JP3781511B2 - Microorganism holding carrier for bioreactor and gas phase bioreactor apparatus using the same - Google Patents

Microorganism holding carrier for bioreactor and gas phase bioreactor apparatus using the same Download PDF

Info

Publication number
JP3781511B2
JP3781511B2 JP13555597A JP13555597A JP3781511B2 JP 3781511 B2 JP3781511 B2 JP 3781511B2 JP 13555597 A JP13555597 A JP 13555597A JP 13555597 A JP13555597 A JP 13555597A JP 3781511 B2 JP3781511 B2 JP 3781511B2
Authority
JP
Japan
Prior art keywords
microorganism
bioreactor
carrier
microorganisms
water absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13555597A
Other languages
Japanese (ja)
Other versions
JPH10323186A (en
Inventor
朗 廣瀬
武彦 大沢
正恭 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
International Center for Environmental Technology Transfer
Original Assignee
Takenaka Corp
International Center for Environmental Technology Transfer
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp, International Center for Environmental Technology Transfer filed Critical Takenaka Corp
Priority to JP13555597A priority Critical patent/JP3781511B2/en
Publication of JPH10323186A publication Critical patent/JPH10323186A/en
Application granted granted Critical
Publication of JP3781511B2 publication Critical patent/JP3781511B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機物を微生物により連続反応させる装置として使用するバイオリアクター内に微生物を保持するための微生物保持担体に関し、詳しくは、通気性・通水性、微生物保持性に優れ、微生物培養液とガス状有機物を効率よく接触させることのできるバイオリアクター用の微生物保持担体に関するものである。
【0002】
【従来の技術】
生活排水、工場廃液や土壌に含まれるトリクロロエチレン、ベンゼン等の有害な揮発性有機物を除去する手段として、有機物を気体状態となし、微生物により連続反応させて分解、除去するバイオリアクターが近年、注目されている。
【0003】
ガス状有機物を微生物で分解するバイオリアクターとして、ピートモスを保持担体として微生物を担持させ、被処理気体と接触させる方式の生物脱臭装置が一般的に知られている。
【0004】
ここで用いられるピートモスは保水性が高いため、水分が多い場合には通気性が極端に悪くなり、被処理気体が水分を多く含む場合や、気体と液体を同時に処理する場合には採用できない。
【0005】
また、水溶液状の有機物を分解するバイオリアクターとしては、微生物保持担体としての各種吸着材、固定化材に微生物を担持させる方式が知られているが、これらはいずれも微生物を担体上に固定するため微生物自体が移動するものではなく、気体状態の被処理物には適さず、固定化しうる微生物の数にも制限があり、処理効率や固定化した微生物の定期的なメンテナンスを要するなどの点で問題があった。
【0006】
一般的に使用されているバイオリアクターの概略構成図を図2に示す。このようなバイオリアクター装置30には、微生物を保持するための微生物保持担体32を充填したカラム34が配置されており、カラム34内に有害有機物を気体状態で含むエアーが供給される。
【0007】
土壌や湖沼における有害有機物を分解・除去するめには、気体状態の被処理物を連続的に効率よく行う処理装置が必要であり、図2に示すような単に保持担体に固定化した微生物を用いるバイオリアクター装置よりも、連続的に供給される微生物の培養液と被処理物とを保持担体上で接触させる方式が効果的である。
【0008】
ガス状の有機物と微生物培養液をリアクター内に連続供給しながら接触させる方式の気相バイオリアクター装置の概略構成図を図1に示す。このようなバイオリアクター装置10には、微生物を保持するための微生物保持担体16を充填したカラム12が配置されており、リアクター内の通気性・通水性に優れ、かつ微生物培養液を適度に保持できる保持担体が要求される。しかしながら、現在使用されているピートモス、多孔性セルロース、ウレタンフォーム等の有機物からなる担体は微生物保持性に優れるものの、先に述べたように通気性に劣り、一方、ゼオライト等の無機担体は、微生物の保持量が前記した如き構成の気相バイオリアクターに使用するには不充分であった。
【0009】
【発明が解決しようとする課題】
本発明は前記問題点を考慮してなされたものであり、本発明の目的は、微生物培養液とガス状有機物を接触させる方式の気相バイオリアクター装置、及び、それに好適に適用し得る、通気性、通水性及び細菌保持性に優れたバイオリアクター用微生物保持担体を提供することにある。
【0010】
【課題を解決するための手段】
本発明のバイオリアクター用微生物保持担体は、吸水性を有さない素材からなる繊維状物と、吸水性を有し、且つ、微生物担持可能な有機物とを、液体中に所定量分散し、均一に混合してなり、そのまま、又は、液体を除去した後、カラムに充填して用いられることを特徴とする。また、本発明の気相バイオリアクター装置は、前記本発明のバイオリアクター用微生物保持担体を充填したカラムを備えることを特徴とする。
【0011】
このバイオリアクター用微生物保持担体において、前記吸水性を有さない素材からなる繊維状物がガラス繊維、金属繊維、炭素繊維、繊維状セラミックスから選択される一種以上であり、前記吸水性を有し、且つ、微生物担持可能な有機物が、ピートモス、水苔、海綿、多孔性セルロース、多孔性ポリエチレン、ウレタンフォームから選択される一種以上であることが好ましく、両者の混合割合は、乾燥重量比で9/1から1/1の割合であることが好ましい。
【0012】
【発明の実施の形態】
本発明のバイオリアクター用微生物保持担体は、吸水性を有さない素材からなる繊維状物及び吸水性を有し、且つ、微生物担持可能な有機物を併用するものであるが、ここで微生物保持担体に用いられる吸水性を有さない素材からなる繊維状物(以下、適宜、非吸水性繊維と称する)は、保持担体において適度な空隙を保持し、通気性、透水性を確保し得るものであれば、どのような素材からなるものでも使用し得るが、具体的には、前記ガラス繊維に他には、金属繊維、炭素繊維、繊維状セラミックスなどが挙げられる。なかでも、空隙保持性、入手の容易性の観点から、グラスウール等のガラス繊維が好適である。
【0013】
繊維の太さ、長さには特に制限はないが、均一混合性及び空隙保持性の観点から、太さは直径0.001〜0.5mm程度、長さ10〜100mm程度が一般的である。
【0014】
また、吸水性を有し、且つ、微生物担持可能な有機物(以下、適宜、微生物担持有機物と称する)としては、ピートモス、水苔、海綿、多孔性セルロース、多孔性ポリエチレン、ウレタンフォームなどが挙げられるが、物理的な保持性に加えて、微生物の生育に適した成分を含有するピートモスが特に好ましい。
【0015】
非吸水性繊維と微生物担持有機物との混合物は通気性・通水性ともに優れていることに加え、高濃度の微生物をリアクター内に保持することができ、効率のよいバイオリアクター装置とすることができる。
【0016】
非吸水性繊維と微生物担持有機物との混合物として、グラスウールとピートモスとの混合物(混合比=4:1)の保水性、通水性、通気性及び菌体保持量を測定した結果を下記表1に示す。
【0017】
また、比較対象例として、同様の条件で、グラスウール、ピートモスそれぞれのみからなる担体及び一般によく使用される微生物保持担体である粒状活性炭、高分子ろ材(高分子繊維を直径30mm程度の球形に成形した繊維集合体)の保水性、通水性、通気性及び菌体保持量を測定した結果を下記表1に併記する。
【0018】
【表1】

Figure 0003781511
【0019】
表1に明らかなように、本発明の微生物保持担体であるガラスウール/ピートモスの混合物は通気性・通水性の双方ともに他の担体と同等の性能を有しており、且つ、保水性・微生物保持性については他の担体より優れていることが明らかになった。一方、従来の微生物保持担体はいずれも、保水性、通水性の双方を満足するものはなかった。
【0020】
非吸水性繊維と微生物担持有機物との混合比は、目的とする通水性、細菌保持性によって、適宜調製することができるが、一般的には非吸水性繊維に対して、微生物担持有機物が同量か、それ以上混合されていることが好ましく、例えば、ガラスウールとピートモスの場合、混合比は乾燥重量比でガラスウール/ピートモス=9/1から1/1が適当である。図3はガラスウールとピートモスの混合重量比を変えて担体を通過する流体(水)の落下速度を測定したグラフである。横軸にガラスウールとピートモスの混合重量比、縦軸にガラスウールのみからなる担体を通過したときの流速を100とした相対流速を示す。このグラフより明らかなようにガラスウールとピートモスとの重量比が3/1近傍からピートモス含有量の増加に伴い、相対流量が低下する傾向になり、通水性の観点からはピートモス含有量が50重量%以下、即ち1/1以下であることが好ましく、また、微生物担持性の観点から、ピートモス含有量が10重量%以上、即ち9/1以上であることが好ましく、5/1から3/1程度であることがより好ましい。
【0021】
また、両者を混合して、微生物保持担体を構成するには、ガラスウールとピートモスとを水等の液体中に所定量分散し、ブレンダー、ミキサーなどにより均一に混合した後、そのまま、あるいはメッシュなどにより液体を除去して、カラム中に充填する方法などが挙げられる。
【0022】
次に、本発明の微生物保持担体を好適に適用し得るバイオリアクター装置について説明する。本装置は微生物を増殖させるための培養槽とガス状有機物を微生物分解させるリアクターを分離し、微生物培養液を循環させながらガス状有機物を連続的に供給する装置である。図1はガス状の有機物と微生物培養液をリアクター内に連続供給しながら接触させる方式の気相バイオリアクター装置10の概略構成図である。処理を目的とするガス状の有機物を含む空気は流量調節装置14を経てバイオリアクター装置10のカラム12へと供給される。カラム12内には、ピートモスとグラスウールの混合物からなる微生物保持担体16が配置されている。この有機物を処理するための微生物はトルエン槽18内で培養され、培養タンク20へと供給される。培養タンク20内の微生物は培養液としてポンプ22を有する供給パイプ24から連続的にカラム12内に供給され、微生物保持担体16に保持されて、ガス状の有機物と接触することにより、反応、処理が連続的に行われる。処理が終了して有害有機物を除去された排気は、サンプリング分析され、安全が確認された後、大気中へ排気される。一方、使用済みの微生物培養液はカラム12の下部に設けられた回収パイプ26より、再び培養タンク20へと回収され、再生される。
【0023】
このような装置においては、ガラスウールとピートモスの混合物を充填したカラムをバイオリアクターとし、リアクター上部より微生物培養液を、下部よりガス状有機物を含む空気を連続的に供給し、リアクター内でガス状有機物を微生物によって分解させるものである。
【0024】
この態様においては、非吸水性繊維としてガラス繊維(グラスウール)を用い、微生物担持有機物としてピートモスを用いている。
【0025】
この装置を用い、微生物培養液を循環させた場合、リアクター上部より流入する微生物濃度とリアクター下部より流出する微生物濃度は一定時間経過後一致し、微生物は培養槽とリアクターの間を途中で閉塞することなく循環していることが確認できた。
【0026】
このような循環式の気相バイオリアクター装置の場合、微生物培養液濃度および培養液の循環量によって、微生物保持担体の非吸水性繊維と微生物担持有機物との混合比を適当に変えることで微生物をリアクター内に蓄積させないで循環させることが可能である。
【0027】
本発明の微生物保持担体はガス状有機物を効率よく微生物反応させるためのバイオリアクター用保持担体として、生物脱臭装置、揮発性有害物質除去装置等巾広い適用が可能である。
【0028】
【発明の効果】
本発明のバイオリアクター用微生物保持担体は前記構成としたので、微生物培養液とガス状有機物を接触させる方式のバイオリアクター装置に好適に用いることができ、通気性、通水性と細菌保持性に優れるという効果を奏する。
【図面の簡単な説明】
【図1】 微生物培養液を連続供給する方式の気相バイオリアクター装置を示す概略構成図である。
【図2】 一般的に使用されている微生物固定化担体を用いる方式の気相バイオリアクター装置を示す概略構成図である。
【図3】 ガラスウールとピートモスの混合重量比と、担体を通過する流体の落下速度との関係を示すグラフである。 [0001]
BACKGROUND OF THE INVENTION
The present invention relates to a microorganism holding carrier for holding microorganisms in a bioreactor used as an apparatus for continuously reacting organic matter with microorganisms. More specifically, the present invention is excellent in air permeability, water permeability, microorganism holding ability, microorganism culture solution and gas The present invention relates to a microorganism-retaining carrier for a bioreactor that can efficiently contact organic substances in a form.
[0002]
[Prior art]
In recent years, bioreactors have been attracting attention as a means of removing harmful volatile organic substances such as trichlorethylene and benzene contained in domestic wastewater, factory effluent and soil, which decomposes and removes organic substances in a gaseous state through continuous reaction with microorganisms. ing.
[0003]
As a bioreactor for decomposing gaseous organic substances with microorganisms, a biological deodorization apparatus is generally known in which microorganisms are supported using peat moss as a holding carrier and contacted with a gas to be treated.
[0004]
Since peat moss used here has high water retention, the air permeability becomes extremely poor when there is a lot of moisture, and it cannot be used when the gas to be treated contains a lot of moisture or when the gas and liquid are treated simultaneously.
[0005]
Also, as bioreactors for decomposing aqueous organic substances, various adsorbents as a microorganism-supporting carrier and a system in which microorganisms are supported on an immobilizing material are known, both of which fix microorganisms on a carrier. Therefore, the microorganism itself is not moving, it is not suitable for the object to be processed in the gaseous state, the number of microorganisms that can be immobilized is limited, the processing efficiency and the periodic maintenance of the immobilized microorganisms are required, etc. There was a problem.
[0006]
A schematic configuration diagram of a commonly used bioreactor is shown in FIG. In such a bioreactor apparatus 30, a column 34 filled with a microorganism holding carrier 32 for holding microorganisms is arranged, and air containing harmful organic substances in a gaseous state is supplied into the column 34.
[0007]
In order to decompose and remove harmful organic substances in soil and lakes, a processing apparatus that continuously and efficiently performs a gaseous object to be processed is required, and a microorganism simply immobilized on a holding carrier as shown in FIG. 2 is used. More effective than the bioreactor device is a system in which a culture solution of microorganisms continuously supplied and an object to be processed are brought into contact with each other on a holding carrier.
[0008]
FIG. 1 shows a schematic configuration diagram of a gas phase bioreactor apparatus in which a gaseous organic substance and a microorganism culture solution are brought into contact with each other while being continuously supplied into the reactor. In such a bioreactor device 10, a column 12 filled with a microorganism holding carrier 16 for holding microorganisms is disposed, and the reactor has excellent air permeability and water permeability, and appropriately holds a microorganism culture solution. A holding carrier that can be used is required. However, currently used carriers made of organic substances such as peat moss, porous cellulose, and urethane foam are excellent in microbial retention, but as described above, they are inferior in air permeability. On the other hand, inorganic carriers such as zeolite are microorganisms. Is not sufficient for use in a gas phase bioreactor having the above-described structure.
[0009]
[Problems to be solved by the invention]
The present invention has been made in consideration of the above problems, and an object of the present invention is to provide a gas phase bioreactor apparatus in which a microorganism culture solution and a gaseous organic substance are brought into contact with each other , and an aeration that can be suitably applied thereto. It is to provide a microorganism-retaining carrier for a bioreactor having excellent properties, water permeability and bacteria retention.
[0010]
[Means for Solving the Problems]
The microorganism-retaining carrier for a bioreactor of the present invention is a uniform dispersion in which a fibrous material made of a material that does not have water absorption and an organic material that has water absorption and can carry microorganisms are dispersed in a predetermined amount. It is characterized in that it is used as it is or after it is removed from the liquid and then packed into a column . The gas phase bioreactor device of the present invention is characterized by comprising a column packed with the microorganism-retaining carrier for a bioreactor of the present invention.
[0011]
In this microorganism-retaining carrier for bioreactors, the fibrous material made of a material having no water absorption is one or more selected from glass fiber, metal fiber, carbon fiber, and fibrous ceramics, and has the water absorption property. The organic substance capable of supporting microorganisms is preferably at least one selected from peat moss, moss, sponge, porous cellulose, porous polyethylene and urethane foam, and the mixing ratio of the two is 9 by dry weight ratio. The ratio is preferably from 1/1 to 1/1.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The microorganism-retaining carrier for a bioreactor of the present invention is a combination of a fibrous material made of a material that does not have water absorption and an organic substance that has water absorption and can carry microorganisms. The fibrous material made of a material that does not have water absorbency (hereinafter, referred to as non-water absorbent fiber as appropriate) used in the above is capable of retaining appropriate voids in the holding carrier and ensuring air permeability and water permeability. Any material can be used as long as it is present. Specifically, the glass fiber includes metal fiber, carbon fiber, fibrous ceramics and the like. Of these, glass fibers such as glass wool are preferred from the viewpoints of void retention and availability.
[0013]
Although there is no restriction | limiting in particular in the thickness of fiber, From a viewpoint of uniform mixing property and space | gap maintenance property, thickness is about 0.001-0.5 mm in diameter, and about 10-100 mm in length is common. .
[0014]
Examples of organic substances having water absorption and capable of supporting microorganisms (hereinafter, appropriately referred to as microorganism-supporting organic substances) include peat moss, moss, sponge, porous cellulose, porous polyethylene, and urethane foam. However, peat moss containing components suitable for the growth of microorganisms in addition to physical retention is particularly preferred.
[0015]
The mixture of non-water-absorbing fibers and microorganism-supporting organic matter is excellent in both air permeability and water permeability, and can retain high-concentration microorganisms in the reactor, thus making it possible to make an efficient bioreactor device. .
[0016]
Table 1 shows the results of measuring the water retention, water permeability, air permeability, and cell retention of a mixture of glass wool and peat moss (mixing ratio = 4: 1) as a mixture of non-water absorbent fibers and microorganism-supporting organic matter. Show.
[0017]
Further, as comparative examples, under the same conditions, a carrier consisting only of glass wool and peat moss and a granular activated carbon that is a commonly used microorganism-supporting carrier, a polymer filter medium (polymer fibers were formed into a spherical shape with a diameter of about 30 mm) The results of measuring the water retention, water permeability, air permeability, and bacterial cell retention amount of the fiber assembly) are also shown in Table 1 below.
[0018]
[Table 1]
Figure 0003781511
[0019]
As is apparent from Table 1, the glass wool / peat moss mixture which is the microorganism-retaining carrier of the present invention has the same performance as other carriers in both air permeability and water permeability, It was revealed that the retention was superior to other carriers. On the other hand, none of the conventional microorganism-supporting carriers satisfy both water retention and water permeability.
[0020]
The mixing ratio of the non-water-absorbing fiber and the microorganism-supporting organic substance can be appropriately adjusted depending on the desired water permeability and bacteria retention, but generally the microorganism-supporting organic substance is the same as the non-water-absorbing fiber. For example, in the case of glass wool and peat moss, the mixing ratio of glass wool / peat moss is 9/1 to 1/1 as a dry weight ratio. FIG. 3 is a graph obtained by measuring the falling speed of the fluid (water) passing through the carrier while changing the mixing weight ratio of glass wool and peat moss. The horizontal axis shows the mixing weight ratio of glass wool and peat moss, and the vertical axis shows the relative flow rate when the flow rate when passing through a carrier consisting only of glass wool is 100. As is apparent from this graph, the relative flow rate tends to decrease as the peat moss content increases from about 3/1 in the weight ratio between glass wool and peat moss. From the viewpoint of water permeability, the peat moss content is 50% by weight. % Or less, that is, 1/1 or less, and from the viewpoint of the ability to support microorganisms, the peat moss content is preferably 10% by weight or more, that is, 9/1 or more, preferably 5/1 to 3/1. More preferably, it is about.
[0021]
In addition, in order to form a microorganism-supporting carrier by mixing both, glass wool and peat moss are dispersed in a predetermined amount in a liquid such as water and mixed uniformly with a blender, mixer, etc. For example, a method of removing the liquid and filling the column.
[0022]
Next, a bioreactor apparatus to which the microorganism holding carrier of the present invention can be preferably applied will be described. This apparatus separates a culture tank for growing microorganisms and a reactor for microbial decomposition of gaseous organic matter, and continuously supplies gaseous organic matter while circulating a microorganism culture solution. FIG. 1 is a schematic configuration diagram of a gas phase bioreactor apparatus 10 in which a gaseous organic substance and a microorganism culture solution are brought into contact with each other while being continuously supplied into the reactor. Air containing gaseous organic substances for processing is supplied to the column 12 of the bioreactor apparatus 10 through the flow rate control device 14. In the column 12, a microorganism holding carrier 16 made of a mixture of peat moss and glass wool is disposed. The microorganisms for treating the organic matter are cultured in the toluene tank 18 and supplied to the culture tank 20. Microorganisms in the culture tank 20 are continuously supplied into the column 12 from a supply pipe 24 having a pump 22 as a culture solution, held in the microorganism holding carrier 16 and brought into contact with gaseous organic matter to react and process. Is performed continuously. Exhaust gas from which harmful organic substances have been removed after the treatment has been subjected to sampling analysis and safety is confirmed, and then exhausted to the atmosphere. On the other hand, the used microorganism culture solution is recovered again to the culture tank 20 from the recovery pipe 26 provided at the lower part of the column 12 and regenerated.
[0023]
In such an apparatus, a column filled with a mixture of glass wool and peat moss is used as a bioreactor, a microbial culture solution is continuously supplied from the upper part of the reactor, and air containing gaseous organic substances is continuously supplied from the lower part, Organic substances are decomposed by microorganisms.
[0024]
In this embodiment, glass fiber (glass wool) is used as the non-water-absorbing fiber, and peat moss is used as the microorganism-supporting organic substance.
[0025]
When using this device to circulate the culture broth, the concentration of microorganisms flowing in from the upper part of the reactor and the concentration of microorganisms flowing out from the lower part of the reactor coincide after a certain period of time, and the microorganisms block the culture tank and the reactor halfway. It was confirmed that it was circulating without any problems.
[0026]
In the case of such a circulation type gas phase bioreactor apparatus, microorganisms can be obtained by appropriately changing the mixing ratio of the non-water-absorbing fiber of the microorganism holding carrier and the microorganism-supporting organic substance according to the concentration of the microorganism culture solution and the circulation amount of the culture solution. It is possible to circulate without accumulating in the reactor.
[0027]
The microorganism-retaining carrier of the present invention can be widely applied as a bioreactor retaining carrier for efficiently reacting gaseous organic substances with microorganisms, such as a biological deodorizing device and a volatile harmful substance removing device.
[0028]
【The invention's effect】
Since the microorganism-retaining carrier for a bioreactor of the present invention has the above-described configuration, it can be suitably used for a bioreactor apparatus in which a microorganism culture solution and a gaseous organic substance are brought into contact with each other, and is excellent in air permeability, water permeability, and bacteria retention. There is an effect.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a gas phase bioreactor apparatus in which a microorganism culture solution is continuously supplied.
FIG. 2 is a schematic configuration diagram showing a gas phase bioreactor apparatus using a microorganism-immobilized carrier that is generally used.
FIG. 3 is a graph showing the relationship between the mixing weight ratio of glass wool and peat moss and the falling speed of the fluid passing through the carrier.

Claims (5)

微生物を担持させてバイオリアクターに用いられる微生物保持担体であって、
吸水性を有さない素材からなる繊維状物と、吸水性を有し、且つ、微生物担持可能な有機物とを、液体中に所定量分散し、均一に混合してなり、そのまま、又は、液体を除去した後、カラムに充填して用いられることを特徴とするバイオリアクター用微生物保持担体。
A microorganism holding carrier used for a bioreactor by supporting microorganisms,
A predetermined amount of a fibrous material made of a material that does not have water absorption and an organic material that has water absorption and can carry microorganisms are dispersed in a liquid and mixed uniformly. A microorganism-retaining carrier for a bioreactor, which is used after being removed and packed in a column .
前記吸水性を有さない素材からなる繊維状物がガラス繊維、金属繊維、炭素繊維、繊維状セラミックスから選択される一種以上であることを特徴とする請求項1に記載のバイオリアクター用微生物保持担体。 2. The microorganism holding for a bioreactor according to claim 1, wherein the fibrous material made of a material having no water absorption is at least one selected from glass fiber, metal fiber, carbon fiber, and fibrous ceramics. Carrier. 前記吸水性を有し、且つ、微生物担持可能な有機物が、ピートモス、水苔、海綿、多孔性セルロース、多孔性ポリエチレン、ウレタンフォームから選択される一種以上であることを特徴とする請求項1に記載のバイオリアクター用微生物保持担体。 The organic substance having water absorbability and capable of supporting microorganisms is at least one selected from peat moss, moss, sponge, porous cellulose, porous polyethylene, and urethane foam. The microorganism-retaining carrier for bioreactors as described. 前記吸水性を有さない素材からなる繊維状物と、前記吸水性を有し、且つ、微生物担持可能な有機物とが、乾燥重量比で9/1から1/1の割合で混合されることを特徴とする請求項1乃至3のいずれかに記載のバイオリアクター用微生物保持担体。 The fibrous material made of the material having no water absorption and the organic material having the water absorption and capable of supporting microorganisms are mixed in a dry weight ratio of 9/1 to 1/1. The microorganism-retaining carrier for a bioreactor according to any one of claims 1 to 3. 請求項1乃至請求項4のいずれか1項に記載のバイオリアクター用微生物保持担体を充填してなるカラムを備えることを特徴とする気相バイオリアクター装置。A gas phase bioreactor apparatus comprising a column filled with the microorganism-retaining carrier for bioreactors according to any one of claims 1 to 4.
JP13555597A 1997-05-26 1997-05-26 Microorganism holding carrier for bioreactor and gas phase bioreactor apparatus using the same Expired - Fee Related JP3781511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13555597A JP3781511B2 (en) 1997-05-26 1997-05-26 Microorganism holding carrier for bioreactor and gas phase bioreactor apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13555597A JP3781511B2 (en) 1997-05-26 1997-05-26 Microorganism holding carrier for bioreactor and gas phase bioreactor apparatus using the same

Publications (2)

Publication Number Publication Date
JPH10323186A JPH10323186A (en) 1998-12-08
JP3781511B2 true JP3781511B2 (en) 2006-05-31

Family

ID=15154548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13555597A Expired - Fee Related JP3781511B2 (en) 1997-05-26 1997-05-26 Microorganism holding carrier for bioreactor and gas phase bioreactor apparatus using the same

Country Status (1)

Country Link
JP (1) JP3781511B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116002820B (en) * 2023-03-28 2023-06-13 山东北方三潍环保科技有限公司 Metal fiber micro-electrolysis material, preparation method and treatment system based on material

Also Published As

Publication number Publication date
JPH10323186A (en) 1998-12-08

Similar Documents

Publication Publication Date Title
Klimenko et al. Bioregeneration of activated carbons by bacterial degraders after adsorption of surfactants from aqueous solutions
JP2011507682A5 (en)
CN101734801A (en) Method for removing 2, 4-dichlorophenol in water by using polyurethane sponge fixed white rot fungi
JP2002096093A (en) Denitrification method for water
EP0530226B1 (en) Method for removing nitrogen from an aqueous solution
Baltrenas et al. Investigation of cleaning efficiency of a biofilter with an aeration chamber
JP3781511B2 (en) Microorganism holding carrier for bioreactor and gas phase bioreactor apparatus using the same
WO1999059705A9 (en) Process and materials for removing pollutants
KR100821780B1 (en) Microorganism-immobilized polymer hydrogel beads for the removal of VOC and odor and the preparing method thereof
CA2138271A1 (en) Use of immobilized film reactor
CN209815909U (en) System for biologically coupling photocatalysis synchronous processing is difficult for degrading organic waste water
KR100433644B1 (en) Porous Polymer Matrix Formed with Activated Carbon and Zeolite for Biofilter and Method for Preparing the Same
JP2609192B2 (en) Biological dephosphorization nitrification denitrification treatment method of organic wastewater
Jaar et al. Granular activated carbon sequencing batch biofilm reactor to treat problematic wastewaters
CN108715820A (en) A method of the composite bacteria agent and utilization composite bacteria agent degradation VOCs of degradation VOCs
JP3615116B2 (en) Method and apparatus for treating volatile organochlorine compounds
US5139682A (en) Zeolite enhanced organic biotransformation
JPH0474076B2 (en)
JP2554560B2 (en) Method and apparatus for biological regeneration of activated carbon
KR100337657B1 (en) Carrier of biofilter system for gas purifying and a preparing method thereof
KR20020002448A (en) Fluidized porous media soak with zeolite for removal of organic carbon and denitrification
JPH0768282A (en) Wastewater treatment apparatus
CN113415896B (en) Composite functional microbial agent for on-line regeneration of activated carbon adsorption carrier by anoxic culture biological method and application thereof
JP3447537B2 (en) Microorganism deodorizing device and method of operating the device
JPH08323136A (en) Method for deodorizing odorous gas by microorganism

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060307

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees