イソフタル酸や、1,4−シクロヘキサンジメタノールなどが実質的に除去されるのは、大きな利点となり得る。
本発明においては前記のごとくして得られた初期蒸発または蒸留における蒸発または蒸留残渣を、減圧下において蒸留して精製ビス−β−ヒドロキシエチルテレフタレートを得る。
【0017】
本発明における減圧下の蒸発または蒸留を実施するにあって、前述した特定の粗ビス−β−ヒドロキシエチルテレフタレートと、従来一般に存在する本発明での規定を満たさないビス−β−ヒドロキシエチルテレフタレートとを、同条件に置いたときの挙動は、驚くべきとに全く異なっている。例えば、前記カチオンの重量が2,080ppmでありかつ前記アニオンの重量が22ppmである粗ビス−β−ヒドロキシエチルテレフタレートを含む組成物を脱カチオンおよび脱アニオン処理することなくビス−β−ヒドロキシエチルテレフタレートの沸点より低い沸点の物質の含有量が5.0重量%になるまで濃縮して分子蒸留にかけると、得られたビス−β−ヒドロキシエチルテレフタレートは目視で明らかに認識できる程度に着色しており、分子蒸留中のオリゴマー生成率が9.2%と高く、同時に析出物が蒸留機の伝熱面に固着・堆積して蒸留時の安定な伝熱を阻害し、ビス−β−ヒドロキシエチルテレフタレートの回収率も約90%以下となった。一方、脱カチオンおよび脱アニオン処理を行い前記カチオン重量10ppmおよび前記アニオン重量0ppmまで脱イオンした粗ビス−β−ヒドロキシエチルテレフタレートを含む組成物を同一条件まで濃縮し、同一条件で分子蒸留にかけると得られたビス−β−ヒドロキシエチルテレフタレートには目視で判別できる着色は無く、分子蒸留中のオリゴマー生成率は0.7%程度であり、析出物が蒸留機の伝熱面に固着することもほどんどなく安定な連続運転が可能となり、ビス−β−ヒドロキシエチルテレフタレートの回収率は約98%ないしそれ以上であった。
【0018】
本発明の初期蒸発または蒸留後の蒸留は、前記した合計イオン含有量およびエチレングリコールの含有量を特定量に制御された粗ビス−β−ヒドロキシエチルテレフタレートを減圧下に蒸発または蒸留することにより実施される。その際、蒸発または蒸留温度は130〜250℃の範囲が好ましく、160〜220℃の範囲が一層好ましい。また圧力は、300Pa(2.25mmHg)(絶対圧)以下の減圧下であることが好ましく、70Pa(0.5mmHg)(絶対圧)以下の範囲が一層有利である。
さらに蒸発または蒸留機中におけるビス−β−ヒドロキシエチルテレフタレートの平均滞留時間は2時間以下、好ましくは1.5時間以下であるのが有利である。
【0019】
本発明の蒸発または蒸留精製により回収された精製ビス−β−ヒドロキシエチルテレフタレートは、極めて高品質であり、前記カチオンおよびアニオンの合計含有量が15ppm以下、好適には5ppm以下である。さらにビス−β−ヒドロキシエチルテレフタレートの含有量が97重量%以上、好適には98重量%以上である。
かくして得られた精製ビス−β−ヒドロキシエチルテレフタレートは、ポリエチレンテレフタレートもしくはその共重合ポリエステルの製造に使用される。
【0020】
本発明によって得た精製ビス−β−ヒドロキシエチルテレフタレートは、前述のごとき各種用途に広く用いられるポリエステルの原料の少なくとも一部として使用するに好適なものである。具体的には、精製ビス−β−ヒドロキシエチルテレフタレートは、そのまま重合触媒の存在下に重合することができるし、またテレフタル酸と一緒に重合触媒の存在下に重合することもできる。
重合触媒としては、それ自体公知のものが使用できる。例えばアンチモン化合物、チタン化合物やゲルマニウム化合物が使用できる。
【0021】
かかるポリエステルとは、エチレンテレフタレートを主たる構成単位とするものであり、他の構成成分の1種以上を少割合共重合したものも含まれる。その共重合成分の許容される範囲は、例えば、全構成単位当り通常40モル%以下、好ましくは30モル%以下、さらに好適には20モル%以下である。共重合され得る成分の例としては、ジカルボン酸成分としてイソフタル酸、ジフェニルジカルボン酸、ジフェニルスルフォンジカルボン酸、ジフェニルエーテルジカルボン酸、ナフタレンジカルボン酸、ジフェノキシエタンジカルボン酸、ナトリウムスルフォイソフタル酸のごとき芳香族ジカルボン酸;セバチン酸、アジピン酸のごとき脂肪族ジカルボン酸;ヘキサヒドロテレフタル酸のごとき脂環族ジカルボン酸のごときものを挙げることができる。また、ジオール類としてトリメチレングリコール、テトラメチレングリコール、ヘキサメチレングリコール、シクロヘキサンジメタノール、ビス−β−ヒドロキシエチルビスフェノールA、ビス−β−ヒドロキシエトキシジフェニルスルフォン、ビス−β−ヒドロキシエトキシジフェニルエーテル、ジエチレングリコール、ポリエチレングリコールなどを挙げることができる。また、ヒドロキシカルボン酸類、例えば、p−ヒドロキシエトキシフェニルカルボン酸のごときものも例として挙げることができる。さらに、3官能以上の多官能化合物および/または単官能化合物を併用することもポリエステルが線状を保つ範囲において可能である。3官能以上の多官能化合物の例としては、トリメシン酸、グリセリン、ペンタエリスリトールなど、また、単官能化合物の例としては、ジフェニルモノカルボン酸、ジフェニルエーテルモノカルボン酸、フェノキシポリエチレングリコールなどを挙げることができる。これら各種共重合成分はエステルの状態にするなど、機能的誘導体として用いることが可能であり、また、それらは1種または2種以上であって良い。
【0022】
本発明者の検討結果によれば、本発明の方法によって得た精製ビス−β−ヒドロキシエチルテレフタレートをその製造原料の少なくとも一部として用いて得たポリエステルは、繊維、フィルム、ボトルなどといった各種成形品として何ら問題なく使用可能である。さらに、各種ポリエステル成形物を解重合して実質的に精製ビス−β−ヒドロキシエチルテレフタレートの段階に戻す場合にあって、通常、それはエチレングリコールを用いて解重合工程を実施することより、得られた解重合物はエチレングリコールを主溶媒とする溶液として得ることができ、その溶液をそのまま、あるいは適当な濃度に調整したうえで、前述したカチオンおよび/またはアニオンを除去する工程、また必要に応じその前、その間および/または後に脱色工程を経由することにより、本発明の方法に供する粗ビス−β−ヒドロキシエチルテレフタレートを含有する組成物とすることができ、それに本発明の精製方法を適用して精製されたビス−β−ヒドロキシエチルテレフタレートを得ることができるのである。
【0023】
そしてその精製ビス−β−ヒドロキシエチルテレフタレートは、高品質のポリエステルを再度製造する原料の少なくとも一部として供することが可能なのである。そのような場合にあって、解重合せんとするポリエステル成形物が、商品形態となっていたりした場合のように他の材料と混在していたり、ごみのような異物と混在しているような状態にあっても、必要に応じ、選別、濾別、などの異物除去工程を適用することによって本発明を支障なく実施することができるのである。
そのような具体的な例を挙げれば、例えば、ポリエステル成形品が繊維状の商品形態をとっていた場合、異種繊維と混在していたり、ポリエステル中に用いられている酸化チタンのごとき無機物を含んでいたりする状況、ポリエステルがフィルム状の形態であった場合に他種フィルム材料と混在したり、ポリエステル中に用いられている各種滑剤などを含んでいたりする状況、ポリエステルがその他の各種成形品、例えばボトルの形態であった場合に、蓋部分やボトム部分に用いられたポリエチレンなどの他種材料とともに破砕されて混在するような状況や、ラベルなどに用いられた紙またはプラスチック類のような他種材料と混在しているような状況は、むしろ通常にある状況であるが、本発明者の検討結果によれば、液々分離や固液分離など、従来公知の手法を適用し、かつ本発明の方法と、必要に応じ前述したような各種手法を用いることにより、高品質の目的物とすることが可能である。
【0024】
【実施例】
本発明をさらに具体的な態様について説明するために、以下実施例を挙げる。本発明が、これらの例のみに限定されるものでないことはいうまでもない。
【0025】
実施例1
使用済みペットボトル(ポリエチレンテレフタレート樹脂よりなる)の粉砕フレーク53kgとエチレングリコール298kgとを1m3の撹拌機付オートクレーブに仕込み、公知のエステル交換触媒であるナトリウムメチラート0.27kgを添加して200℃、常圧の条件下で4時間解重合して、エチレングリコールを主たる溶媒としビス−β−ヒドロキシエチルテレフタレートを主たる溶質とする溶液とし、この溶液を55℃に降温して全量活性炭による脱色処理をして350kgの原溶液を得た。原溶液の濃縮溶質中の総カチオン重量は2,080ppm、総アニオン重量は22ppmであった。この原溶液150kgを55℃の温度でカチオンイオン交換樹脂(オルガノ社製アンバーライトIR120−B)により脱カチオンし、続いてアニオンイオン交換樹脂(オルガノ社製アンバーライト IRA−400)により脱アニオンを行った。脱イオン後溶液の濃縮溶質中の総カチオン重量は9.4ppm、総アニオン重量は0ppmであった。この脱カチオン・脱アニオンされた溶液を500リッターの撹拌機付・真空発生装置付オートクレーブに仕込み135℃、10,670Pa(80mmHg)の条件で溶液中のエチレングリコール残重量が20重量%になるまでエチレングリコールを留去した後、伝熱面積0.5m2の真空薄膜蒸発機にて150℃、200Pa(1.5mmHg)の条件でビス−β−ヒドロキシエチルテレフタレートの沸点より低い沸点の物質含有量が5.0重量%になるまで濃縮して粗ビス−β−ヒドロキシエチルテレフタレートを含む組成物31.6kgを得た。
【0026】
この粗ビス−β−ヒドロキシエチルテレフタレートを含む組成物31.6kgを伝熱面積0.5m2の分子蒸留機にかけて温度200℃、24Pa(0.18mmHg)の条件で75分かけて分子蒸留し、精製ビス−β−ヒドロキシエチルテレフタレート29.4kgを得た。実施例の操作結果を表1に示す。また、得られた精製ビス−β−ヒドロキシエチルテレフタレートの品質分析値を表2に示す。次いで、得られた精製ビス−β−ヒドロキシエチルテレフタレートの常温粉末500gを1,000ccの攪拌機付ガラス製重合器に入れ、窒素ガスで十分に置換し、窒素ガス雰囲気下で130℃まで加温してビス−β−ヒドロキシエチルテレフタレートを溶融した後、予め沸点状態のエチレングリコールに六方晶系の二酸化ゲルマニウムを完全溶解した二酸化ゲルマニウム0.2重量部の液27.2gを、重合触媒として窒素ガス雰囲気下で添加し攪拌しながら20分かけてエチレングリコールの沸点(197℃)まで昇温し、さらに、常圧、197℃の条件で45分間加熱、攪拌を行いポリエチレンテレフタレートのオリゴマーを得た。続けて、このオリゴマーを280℃、90Pa(0.7mmHg)の条件で2時間かけて重縮合してポリエチレンテレフタレートを得た。得られたポリエチレンテレフタレートの品質分析値を表3に示す。精製ビス−β−ヒドロキシエチルテレフタレートおよびポリエチレンテレフタレートのいずれも実用上極めて優れた品質レベルであった。
【0027】
【表1】
【0028】
【表2】
【0029】
表中の光学密度とはビス−β−ヒドロキシエチルテレフタレートの品質評価法であり、着色物含量に比例的とする量である。10%メタノール溶液の吸光度を波長380nm、セル長10mmにて測定したものである。また、白度は測色色差計で測定し、ハンター法のL(明るさ)、a(赤色度)、b(黄色度)値で示した。
【0030】
【表3】
【0031】
表中の極限粘度はオルソクロロフェノール中30℃で測定した。また、白度は測色色差計で測定し、ハンター法のL(明るさ)、a(赤色度)、b(黄色度)値で示した。
【0032】
実施例2
実施例1で脱色処理した原溶液100kgを脱カチオンのみ行い、脱アニオンしないで実施例1と同一の操作を行った。この時の操作結果を表4に示す。
【0033】
【表4】
【0034】
得られたビス−β−ヒドロキシエチルテレフタレートは目視で識別できる程度には薄黄色に着色していたが、分子蒸留中のオリゴマー生成率は3.7%であり、析出物が蒸留機の伝熱面に固着・堆積するという現象はほとんど見られなかった。この時のビス−β−ヒドロキシエチルテレフタレートの回収率は87.4%であった。
【0035】
比較例1
実施例1で脱色処理した原溶液100kgを脱カチオンおよび脱アニオンしないで実施例1と同一の操作を行った。この時の操作結果を表5に示す。
【0036】
【表5】
【0037】
得られたビス−β−ヒドロキシエチルテレフタレートは目視で明らかに識別できる程に黄褐色に着色しており、分子蒸留中のオリゴマー生成率が9.2%と高く、同時に蒸留機の伝熱面に析出物が固着・堆積して安定な連続蒸留操作が困難であり、ビス−β−ヒドロキシエチルテレフタレートの回収率が69.2%に低下した。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel purification method for crude bis-β-hydroxyethyl terephthalate. Bis-β-hydroxyethyl terephthalate is widely used industrially as a raw material for polyethylene terephthalate, which is an extremely useful polyester in the field of various molded articles such as fibers, films, and resins.
[0002]
[Prior art]
As described above, polyesters having polyester, especially polyethylene terephthalate as a main constituent, are widely used in various applications. The production method includes bis-β-hydroxyethyl terephthalate by direct esterification of terephthalic acid and ethylene glycol, or via transesterification of lower alkyl ester of terephthalic acid, especially dimethyl terephthalate and ethylene glycol. In general, a method of subjecting an intermediate containing the polymer to a step of subjecting it to a condensation polymerization under high temperature and high vacuum as it is usually practiced mainly. In recent years, the use of polyester has become more and more diverse based on its superior performance. Therefore, the required performance for higher quality has been diversified and advanced.
[0003]
[Problems to be solved by the invention]
Polyethylene terephthalate is basically essential to have a high degree of polymerization by having various metal compounds present as a polymerization catalyst under high temperature and high vacuum as described above, and maintaining a molten state for a long time. It is not easy to exhaustively meet the required quality. As means for upgrading such polyester, methods such as adding a new copolymer component, improving a polymerization catalyst, and adding various additives have been proposed in the past. Can't be.
[0004]
[Means for Solving the Problems]
The present inventor is basically required to improve the quality of the polyester raw material, so that it is possible to obtain an essentially high-quality polyester. Various studies were repeated based on the belief that advanced measures should be positioned as ancillary to be used together as necessary. As a raw material for polyester, terephthalic acid or its lower alkyl ester, dimethyl terephthalate, has been proposed in various ways, but bis-β-hydroxyethyl terephthalate is closer to the final polymer. Has not yet clarified practical means to achieve high quality, and if it is achieved, it will be an extremely useful means to obtain high quality polyester. As a result of overlapping, the present invention has finally been completed.
[0005]
That is, according to the present invention, obtained with ethylene glycol depolymerization of polyethylene terephthalate, the solute (i) Na, Mg, Ca , Fe, Co, Zn, Ti, Sn, Sb, consisting Ge and P cations and (ii) halogen, NO 2, NO 3, PO 4 and SO are at 50ppm or less the total content of anions consisting of 4, and the content is crude bis -β- hydroxyethyl terephthalate content exceeding 10% by weight ethylene glycol The mixture
(1) Initial evaporation or distillation to distill off a compound having a boiling point lower than that of bis-β-hydroxyethyl terephthalate together with ethylene glycol, thereby containing crude bis-β-hydroxyethyl terephthalate having an ethylene glycol content of 5% by weight or less. A method for purifying crude bis-β-hydroxyethyl terephthalate, characterized in that an evaporation or distillation residue is obtained, and then (2) the evaporation or distillation residue is molecularly distilled to separate purified bis-β-hydroxyethyl terephthalate. Is provided.
[0006]
Conventionally, various proposals have been made to improve the quality of crude bis-β-hydroxyethyl terephthalate by recrystallization operation without evaporation or distillation. However, although it looks as if the quality has been improved by such a method, in practice, impurities still remain, which often becomes an obstacle to obtaining a high-quality polyester. It was. In particular, when the polyester was recovered and depolymerized to bis-β-hydroxyethyl terephthalate with ethylene glycol to obtain the polyester again, the adverse effects were easily recognized. On the other hand, proposals have also been made to obtain purified bis-β-hydroxyethyl terephthalate by evaporation or distillation purification. In that case, the crude bis-β-hydroxyethyl terephthalate is usually subjected to an evaporation or distillation operation. When it was subjected to, the condensing reaction which becomes an obstacle occurred remarkably, and it was difficult to obtain a bis-β-hydroxyethyl terephthalate fraction practically.
[0007]
According to the results of the study by the present inventor, such an adverse effect on the evaporation or distillation of bis-β-hydroxyethyl terephthalate is caused by decationization and / or deanion treatment before reaching the evaporation or distillation operation. Substantially remove substances with boiling points lower than that of β-hydroxyethyl terephthalate, and then evaporate or distill under reduced pressure in a temperature range of 130-250 ° C. where bis-β-hydroxyethyl terephthalate is unlikely to cause quality deterioration. As a result, it has been found that it is possible to substantially suppress it, and it is possible to obtain purified bis-β-hydroxyethyl terephthalate suitable for obtaining a high-quality polyester.
[0008]
In order to practically obtain a bis-β-hydroxyethyl terephthalate fraction purified from crude bis-β-hydroxyethyl terephthalate in such a special state, it is essential to carry out evaporation or distillation under reduced pressure. In order to carry it out practically, the evaporation or distillation of the crude bis-β-hydroxyethyl terephthalate is not evaporated or boiling under distillation temperature / pressure, ie boiling evaporation or distillation, ie equilibrium evaporation or distillation, once evaporated bis-β -It is necessary to perform non-equilibrium evaporation or distillation in which unilateral movement of the molecule from the evaporation surface to the condensation surface is performed without the hydroxyethyl terephthalate molecules returning to the evaporation surface substantially again, and special evaporation suitable for it. Or a distillation means is required. Such evaporation or distillation operations are sometimes commonly referred to as molecular distillation.
Further, for practical molecular distillation of the crude bis-β-hydroxyethyl terephthalate, the composition containing the crude bis-β-hydroxyethyl terephthalate prior to molecular distillation is substantially decationized and / or deanionized. And the total content of specific cations and anions is required to be a certain amount or less.
[0009]
In carrying out the evaporation or distillation operation under such special circumstances, the inventor has achieved a practically more advantageous level of yield of purified bis-β-hydroxyethyl terephthalate from crude bis-β-hydroxyethyl terephthalate. The composition containing crude bis-β-hydroxyethyl terephthalate to be evaporated or distilled is substantially decationized and / or deanionized, and bis-β-hydroxyethyl is obtained. It has been found that a substance having a boiling point lower than that of terephthalate needs to be sufficiently removed in advance by initial evaporation or distillation.
[0010]
That is, the composition containing crude bis-β-hydroxyethyl terephthalate contains a certain amount of ethylene glycol, and this composition is easily and stably subjected to decationization and / or deanion operation. By first evaporating or distilling the composition thus decationized and / or deanionized and distilling off the low-boiling compounds together with ethylene glycol, and concentrating the resulting concentrate under reduced pressure. It has been found that highly purified bis-β-hydroxyethyl terephthalate can be obtained industrially advantageously in high yields by evaporation or distillation.
[0011]
In the present invention, in order to evaporate or distill bis-β-hydroxyethyl terephthalate under reduced pressure, perform the evaporating or distilling operation stably and highly purify, decationization and distillation before evaporating or distilling are performed. And / or a cation composed of (i) Na, Mg, Ca, Fe, Co, Zn, Ti, Sn, Sb, Ge and P and (ii) halogen, NO 2 , NO 3 , PO 4 in the solute. And the total ion content of the anion consisting of SO 4 should be deionized to 50 ppm or less.
The total ion content is preferably 40 ppm or less, more preferably 30 ppm or less. The smaller the total ion content, the more advantageous. However, if it is less than 10 ppm, a more complicated deionization step is required, which is uneconomical. If the total ion content has a lower limit of about 30 ppm, it does not substantially hinder evaporation or distillation. The most preferred total ion content is 10 ppm or less. Further, the total content of anions is suitably 1 ppm or less.
[0012]
In order to obtain the total ion content of the specific cation and anion as described above, it is preferable to use an ion exchanger, particularly an ion exchange resin. In that case, in particular, a composition containing bis-β-hydroxyethyl terephthalate is substantially decationized and / or deanionized in a solution having bis-β-hydroxyethyl terephthalate as the main solute with ethylene glycol as the main solvent. It is practical. In that case, the order of the decation treatment and / or the deanion treatment is not related, and either may be performed first or after. An example of an ion exchange resin for decation suitable for such an embodiment is Amberlite cation exchange resin (manufactured by Organo), and an example of anion exchange resin for deanion is Amberlite anion exchange resin (organo). For example). The process using such an ion exchange resin can be carried out by applying a method known per se. However, in the decationization and / or deanion operation, ethylene glycol is used as a main solvent and bis- The temperature conditions and the bis-β- in the solution are such that the ion exchange resin can withstand stable use without precipitation of bis-β-hydroxyethyl terephthalate in a solution containing β-hydroxyethyl terephthalate as the main solute. It is preferred to select the hydroxyethyl terephthalate concentration.
[0013]
That is, in carrying out the ion exchange resin treatment, the crude bis-β-hydroxyethyl terephthalate-containing mixture contains ethylene glycol in an amount of more than 10% by weight, preferably more than 30% by weight. It is advantageous. The content of this ethylene glycol maintains the solution state without the precipitation of bis-β-hydroxyethyl terephthalate in the deionization process, achieves the deionization effect, and stably performs the deionization operation. Desirable for.
Further, it is preferable to perform a decolorization treatment before or after (desirably before) the deionization treatment. The decolorization treatment is advantageously an adsorbent treatment such as activated carbon treatment.
[0014]
The crude bis-β-hydroxyethyl terephthalate-containing mixture obtained by deionization treatment still contains ethylene glycol in the above range, but the total content of the cation and anion is reduced to 50 ppm or less. Supplying this mixture directly to a vacuum evaporator or distiller and subjecting bis-β-hydroxyethyl terephthalate to evaporation or distillation purification makes it difficult to efficiently carry out the evaporation or distillation operation, and high quality. It is not advantageous in obtaining the object. Therefore, in the present invention, the compound having a lower boiling point than that of crude bis-β-hydroxyethyl terephthalate is distilled off together with ethylene glycol by initial evaporation or distillation of the mixture.
[0015]
The temperature and pressure are selected so that low boiling point compounds including ethylene glycol in the mixture are distilled off. Specifically, a temperature of 170 ° C. or less, preferably 100 to 150 ° C. is desirable, and the pressure is 20,000 Pa (150 mmHg) or less, preferably 130 Pa (1 mmHg) to 13,300 (100 mmHg) as an absolute pressure. desirable.
This initial evaporation or distillation is carried out so that the ethylene glycol content in the mixture is 5% by weight or less. By distilling off ethylene glycol in such a range, low-boiling compounds other than ethylene glycol are sufficiently removed, and the distillation is concentrated to such an extent that the next evaporation or distillation step (molecular distillation step) can be advantageously carried out. A residue is obtained.
[0016]
Further, at least part of the component copolymerized with the polyester is removed in the process of evaporating or distilling the lower boiling point than bis-β-hydroxyethyl terephthalate together with ethylene glycol by the initial vacuum evaporation or distillation. There is also. Examples of the third component include those listed in the various components described later. Among them, isophthalic acid, 1,4-cyclohexanedimethanol and the like are substantially removed. Can be a big advantage.
In the present invention, the evaporation or distillation residue in the initial evaporation or distillation obtained as described above is distilled under reduced pressure to obtain purified bis-β-hydroxyethyl terephthalate.
[0017]
In carrying out the evaporation or distillation under reduced pressure in the present invention, the above-mentioned specific crude bis-β-hydroxyethyl terephthalate and bis-β-hydroxyethyl terephthalate which does not satisfy the provisions of the present invention generally existing Is surprisingly different when placed under the same conditions. For example, a composition comprising crude bis-β-hydroxyethyl terephthalate having a weight of 2,080 ppm of the cation and a weight of 22 ppm of the anion is bis-β-hydroxyethyl terephthalate without decation and deanion treatment. When the content of the substance having a boiling point lower than the boiling point of the product is concentrated to 5.0% by weight and subjected to molecular distillation, the resulting bis-β-hydroxyethyl terephthalate is colored so as to be clearly recognized visually. The oligomer production rate during molecular distillation is as high as 9.2%, and at the same time, the precipitates adhere and deposit on the heat transfer surface of the distiller to inhibit stable heat transfer during distillation, and bis-β-hydroxyethyl The recovery rate of terephthalate was also about 90% or less. On the other hand, a composition containing crude bis-β-hydroxyethyl terephthalate that has been decationized and deanionized and deionized to the cation weight of 10 ppm and the anion weight of 0 ppm is concentrated to the same conditions and subjected to molecular distillation under the same conditions. The obtained bis-β-hydroxyethyl terephthalate has no visible coloration, the oligomer production rate during molecular distillation is about 0.7%, and the precipitate may stick to the heat transfer surface of the distiller. A fairly stable continuous operation became possible, and the recovery rate of bis-β-hydroxyethyl terephthalate was about 98% or more.
[0018]
The initial evaporation or distillation after the distillation of the present invention is carried out by evaporating or distilling the crude bis-β-hydroxyethyl terephthalate having the total ion content and ethylene glycol content controlled to a specific amount under reduced pressure. Is done. At that time, the evaporation or distillation temperature is preferably in the range of 130 to 250 ° C, more preferably in the range of 160 to 220 ° C. The pressure is preferably under a reduced pressure of 300 Pa (2.25 mmHg) (absolute pressure) or less, and a range of 70 Pa (0.5 mmHg) (absolute pressure) or less is more advantageous.
Further, the average residence time of bis-β-hydroxyethyl terephthalate in the evaporator or distiller is advantageously 2 hours or less, preferably 1.5 hours or less.
[0019]
The purified bis-β-hydroxyethyl terephthalate recovered by the evaporation or distillation purification of the present invention is extremely high quality, and the total content of the cation and anion is 15 ppm or less, preferably 5 ppm or less. Furthermore, the content of bis-β-hydroxyethyl terephthalate is 97% by weight or more, preferably 98% by weight or more.
The purified bis-β-hydroxyethyl terephthalate thus obtained is used for the production of polyethylene terephthalate or a copolyester thereof.
[0020]
The purified bis-β-hydroxyethyl terephthalate obtained by the present invention is suitable for use as at least a part of a polyester raw material widely used in various applications as described above. Specifically, the purified bis-β-hydroxyethyl terephthalate can be polymerized as it is in the presence of a polymerization catalyst, or can be polymerized in the presence of a polymerization catalyst together with terephthalic acid.
As the polymerization catalyst, those known per se can be used. For example, an antimony compound, a titanium compound, or a germanium compound can be used.
[0021]
Such a polyester has ethylene terephthalate as a main structural unit, and includes one obtained by copolymerizing a small proportion of one or more of other structural components. The permissible range of the copolymer component is, for example, usually 40 mol% or less, preferably 30 mol% or less, more preferably 20 mol% or less per total structural unit. Examples of components that can be copolymerized include aromatic dicarboxylic acids such as isophthalic acid, diphenyldicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenyl ether dicarboxylic acid, naphthalenedicarboxylic acid, diphenoxyethanedicarboxylic acid, sodium sulfoisophthalic acid as dicarboxylic acid components. Acids; aliphatic dicarboxylic acids such as sebacic acid and adipic acid; and alicyclic dicarboxylic acids such as hexahydroterephthalic acid. Further, as diols, trimethylene glycol, tetramethylene glycol, hexamethylene glycol, cyclohexanedimethanol, bis-β-hydroxyethylbisphenol A, bis-β-hydroxyethoxydiphenyl sulfone, bis-β-hydroxyethoxydiphenyl ether, diethylene glycol, polyethylene A glycol etc. can be mentioned. Further, hydroxycarboxylic acids such as p-hydroxyethoxyphenyl carboxylic acid can also be mentioned as examples. Furthermore, it is possible to use a polyfunctional compound having three or more functions and / or a monofunctional compound in a range where the polyester is kept linear. Examples of trifunctional or higher polyfunctional compounds include trimesic acid, glycerin, pentaerythritol and the like, and examples of monofunctional compounds include diphenyl monocarboxylic acid, diphenyl ether monocarboxylic acid, phenoxy polyethylene glycol and the like. . These various copolymerization components can be used as functional derivatives such as in the form of an ester, and they may be used alone or in combination of two or more.
[0022]
According to the study results of the present inventors, the polyester obtained by using the purified bis-β-hydroxyethyl terephthalate obtained by the method of the present invention as at least a part of its production raw material is formed into various moldings such as fibers, films, bottles and the like. The product can be used without any problems. Further, when various polyester moldings are depolymerized and returned to the substantially purified bis-β-hydroxyethyl terephthalate stage, it is usually obtained by carrying out the depolymerization step using ethylene glycol. The depolymerized product can be obtained as a solution containing ethylene glycol as the main solvent, and the solution is used as it is or after adjusting the concentration to an appropriate concentration, and then the step of removing the cation and / or anion described above, and if necessary. Before, during and / or after that, a composition containing crude bis-β-hydroxyethyl terephthalate to be used in the method of the present invention can be obtained by passing through a decolorization step, and the purification method of the present invention is applied to the composition. Thus, purified bis-β-hydroxyethyl terephthalate can be obtained.
[0023]
The purified bis-β-hydroxyethyl terephthalate can be used as at least a part of a raw material for producing a high-quality polyester again. In such a case, the polyester molded product to be depolymerized is mixed with other materials, such as when it is in the form of a product, or mixed with foreign substances such as dust. Even if it is in a state, the present invention can be implemented without hindrance by applying a foreign matter removing process such as sorting, filtering, etc. as necessary.
For example, when the polyester molded product is in the form of a fibrous product, it is mixed with different kinds of fibers or contains an inorganic material such as titanium oxide used in the polyester. Situations where the polyester is in the form of a film, mixed with other types of film materials, or contains various lubricants used in the polyester, the polyester is other various molded products, For example, when it is in the form of a bottle, it is crushed and mixed with other types of materials such as polyethylene used for the lid and bottom parts, and other materials such as paper or plastic used for labels etc. The situation where it is mixed with seed materials is rather normal, but according to the results of the study by the inventor, liquid-liquid separation or solid-liquid separation. Etc., applying the conventional techniques, and the methods of the present invention, by using a variety of techniques such as those as required above, it is possible to high quality desired product.
[0024]
【Example】
The following examples are provided to further illustrate the present invention. Needless to say, the present invention is not limited to these examples.
[0025]
Example 1
53 kg of pulverized flakes of used PET bottles (made of polyethylene terephthalate resin) and 298 kg of ethylene glycol were charged into a 1 m 3 autoclave with a stirrer, and 0.27 kg of sodium methylate, a known transesterification catalyst, was added to the mixture at 200 ° C. The solution is depolymerized under normal pressure for 4 hours to obtain a solution containing ethylene glycol as the main solvent and bis-β-hydroxyethyl terephthalate as the main solute, and this solution is cooled to 55 ° C. and decolorized with activated carbon Thus, 350 kg of the original solution was obtained. The total cation weight in the concentrated solute of the original solution was 2,080 ppm, and the total anion weight was 22 ppm. 150 kg of this stock solution was decationized with a cation ion exchange resin (Amberlite IR120-B manufactured by Organo) at a temperature of 55 ° C., and then deanion was performed with an anion ion exchange resin (Amberlite IRA-400 manufactured by Organo). It was. After deionization, the total cation weight in the concentrated solute of the solution was 9.4 ppm, and the total anion weight was 0 ppm. This decationized / deanionized solution is charged into a 500 liter autoclave equipped with a stirrer / vacuum generator until the residual weight of ethylene glycol in the solution reaches 20% by weight at 135 ° C. and 10,670 Pa (80 mmHg). After distilling off ethylene glycol, the content of the substance having a boiling point lower than that of bis-β-hydroxyethyl terephthalate at 150 ° C. and 200 Pa (1.5 mmHg) in a vacuum thin film evaporator having a heat transfer area of 0.5 m 2 Was concentrated to 5.0 wt% to obtain 31.6 kg of a composition containing crude bis-β-hydroxyethyl terephthalate.
[0026]
31.6 kg of the composition containing this crude bis-β-hydroxyethyl terephthalate was subjected to molecular distillation over 75 minutes under conditions of a temperature of 200 ° C. and 24 Pa (0.18 mmHg) in a molecular distillation machine having a heat transfer area of 0.5 m 2 , 29.4 kg of purified bis-β-hydroxyethyl terephthalate was obtained. Table 1 shows the operation results of the examples. Table 2 shows the quality analysis values of the obtained purified bis-β-hydroxyethyl terephthalate. Next, 500 g of the resulting purified bis-β-hydroxyethyl terephthalate powder at room temperature was placed in a 1,000 cc glass polymerizer equipped with a stirrer, thoroughly replaced with nitrogen gas, and heated to 130 ° C. under a nitrogen gas atmosphere. After melting bis-β-hydroxyethyl terephthalate, 27.2 g of a solution of 0.2 parts by weight of germanium dioxide in which hexagonal germanium dioxide is completely dissolved in ethylene glycol in a boiling state is used as a polymerization catalyst in a nitrogen gas atmosphere. The temperature was raised to the boiling point of ethylene glycol (197 ° C.) over 20 minutes with stirring, and the mixture was further heated and stirred for 45 minutes at normal pressure and 197 ° C. to obtain an oligomer of polyethylene terephthalate. Subsequently, this oligomer was polycondensed under the conditions of 280 ° C. and 90 Pa (0.7 mmHg) over 2 hours to obtain polyethylene terephthalate. Table 3 shows the quality analysis values of the obtained polyethylene terephthalate. Both purified bis-β-hydroxyethyl terephthalate and polyethylene terephthalate were practically excellent quality levels.
[0027]
[Table 1]
[0028]
[Table 2]
[0029]
The optical density in the table is a method for evaluating the quality of bis-β-hydroxyethyl terephthalate, and is an amount that is proportional to the color content. The absorbance of a 10% methanol solution was measured at a wavelength of 380 nm and a cell length of 10 mm. The whiteness was measured with a colorimetric color difference meter and indicated by L (brightness), a (redness), and b (yellowness) values of the Hunter method.
[0030]
[Table 3]
[0031]
The intrinsic viscosity in the table was measured at 30 ° C. in orthochlorophenol. The whiteness was measured with a colorimetric color difference meter and indicated by L (brightness), a (redness), and b (yellowness) values of the Hunter method.
[0032]
Example 2
100 kg of the stock solution decolorized in Example 1 was subjected only to decationization, and the same operation as in Example 1 was performed without deionization. Table 4 shows the operation results at this time.
[0033]
[Table 4]
[0034]
The resulting bis-β-hydroxyethyl terephthalate was colored pale yellow to such an extent that it could be visually discerned, but the oligomer production rate during molecular distillation was 3.7%, and the precipitate was the heat transfer of the distiller. There was almost no phenomenon of sticking / depositing on the surface. At this time, the recovery rate of bis-β-hydroxyethyl terephthalate was 87.4%.
[0035]
Comparative Example 1
The same operation as in Example 1 was performed on 100 kg of the stock solution decolorized in Example 1 without decation and deanion. Table 5 shows the operation results at this time.
[0036]
[Table 5]
[0037]
The obtained bis-β-hydroxyethyl terephthalate is colored yellowish brown so that it can be clearly discerned, and the oligomer production rate during molecular distillation is as high as 9.2%. Precipitates adhered and deposited, making stable continuous distillation difficult, and the recovery rate of bis-β-hydroxyethyl terephthalate was reduced to 69.2%.
Claims (5)
(1)初期蒸発または蒸留してビス−β−ヒドロキシエチルテレフタレートよりも低沸点の化合物をエチレングリコールと共に留去せしめて、エチレングリコール含有量が5重量%以下の粗ビス−β−ヒドロキシエチルテレフタレート含有蒸発または蒸留残渣を得、次いで
(2)その蒸発または蒸留残渣を、分子蒸留せしめて、精製ビス−β−ヒドロキシエチルテレフタレートを分離せしめることを特徴とする粗ビス−β−ヒドロキシエチルテレフタレートの精製方法。 Obtained by ethylene glycol depolymerization of polyethylene terephthalate, the solute (i) Na, Mg, Ca , Fe, Co, Zn, Ti, Sn, Sb, consisting Ge and P cations and (ii) halogen, NO 2, the NO 3, PO 4 and the total content of anions consisting of SO 4 is not more 50ppm or less, and the content of ethylene glycol exceeds 10 wt% crude bis -β- hydroxyethyl terephthalate-containing mixture,
(1) Initial evaporation or distillation to distill off a compound having a lower boiling point than bis-β-hydroxyethyl terephthalate together with ethylene glycol, containing crude bis-β-hydroxyethyl terephthalate having an ethylene glycol content of 5% by weight or less A method for purifying crude bis-β-hydroxyethyl terephthalate, characterized by obtaining an evaporation or distillation residue and then (2) molecularly distilling the evaporation or distillation residue to separate purified bis-β-hydroxyethyl terephthalate .
Priority Applications (19)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22266499A JP3782906B2 (en) | 1999-08-05 | 1999-08-05 | Crude bis-β-hydroxyethyl terephthalate purification method |
CNA2004100013313A CN1511821A (en) | 1999-08-04 | 1999-12-24 | Bis-beta-hydroxyethyl terephthalate production process and purification process |
DE69920025T DE69920025T2 (en) | 1999-08-04 | 1999-12-24 | PROCESS FOR THE PREPARATION OR PURIFICATION OF BIS- (BETA) -HYDROXYETHYLTEREPHTHALATE |
KR1020067019510A KR100740059B1 (en) | 1999-08-04 | 1999-12-24 | BIS-β-HYDROXYETHYL TEREPHTHALATE PRODUCTION PROCESS AND PURIFICATION PROCESS |
EP99961372A EP1120394B1 (en) | 1999-08-04 | 1999-12-24 | Methods for the preparation or purification of bis-(beta)-hydroxyethyl terephthalate |
KR1020007009039A KR100701842B1 (en) | 1999-08-04 | 1999-12-24 | Bis-?-hydroxyethyl terephthalate production process and purification process |
CNB998114219A CN1195727C (en) | 1999-08-04 | 1999-12-24 | Methods for the preparation or purification of bis-beta-hydroxyethyl terephthalate |
ES99961372T ES2228142T3 (en) | 1999-08-04 | 1999-12-24 | PROCESS OF PRODUCTION OR PURIFICATION OF BIS- (BETA) -HYDROXIETIL TEREFTALATO. |
CA002318761A CA2318761A1 (en) | 1999-08-04 | 1999-12-24 | Bis-beta-hydroxyethyl terephthalate production process and purification process |
KR1020067019511A KR100740060B1 (en) | 1999-08-04 | 1999-12-24 | BIS-β-HYDROXYETHYL TEREPHTHALATE PRODUCTION PROCESS AND PURIFICATION PROCESS |
IDW20001563A ID26736A (en) | 1999-08-04 | 1999-12-24 | PRODUCTION PROCESS AND REFINED BIS-HYDROXYETHYL PURIFICATION PROCESS |
AT99961372T ATE275538T1 (en) | 1999-08-04 | 1999-12-24 | METHOD FOR PRODUCING OR PURIFYING BIS-(BETA)-HYDROXYETHYL TEREPHTHALATE |
US09/622,518 US6630601B1 (en) | 1999-08-04 | 1999-12-24 | Methods for the preparation or purification of bis-β-hydroxyethyl terephthalate |
PCT/JP1999/007284 WO2001010812A1 (en) | 1999-08-04 | 1999-12-24 | METHODS FOR THE PREPARATION OR PURIFICATION OF BIS-β-HYDROXYETHYL TEREPHTHALATE |
CNA2004100013328A CN1511823A (en) | 1999-08-04 | 1999-12-24 | Bis-beta-hydroxyethyl terephthalate production process and purification process |
AU18005/00A AU764053B2 (en) | 1999-08-04 | 1999-12-24 | Methods for the preparation or purification of bis-beta-hydroxyethyl terephthalate |
TW089100024A TW506968B (en) | 1999-08-04 | 2000-01-03 | Bis-β-hydroxyethyl terephthalate production process and purification process |
HK02101199.5A HK1040236A1 (en) | 1999-08-04 | 2002-02-19 | METHODS FOR THE PREPARATION OR PURIFICATION OF BIS- β -HYDROXYETHYL TEREPHTHALATE |
US10/623,002 US7193104B2 (en) | 1999-08-04 | 2003-07-18 | Bis-β-hydroxyethyl terephthalate production process and purification process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22266499A JP3782906B2 (en) | 1999-08-05 | 1999-08-05 | Crude bis-β-hydroxyethyl terephthalate purification method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001048836A JP2001048836A (en) | 2001-02-20 |
JP3782906B2 true JP3782906B2 (en) | 2006-06-07 |
Family
ID=16786005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22266499A Expired - Lifetime JP3782906B2 (en) | 1999-08-04 | 1999-08-05 | Crude bis-β-hydroxyethyl terephthalate purification method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3782906B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1510514A4 (en) | 2002-06-04 | 2006-03-08 | Aies Co Ltd | Processes for the purification of bis(2-hydroxyethyl) terephthalate |
IT201900025039A1 (en) * | 2019-12-20 | 2021-06-20 | Garbo S R L | PROCESS TO PURIFY BIS (2-HYDROXYETHYL) TEREPHTHALATE. |
-
1999
- 1999-08-05 JP JP22266499A patent/JP3782906B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001048836A (en) | 2001-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100740059B1 (en) | BIS-β-HYDROXYETHYL TEREPHTHALATE PRODUCTION PROCESS AND PURIFICATION PROCESS | |
CA2355309C (en) | Method of polymerizing deionized bis-.beta.-hydroxyethyl terephthalate | |
US7030264B1 (en) | Bis-β-hydroxyethyl terephthalate | |
JP3782906B2 (en) | Crude bis-β-hydroxyethyl terephthalate purification method | |
JP2002121173A (en) | METHOD FOR PURIFYING CRUDE BIS-beta-HYDROXYETHYL TEREPHTHALATE AND THE THUS PURIFIED BIS-beta-HYDROXYETHYL TEREPHTHALATE | |
JP3782905B2 (en) | Method for purifying crude bis-β-hydroxyethyl terephthalate and purified bis-β-hydroxyethyl terephthalate | |
AU2575400A (en) | Novel sulforhamnosylacylglycerol derivatives and use thereof as medicaments | |
JP3782907B2 (en) | Process for producing bis-β-hydroxyethyl terephthalate and / or its low condensate | |
JPH0770299A (en) | Production of high-molecular-weight polyester resin from 2,6-naphthalenedicarboxylic acid | |
TW574208B (en) | Process for removing titanium oxide or iron oxide red from depolymerization products from with ethylene glycol solvolysis of polyesters containing titanium oxide or iron oxide red | |
JP4187979B2 (en) | Method for treating ethylene glycol recovered distillation residue | |
EP4361195A1 (en) | Polyester resin using recycled bis(2-hydroxyethyl)terephthalate and article including same | |
JP2001335539A (en) | METHOD FOR DISTILLING FOR PURIFYING BIS-beta-HYDROXYETHYL TEREPHTHALATE | |
JP2001048837A (en) | Production of bis-beta-hydroxyethyl terephthalate with low ion content | |
JP2001322967A (en) | Method for distilling and purifying bis-beta- hydroxyethyl terephthalate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051212 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060126 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060306 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060313 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3782906 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090317 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090317 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100317 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100317 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110317 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120317 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130317 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140317 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |