JP3781756B2 - Continuous solid-liquid separation method and apparatus by vacuum degassing treatment - Google Patents

Continuous solid-liquid separation method and apparatus by vacuum degassing treatment Download PDF

Info

Publication number
JP3781756B2
JP3781756B2 JP2004097971A JP2004097971A JP3781756B2 JP 3781756 B2 JP3781756 B2 JP 3781756B2 JP 2004097971 A JP2004097971 A JP 2004097971A JP 2004097971 A JP2004097971 A JP 2004097971A JP 3781756 B2 JP3781756 B2 JP 3781756B2
Authority
JP
Japan
Prior art keywords
liquid
vacuum
solid
sludge
decompression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004097971A
Other languages
Japanese (ja)
Other versions
JP2005279471A (en
Inventor
正和 澤井
修一郎 畠山
隆良 諸岡
正樹 神澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2004097971A priority Critical patent/JP3781756B2/en
Publication of JP2005279471A publication Critical patent/JP2005279471A/en
Application granted granted Critical
Publication of JP3781756B2 publication Critical patent/JP3781756B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)

Description

本願発明は、下水汚泥等の汚泥を減圧脱気処理して固液分離する方法とその装置に関し、詳しくは、原汚泥を連続的に供給しながら固液分離を行える固液分離方法とその装置に関する。   TECHNICAL FIELD The present invention relates to a method and apparatus for performing solid-liquid separation by subjecting sludge such as sewage sludge under reduced pressure, and in particular, a solid-liquid separation method and apparatus capable of performing solid-liquid separation while continuously supplying raw sludge. About.

従来より、下水汚泥等の汚泥処理において、汚泥の腐敗を防止する技術、減量の為に濃縮、脱水する技術などの開発が盛んに行われている。   2. Description of the Related Art Conventionally, in sludge treatment such as sewage sludge, techniques for preventing sludge decay and techniques for concentrating and dewatering for weight reduction have been actively developed.

例えば、低濃度の固形物を含む原汚泥から固形物(固体分)を分離回収する技術として、重力沈降法、遠心濃縮法、加圧浮上法、常圧浮上法などの方法がある。しかし、これらの方法は、装置の大きさ、処理速度、処理エネルギー、装置の複雑さなどに一長一短がある。   For example, as a technique for separating and recovering solids (solid content) from raw sludge containing low-concentration solids, there are methods such as gravity sedimentation, centrifugal concentration, pressurized flotation, and atmospheric flotation. However, these methods have advantages and disadvantages in the size, processing speed, processing energy, and complexity of the device.

このような汚泥の固液分離方法の1つとして減圧脱気処理がある。この減圧脱気処理は、真空に近い減圧容器内に原汚泥を投入し、原汚泥中の溶存ガスを減圧発泡させて発泡したガスに汚泥の固体分を同伴させて浮上させることにより、容器内の上部に固体分、下部に液体分を分離する汚泥の固液分離技術である。そして、このようにして容器の上部に固体分(濃縮汚泥)下部に液体分(脱離液)を分離した後は、容器下部から脱離液を排出した後に、その上部に溜まった濃縮汚泥を排出している。   One such sludge solid-liquid separation method is vacuum degassing. In this vacuum degassing treatment, raw sludge is put into a vacuum container close to a vacuum, dissolved gas in the raw sludge is foamed under reduced pressure, and the foamed gas is allowed to float with the solid content of the sludge. This is a sludge solid-liquid separation technology that separates the solids at the top and the liquids at the bottom. And after separating the liquid (desorbed liquid) in the lower part of the solid (concentrated sludge) in the upper part of the container in this way, after draining the desorbed liquid from the lower part of the container, the concentrated sludge accumulated in the upper part is removed. It is discharging.

この種の減圧脱気処理に関する従来技術として、本出願人が先に出願した発明では、容器内に満たされた液体を下部から吸引ポンプで吸い出して容器上部に真空層を形成し、この真空層に汚泥を投入することにより、嫌気性汚泥から発生する二酸化炭素(CO2 )やメタン(CH4 )等の溶存ガスを汚泥に同伴させることにより上部に浮上させて固液分離を促するようにしたものがある(例えば、特許文献1参照。)。
特開平10−156399号公報(第4頁、図1−8)
As a prior art related to this type of vacuum degassing treatment, in the invention previously filed by the present applicant, the liquid filled in the container is sucked out from the lower part by a suction pump to form a vacuum layer on the upper part of the container. By introducing sludge into the sludge, the dissolved gas such as carbon dioxide (CO 2 ) and methane (CH 4 ) generated from the anaerobic sludge is caused to rise to the top by entraining the sludge to promote solid-liquid separation. (For example, refer to Patent Document 1).
Japanese Patent Laid-Open No. 10-156399 (page 4, FIG. 1-8)

しかしながら、前記特許文献1では、固液分離した脱離液を下方に排出した後で上方に分離された濃縮汚泥を排出するため、その間は減圧容器への原汚泥供給も停止しなければならず、固液分離の操作も停止しなければならない。つまり、減圧容器内への給液は間欠になる。しかも、数十分の静置時間が必要となるため、容器への供給(給液)や排出(排液)を停止する間欠時間が長くなり、連続運転ができない。そのため、連続的に発生する原汚泥に対しては、減圧容器への給液を停止することができるように、その原汚泥を溜めておく原汚泥貯留槽を設ける必要がある。   However, in Patent Document 1, since the concentrated sludge separated upward is discharged after discharging the desorbed liquid separated into solid and liquid, the supply of raw sludge to the decompression vessel must be stopped during that time. The operation of solid-liquid separation must also be stopped. That is, the liquid supply into the decompression container is intermittent. In addition, since several tens of minutes of standing time is required, the intermittent time for stopping supply (liquid supply) and discharge (drainage) to the container becomes long, and continuous operation cannot be performed. For this reason, it is necessary to provide a raw sludge storage tank for storing the raw sludge so that the supply of liquid to the decompression vessel can be stopped for continuously generated raw sludge.

さらに、このように減圧容器内に供給した原汚泥を減圧脱気することによって固液分離する場合の処理能力は減圧容器の容量に制限され、減圧容器で間欠的に固液分離して排出する量によって決まってしまう。そのため、処理能力を上げるには多くの減圧容器が必要となり、設備スペースの問題や設備費用の増加を招いてしまう。   Furthermore, the processing capacity in the case of solid-liquid separation by degassing the raw sludge supplied into the decompression vessel in this way is limited to the capacity of the decompression vessel, and the solid-liquid separation is intermittently performed in the decompression vessel and discharged. It depends on the amount. For this reason, many decompression containers are required to increase the processing capacity, resulting in a problem of equipment space and an increase in equipment costs.

また、従来の方法では、分離した脱離液と濃縮汚泥とを容器内下部より大気圧下で排出するため、容器内を再度減圧処理するために原汚泥とは別の固形物や溶存ガスを含まない液を用意し、この液で減圧槽内を充満した後、液を排液する方法で減圧容器内の減圧操作をする場合があり、減圧容器内を減圧するために原汚泥を処理できない特別な工程が必要である。   In the conventional method, the separated desorbed liquid and the concentrated sludge are discharged from the lower part of the container under atmospheric pressure. Therefore, in order to reduce the pressure in the container again, a solid or dissolved gas different from the original sludge is used. Prepare a liquid that does not contain, and after filling the vacuum tank with this liquid, there is a case where the pressure reduction operation in the vacuum container may be performed by draining the liquid, and the raw sludge cannot be treated to reduce the pressure in the vacuum container Special process is required.

さらに、このようにして減圧容器内で集めた固体分(濃縮汚泥)を排出するためには、一軸ねじポンプやピストンポンプのような特殊なポンプが必要になるとともに、発泡ガスの泡が付着した汚泥を排出する場合にはポンプ内でキャビテーションを生じやすいので、その対策も必要となる。   Furthermore, in order to discharge the solid content (concentrated sludge) collected in the decompression vessel in this way, a special pump such as a single screw pump or a piston pump is required, and bubbles of foaming gas are attached. When sludge is discharged, cavitation is likely to occur in the pump, and countermeasures are also required.

しかも、このような原汚泥を固液分離する作業をより効率的に行って、汚泥処理効率を更に向上させたいという要望がある。   In addition, there is a desire to further improve the sludge treatment efficiency by more efficiently performing the solid-liquid separation of such raw sludge.

そこで、前記課題を解決するために、本願発明に係る減圧脱気処理による連続固液分離方法は、原汚泥を減圧脱気することが可能な内圧に減圧した減圧容器内に原汚泥を供給し、該供給した原汚泥中の溶存ガスを減圧発泡させ、発泡したガスに汚泥の固体分を同伴させて浮上させることにより減圧容器の上部に固体分を集めて固液分離し、該減圧容器の上部に集めた固体分と発泡ガスとを減圧容器の上部から排出する操作と、減圧容器の下部に集めた脱離液を減圧容器の下部から排出する操作と、原汚泥を減圧容器内へ供給する操作との、排出速度と供給速度とを制御して減圧容器内で原汚泥の減圧脱気を連続的に行って固液分離することにより、減圧容器内で分離した固体分と液体分とを減圧容器の上下から排出して原汚泥の固液分離を停止させることなく連続的に行うことができる。   Therefore, in order to solve the above-described problem, the continuous solid-liquid separation method using the vacuum degassing process according to the present invention supplies the raw sludge into a vacuum container whose pressure is reduced to an internal pressure capable of vacuum degassing. Then, the dissolved gas in the supplied raw sludge is foamed under reduced pressure, the solid content of the sludge is entrained in the foamed gas and floated, and the solid content is collected at the upper part of the decompression vessel and separated into solid and liquid. Operation to discharge the solids and foam gas collected in the upper part from the upper part of the decompression container, operation to discharge the desorbed liquid collected in the lower part of the decompression container, and supply raw sludge into the decompression container The solid content and the liquid content separated in the vacuum vessel are controlled by controlling the discharge rate and the supply rate and performing solid-liquid separation by continuously degassing the raw sludge in the vacuum vessel. Is discharged from the top and bottom of the decompression vessel to stop the solid-liquid separation of the raw sludge. It can be performed continuously without.

また、前記減圧脱気処理による連続固液分離方法において、前記減圧容器の下部から排出する脱離液を該減圧容器から下方に10メートル以上の高低差を有する排液槽の液面下に開口する液体排出管から排出するようにし、減圧容器内の脱離液が自重で減圧容器内から排出されるようにすれば、排液ポンプを要することなく減圧容器内から脱離液を排出することができる。   Further, in the continuous solid-liquid separation method by the vacuum degassing process, the desorbed liquid discharged from the lower part of the vacuum container is opened below the liquid level of the drainage tank having a height difference of 10 meters or more downward from the vacuum container. If the discharge liquid in the decompression container is discharged from the decompression container by its own weight, the desorption liquid can be discharged from the decompression container without requiring a drain pump. Can do.

さらに、これらの減圧脱気処理による連続固液分離方法において、前記減圧容器内への原汚泥の供給を該減圧容器の壁の接線方向から行って減圧容器内に旋回流を形成するようにすれば、減圧容器内での減圧発泡の促進と汚泥の付着を防止することができる。   Further, in these continuous solid-liquid separation methods by vacuum degassing, the raw sludge is supplied from the tangential direction of the wall of the vacuum vessel to form a swirl flow in the vacuum vessel. For example, it is possible to promote the decompression foaming in the decompression vessel and prevent the sludge from adhering.

また、これらの減圧脱気処理による連続固液分離方法において、前記減圧容器内の圧力が所定の圧力に上昇するまで該減圧容器の上部に集めた固体分の排出時期を延ばすことによって、該固体分の層を厚くして圧密による濃縮効果を高めるようにすれば、減圧容器に、減圧容器内が良好に固液分離することが可能な圧力よりも上昇するまで、固液分離した汚泥を濃縮する機能も持たせることができる。   Further, in these continuous solid-liquid separation methods by vacuum degassing treatment, by extending the discharge timing of the solid collected at the upper part of the vacuum vessel until the pressure in the vacuum vessel rises to a predetermined pressure, the solids If the layer is thickened to increase the concentration effect by consolidation, the sludge that has been separated into solid and liquid is concentrated in the vacuum vessel until the pressure inside the vacuum vessel rises above the pressure at which solid-liquid separation can be performed satisfactorily. The function to do can be given.

一方、本願発明に係る減圧脱気処理による連続固液分離装置は、原汚泥中の溶存ガスを減圧発泡させて、該発泡したガスに汚泥の固体分を同伴させて浮上させることにより上部に固体分を集めて固液分離する減圧容器を設け、該減圧容器の上部に発泡ガスと固体分とを排出する排出口を設け、該減圧容器の下部に脱離液を排出する排出口を設け、該減圧容器の側部に原汚泥を供給する供給口を設け、該供給口から減圧容器内に供給する原汚泥の供給速度と、前記排出口から排出する固体分と脱離液との排出速度とを制御する制御装置を設けて、減圧容器内に供給する原汚泥の減圧脱気を連続的に行って固液分離することができる。   On the other hand, the continuous solid-liquid separation device by vacuum degassing treatment according to the present invention foams the dissolved gas in the raw sludge under reduced pressure, and causes the foamed gas to float along with the solid content of the sludge. A vacuum container for collecting and separating the solid and liquid, an outlet for discharging the foaming gas and the solids at the upper part of the vacuum container, and an outlet for discharging the desorbed liquid at the lower part of the vacuum container; A supply port for supplying raw sludge is provided at the side of the decompression vessel, the supply rate of the raw sludge supplied from the supply port into the decompression vessel, and the discharge rate of the solids and desorbed liquid discharged from the discharge port In order to perform solid-liquid separation, the raw sludge supplied into the vacuum vessel is continuously degassed and degassed.

また、この減圧脱気処理による連続固液分離装置において、前記減圧容器の排出口に液体排出管を設け、該液体排出管の下端を減圧容器から下方に10メートル以上の高低差を有する排液槽の液面下に開口させて、該減圧容器内の脱離液が自重で排出されるようにすれば、排液ポンプを要することなく脱離液を排出することができる。   Further, in the continuous solid-liquid separation device by this vacuum degassing treatment, a liquid discharge pipe is provided at the discharge port of the pressure reduction container, and the lower end of the liquid discharge pipe has a height difference of 10 meters or more downward from the pressure reduction container. By opening the tank below the liquid level so that the desorbed liquid in the decompression vessel is discharged by its own weight, the desorbed liquid can be discharged without requiring a drainage pump.

さらに、これらの減圧脱気処理による連続固液分離装置において、前記供給口を減圧容器の壁の接線方向に配置し、該供給口から供給する原汚泥で減圧容器内に旋回流を生じさせるように構成すれば、減圧容器内での減圧発泡の促進と汚泥の付着を防止することができる。   Furthermore, in these continuous solid-liquid separation devices using vacuum degassing treatment, the supply port is arranged in the tangential direction of the wall of the vacuum vessel, and a swirling flow is generated in the vacuum vessel by the raw sludge supplied from the supply port. If comprised in this, promotion of the decompression foaming in a decompression container and adhesion of sludge can be prevented.

また、これらの減圧脱気処理による連続固液分離装置において、前記減圧容器に内部圧力を検知するセンサを設け、該センサが減圧容器内の圧力が所定の圧力に上昇したことを検知するまで減圧容器の上部に集まる固体分の層を厚くして圧密による濃縮効果を高めるようにすれば、減圧容器内が良好に固液分離することが可能な圧力よりも上昇するまで固体分(濃縮汚泥)の濃度を更に高めることができる。   Further, in these continuous solid-liquid separation devices using vacuum degassing, a sensor for detecting the internal pressure is provided in the vacuum container, and the pressure is reduced until the sensor detects that the pressure in the vacuum container has increased to a predetermined pressure. If the concentration of solids collected at the top of the container is increased to increase the concentration effect due to compaction, the solids (concentrated sludge) until the pressure inside the vacuum container rises above the pressure at which solid-liquid separation can be satisfactorily achieved. The concentration of can be further increased.

本願発明は、以上説明したような手段により、減圧容器内に原汚泥を連続的に供給しながら固液分離することが連続して行えるので、原汚泥の固液分離を効率良く行うことが可能となる。   Since the present invention can continuously perform solid-liquid separation while continuously supplying raw sludge into the decompression vessel by means as described above, it is possible to efficiently perform solid-liquid separation of the raw sludge. It becomes.

以下、本願発明の一実施形態を図面に基づいて説明する。図1は本願発明の第1実施形態に係る連続固液分離装置を示す構成図である。なお、この実施形態では原汚泥を貯留する貯留槽を設けた構成を説明するが、この貯留槽は必ずしも必要なものではなく、後述するように減圧容器で固液分離する処理量が少ない場合に設ければよい。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a continuous solid-liquid separator according to a first embodiment of the present invention. In addition, although this embodiment demonstrates the structure which provided the storage tank which stores raw sludge, this storage tank is not necessarily required, and when the processing amount which carries out solid-liquid separation with a decompression vessel is small so that it may mention later. What is necessary is just to provide.

図示するように、この第1実施形態における連続固液分離装置1は、原汚泥Oを貯留しておく原汚泥貯留槽2と、この原汚泥貯留槽2から供給する原汚泥中の溶存ガスを減圧発泡させて、この発泡したガスが汚泥の固体分を同伴させて浮上させることにより上部に固体分を集めて固液分離する減圧容器3とが設けられている。   As shown in the figure, the continuous solid-liquid separation device 1 in the first embodiment uses raw sludge storage tank 2 for storing raw sludge O, and dissolved gas in the raw sludge supplied from this raw sludge storage tank 2. A decompression vessel 3 is provided in which the foamed gas is floated and the foamed gas entrains the solid content of sludge and floats to collect the solid content and separate into solid and liquid.

前記原汚泥貯留槽2には、この貯留槽2内の汚泥レベルを検出する上部レベル計L1と下部レベル計L2とが設けられている。   The raw sludge storage tank 2 is provided with an upper level meter L1 and a lower level meter L2 for detecting the sludge level in the storage tank 2.

また、この原汚泥貯留槽2から減圧容器3に原汚泥Oを供給するための供給管4には、原汚泥の供給量を調節するための開閉弁M1が設けられている。この開閉弁M1は、前記原汚泥貯留槽2に設けられたレベル計L1,L2からの信号によって開閉量が制御されている。   The supply pipe 4 for supplying the raw sludge O from the raw sludge storage tank 2 to the decompression vessel 3 is provided with an on-off valve M1 for adjusting the supply amount of the raw sludge. The opening / closing amount of the on-off valve M1 is controlled by signals from level meters L1, L2 provided in the raw sludge storage tank 2.

前記減圧容器3の側壁上部には、前記供給管4が接続された供給口5が設けられ、上端には発泡ガスと濃縮汚泥とを排出するための排出口6が設けられ、下端には脱離液Wを排出するための排出口7が設けられている。上端に設けられた排出口6に接続された排出管8は、汚泥排出管9と排気管10とに分岐しており、汚泥排出管9には濃縮汚泥の排出量を調節するための開閉弁M3が設けられ、排気管10には発泡ガスの排出量を調節するための開閉弁M2が設けられている。下端に設けられた排出口7に接続された排出管11には、脱離液の排出量を調節するための開閉弁12が設けられている。   A supply port 5 to which the supply pipe 4 is connected is provided at the upper side of the side wall of the decompression vessel 3, a discharge port 6 for discharging foaming gas and concentrated sludge is provided at the upper end, and a removal port is provided at the lower end. A discharge port 7 for discharging the liquid separation W is provided. A discharge pipe 8 connected to a discharge port 6 provided at the upper end is branched into a sludge discharge pipe 9 and an exhaust pipe 10, and the sludge discharge pipe 9 has an on-off valve for adjusting the discharge amount of concentrated sludge. M3 is provided, and the exhaust pipe 10 is provided with an on-off valve M2 for adjusting the discharge amount of the foaming gas. The discharge pipe 11 connected to the discharge port 7 provided at the lower end is provided with an on-off valve 12 for adjusting the discharge amount of the desorbed liquid.

また、この減圧容器3の上部には、減圧容器3内の圧力を検出する圧力計PICが設けられ、側部には減圧容器3内の汚泥量を検出する上部レベル計L3と下部レベル計L4とが設けられている。これら圧力計PICとレベル計L3,L4からの信号によって、前記開閉弁M3,M2,12の開閉が制御される。この圧力計PICが、減圧容器3内の圧力が所定の圧力まで上昇すると(例えば、−70KPa以下の真空度)、減圧容器3内の真空度が低下したと判断する検知センサである。図示する点線は制御線であり、この制御線からの信号による開閉弁M3,M2,12の制御は、図示しない制御装置によって行われる。   Further, a pressure gauge PIC for detecting the pressure in the decompression container 3 is provided on the upper part of the decompression container 3, and an upper level meter L3 and a lower level gauge L4 for detecting the amount of sludge in the decompression container 3 are provided on the side parts. And are provided. Opening / closing of the on-off valves M3, M2, 12 is controlled by signals from the pressure gauge PIC and the level gauges L3, L4. The pressure gauge PIC is a detection sensor that determines that the degree of vacuum in the decompression vessel 3 has decreased when the pressure in the decompression vessel 3 rises to a predetermined pressure (for example, a degree of vacuum of −70 KPa or less). The dotted line shown in the figure is a control line, and control of the on-off valves M3, M2, and 12 by signals from this control line is performed by a control device (not shown).

なお、前記減圧容器3の下端に設けられた排出管11の下端を、図に二点鎖線で示すように、この減圧容器3との間に10メートル以上の高低差を設けた排液槽13の液面WL下でシールすることにより、減圧容器3から下方に排出する脱離液を、トリチェリの真空の原理によって自重で排出することができる。つまり、真空状態の減圧容器3内の脱離液は、排出管11の下端をシールする排液槽13の液面WLに作用する大気圧とつり合う高さまで下降するので、10メートル以上の高低差を設けることによって脱離液が自重で減圧容器3から下方の排液槽13に排出される。このようにすれば、脱離液を排出するためにポンプ等の動力を要することなく排出することができる。   In addition, as shown by a two-dot chain line in the drawing, the lower end of the discharge pipe 11 provided at the lower end of the decompression vessel 3 is provided with a drainage tank 13 provided with a height difference of 10 meters or more with the decompression vessel 3. By sealing under the liquid level WL, the desorbed liquid discharged downward from the decompression vessel 3 can be discharged by its own weight according to the Trichelli vacuum principle. That is, the desorbed liquid in the vacuum container 3 in a vacuum state is lowered to a height that balances with the atmospheric pressure acting on the liquid level WL of the drainage tank 13 that seals the lower end of the discharge pipe 11, so that the height difference is 10 meters or more. The desorbed liquid is discharged from the decompression vessel 3 to the lower drainage tank 13 by its own weight. In this way, it is possible to discharge the desorbed liquid without requiring power from a pump or the like.

図2(a) 〜(d) は、図1に示す連続固液分離装置によって減圧脱気処理を行って連続固液分離する方法の流れを示す模式図である。これらの図に基いて前記連続固液分離装置1による連続固液分離方法を、以下に説明する。図示する矢印は流れのある状態を示している。   2 (a) to 2 (d) are schematic diagrams showing the flow of a method for performing continuous solid-liquid separation by performing a vacuum degassing treatment with the continuous solid-liquid separation device shown in FIG. A continuous solid-liquid separation method by the continuous solid-liquid separation device 1 will be described below based on these drawings. The arrows shown in the figure indicate a state with a flow.

まず、図2(a) に示すように、減圧容器3の排出管11に設けられた開閉弁12を閉鎖し、排出管9,10に設けられた開閉弁M2,M3を開けた状態で供給管4から原汚泥Oが減圧容器3内に供給され、減圧容器3内のガスを容器頂部より排気する。そして、減圧容器3内のガスを全量排気して減圧容器3内を原汚泥Oで充満させた後、排気管10の開閉弁M2が閉められる。これが初期充填の過程である。   First, as shown in FIG. 2 (a), the on-off valve 12 provided on the discharge pipe 11 of the decompression vessel 3 is closed, and the on-off valves M2 and M3 provided on the discharge pipes 9 and 10 are opened. The raw sludge O is supplied from the pipe 4 into the decompression container 3, and the gas in the decompression container 3 is exhausted from the top of the container. Then, after exhausting all the gas in the decompression vessel 3 and filling the decompression vessel 3 with the raw sludge O, the on-off valve M2 of the exhaust pipe 10 is closed. This is the initial filling process.

次に、図2(b) に示すように、この状態で減圧容器3の排出管11に設けられた開閉弁12を開放することによって内部の原汚泥Oが排出される。この時、前記したように減圧容器3の排出管11の下端を10メートル以上の高低差を有する排液槽13の液面WL下でシールすることにより(図1)、密閉された減圧容器3内の原汚泥Oが自重で排出された後の減圧容器3内に真空が形成される。なお、減圧容器3をこのような高低差を有する高所に配置できない場合は、ポンプによって減圧容器3内の原汚泥Oを排出することによって真空を形成すればよい。   Next, as shown in FIG. 2 (b), the internal raw sludge O is discharged by opening the on-off valve 12 provided in the discharge pipe 11 of the decompression vessel 3 in this state. At this time, as described above, by sealing the lower end of the discharge pipe 11 of the decompression vessel 3 under the liquid level WL of the drainage tank 13 having a height difference of 10 meters or more (FIG. 1), the sealed decompression vessel 3 is sealed. A vacuum is formed in the decompression vessel 3 after the raw sludge O is discharged by its own weight. In addition, when the decompression container 3 cannot be arrange | positioned in the high place which has such an elevation difference, what is necessary is just to form a vacuum by discharging | emitting the raw sludge O in the decompression container 3 with a pump.

このようにして減圧容器3内が真空に形成されると、固形物を含む原汚泥Oは真空近くまで減圧されることによって液体中の溶存ガスが発泡脱気されて、この発泡したガスが汚泥の固体分を同伴させて浮上分離させる。これにより、原汚泥中の固体分が発泡したガスに同伴して浮上分離されて濃縮汚泥Sとなる。   When the vacuum container 3 is formed in a vacuum in this way, the raw sludge O containing solids is decompressed to near vacuum, so that the dissolved gas in the liquid is foamed and degassed, and the foamed gas is sludged. The solid content is accompanied and floated and separated. Thereby, the solid content in the raw sludge is floated and separated along with the foamed gas to become the concentrated sludge S.

しかも、このようにして固液分離された脱離液Wを減圧容器3の下部から排出しながら原汚泥Oを供給するので、真空となった減圧容器3内には常に原汚泥Oが供給されるとともに、その原汚泥O中の溶存ガスが減圧発泡されて固体分を上部に浮上させ、液体分を下部に分離する固液分離がなされる。これが排液減圧濃縮の過程である。   Moreover, since the raw sludge O is supplied while discharging the desorbed liquid W separated in this way from the lower part of the decompression vessel 3, the raw sludge O is always supplied into the decompression vessel 3 in a vacuum. At the same time, the dissolved gas in the raw sludge O is foamed under reduced pressure, the solid content is lifted up, and the liquid is separated into the lower portion. This is the process of drainage vacuum concentration.

また、図2(c) に示すように、このようにして減圧容器3内で固液分離されて下部に集まった脱離液Wを下端の排出管11から所定量ずつ排出しながら、供給管4からは減圧容器3内に原汚泥Oが供給され、この供給された原汚泥Oは減圧容器3内で連続的に固液分離される。この時、減圧容器3内の原汚泥Oのレベルが上部のレベル計L3に達すると、開閉弁12の開度が大きくなって減圧容器3内の比較的大量の脱離液Wが排出され、原汚泥Oのレベルが下部のレベル計L4に達すると、開閉弁12の開度が小さくなって減圧容器3内の比較的少量の脱離液Wが排出される。なお、これらレベル計L3とレベル計L4との間で原汚泥Oのレベルが変化している時は、開閉弁12の開度を小さくして供給管4から供給される原汚泥Oが減圧容器3内に溜まるように制御される。そのため、減圧容器3の上部では固液分離された濃縮汚泥S(固体分)の層が徐々に厚くなり、圧密効果によって分離固形物濃度を高めることができる。これが浮上厚密濃縮の過程である。   In addition, as shown in FIG. 2 (c), while supplying the desorbed liquid W separated in a solid-liquid manner in the reduced-pressure vessel 3 in this way and gathered at the lower portion from the discharge pipe 11 at the lower end by a predetermined amount, From 4, raw sludge O is supplied into the vacuum container 3, and the supplied raw sludge O is continuously solid-liquid separated in the vacuum container 3. At this time, when the level of the raw sludge O in the decompression vessel 3 reaches the upper level meter L3, the opening of the on-off valve 12 is increased, and a relatively large amount of the desorbed liquid W in the decompression vessel 3 is discharged. When the level of the raw sludge O reaches the lower level meter L4, the opening degree of the on-off valve 12 is reduced and a relatively small amount of the desorbed liquid W in the decompression vessel 3 is discharged. When the level of the raw sludge O changes between the level meter L3 and the level meter L4, the raw sludge O supplied from the supply pipe 4 with the opening degree of the on-off valve 12 reduced is reduced. 3 is controlled so as to be accumulated in 3. Therefore, the layer of concentrated sludge S (solid content) separated into solid and liquid gradually increases in the upper part of the decompression vessel 3, and the concentration of separated solids can be increased by the consolidation effect. This is the process of floating thick condensation.

このようにして減圧容器3内で固液分離されて上部に濃縮汚泥Sが集まると、その濃縮汚泥S中のガスによって減圧容器3内の圧力が上昇し、圧力計PICによって減圧容器3内が所定の圧力まで上昇(例えば、−70KPa以下の真空度)したことを検知すると、減圧容器3内の真空度が低下したと判断して減圧容器3内のガスと濃縮汚泥Sとが排出される。   When the solid-liquid separation is performed in the reduced pressure vessel 3 in this way and the concentrated sludge S is collected on the upper part, the pressure in the reduced pressure vessel 3 is increased by the gas in the concentrated sludge S, and the pressure vessel PIC When it is detected that the pressure has increased to a predetermined pressure (for example, a degree of vacuum of −70 KPa or less), it is determined that the degree of vacuum in the decompression container 3 has decreased, and the gas in the decompression container 3 and the concentrated sludge S are discharged. .

これらの排出は、図2(d) に示すように、減圧容器3の上部に設けられた排気管10の開閉弁M2と汚泥排出管9の開閉弁M3とが開放され、排出管11の開閉弁12が閉じられる。これにより、減圧容器3の上部に溜まった発泡ガスは排気管10から排出され、浮上分離して減圧容器3の上部に集まった濃縮汚泥S(固体分)は供給管4から供給される原汚泥Oによって汚泥排出管9から押出されるようにして排出される。なお、このように減圧容器3から濃縮汚泥S(固体分)を押出す力としては、上述した図1に示すような原汚泥貯留槽2のヘッド圧力や原汚泥Oを供給するポンプの圧力等によって得られる。また、この時、開閉弁12の開度は全閉でなく多少開いた状態にして脱離液Wを排出しながら濃縮汚泥Sを排出するようにしてもよい。これが浮上汚泥排出の過程である。   As shown in FIG. 2 (d), these discharges are performed by opening the open / close valve M 2 of the exhaust pipe 10 and the open / close valve M 3 of the sludge discharge pipe 9 provided at the top of the decompression vessel 3. The valve 12 is closed. Thereby, the foamed gas accumulated in the upper part of the decompression vessel 3 is discharged from the exhaust pipe 10, and the concentrated sludge S (solid content) collected by floating and separating on the upper part of the decompression vessel 3 is supplied from the supply pipe 4. O is discharged from the sludge discharge pipe 9 by O. The force for pushing the concentrated sludge S (solid content) from the decompression vessel 3 as described above includes the head pressure of the raw sludge storage tank 2 as shown in FIG. Obtained by. Further, at this time, the opening degree of the on-off valve 12 may be slightly opened rather than fully closed, and the concentrated sludge S may be discharged while discharging the desorbed liquid W. This is the process of floating sludge discharge.

そして、このようにして浮上分離した濃縮汚泥S(固体分)を減圧容器3の頂部より排出した後、開閉弁M2,M3を閉じて減圧容器3の排出管11から排出する脱離液Wの速度を増大させることにより減圧容器3の液面を低下させれば減圧容器3内を減圧操作できるので、減圧容器3内への原汚泥O供給速度を変化させることなく、原汚泥Oを連続的に処理することができる。   Then, after the concentrated sludge S (solid content) floated and separated in this way is discharged from the top of the decompression vessel 3, the on-off valves M2 and M3 are closed and the desorbed liquid W discharged from the discharge pipe 11 of the decompression vessel 3 is discharged. If the liquid level of the decompression vessel 3 is lowered by increasing the speed, the inside of the decompression vessel 3 can be depressurized. Therefore, the raw sludge O can be continuously added without changing the supply rate of the original sludge O into the decompression vessel 3. Can be processed.

このようにして減圧容器3内で固液分離された濃縮汚泥Sを排出した後は、排気管10の開閉弁M2と汚泥排出管9の開閉弁M3が閉じられて排出管11の開閉弁12が開放される。これにより、新たに減圧容器3内に供給される原汚泥Oは減圧発泡され、そのガスで固体分を上部へ浮上させる固液分離が行われる。その後は、前記したように脱離液Wを排出しながら固液分離がなされ、濃縮汚泥Sが所定量に達した段階で排出される操作が繰り返される。   After the concentrated sludge S solid-liquid separated in the decompression vessel 3 in this way is discharged, the on-off valve M2 of the exhaust pipe 10 and the on-off valve M3 of the sludge discharge pipe 9 are closed and the on-off valve 12 of the discharge pipe 11 is closed. Is released. As a result, the raw sludge O newly supplied into the decompression vessel 3 is foamed under reduced pressure, and solid-liquid separation is performed in which the solid component is floated upward by the gas. Thereafter, as described above, solid-liquid separation is performed while discharging the desorbed liquid W, and the operation of discharging the concentrated sludge S when it reaches a predetermined amount is repeated.

また、このようにして減圧容器3内で固液分離する時には、原汚泥Oの供給速度は変化させず、減圧容器3の下部より排出する速度を供給速度より遅くするようにすれば、減圧容器3内の液面を上昇させて容器内の発泡ガスと浮上分離した濃縮汚泥S(固体分)を減圧容器3の頂部より排出するようにできる。   Further, when solid-liquid separation is performed in the reduced pressure vessel 3 in this way, the supply rate of the raw sludge O is not changed, and if the discharge rate from the lower portion of the reduced pressure vessel 3 is made slower than the supply rate, the reduced pressure vessel The liquid level in 3 is raised, and the concentrated sludge S (solid content) floated and separated from the foaming gas in the container can be discharged from the top of the decompression container 3.

このようにして原汚泥Oを常に減圧容器3内に供給しながら、固液分離した脱離液Wの排出か濃縮汚泥Sの排出かを切換えながら原汚泥Oの固液分離処理が連続してなされる。   In this way, while the raw sludge O is constantly supplied into the decompression vessel 3, the solid-liquid separation process of the raw sludge O is continuously performed while switching between the discharge of the separated liquid W and the discharge of the concentrated sludge S. Made.

なお、前記減圧容器3内を減圧する方法としては、前記減圧容器3内に固形物を含む液を供給し、減圧容器3内でガスと浮上分離した固形物とを容器頂部より排出し、次に、容器頂部の排出口を閉じた後に容器下部より減圧容器3内の液を排液することにより、容器内を減圧処理するようにしてもよい。   In addition, as a method of depressurizing the inside of the decompression vessel 3, a liquid containing solids is supplied into the decompression vessel 3, and the gas and the solid matter floating and separated in the decompression vessel 3 are discharged from the top of the vessel. Alternatively, the inside of the container may be decompressed by draining the liquid in the decompression container 3 from the bottom of the container after closing the discharge port at the top of the container.

以上のように、供給管4からの原汚泥Oの供給を続けながら、排出管11からの脱離液Wの排出と、排出管8からの濃縮汚泥Sの排出とを、開閉弁M2,M3,12の開度と時間制御とによって開閉することにより、原汚泥Oを連続的に固液分離することができる。   As described above, the supply of the raw sludge O from the supply pipe 4 and the discharge of the desorbed liquid W from the discharge pipe 11 and the discharge of the concentrated sludge S from the discharge pipe 8 are performed on the on-off valves M2 and M3. , 12 can be opened and closed by the time control and the time control, so that the raw sludge O can be continuously solid-liquid separated.

つまり、固液分離した脱離液Wと濃縮汚泥Oとを排出する過程において、減圧容器3内での固液分離処理を停止させることなく連続的に行うことができるので、原汚泥の固液分離を効率良く行うことが可能となる。   That is, in the process of discharging the desorbed liquid W and the concentrated sludge O separated into solid and liquid, it can be continuously performed without stopping the solid-liquid separation process in the decompression vessel 3, so Separation can be performed efficiently.

なお、前記したように、この実施形態では減圧容器3の下部からは、通常、脱離液のみを排出するので、排出管11に液体を搬送する一般的な渦巻き式ポンプを設け、このポンプによる減圧容器3からの脱離液排出と、このポンプの吐出量制御による減圧容器3の上部からの濃縮汚泥S(固体分)の排出とを行うようにしてもよい。この場合、減圧容器3の上部から濃縮汚泥Sを排出するときも、排出管11に設けられたポンプを最低回転数で回転させておくことにより、ポンプの駆動/停止回数を少なくしてポンプ寿命の向上を図ることができる。   As described above, in this embodiment, since usually only the desorbed liquid is discharged from the lower part of the decompression vessel 3, a general spiral pump for transporting the liquid is provided in the discharge pipe 11, and this pump is used. Discharged liquid discharge from the decompression container 3 and concentrated sludge S (solid content) from the upper part of the decompression container 3 by controlling the discharge amount of the pump may be performed. In this case, even when the concentrated sludge S is discharged from the upper part of the decompression vessel 3, the pump provided in the discharge pipe 11 is rotated at the minimum number of rotations, thereby reducing the number of times the pump is driven / stopped and the pump life. Can be improved.

図3(a),(b) は、本願発明の第2実施形態に係る連続固液分離装置を示す構成図である。なお、この第2実施形態において上述した第1実施形態と同一の構成には同一符号を付して、その詳細な説明は省略する。また、この第2実施形態における作用は上述した図2(a) 〜(d) と同一であるため、上述した図2(a) 〜(d) と同一の作用は詳細な説明を省略する。   3 (a) and 3 (b) are configuration diagrams showing a continuous solid-liquid separation device according to a second embodiment of the present invention. In the second embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted. In addition, since the operation in the second embodiment is the same as that in FIGS. 2A to 2D described above, detailed description of the same operation as that in FIGS. 2A to 2D described above is omitted.

図3(b) に示すように、この第2実施形態では、減圧容器3に設けられた供給口5が中心から偏心した壁の接線方向に設けられており、この供給口5から減圧容器3内へ原汚泥Oを供給することにより、減圧容器3内に供給された原汚泥Oによって減圧容器3内に旋回流を生じるように構成されている。   As shown in FIG. 3 (b), in this second embodiment, the supply port 5 provided in the decompression vessel 3 is provided in the tangential direction of the wall eccentric from the center. By supplying the raw sludge O into the inside, the raw sludge O supplied into the decompression vessel 3 is configured to generate a swirling flow in the decompression vessel 3.

このように減圧容器3内に旋回流を生じさせることにより、この旋回流による気泡付着効果によって固液分離促進を図るとともに、浮上する固体分(濃縮汚泥S)が減圧容器3の壁面に付着するのを防止することができ、減圧容器3の頂部から濃縮汚泥Sを容易に排出することができる。なお、このように旋回流を生じさせる場合、供給する原汚泥Oが分離されて上部に集まった汚泥を攪拌しないように供給される。   By generating a swirling flow in the decompression vessel 3 as described above, the solid-liquid separation is promoted by the bubble adhering effect of the swirling flow, and the solid component (concentrated sludge S) that floats adheres to the wall surface of the decompression vessel 3. The concentrated sludge S can be easily discharged from the top of the decompression vessel 3. When the swirl flow is generated in this way, the raw sludge O to be supplied is separated and supplied so as not to stir the sludge collected at the upper part.

また、図3(a) (b) に示すように、この実施形態では、供給口5に近接した位置の供給管4に凝集剤供給部14が設けられている。この凝集剤供給部14は、供給管4から供給する原汚泥O中に所定量の凝集剤15を添加するように構成されている。このように原汚泥Oに凝集剤15を添加して減圧容器3内へ供給することにより、固体分の凝集作用を高めて、固体分の浮上分離を促進することができる。   Further, as shown in FIGS. 3A and 3B, in this embodiment, a flocculant supply unit 14 is provided in the supply pipe 4 at a position close to the supply port 5. The flocculant supply unit 14 is configured to add a predetermined amount of the flocculant 15 into the raw sludge O supplied from the supply pipe 4. Thus, by adding the flocculant 15 to the raw sludge O and supplying it into the decompression vessel 3, the agglomeration action of the solid part can be enhanced and the floating separation of the solid part can be promoted.

しかも、この凝集剤を連続的に添加することにより、混合攪拌効果に加えて、減圧容器3内での溶存ガスの脱気発泡作用が、固体表面での電位差(炭酸ガスなどの発泡により液PHが高くなる)や、固体表面で気泡が発泡することによる表面張力効果で増し、固体同士の凝集効果が高まり、固体分の浮上分離性の向上を図ることができる。この凝集剤は、減圧容器3の出口目標濃度に応じて添加するか否かや、添加割合等の条件を決定すればよい。   Moreover, by continuously adding this flocculant, in addition to the mixing and stirring effect, the degassing and foaming action of the dissolved gas in the decompression vessel 3 is caused by the potential difference on the solid surface (liquid PH due to foaming of carbon dioxide gas or the like). And the surface tension effect due to foaming of bubbles on the surface of the solid increases, the effect of agglomeration of the solids increases, and the floating separation property of the solid can be improved. It is only necessary to determine whether or not to add this flocculant according to the outlet target concentration of the decompression vessel 3, and the conditions such as the addition ratio.

以上のように構成された第2実施形態の連続固液分離装置16によっても、上述した図2(b) 〜(d) と同一の過程で原汚泥Oを連続的に固液分離することができる。   Even with the continuous solid-liquid separation device 16 of the second embodiment configured as described above, the raw sludge O can be continuously solid-liquid separated in the same process as in FIGS. 2 (b) to (d). it can.

すなわち、図2(b) に示すように、真空状態となった減圧容器3内から脱離液Wを排出しながら原汚泥Oを供給すると、この供給した原汚泥O中の溶存ガスが減圧発泡されて固液分離が図られる。しかも、この第2実施形態によれば、原汚泥Oに添加した凝集剤と旋回流によって固液分離促進や濃縮汚泥Sの浮上分離速度の向上を図ることができる。そして、減圧容器3の上部圧力が上昇すると濃縮汚泥Sが排出されるが、この第2実施形態によれば、原汚泥Oによって旋回流を生じさせているので、浮上分離固体分の壁面付着を防止した搬出速度向上を図ることができる。その他は上述した第1実施形態と同一であるため、詳細な説明は省略する。   That is, as shown in FIG. 2 (b), when the raw sludge O is supplied while discharging the desorbed liquid W from the vacuum container 3 in a vacuum state, the dissolved gas in the supplied raw sludge O is decompressed and foamed. Thus, solid-liquid separation is achieved. And according to this 2nd Embodiment, the solid-liquid separation promotion and the improvement of the floating separation speed of the concentrated sludge S can be aimed at by the flocculant added to the raw sludge O and the swirl flow. Then, when the upper pressure of the decompression vessel 3 is increased, the concentrated sludge S is discharged. However, according to the second embodiment, the swirl flow is generated by the raw sludge O. The prevented carry-out speed can be improved. Since others are the same as those of the first embodiment described above, detailed description thereof is omitted.

図4は本願発明の第3実施形態に係る連続固液分離装置を示す構成図である。この第3実施形態は、地面等に設置された汚泥貯留槽を上述した減圧容器3として構成した実施形態である。なお、上述した第1実施形態と同一の構成には同一符号を付して、詳細な説明は省略する。   FIG. 4 is a block diagram showing a continuous solid-liquid separation device according to the third embodiment of the present invention. This 3rd Embodiment is embodiment which comprised the sludge storage tank installed in the ground etc. as the decompression container 3 mentioned above. In addition, the same code | symbol is attached | subjected to the structure same as 1st Embodiment mentioned above, and detailed description is abbreviate | omitted.

図示するように、内部が真空状態となった場合でも耐えうる強度を有する減圧容器3(汚泥貯留槽)が設けられており、この減圧容器3の図示する左側側壁下部には原汚泥Oの供給口5が設けられ、右側下部には脱離液Wの排出口7が設けられ、右側上部には濃縮汚泥Sの排出口6が設けられ、頂部には発泡ガスの排気口18が設けられている。19は排気口18に設けられた排気管20からガスを排出するときに開放する開閉弁である。   As shown in the figure, a decompression container 3 (sludge storage tank) having a strength that can withstand even when the inside is in a vacuum state is provided, and supply of raw sludge O to the lower portion of the left side wall of the decompression container 3 shown in the figure. A discharge port 7 for the desorbed liquid W is provided at the lower right side, a discharge port 6 for the concentrated sludge S is provided at the upper right side, and a foam gas exhaust port 18 is provided at the top. Yes. An open / close valve 19 is opened when gas is discharged from the exhaust pipe 20 provided at the exhaust port 18.

前記供給口5に接続された供給管4には原汚泥Oを供給するポンプ21が設けられ、前記排出口7に接続された排出管11には排液ポンプ22が設けられ、前記排出口6に接続された汚泥排出管9には汚泥排出ポンプ23が設けられている。   The supply pipe 4 connected to the supply port 5 is provided with a pump 21 for supplying raw sludge O, the discharge pipe 11 connected to the discharge port 7 is provided with a drainage pump 22, and the discharge port 6 The sludge discharge pipe 9 connected to the is provided with a sludge discharge pump 23.

以上のように構成された第3実施形態の連続固液分離装置17によれば、まず、減圧容器3の上部の開閉弁19を開けて排気口18からガスを抜きながらポンプ21で供給口5から原汚泥Oを減圧容器3内に供給し、この減圧容器3内を原汚泥Oで満液にした後に減圧容器3を密閉する。   According to the continuous solid-liquid separation device 17 of the third embodiment configured as described above, first, the supply port 5 is opened by the pump 21 while opening the on-off valve 19 at the top of the decompression vessel 3 and venting the gas from the exhaust port 18. Then, the raw sludge O is supplied into the decompression vessel 3, and after the interior of the decompression vessel 3 is filled with the raw sludge O, the decompression vessel 3 is sealed.

そして、減圧容器3の下部に溜まった脱離液Wを下部より排液ポンプ22にて排出する。このように原汚泥Oで満液にした減圧容器3の下部から脱離液Wを抜くと、その抜いた分だけ減圧容器3の上部に真空が形成される。   Then, the desorbed liquid W collected in the lower part of the decompression vessel 3 is discharged from the lower part by the drainage pump 22. When the desorbed liquid W is extracted from the lower part of the decompression container 3 filled with the raw sludge O in this way, a vacuum is formed on the upper part of the decompression container 3 by the amount of the removal.

このようにして減圧容器3の内部を真空にすると、貯留槽内の原汚泥Oに含まれる溶存ガスが真空下で減圧発泡し、この発泡したガスが固形分に付着して固形分を減圧容器3の上部に浮上させて減圧容器3内で固液分離が図られる。これにより、減圧容器3の上部には濃縮汚泥S(固体分)が集められ、下部には脱離液Wが集められる。   When the inside of the decompression vessel 3 is evacuated in this manner, the dissolved gas contained in the raw sludge O in the storage tank is decompressed and foamed under vacuum, and the foamed gas adheres to the solid content and the solid content is decompressed. The solid-liquid separation is achieved in the decompression vessel 3 by floating on the top of 3. Thereby, the concentrated sludge S (solid content) is collected at the upper part of the decompression vessel 3, and the desorbed liquid W is collected at the lower part.

このようにして原汚泥Oを固液分離した後は、脱離液Wを排液ポンプ22で所定量ずつ排出しながら原汚泥Oをポンプ21で所定量ずつ供給することにより、真空状態の減圧容器3内に供給された原汚泥Oは槽内で固液分離が図られる。   After the raw sludge O is solid-liquid separated in this way, the vacuum sludge is reduced by supplying the raw sludge O by the pump 21 while discharging the desorbed liquid W by the predetermined amount by the drain pump 22. The raw sludge O supplied into the container 3 is subjected to solid-liquid separation in the tank.

また、このようにして減圧容器3の上部に浮上させて集められた濃縮汚泥Sを脱水処理するときは、減圧容器3を満液状態にして、上部の汚泥排出ポンプ23によって濃縮汚泥Sが汚泥排出管9から図示しない脱水機に排出される。   When dewatering the concentrated sludge S collected in such a manner as it floats on the upper part of the decompression vessel 3, the decompression vessel 3 is filled and the concentrated sludge S is sludged by the upper sludge discharge pump 23. It is discharged from the discharge pipe 9 to a dehydrator (not shown).

さらに、この第3実施形態によれば、減圧容器3内で分離後の濃縮汚泥Sを長時間浮上させて滞留させることにより、減圧容器である減圧容器3内での浮上分離固体分層を厚くでき、圧密効果を利用して分離固体分濃度を高めることができる。これにより、減圧容器を高濃度汚泥の貯留槽として兼用することができる。この場合、減圧容器3で浮上させた濃縮汚泥Sを排出する場合には、容積式の汚泥排出ポンプで排出するのが好ましい。   Furthermore, according to the third embodiment, the concentrated sludge S after separation in the vacuum vessel 3 is allowed to float and stay for a long time, thereby thickening the floating separated solid layer in the vacuum vessel 3 that is a vacuum vessel. The concentration of the separated solid can be increased by utilizing the consolidation effect. Thereby, a decompression container can be used as a storage tank of high concentration sludge. In this case, when the concentrated sludge S floated in the decompression vessel 3 is discharged, it is preferably discharged by a positive displacement sludge discharge pump.

なお、この第3実施形態では減圧容器3の側面下部から脱離液Wを排出しているが、減圧容器3の下部を上部と対称の円錐状に形成して中央部から脱離液Wを排出するようにしてもよく、この実施の形態に限定されるものではない。   In this third embodiment, the desorbed liquid W is discharged from the lower side of the decompression vessel 3, but the lower portion of the depressurized vessel 3 is formed in a conical shape symmetrical to the upper portion, and the desorbed liquid W is discharged from the center. However, the present invention is not limited to this embodiment.

以上のように、実施形態1〜3に係る連続固液分離装置1,16,17によれば、原汚泥Oを減圧容器3(汚泥貯留槽)内に連続的に供給して連続的に固液分離することが可能となる。   As described above, according to the continuous solid-liquid separators 1, 16, and 17 according to the first to third embodiments, the raw sludge O is continuously supplied into the decompression vessel 3 (sludge storage tank) and continuously solidified. Liquid separation becomes possible.

そのため、従来のように静置工程や減圧工程における待ち時間が不要となり、減圧容器3内に原汚泥を連続供給して効率良く連続運転することが可能となる。   Therefore, the waiting time in the stationary process and the decompression process is not required as in the prior art, and the raw sludge is continuously supplied into the decompression container 3 and the continuous operation can be efficiently performed.

なお、上述した実施形態は一例を示しており、本願発明の要旨を損なわない範囲での種々の変更は可能であり、本願発明は上述した実施形態に限定されるものではない。   The above-described embodiment shows an example, and various modifications can be made without departing from the spirit of the present invention, and the present invention is not limited to the above-described embodiment.

本願発明に係る連続固液分離方法と装置は、原汚泥の固液分離を連続的に行えるので、原汚泥を連続的に固液分離して効率良く汚泥濃縮する設備において有用である。   The continuous solid-liquid separation method and apparatus according to the present invention can perform solid-liquid separation of raw sludge continuously, so that it is useful in facilities for continuously solid-liquid separation of raw sludge to efficiently concentrate sludge.

本願発明の第1実施形態に係る連続固液分離装置を示す構成図である。It is a block diagram which shows the continuous solid-liquid separation apparatus which concerns on 1st Embodiment of this invention. (a) 〜(d) は、図1に示す連続固液分離装置によって減圧脱気処理を行って連続固液分離する方法の流れを示す模式図である。(a)-(d) is a schematic diagram which shows the flow of the method of performing solid-liquid separation by performing a vacuum deaeration process with the continuous solid-liquid separator shown in FIG. (a),(b) は、本願発明の第2実施形態に係る連続固液分離装置を示す構成図である。(a), (b) is a block diagram which shows the continuous solid-liquid separator which concerns on 2nd Embodiment of this invention. 本願発明の第3実施形態に係る連続固液分離装置を示す構成図である。It is a block diagram which shows the continuous solid-liquid separation apparatus which concerns on 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1…連続固液分離装置
2…原汚泥貯留槽
3…減圧容器
4…供給管
5…供給口
6…排出口
7…排出口
8…排出管
9…汚泥排出管
10…排気管
11…排出管
12…開閉弁
13…排液槽
14…凝集剤供給部
15…凝集剤
16…連続固液分離装置
17…連続固液分離装置
18…排気口
19…開閉弁
20…排気管
21…ポンプ
22…排液ポンプ
23…汚泥排出ポンプ
O…原汚泥
S…濃縮汚泥
W…脱離液
L1〜L4…レベル計
M1〜M3…開閉弁
PIC…圧力計

DESCRIPTION OF SYMBOLS 1 ... Continuous solid-liquid separator 2 ... Raw sludge storage tank 3 ... Depressurization container 4 ... Supply pipe 5 ... Supply port 6 ... Discharge port 7 ... Discharge port 8 ... Discharge pipe 9 ... Sludge discharge pipe 10 ... Exhaust pipe 11 ... Discharge pipe DESCRIPTION OF SYMBOLS 12 ... On-off valve 13 ... Drainage tank 14 ... Flocculant supply part 15 ... Flocculant 16 ... Continuous solid-liquid separator 17 ... Continuous solid-liquid separator 18 ... Exhaust port 19 ... On-off valve 20 ... Exhaust pipe 21 ... Pump 22 ... Drain pump 23 ... Sludge discharge pump O ... Raw sludge S ... Concentrated sludge W ... Desorbed liquid L1-L4 ... Level meter M1-M3 ... Open / close valve PIC ... Pressure gauge

Claims (8)

原汚泥を減圧脱気することが可能な内圧に減圧した減圧容器内に原汚泥を供給し、該供給した原汚泥中の溶存ガスを減圧発泡させ、発泡したガスに汚泥の固体分を同伴させて浮上させることにより減圧容器の上部に固体分を集めて固液分離し、該減圧容器の上部に集めた固体分と発泡ガスとを減圧容器の上部から排出する操作と、減圧容器の下部に集めた脱離液を減圧容器の下部から排出する操作と、原汚泥を減圧容器内へ供給する操作との、排出速度と供給速度とを制御して減圧容器内で原汚泥の減圧脱気を連続的に行って固液分離する減圧脱気処理による連続固液分離方法。   The raw sludge is supplied into a vacuum container that has been reduced to an internal pressure capable of degassing the raw sludge, the dissolved gas in the supplied raw sludge is foamed under reduced pressure, and the solid content of the sludge is accompanied with the foamed gas. The solid content is collected at the upper part of the vacuum container by being floated and separated into solid and liquid, and the solid content and the foamed gas collected at the upper part of the vacuum container are discharged from the upper part of the vacuum container; Control the discharge speed and supply speed of the operation of discharging the collected desorbed liquid from the lower part of the vacuum container and the operation of supplying the raw sludge into the vacuum container to reduce the pressure of the raw sludge in the vacuum container. A continuous solid-liquid separation method by vacuum degassing that is continuously performed to separate the solid and liquid. 前記減圧容器の下部から排出する脱離液を該減圧容器から下方に10メートル以上の高低差を有する排液槽の液面下に開口する液体排出管から排出するようにし、減圧容器内の脱離液が自重で減圧容器内から排出されるようにした請求項1記載の減圧脱気処理による連続固液分離方法。   The desorbed liquid discharged from the lower part of the vacuum container is discharged from a liquid discharge pipe that opens below the liquid level of the drain tank having a height difference of 10 meters or more downward from the vacuum container. The continuous solid-liquid separation method by reduced-pressure deaeration treatment according to claim 1, wherein the separated liquid is discharged from the reduced-pressure vessel by its own weight. 前記減圧容器内への原汚泥の供給を該減圧容器の壁の接線方向から行って減圧容器内に旋回流を形成するようにした請求項1又は請求項2記載の減圧脱気処理による連続固液分離方法。   The continuous solidification by the vacuum degassing process according to claim 1 or 2, wherein the raw sludge is supplied into the vacuum vessel from a tangential direction of the wall of the vacuum vessel to form a swirl flow in the vacuum vessel. Liquid separation method. 前記減圧容器内の圧力が所定の圧力に上昇するまで該減圧容器の上部に集めた固体分の排出時期を延ばすことによって、該固体分の層を厚くして圧密による濃縮効果を高めるようにした請求項1〜3のいずれか1項に記載の減圧脱気処理による連続固液分離方法。   By extending the discharge time of the solids collected at the top of the vacuum vessel until the pressure in the vacuum vessel rises to a predetermined pressure, the solids layer is thickened to increase the concentration effect by consolidation. The continuous solid-liquid separation method by the vacuum deaeration process of any one of Claims 1-3. 原汚泥中の溶存ガスを減圧発泡させて、該発泡したガスに汚泥の固体分を同伴させて浮上させることにより上部に固体分を集めて固液分離する減圧容器を設け、該減圧容器の上部に発泡ガスと固体分とを排出する排出口を設け、該減圧容器の下部に脱離液を排出する排出口を設け、該減圧容器の側部に原汚泥を供給する供給口を設け、該供給口から減圧容器内に供給する原汚泥の供給速度と、前記排出口から排出する固体分と脱離液との排出速度とを制御する制御装置を設けて、減圧容器内に供給する原汚泥の減圧脱気を連続的に行って固液分離する減圧脱気処理による連続固液分離装置。   Dissolved gas in the raw sludge is foamed under reduced pressure, and the foamed gas is allowed to float with the solid content of the sludge so as to collect a solid content at the top to provide a vacuum container for solid-liquid separation. Provided with a discharge port for discharging the foaming gas and solids, a discharge port for discharging the desorbed liquid at the bottom of the decompression vessel, a supply port for supplying raw sludge to the side of the decompression vessel, Raw sludge to be supplied into the vacuum vessel by providing a control device for controlling the supply rate of the raw sludge supplied from the supply port into the vacuum vessel and the discharge rate of the solids and desorbed liquid discharged from the discharge port. A continuous solid-liquid separation device using vacuum degassing for continuously performing vacuum degassing. 前記減圧容器の排出口に液体排出管を設け、該液体排出管の下端を減圧容器から下方に10メートル以上の高低差を有する排液槽の液面下に開口させて、該減圧容器内の脱離液が自重で排出されるようにした請求項5記載の減圧脱気処理による連続固液分離装置。   A liquid discharge pipe is provided at the discharge port of the decompression container, and the lower end of the liquid discharge pipe is opened below the liquid level of the drain tank having a height difference of 10 meters or more downward from the decompression container. 6. The continuous solid-liquid separation device according to claim 5, wherein the desorbed liquid is discharged by its own weight. 前記供給口を減圧容器の壁の接線方向に配置し、該供給口から供給する原汚泥で減圧容器内に旋回流を生じさせるように構成した請求項5又は請求項6記載の減圧脱気処理による連続固液分離装置。   The decompression deaeration process according to claim 5 or 6, wherein the supply port is arranged in a tangential direction of the wall of the decompression vessel, and a swirl flow is generated in the decompression vessel by the raw sludge supplied from the supply port. By continuous solid-liquid separator. 前記減圧容器に内部圧力を検知するセンサを設け、該センサが減圧容器内の圧力が所定の圧力に上昇したことを検知するまで減圧容器の上部に集まる固体分の層を厚くして圧密による濃縮効果を高めるようにした請求項5〜7のいずれか1項に記載の減圧脱気処理による連続固液分離装置。

A sensor for detecting the internal pressure is provided in the decompression container, and the solid content layer gathered on the upper part of the decompression container is thickened until the sensor detects that the pressure in the decompression container has risen to a predetermined pressure, thereby concentrating by consolidation. The continuous solid-liquid separation device according to any one of claims 5 to 7, wherein the effect is enhanced.

JP2004097971A 2004-03-30 2004-03-30 Continuous solid-liquid separation method and apparatus by vacuum degassing treatment Expired - Lifetime JP3781756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004097971A JP3781756B2 (en) 2004-03-30 2004-03-30 Continuous solid-liquid separation method and apparatus by vacuum degassing treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004097971A JP3781756B2 (en) 2004-03-30 2004-03-30 Continuous solid-liquid separation method and apparatus by vacuum degassing treatment

Publications (2)

Publication Number Publication Date
JP2005279471A JP2005279471A (en) 2005-10-13
JP3781756B2 true JP3781756B2 (en) 2006-05-31

Family

ID=35178424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004097971A Expired - Lifetime JP3781756B2 (en) 2004-03-30 2004-03-30 Continuous solid-liquid separation method and apparatus by vacuum degassing treatment

Country Status (1)

Country Link
JP (1) JP3781756B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102762505A (en) * 2010-08-12 2012-10-31 株式会社泰科企划 Sludge thickening method and sludge thickening system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102762505A (en) * 2010-08-12 2012-10-31 株式会社泰科企划 Sludge thickening method and sludge thickening system
CN102762505B (en) * 2010-08-12 2014-03-12 株式会社泰科企划 Sludge thickening method and sludge thickening system

Also Published As

Publication number Publication date
JP2005279471A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
KR101606062B1 (en) Gas lift system and gas lift method
JP2013220390A (en) Anaerobic treatment system and anaerobic treatment method
JP3781756B2 (en) Continuous solid-liquid separation method and apparatus by vacuum degassing treatment
KR101053995B1 (en) Oil / water separator
JP5347132B2 (en) Sludge concentration method and sludge concentration system
CN215480457U (en) Sludge concentration system
JP3781755B2 (en) Sludge concentration device and sludge concentration method
CN106673231A (en) Environment-friendly oil-water separator
US6461502B1 (en) Apparatus for recovering a specific ingredient in sea water
CN106673235A (en) Efficient oil-water separator
KR102559283B1 (en) Smart sleep decompression atmosphere generating device and method for water treatment that improves microbubble rising speed
JP4493371B2 (en) Concentration separation method of sludge
JP2929528B2 (en) Sludge concentration method and apparatus
CN219614947U (en) Waste oil recovery device
CN220125567U (en) Calcium hydroxide recovery device for desulfurization equipment
CN213698909U (en) High-efficient bubble deoiling device
CN115215524A (en) Sludge concentration system and sludge concentration method
JP2006075765A (en) Scum removal method
JP2963435B1 (en) Method and apparatus for concentrated dewatering of sludge with high moisture content
CN211391280U (en) Double-vacuum sewage discharging device and train sewage discharging system applying same
KR102390495B1 (en) Water treatment system using bubble oil skimmer
JPH10174802A (en) Simple oil-water separator
KR200199585Y1 (en) A microbuble generator
KR102414528B1 (en) Oil-water separation system using bubble oil skimmer
JP7448447B2 (en) Solid-containing liquid transfer device and solid-containing liquid transfer method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060307

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7