JP3781486B2 - Rare earth activated barium fluoride halide phosphor powder and method for producing the same - Google Patents

Rare earth activated barium fluoride halide phosphor powder and method for producing the same Download PDF

Info

Publication number
JP3781486B2
JP3781486B2 JP23727596A JP23727596A JP3781486B2 JP 3781486 B2 JP3781486 B2 JP 3781486B2 JP 23727596 A JP23727596 A JP 23727596A JP 23727596 A JP23727596 A JP 23727596A JP 3781486 B2 JP3781486 B2 JP 3781486B2
Authority
JP
Japan
Prior art keywords
phosphor
rare earth
barium
powder
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23727596A
Other languages
Japanese (ja)
Other versions
JPH1060428A (en
Inventor
和弘 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP23727596A priority Critical patent/JP3781486B2/en
Publication of JPH1060428A publication Critical patent/JPH1060428A/en
Application granted granted Critical
Publication of JP3781486B2 publication Critical patent/JP3781486B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、微粒子状の希土類付活弗化ハロゲン化バリウム系の輝尽性蛍光体の粒子からなる粉体、そしてその蛍光体粉末を有利に製造するのに適した製造法に関するものである。
【0002】
【従来の技術】
従来の写真フィルムを用いる放射線写真法に代わる方法として、輝尽性蛍光体を用いる放射線像変換方法が開発され、近年では広範囲に利用されている。この方法は、輝尽性蛍光体を含有する放射線像変換パネル(蓄積性蛍光体シート)を利用するもので、被写体を透過した、あるいは被検体から発せられた放射線を該パネルの輝尽性蛍光体に吸収させ、そののちに輝尽性蛍光体を可視光線、赤外線などの電磁波(励起光)で時系列的に励起することにより、該輝尽性蛍光体中に蓄積されている放射線エネルギーを蛍光(輝尽発光光)として放出させ、この蛍光を光電的に読み取って電気信号を得、次いで得られた電気信号に基づいて被写体あるいは被検体の放射線画像を可視像として再生するものである。読み取りを終えた該パネルは、残存する画像の消去が行なわれた後、次の撮影のために備えられる。すなわち、放射線像変換パネルは繰り返し使用することができる。
【0003】
輝尽性蛍光体は、放射線を照射した後、励起光を照射すると輝尽発光を示す蛍光体であるが、実用上では、波長が400〜900nmの範囲にある励起光によって300〜500nmの波長範囲の輝尽発光を示す蛍光体が一般的に利用される。そして、従来より放射線像変換パネルに用いられル輝尽性蛍光体としては、下記組成式(I):
Ba1-xII x FX:aMI ,bLn …(I)
(但し、MIIは、Mg、CaおよびSrからなる群より選ばれる少なくとも一種のアルカリ土類金属を表わし;Xは、Cl、BrおよびIからなる群より選ばれる少なくとも一種のハロゲンを表わし;MI は、Li、Na、K、Rb及びCsからなる群より選ばれる少なくとも一種のアルカリ金属を表わし;そしてLnはCe、Pr、Sm、Eu、Gd、Tb、TmおよびYbからなる群より選ばれる少なくとも一種の希土類金属を表わし;そして、x、aおよびbは、それぞれ、0≦x≦0.5、0<a≦0.05、及び0<b≦0.2の条件を満足する数値である。)
で表わされる希土類付活弗化ハロゲン化バリウム系蛍光体が最も一般的に用いられている。
【0004】
放射線像変換方法に用いられる放射線像変換パネルは、その基本構造として、支持体とその表面に設けられた輝尽性蛍光体層とからなるものである。ただし、蛍光体層が自己支持性である場合には必ずしも支持体を必要としない。
輝尽性蛍光体層は、通常は輝尽性蛍光体とこれを分散状態で含有支持する結合剤とからなる。ただし、輝尽性蛍光体層としては、蒸着法や焼結法によって形成される、結合剤を含まないで輝尽性蛍光体の凝集体のみから構成されるものが知られている。また、輝尽性蛍光体の凝集体の間隙に高分子物質が含浸されている輝尽性蛍光体層を有する放射線像変換パネルも知られている。
【0005】
【発明が解決しようとする課題】
輝尽性蛍光体を利用する放射線像変換方法の利用が進むにつれて、得られる放射線画像の画質の向上、たとえば、鮮鋭度の向上や粒状性の向上が更に求められるようになっている。
放射線画像の画質の向上のための手段は種々考えられるが、なかでも、輝尽性蛍光体の微粒子化と微粒子化された輝尽性蛍光体の粒径を揃えること、即ち、粒径分布を狭くすることが有効である。そして、そのためには、まず蛍光体粉末の焼成時に発生しやすい焼結による蛍光体粉末の塊状化を可能な限り抑制しなければならない。
【0006】
すなわち、輝尽性蛍光体は一般に、蛍光体原料を水溶液中で反応させて反応生成物の結晶を得た後、その反応生成物(蛍光体前駆体)を高温で焼成し、次いで焼成物を粉砕し、これを篩などを利用して分級する方法を利用して製造されている。ただし、この方法では蛍光体前駆体の高温焼成工程において、前駆体結晶の焼結が発生して、得られる蛍光体が塊状物として得られやすいという問題があった。この蛍光体の塊状物は、粉砕により微粒子化されるが、粉砕を過度に行なうと、得られる蛍光体粒子の特性低下(感度の低下など)が発生しやすいため、予め焼結の発生を抑制しておくことが望ましい。そして、従来では、その蛍光体前駆体の焼成工程における焼結の発生を抑制するために、結晶状の蛍光体前駆体に酸化アルミニウムや酸化ジルコニウムなどの焼結防止剤の微粒子を混合して、その表面に点着させ、その点着された酸化アルミニウムや酸化ジルコニウムの作用により焼結を抑制するという方法が一般的に利用されていた。
上記の蛍光体前駆体結晶への酸化アルミニウムや酸化ジルコニウムの微粒子の混合による点着は、焼結防止のためにそれなりに有効であるが、蛍光体前駆体結晶と焼結防止剤微粒子との均一な混合の操作が煩雑になる上に、特に焼結防止剤微粒子を多量に添加するような場合には、その均一点着が容易ではないという問題がある。
【0007】
【課題を解決するための手段】
組成式(I):
Ba1-xII x FX:aMI ,bLn …(I)
(但し、MIIは、Mg、CaおよびSrからなる群より選ばれる少なくとも一種のアルカリ土類金属を表わし;Xは、Cl、BrおよびIからなる群より選ばれる少なくとも一種のハロゲンを表わし;MI は、Li、Na、K、Rb及びCsからなる群より選ばれる少なくとも一種のアルカリ金属を表わし;そしてLnはCe、Pr、Sm、Eu、Gd、Tb、TmおよびYbからなる群より選ばれる少なくとも一種の希土類金属を表わし;そして、x、aおよびbは、それぞれ、0≦x≦0.5、0<a≦0.05、及び0<b≦0.2の条件を満足する数値である。)
で表わされる希土類付活弗化ハロゲン化バリウム系蛍光体の粉末であって、その粉末表面が、アルミニウム、ジルコニウム、チタン、およびバリウムの内のいずれかの元素の酸化物の皮膜により被覆されていることを特徴とする焼成により得られた希土類付活弗化ハロゲン化バリウム系蛍光体粉末。
【0008】
上記の酸化物被覆蛍光体粉末は、組成式(I):
Ba1-xII x FX:aMI ,bLn …(I)
(但し、MII、X、MI 、Ln、そして、x、aおよびbは、上記と同じ意味を表わす)
表わされる希土類付活弗化ハロゲン化バリウム系蛍光体の前駆体粉末の表面にアルミニウム、ジルコニウム、チタン、ケイ素、およびバリウムの内のいずれかの元素のアルコキシドを付着させたのち、該アルコキシドを加水分解させ、次いで該前駆体粉末を焼成することにより得ることができる。
【0009】
【発明の実施の形態】
本発明の希土類付活弗化ハロゲン化バリウム系蛍光体の製造法の代表的な態様を、以下に詳しく説明する。
【0010】
まず、常法に従って、水系溶媒中で、ハロゲン化バリウム(BaX2 :Xは、組成式(I)に記載のもの:そして所望により、更にCaX2 、SrX2 、あるいはアルカリ金属のハロゲン化物などの添加物)と希土類元素(組成式(I)のLn)のハロゲン化物、そして無機弗化物(弗化アンモニウム、アルカリ金属の弗化物など)を反応させて、蛍光体前駆体結晶を製造する。
【0011】
蛍光体前駆体結晶は、特願平8−131057号出願明細書に記載したような水と有機溶媒との混合溶媒中で製造することもできる。
すなわち、まず、反応容器に水と相溶性のある有機溶媒(アルコール系、ケトン系、エーテル系、エステル系など)を入れ、この有機溶媒を20〜80℃に保温する。別に、ハロゲン化バリウム(BaX2 :Xは、組成式(I)に記載のもの。そして、所望により、更にCaX2 、SrX2 、あるいはアルカリ金属のハロゲン化物などの添加物)と希土類元素(組成式(I)のLn)のハロゲン化物とを溶解した水溶液あるいは水性有機溶媒溶液、そして、無機弗化物(弗化アンモニウム、アルカリ金属の弗化物など)の水溶液あるいは水性有機溶媒溶液をそれぞれ用意し、これらを前記の有機溶媒に撹拌下に同時に添加する。この有機溶媒への蛍光体原料の同時添加により、それらはすぐに反応し、蛍光体前駆体結晶が析出する。そして、その反応混合物を上記の温度範囲で更に撹拌して、析出した結晶の熟成を行なう。その後、沈殿した結晶を濾過により集め、有機溶媒、水性有機溶媒で良く洗ったのち、結晶を乾燥させることにより目的の蛍光体前駆体結晶を得ることができる。この蛍光体前駆体結晶の中心粒子径は、中心粒子径が0.1〜8μmの範囲にあることが好ましい
【0012】
次いで、乾燥させた結晶(蛍光体前駆体結晶)に、焼成によって、本発明の蛍光体の被覆剤として用いるアルミニウム、ジルコニウム、チタン、及びバリウムの内のいずれかの元素の酸化物に容易に変化する化合物を付着させる。そのような化合物の好ましい例としては、アルミニウム、ジルコニウム、チタン、及びバリウムの内のいずれかの元素のアルコキシド(例えば、メトキシド、エトキシド、プロポキシド、イソプロポキシド、sec−ブトキシドなどの炭素数1〜6の低級アルキルのオキシド)を挙げることができる。
蛍光体前駆体結晶への、これらのアルコキシドの付着のための好ましい方法としては、アルコキシド有機溶媒溶液中への前駆体結晶の浸漬がある。あるいは、前駆体結晶にアルコキシド有機溶媒溶液を噴霧してもよい。なお、この噴霧を利用してアルコキシド有機溶媒溶液を前駆体結晶の表面に付着させる場合には、前駆体結晶表面に均一に噴霧することが望ましい。
【0013】
アルコキシドが表面に付着した蛍光体前駆体結晶は、次いで水との接触により加水分解され、次いで、常法に従い、焼成される。
焼成は、蛍光体前駆体結晶を、石英ボート、アルミナルツボ、石英ルツボなどの耐熱性容器に充填し、電気炉の炉芯に入れて焼成を行なう。焼成温度は400〜1300℃が適当であり、500〜1000℃の範囲(特に700〜900℃付近)が好ましい。焼成時間は、蛍光体原料混合物の充填量、焼成温度および炉からの取出し温度などによっても異なるが、一般には0.5〜12時間(特に1〜5時間)が適当である。焼成雰囲気としては、窒素ガス雰囲気、アルゴンガス雰囲気などの中性雰囲気、あるいは少量の水素ガスを含有する窒素ガス雰囲気、一酸化炭素を含有する二酸化炭素雰囲気などの弱還元性雰囲気、あるいは微量酸素導入雰囲気が利用される。
【0014】
上記の加水分解によってアルコキシドが分解して酸化物となるため、粉末表面がアルコキシドの酸化物の皮膜で均一に被覆され、従って焼結による塊状化が少ない(例、中心粒子径は10μm以下)弗化ハロゲン化バリウム系輝尽性蛍光体粉末が得られる。所望により、得られた蛍光体粉末を篩などを用いて分級してもよい。
【0015】
【実施例】
[実施例1]
内部雰囲気を窒素置換したグローブボックス中で、アルミニウムトリ−sec−ブトキシド(関東化学株式会社製)をそれぞれ別に0.52g、1.56g、2.60g、そして5.20g秤量して、これをsec−ブタノールで希釈して300mLのアルミニウムトリ−sec−ブトキシド溶液を調製した。
別に調製しておいた中心粒子径が5μmのユーロピウム付活弗化臭化バリウム(BaFBr:0.001 Eu2+、輝尽性蛍光体)の前駆体結晶100gを上記のアルミニウムトリ−sec−ブトキシド溶液(300mL)に添加し、強く撹拌して、充分に分散させ、アルミニウムトリ−sec−ブトキシドを表面に吸着した蛍光体前駆体結晶粉末の懸濁液を得た。
【0016】
別に、sec−ブタノール(50mL)に、それぞれ水を0.54g、1.62g、2.70g、そして5.40g添加した混合液を調製し、これらを上記蛍光体前駆体結晶の懸濁液のそれぞれに室温で順に添加して、アルミニウムトリ−sec−ブトキシドを加水分解させた。なお、この添加は、懸濁液を撹拌しながら、これに混合液をシリンダーポンプを用い、0.1mL/分の流量で加える方法により行なった。混合液の添加後、さらに熟成のために室温で1時間撹拌を続け、次いで吸引濾過を利用して、処理済みの蛍光体前駆体結晶を分離した。
分離した蛍光体前駆体結晶を20g秤量し、これを850℃の窒素雰囲気中で焼成して表面が酸化アルミニウムで被覆されたユーロピウム付活弗化臭化バリウム(BaFBr:0.001 Eu2+)の輝尽性蛍光体の粉末を得た。
【0017】
[実施例2]
内部雰囲気を窒素置換したグローブボックス中で、ジルコニウムテトラプロポキシド(アルドリッチ社製)をそれぞれ別に0.38g、1.14g、1.90g、そして3.80g秤量して、これをプロパノールで希釈して300mLのジルコニウムテトラプロポキシド溶液を調製した。
別に調製しておいた中心粒子径が5μmのユーロピウム付活弗化臭化バリウム(BaFBr:0.001 Eu2+、輝尽性蛍光体)の前駆体結晶100gを上記のジルコニウムテトラプロポキシド溶液(300mL)に添加し、強く撹拌して、充分に分散させ、ジルコニウムテトラプロポキシドを表面に吸着した蛍光体前駆体結晶粉末の懸濁液を得た。
【0018】
別に、プロパノール(50mL)に、それぞれ水を0.29g、0.88g、1.46g、そして2.92g添加した混合液を調製し、これらを上記蛍光体前駆体結晶の懸濁液のそれぞれに室温で順に添加して、ジルコニウムテトラプロポキシドを加水分解させた。なお、この添加は、懸濁液を撹拌しながら、これに混合液をシリンダーポンプを用い、0.1mL/分の流量で加える方法により行なった。混合液の添加後、さらに熟成のために室温で1時間撹拌を続け、次いで吸引濾過を利用して、処理済みの蛍光体前駆体結晶を分離した。
分離した蛍光体前駆体結晶を20g秤量し、これを850℃の窒素雰囲気中で焼成して表面が酸化ジルコニウムで被覆されたユーロピウム付活弗化臭化バリウム(BaFBr:0.001 Eu2+)の輝尽性蛍光体の粉末を得た。
【0019】
[実施例3]
内部雰囲気を窒素置換したグローブボックス中で、チタンテトライソプロポキシド(和光純薬株式会社製)を、それぞれ別に0.37g、1.12g、1.87g、そして3.74g秤量して、これをイソプロパノールで希釈して300mLのチタンテトライソプロポキシド溶液を調製した。
別に調製しておいた中心粒子径が5μmのユーロピウム付活弗化臭化バリウム(BaFBr:0.001 Eu2+、輝尽性蛍光体)の前駆体結晶100gを上記のチタンテトライソプロポキシド溶液(300mL)に添加し、強く撹拌して、充分に分散させ、チタンテトライソプロポキシドを表面に吸着した蛍光体前駆体結晶粉末の懸濁液を得た。
【0020】
別に、イソプロパノール(50mL)に、それぞれ水を0.45g、1.35g、2.25g、そして4.50g添加した混合液を調製し、これらを上記蛍光体前駆体結晶の懸濁液のそれぞれに室温で順に添加して、チタンテトライソプロポキシドを加水分解させた。なお、この添加は、懸濁液を撹拌しながら、これに混合液をシリンダーポンプを用い、0.1mL/分の流量で加える方法により行なった。混合液の添加後、さらに熟成のために室温で1時間撹拌を続け、次いで吸引濾過を利用して、処理済みの蛍光体前駆体結晶を分離した。
分離した蛍光体前駆体結晶を20g秤量し、これを850℃の窒素雰囲気中で焼成することにより、表面が酸化チタンで被覆されたユーロピウム付活弗化臭化バリウム(BaFBr:0.001 Eu2+)の輝尽性蛍光体の粉末を得た。
【0021】
[実施例4(但し、本発明の実施例ではなく、参考例である)
内部雰囲気を窒素置換したグローブボックス中で、テトラエトキシシラン(関東化学株式会社製)を、それぞれ別に0.36g、1.09g、1.82g、そして3.64g秤量して、これをエタノールで希釈して300mLのテトラエトキシシラン溶液を調製した。
別に調製しておいた中心粒子径が5μmのユーロピウム付活弗化臭化バリウム(BaFBr:0.001 Eu2+、輝尽性蛍光体)の前駆体結晶100gを上記のテトラエトキシシラン溶液(300mL)に添加し、強く撹拌して、充分に分散させ、テトラエトキシシランを表面に吸着した蛍光体前駆体結晶粉末の懸濁液を得た。
【0022】
別に、エタノール(50mL)に、それぞれ水を、0.60g、1.79g、2.99g、そして5.98g添加した混合液を調製し、これらを上記蛍光体前駆体結晶の懸濁液のそれぞれに室温で順に添加して、テトラエトキシシラを加水分解させた。なお、この添加は、懸濁液を撹拌しながら、これに混合液をシリンダーポンプを用い、0.1mL/分の流量で加える方法により行なった。混合液の添加後、さらに熟成のために室温で1時間撹拌を続け、次いで吸引濾過を利用して、処理済みの蛍光体前駆体結晶を分離した。
分離した蛍光体前駆体結晶を20g秤量し、これを850℃の窒素雰囲気中で焼成することにより、表面が酸化けい素で被覆されたユーロピウム付活弗化臭化バリウム(BaFBr:0.001 Eu2+)の輝尽性蛍光体の粉末を得た。
【0023】
[実施例5]
内部雰囲気を窒素置換したグローブボックス中で、金属バリウム2.00gをイソプロパノールに溶解させて、バリウムイソプロポキシドを含む100mLイソプロパノール溶液を得た。この溶液を、それぞれ別に4.5mL、13.4mL、22.3mL、そして44.6mL秤量して、これをイソプロパノールで希釈して300mLのバリウムイソプロポキシド溶液を調製した。
別に調製しておいた中心粒子径が5μmのユーロピウム付活弗化臭化バリウム(BaFBr:0.001 Eu2+、輝尽性蛍光体)の前駆体結晶100gを上記のバリウムイソプロポキシド溶液(300mL)に添加し、強く撹拌して、充分に分散させ、バリウムイソプロポキシドを表面に吸着した蛍光体前駆体結晶粉末の懸濁液を得た。
【0024】
別に、イソプロノール(50mL)に、それぞれ水を、0.12g、0.35g、0.59g、そして1.17g添加した混合液を調製し、これらを上記蛍光体前駆体結晶の懸濁液のそれぞれに室温で順に添加して、バリウムイソプロポキシドを加水分解させた。なお、この添加は、懸濁液を撹拌しながら、これに混合液をシリンダーポンプを用い、0.1mL/分の流量で加える方法により行なった。混合液の添加後、さらに熟成のために室温で1時間撹拌を続け、次いで吸引濾過を利用して、処理済みの蛍光体前駆体結晶を分離した。
分離した蛍光体前駆体結晶を20g秤量し、これを850℃の窒素雰囲気中で焼成することにより、表面が酸化バリウムで被覆されたユーロピウム付活弗化臭化バリウム(BaFBr:0.001 Eu2+)の輝尽性蛍光体の粉末を得た。
【0025】
[比較例1]
予め調製しておいた中心粒子径が5μmのユーロピウム付活弗化臭化バリウム(BaFBr:0.001 Eu2+、輝尽性蛍光体)の前駆体結晶20gに超微粒子状(中心粒子径:約0.02μm)の酸化アルミニウム0.2gを添加し、充分に混合した。この混合物を850℃の窒素雰囲気中で焼成することにより、表面に酸化アルミニウムが点着したユーロピウム付活弗化臭化バリウム(BaFBr:0.001 Eu2+)の輝尽性蛍光体の粉末を得た。
【0026】
[焼成後の蛍光体粉末の中心粒子径]
実施例1〜5および比較例1において焼成後に得られた蛍光体粉末の中心粒子径を測定した。その結果を図1に示す。なお、この図1の横軸は、蛍光体粉末の表面に被覆もしくは点着されている金属酸化物の量を表わし、その金属酸化物の量は、実施例では、蛍光体前駆体粒子を浸漬したアルコキシド溶液中のアルコキシドの全量が蛍光体前駆体粒子の表面に吸着され、加水分解されたものと仮定した場合の値である。
図1から明らかなように、同じ酸化物使用量当りで比較すると、本発明に従って、アルコキシドの加水分解を利用して金属酸化物を蛍光体粉末の表面に付着させた場合、従来の酸化アルミニウムの超微粒子の使用に比べて、少なくとも同等で、多くは更に優れた焼結防止効果が達成されていることがわかる。
【0027】
[実施例6]
前駆体結晶を、中心粒子径が5μmのセリウム付活弗化臭化バリウム(BaFBr:0.001 Ce3+、輝尽性蛍光体)に変えた以外は、実施例1と同一の操作により、表面が酸化アルミニウムで被覆されたユーロピウム付活弗化臭化バリウム(BaFBr:0.001 Ce3+)の輝尽性蛍光体の粉末を得た。
得られた輝尽性蛍光体は、実施例1の場合と同様に焼結が抑制されていた。
【0028】
[実施例7]
前駆体結晶を、中心粒子径が5μmのセリウム付活弗化臭化バリウム(BaFBr:0.001 Ce3+、輝尽性蛍光体)に変えた以外は、実施例2と同一の操作により、表面が酸化ジルコニウムで被覆されたユーロピウム付活弗化臭化バリウム(BaFBr:0.001 Ce3+)の輝尽性蛍光体の粉末を得た。
得られた輝尽性蛍光体は、実施例2の場合と同様に焼結が抑制されていた。
【0029】
[実施例8(但し、本発明の実施例ではなく、参考例である)
前駆体結晶を、中心粒子径が5μmのセリウム付活弗化臭化バリウム(BaFBr:0.001 Ce3+、輝尽性蛍光体)に変えた以外は、実施例4と同一の操作により、表面が酸化けい素で被覆されたユーロピウム付活弗化臭化バリウム(BaFBr:0.001 Ce3+)の輝尽性蛍光体の粉末を得た。
得られた輝尽性蛍光体は、実施例4の場合と同様に焼結が抑制されていた。
【0030】
【発明の効果】
希土類付活弗化ハロゲン化バリウム系輝尽性蛍光体粉末の製造の際の焼結防止剤として、アルミニウム、ジルコニウム、チタン、およびバリウムの内のいずれかの元素のアルコキシドの酸化により得られる酸化物を、その粉末の表面を被覆するように用いることにより、焼成時の蛍光体粒子の焼結を効果的に抑制することができる。
【図面の簡単な説明】
【図1】本発明および公知の焼結防止剤で処理した同一粒径の輝尽性蛍光体を焼成したのちの蛍光体粉末の粒径(中心粒径)の変動を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a powder comprising fine particles of rare earth activated barium fluorohalide-based stimulable phosphor particles, and a production method suitable for advantageously producing the phosphor powder.
[0002]
[Prior art]
As an alternative to the conventional radiographic method using a photographic film, a radiation image conversion method using a stimulable phosphor has been developed and has been widely used in recent years. This method uses a radiation image conversion panel (accumulative phosphor sheet) containing a stimulable phosphor, and the radiation transmitted through the subject or emitted from the subject is stimulated by the panel. The radiation energy stored in the stimulable phosphor is absorbed by the body, and then the stimulable phosphor is excited in time series with electromagnetic waves (excitation light) such as visible light and infrared rays. It emits as fluorescence (stimulated luminescence light), photoelectrically reads this fluorescence to obtain an electrical signal, and then reproduces a radiographic image of a subject or subject as a visible image based on the obtained electrical signal. . The panel which has been read is prepared for the next photographing after the remaining image is erased. That is, the radiation image conversion panel can be used repeatedly.
[0003]
Stimulable phosphors are phosphors that exhibit stimulating luminescence when irradiated with excitation light after being irradiated with radiation, but in practice, wavelengths of 300 to 500 nm are obtained by excitation light having a wavelength in the range of 400 to 900 nm. Phosphors that exhibit a range of stimulated luminescence are generally utilized. And as a ru photostimulable phosphor conventionally used for a radiation image conversion panel, the following composition formula (I):
Ba 1-x M II x FX: aM I , bLn (I)
(Wherein M II represents at least one alkaline earth metal selected from the group consisting of Mg, Ca and Sr; X represents at least one halogen selected from the group consisting of Cl, Br and I; I represents at least one alkali metal selected from the group consisting of Li, Na, K, Rb and Cs; and Ln is selected from the group consisting of Ce, Pr, Sm, Eu, Gd, Tb, Tm and Yb Represents at least one rare earth metal; and x, a, and b are numerical values that satisfy the conditions of 0 ≦ x ≦ 0.5, 0 <a ≦ 0.05, and 0 <b ≦ 0.2, respectively. is there.)
The rare earth activated barium fluoride halide phosphor represented by the following formula is most commonly used.
[0004]
The radiation image conversion panel used in the radiation image conversion method includes, as its basic structure, a support and a photostimulable phosphor layer provided on the surface thereof. However, a support is not necessarily required when the phosphor layer is self-supporting.
The photostimulable phosphor layer is usually composed of a photostimulable phosphor and a binder containing and supporting the phosphor in a dispersed state. However, as the photostimulable phosphor layer, a layer composed only of an aggregate of stimulable phosphors without containing a binder, which is formed by a vapor deposition method or a sintering method, is known. A radiation image conversion panel having a stimulable phosphor layer in which a polymer substance is impregnated in a gap between aggregates of stimulable phosphors is also known.
[0005]
[Problems to be solved by the invention]
As the use of a radiation image conversion method using a stimulable phosphor progresses, improvement in the image quality of the obtained radiation image, for example, improvement in sharpness and graininess, is further demanded.
Various means for improving the image quality of the radiation image are conceivable. Among them, the fine phosphor particles are made fine and the particle size of the fine phosphor particles is made uniform, that is, the particle size distribution is changed. It is effective to make it narrow. For this purpose, first, it is necessary to suppress as much as possible the agglomeration of the phosphor powder by sintering, which is likely to occur during the firing of the phosphor powder.
[0006]
That is, the photostimulable phosphor is generally obtained by reacting a phosphor raw material in an aqueous solution to obtain a reaction product crystal, and then firing the reaction product (phosphor precursor) at a high temperature, It is manufactured using a method of pulverizing and classifying it using a sieve or the like. However, in this method, there is a problem that in the high-temperature firing step of the phosphor precursor, the precursor crystals are sintered, and the obtained phosphor is easily obtained as a lump. This phosphor lump is finely divided by pulverization. However, excessive pulverization tends to cause deterioration of the properties of the resulting phosphor particles (such as a decrease in sensitivity). It is desirable to keep it. And conventionally, in order to suppress the occurrence of sintering in the firing step of the phosphor precursor, by mixing fine particles of a sintering inhibitor such as aluminum oxide and zirconium oxide with the crystalline phosphor precursor, A method of spotting on the surface and suppressing sintering by the action of the spotted aluminum oxide or zirconium oxide has been generally used.
Spotting by mixing aluminum oxide and zirconium oxide fine particles on the phosphor precursor crystal is effective for preventing sintering, but the phosphor precursor crystals and the sintering inhibitor fine particles are uniform. In addition, the mixing operation becomes complicated, and in particular, when a large amount of sintering inhibitor fine particles are added, the uniform spotting is not easy.
[0007]
[Means for Solving the Problems]
Composition formula (I):
Ba 1-x M II x FX: aM I , bLn (I)
(Wherein M II represents at least one alkaline earth metal selected from the group consisting of Mg, Ca and Sr; X represents at least one halogen selected from the group consisting of Cl, Br and I; I represents at least one alkali metal selected from the group consisting of Li, Na, K, Rb and Cs; and Ln is selected from the group consisting of Ce, Pr, Sm, Eu, Gd, Tb, Tm and Yb Represents at least one rare earth metal; and x, a, and b are numerical values that satisfy the conditions of 0 ≦ x ≦ 0.5, 0 <a ≦ 0.05, and 0 <b ≦ 0.2, respectively. is there.)
A powder of a rare earth activated fluoride barium halide phosphor represented in, the powder surface, aluminum, zirconium, titanium, coated with film of oxides of any element of the contact and barium A rare earth-activated barium fluorohalide phosphor powder obtained by firing, characterized in that:
[0008]
The oxide-coated phosphor powder has the composition formula (I):
Ba 1-x M II x FX: aM I , bLn (I)
(However, M II , X, M I , Ln, and x, a, and b have the same meaning as described above.)
An alkoxide of any element of aluminum, zirconium, titanium, silicon and barium is attached to the surface of the precursor powder of the rare earth-activated barium fluoride halide phosphor represented, and then the alkoxide is hydrolyzed And then calcining the precursor powder.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
A typical embodiment of the method for producing the rare earth activated barium fluorohalide phosphor of the present invention will be described in detail below.
[0010]
First, in accordance with a conventional method, in an aqueous solvent, barium halide (BaX 2 : X is the one described in the composition formula (I): and, if desired, CaX 2 , SrX 2 , or alkali metal halide, etc. An additive), a rare earth element (Ln in the composition formula (I)) halide, and an inorganic fluoride (ammonium fluoride, alkali metal fluoride, etc.) are reacted to produce a phosphor precursor crystal.
[0011]
The phosphor precursor crystal can also be produced in a mixed solvent of water and an organic solvent as described in the specification of Japanese Patent Application No. 8-131057.
That is, first, an organic solvent (alcohol-based, ketone-based, ether-based, ester-based, etc.) that is compatible with water is placed in a reaction vessel, and this organic solvent is kept at 20 to 80 ° C. Separately, barium halide (BaX 2 : X is as described in composition formula (I), and optionally further additives such as CaX 2 , SrX 2 , or alkali metal halide) and rare earth elements (composition) An aqueous solution or an aqueous organic solvent solution in which the halide of Ln) of formula (I) is dissolved, and an aqueous solution or an aqueous organic solvent solution of inorganic fluoride (ammonium fluoride, alkali metal fluoride, etc.) are prepared. These are simultaneously added to the organic solvent with stirring. By the simultaneous addition of the phosphor raw material to the organic solvent, they react immediately and the phosphor precursor crystals are deposited. The reaction mixture is further stirred in the above temperature range, and the precipitated crystals are aged. Thereafter, the precipitated crystals are collected by filtration, washed thoroughly with an organic solvent or an aqueous organic solvent, and then dried to obtain the desired phosphor precursor crystals. The central particle diameter of the phosphor precursor crystal is preferably in the range of 0.1 to 8 μm .
[0012]
Then, the dried crystals (phosphor precursor crystals), firing the aluminum used as a coating agent of the phosphor of the present invention, zirconium, titanium, readily the oxide of any element of the beauty barium Deposit changing compounds. Preferred examples of such compounds, aluminum, zirconium, titanium, alkoxides of any element of the beauty barium (e.g., methoxide, ethoxide, propoxide, isopropoxide, carbon atoms such as sec- butoxide 1 -6 lower alkyl oxides).
A preferred method for the attachment of these alkoxides to the phosphor precursor crystals is immersion of the precursor crystals in an alkoxide organic solvent solution. Alternatively, the alkoxide organic solvent solution may be sprayed onto the precursor crystal. In addition, when making the alkoxide organic solvent solution adhere to the surface of a precursor crystal | crystallization using this spraying, it is desirable to spray uniformly on the surface of a precursor crystal | crystallization.
[0013]
The phosphor precursor crystal with the alkoxide attached to the surface is then hydrolyzed by contact with water and then baked according to a conventional method.
Firing is performed by filling the phosphor precursor crystal in a heat-resistant container such as a quartz boat, an alumina crucible, or a quartz crucible, and placing the phosphor precursor crystal in the core of an electric furnace. The baking temperature is suitably from 400 to 1300 ° C, preferably in the range of 500 to 1000 ° C (particularly around 700 to 900 ° C). The firing time is generally 0.5 to 12 hours (particularly 1 to 5 hours), although it varies depending on the filling amount of the phosphor raw material mixture, the firing temperature and the temperature of taking out from the furnace. The firing atmosphere may be a neutral atmosphere such as a nitrogen gas atmosphere or an argon gas atmosphere, a nitrogen gas atmosphere containing a small amount of hydrogen gas, a weakly reducing atmosphere such as a carbon dioxide atmosphere containing carbon monoxide, or a small amount of oxygen introduced. The atmosphere is used.
[0014]
Since the alkoxide is decomposed into the oxide by the hydrolysis described above, the powder surface is uniformly coated with the oxide film of the alkoxide, and therefore the agglomeration due to sintering is small (eg, the center particle diameter is 10 μm or less). A barium halide based photostimulable phosphor powder is obtained. If desired, the obtained phosphor powder may be classified using a sieve or the like.
[0015]
【Example】
[Example 1]
In a glove box in which the internal atmosphere was replaced with nitrogen, 0.52 g, 1.56 g, 2.60 g, and 5.20 g of aluminum tri-sec-butoxide (manufactured by Kanto Chemical Co., Inc.) were weighed separately, and this was sec. -Diluted with butanol to prepare 300 mL of aluminum tri-sec-butoxide solution.
Separately prepared 100 g of europium-activated barium fluorobromide fluoride (BaFBr: 0.001 Eu 2+ , stimulable phosphor) having a central particle diameter of 5 μm was added to the above aluminum tri-sec-butoxide solution ( 300 mL), vigorously stirred, and fully dispersed to obtain a suspension of phosphor precursor crystal powder having aluminum tri-sec-butoxide adsorbed on the surface.
[0016]
Separately, 0.54 g, 1.62 g, 2.70 g, and 5.40 g of water were respectively added to sec-butanol (50 mL) to prepare a mixture of the phosphor precursor crystal suspension. Each was added sequentially at room temperature to hydrolyze aluminum tri-sec-butoxide. This addition was carried out by stirring the suspension and adding the mixed solution thereto at a flow rate of 0.1 mL / min using a cylinder pump. After addition of the mixed solution, stirring was continued for 1 hour at room temperature for further aging, and then the treated phosphor precursor crystals were separated using suction filtration.
20 g of the separated phosphor precursor crystals were weighed and baked in a nitrogen atmosphere at 850 ° C. to shine bright europium-activated barium fluoride bromide (BaFBr: 0.001 Eu 2+ ) whose surface was coated with aluminum oxide. An exhaustive phosphor powder was obtained.
[0017]
[Example 2]
In a glove box where the internal atmosphere was replaced with nitrogen, 0.38 g, 1.14 g, 1.90 g and 3.80 g of zirconium tetrapropoxide (Aldrich) were weighed separately and diluted with propanol. A 300 mL zirconium tetrapropoxide solution was prepared.
Separately prepared 100 g of europium activated barium fluorobromide bromide (BaFBr: 0.001 Eu 2+ , stimulable phosphor) having a central particle diameter of 5 μm was added to the above zirconium tetrapropoxide solution (300 mL). The mixture was sufficiently stirred and dispersed sufficiently to obtain a suspension of phosphor precursor crystal powder having zirconium tetrapropoxide adsorbed on the surface.
[0018]
Separately, propanol (50 mL) was prepared by adding 0.29 g, 0.88 g, 1.46 g, and 2.92 g of water to each of the above phosphor precursor crystal suspensions. Zirconium tetrapropoxide was hydrolyzed by sequential addition at room temperature. This addition was carried out by stirring the suspension and adding the mixed solution thereto at a flow rate of 0.1 mL / min using a cylinder pump. After addition of the mixed solution, stirring was continued for 1 hour at room temperature for further aging, and then the treated phosphor precursor crystals were separated using suction filtration.
20 g of the separated phosphor precursor crystals were weighed and baked in a nitrogen atmosphere at 850 ° C., and the brightness of europium-activated barium fluoride bromide (BaFBr: 0.001 Eu 2+ ) whose surface was coated with zirconium oxide. An exhaustive phosphor powder was obtained.
[0019]
[Example 3]
Titanium tetraisopropoxide (manufactured by Wako Pure Chemical Industries, Ltd.) was weighed 0.37 g, 1.12 g, 1.87 g, and 3.74 g, respectively, in a glove box in which the internal atmosphere was replaced with nitrogen. A 300 mL titanium tetraisopropoxide solution was prepared by diluting with isopropanol.
Separately prepared 100 g of europium-activated barium fluorobromide fluoride (BaFBr: 0.001 Eu 2+ , stimulable phosphor) having a center particle diameter of 5 μm was added to the above titanium tetraisopropoxide solution (300 mL). ), Vigorously stirred, and sufficiently dispersed to obtain a suspension of phosphor precursor crystal powder having titanium tetraisopropoxide adsorbed on the surface.
[0020]
Separately, a mixture of 0.45 g, 1.35 g, 2.25 g, and 4.50 g of water was added to isopropanol (50 mL), and these were added to each of the phosphor precursor crystal suspensions. Titanium tetraisopropoxide was hydrolyzed by sequential addition at room temperature. This addition was carried out by stirring the suspension and adding the mixed solution thereto at a flow rate of 0.1 mL / min using a cylinder pump. After addition of the mixed solution, stirring was continued for 1 hour at room temperature for further aging, and then the treated phosphor precursor crystals were separated using suction filtration.
20 g of the separated phosphor precursor crystal is weighed and calcined in a nitrogen atmosphere at 850 ° C., whereby europium-activated barium fluorobromide (BaFBr: 0.001 Eu 2+ ) whose surface is coated with titanium oxide. The photostimulable phosphor powder was obtained.
[0021]
[Example 4 (however, it is not an example of the present invention but a reference example) ]
Tetraethoxysilane (manufactured by Kanto Chemical Co., Inc.) was weighed separately for 0.36 g, 1.09 g, 1.82 g, and 3.64 g in a glove box substituted with nitrogen inside, and diluted with ethanol. 300 mL of tetraethoxysilane solution was prepared.
Separately prepared 100 g of europium activated barium fluorobromide bromide (BaFBr: 0.001 Eu 2+ , stimulable phosphor) having a center particle size of 5 μm was added to the tetraethoxysilane solution (300 mL). Then, the suspension was vigorously stirred and dispersed sufficiently to obtain a suspension of phosphor precursor crystal powder having tetraethoxysilane adsorbed on the surface.
[0022]
Separately, 0.60 g, 1.79 g, 2.99 g, and 5.98 g of water were added to ethanol (50 mL), respectively, and these were added to each of the above phosphor precursor crystal suspensions. Were added in order at room temperature to hydrolyze tetraethoxysila. This addition was carried out by stirring the suspension and adding the mixed solution thereto at a flow rate of 0.1 mL / min using a cylinder pump. After addition of the mixed solution, stirring was continued for 1 hour at room temperature for further aging, and then the treated phosphor precursor crystals were separated using suction filtration.
20 g of the separated phosphor precursor crystal was weighed and calcined in a nitrogen atmosphere at 850 ° C., whereby europium-activated barium fluorobromide (BaFBr: 0.001 Eu 2+) whose surface was coated with silicon oxide. ) Photostimulable phosphor powder was obtained.
[0023]
[Example 5]
In a glove box where the internal atmosphere was replaced with nitrogen, 2.00 g of barium metal was dissolved in isopropanol to obtain a 100 mL isopropanol solution containing barium isopropoxide. This solution was weighed separately at 4.5 mL, 13.4 mL, 22.3 mL, and 44.6 mL, respectively, and diluted with isopropanol to prepare 300 mL of barium isopropoxide solution.
Separately prepared 100 g of europium-activated barium fluorobromide bromide (BaFBr: 0.001 Eu 2+ , stimulable phosphor) having a central particle diameter of 5 μm was prepared in the above barium isopropoxide solution (300 mL). The mixture was thoroughly stirred and dispersed sufficiently to obtain a suspension of phosphor precursor crystal powder having barium isopropoxide adsorbed on the surface.
[0024]
Separately, 0.12 g, 0.35 g, 0.59 g, and 1.17 g of water were added to isopronol (50 mL), respectively, and these were added to the suspension of the phosphor precursor crystals. Barium isopropoxide was hydrolyzed by adding to each at room temperature. This addition was carried out by stirring the suspension and adding the mixed solution thereto at a flow rate of 0.1 mL / min using a cylinder pump. After addition of the mixed solution, stirring was continued for 1 hour at room temperature for further aging, and then the treated phosphor precursor crystals were separated using suction filtration.
20 g of the separated phosphor precursor crystal is weighed and calcined in a nitrogen atmosphere at 850 ° C., whereby europium-activated barium fluorobromide (BaFBr: 0.001 Eu 2+ ) whose surface is coated with barium oxide. The photostimulable phosphor powder was obtained.
[0025]
[Comparative Example 1]
Ultrafine particles (center particle diameter: about 0) are prepared on 20 g of a pre-prepared precursor crystal of europium-activated barium fluorobromide (BaFBr: 0.001 Eu 2+ , stimulable phosphor) having a center particle diameter of 5 μm. 0.02 μm) of aluminum oxide was added and mixed well. This mixture was fired in a nitrogen atmosphere at 850 ° C. to obtain a photostimulable phosphor powder of europium activated barium fluorobromide (BaFBr: 0.001 Eu 2+ ) spotted with aluminum oxide on the surface. .
[0026]
[Center particle diameter of phosphor powder after firing]
The center particle diameters of the phosphor powders obtained after firing in Examples 1 to 5 and Comparative Example 1 were measured. The result is shown in FIG. The horizontal axis of FIG. 1 represents the amount of metal oxide coated or spotted on the surface of the phosphor powder, and the amount of the metal oxide is obtained by immersing phosphor precursor particles in the examples. The value is based on the assumption that the entire amount of alkoxide in the alkoxide solution is adsorbed on the surface of the phosphor precursor particles and hydrolyzed.
As can be seen from FIG. 1, when compared with the same amount of oxide used, when the metal oxide is deposited on the surface of the phosphor powder using the hydrolysis of alkoxide according to the present invention, the conventional aluminum oxide It can be seen that, compared to the use of ultrafine particles, at least the same and many more excellent anti-sintering effects have been achieved.
[0027]
[Example 6]
The surface was changed in the same manner as in Example 1 except that the precursor crystal was changed to cerium-activated barium fluorobromide (BaFBr: 0.001 Ce 3+ , stimulable phosphor) having a center particle diameter of 5 μm. A stimulable phosphor powder of europium-activated barium fluorobromide (BaFBr: 0.001 Ce 3+ ) coated with aluminum oxide was obtained.
Stimulation of the obtained photostimulable phosphor was suppressed as in Example 1.
[0028]
[Example 7]
The surface was changed in the same manner as in Example 2 except that the precursor crystal was changed to cerium-activated barium fluorobromide (BaFBr: 0.001 Ce 3+ , stimulable phosphor) having a center particle diameter of 5 μm. A stimulable phosphor powder of europium-activated barium fluorobromide (BaFBr: 0.001 Ce 3+ ) coated with zirconium oxide was obtained.
Stimulation of the obtained photostimulable phosphor was suppressed as in Example 2.
[0029]
[Example 8 (however, it is not an example of the present invention but a reference example) ]
The surface was changed by the same operation as in Example 4 except that the precursor crystal was changed to cerium-activated barium fluorobromide (BaFBr: 0.001 Ce 3+ , photostimulable phosphor) having a center particle diameter of 5 μm. A stimulable phosphor powder of europium-activated barium fluorobromide (BaFBr: 0.001 Ce 3+ ) coated with silicon oxide was obtained.
Stimulation of the obtained photostimulable phosphor was suppressed as in Example 4.
[0030]
【The invention's effect】
As a sintering inhibitor in the preparation of a rare earth activated fluoride barium halide stimulable phosphor powders obtained aluminum, zirconium, titanium, by oxidation of the alkoxide of any element of the contact and barium oxide By using the product so as to cover the surface of the powder, sintering of the phosphor particles during firing can be effectively suppressed.
[Brief description of the drawings]
FIG. 1 is a graph showing fluctuations in the particle size (center particle size) of a phosphor powder after firing a stimulable phosphor of the same particle size treated with the present invention and a known sintering inhibitor.

Claims (6)

組成式(I):
Ba1-xII x FX:aMI ,bLn …(I)
(但し、MIIは、Mg、CaおよびSrからなる群より選ばれる少なくとも一種のアルカリ土類金属を表わし;Xは、Cl、BrおよびIからなる群より選ばれる少なくとも一種のハロゲンを表わし;MI は、Li、Na、K、Rb及びCsからなる群より選ばれる少なくとも一種のアルカリ金属を表わし;そしてLnはCe、Pr、Sm、Eu、Gd、Tb、TmおよびYbからなる群より選ばれる少なくとも一種の希土類金属を表わし;そして、x、aおよびbは、それぞれ、0≦x≦0.5、0<a≦0.05、及び0<b≦0.2の条件を満足する数値である。)
で表わされる希土類付活弗化ハロゲン化バリウム系蛍光体の粉末であって、その粉末表面が、アルミニウム、ジルコニウム、チタン、およびバリウムの内のいずれかの元素の酸化物皮膜により被覆されていることを特徴とする焼成により得られた希土類付活弗化ハロゲン化バリウム系蛍光体粉末。
Composition formula (I):
Ba 1-x M II x FX: aM I , bLn (I)
(Wherein M II represents at least one alkaline earth metal selected from the group consisting of Mg, Ca and Sr; X represents at least one halogen selected from the group consisting of Cl, Br and I; M I represents at least one alkali metal selected from the group consisting of Li, Na, K, Rb and Cs; and Ln is selected from the group consisting of Ce, Pr, Sm, Eu, Gd, Tb, Tm and Yb Represents at least one rare earth metal; and x, a, and b are numerical values that satisfy the conditions of 0 ≦ x ≦ 0.5, 0 <a ≦ 0.05, and 0 <b ≦ 0.2, respectively. is there.)
A powder of a rare earth activated fluoride barium halide phosphor represented in, the powder surface, aluminum, zirconium, is coated with an oxide film of any element of titanium, you and barium A rare earth-activated barium fluoride halide phosphor powder obtained by firing.
蛍光体粉末を被覆している酸化物皮膜が酸化アルミニウムもしくは酸化ジルコニウムの皮膜である請求項1に記載の希土類付活弗化ハロゲン化バリウム系蛍光体粉末。Rare earth activated fluoride barium halide phosphor powder according to claim 1 oxide film coating the phosphor powder is a coating of aluminum oxide or oxide zirconium beam. 蛍光体粉末の中心粒子径が0.1〜8μmである請求項1に記載の希土類付活弗化ハロゲン化バリウム系蛍光体粉末。  2. The rare earth-activated barium fluorohalide phosphor powder according to claim 1, wherein the phosphor powder has a center particle diameter of 0.1 to 8 [mu] m. 組成式(I):
Ba1-xII x FX:aMI ,bLn …(I)
(但し、MIIは、Mg、CaおよびSrからなる群より選ばれる少なくとも一種のアルカリ土類金属を表わし;Xは、Cl、BrおよびIからなる群より選ばれる少なくとも一種のハロゲンを表わし;MI は、Li、Na、K、Rb及びCsからなる群より選ばれる少なくとも一種のアルカリ金属を表わし;そしてLnはCe、Pr、Sm、Eu、Gd、Tb、TmおよびYbからなる群より選ばれる少なくとも一種の希土類金属を表わし;そして、x、aおよびbは、それぞれ、0≦x≦0.5、0<a≦0.05、及び0<b≦0.2の条件を満足する数値である。)
表わされる希土類付活弗化ハロゲン化バリウム系蛍光体の前駆体粉末の表面にアルミニウム、ジルコニウム、チタン、およびバリウムの内のいずれかの元素のアルコキシドを付着させたのち、該アルコキシドを加水分解させ、次いで該前駆体粉末を焼成することを特徴とする希土類付活弗化ハロゲン化バリウム系蛍光体粉末の製造法。
Composition formula (I):
Ba 1-x M II x FX: aM I , bLn (I)
(Wherein M II represents at least one alkaline earth metal selected from the group consisting of Mg, Ca and Sr; X represents at least one halogen selected from the group consisting of Cl, Br and I; I represents at least one alkali metal selected from the group consisting of Li, Na, K, Rb and Cs; and Ln is selected from the group consisting of Ce, Pr, Sm, Eu, Gd, Tb, Tm and Yb Represents at least one rare earth metal; and x, a, and b are numerical values that satisfy the conditions of 0 ≦ x ≦ 0.5, 0 <a ≦ 0.05, and 0 <b ≦ 0.2, respectively. is there.)
In aluminum on the surface of the precursor powder of a rare earth activated fluoride barium halide phosphor represented, zirconium, allowed to attach titanium, an alkoxide of any element of the contact and barium, hydrolyzing the alkoxide And then firing the precursor powder, a method for producing a rare earth-activated barium fluorohalide phosphor powder.
蛍光体前駆体粉末に付着させるアルコキシドが、アルミニウムアルコキシドもしくはジルコニウムアルコキシドである請求項4に記載の希土類付活弗化ハロゲン化バリウム系蛍光体粉末の製造法。Alkoxide to adhere to the phosphor precursor powder, method for producing a rare earth activated fluoride barium halide phosphor powder according to claim 4 which is an aluminum alkoxide or zirconium alkoxy de. 蛍光体の前駆体の表面へのアルコキシドの付着を、該アルコキシドを溶液として、この溶液に該前駆体を浸漬させることにより行なう請求項4に記載の希土類付活弗化ハロゲン化バリウム系蛍光体粉末の製造法。  The rare earth-activated barium fluorohalide phosphor powder according to claim 4, wherein the alkoxide is attached to the surface of the phosphor precursor by immersing the precursor in the solution. Manufacturing method.
JP23727596A 1996-08-20 1996-08-20 Rare earth activated barium fluoride halide phosphor powder and method for producing the same Expired - Lifetime JP3781486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23727596A JP3781486B2 (en) 1996-08-20 1996-08-20 Rare earth activated barium fluoride halide phosphor powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23727596A JP3781486B2 (en) 1996-08-20 1996-08-20 Rare earth activated barium fluoride halide phosphor powder and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1060428A JPH1060428A (en) 1998-03-03
JP3781486B2 true JP3781486B2 (en) 2006-05-31

Family

ID=17012984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23727596A Expired - Lifetime JP3781486B2 (en) 1996-08-20 1996-08-20 Rare earth activated barium fluoride halide phosphor powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP3781486B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3755285B2 (en) * 1998-03-19 2006-03-15 日亜化学工業株式会社 Iron-activated lithium aluminate phosphor and its fluorescent lamp
JP2000160155A (en) * 1998-09-24 2000-06-13 Konica Corp Rare-earth metal activated alkaline earth metal fluorohalide-based phosphorescent fluorescent substance, its moistureproof treatment, radiological image converting panel and production of phosphorescent fluorescent substance
JP2001011440A (en) * 1999-07-02 2001-01-16 Fuji Photo Film Co Ltd Stimulable flluorescent substance and radiographic image-converting panel
JP2003089788A (en) * 2001-09-18 2003-03-28 Konica Corp Photostimulable phosphor, method for producing the same and radiation image-conversion panel
WO2018163232A1 (en) * 2017-03-06 2018-09-13 日本碍子株式会社 Fluorescent powder, and method for producing fluorescent powder
WO2019107080A1 (en) 2017-11-30 2019-06-06 デクセリアルズ株式会社 Coated phosphor, method for producing same, phosphor sheet, and light-emitting device
JP6932679B2 (en) * 2017-11-30 2021-09-08 デクセリアルズ株式会社 Coated fluorescent material, its manufacturing method, fluorescent material sheet, and light emitting device

Also Published As

Publication number Publication date
JPH1060428A (en) 1998-03-03

Similar Documents

Publication Publication Date Title
EP1036130B1 (en) Method of preparing high brightness, shorter persistence zinc orthosilicate phosphor
JP3983734B2 (en) Compounds based on alkaline earth metals, sulfur and aluminum, gallium or indium, their production and their use as phosphors
TW200813193A (en) Core/shell phosphor precursors and phosphors
EP1053560B1 (en) Method of preparing high brightness, small particle red-emitting phosphor and the phosohor
JP3607613B2 (en) Small particle terbium activated yttrium gadolinium borate phosphor and process
JP3781486B2 (en) Rare earth activated barium fluoride halide phosphor powder and method for producing the same
US6423247B1 (en) Phosphorescent pigment and process for preparing the same
JP2001172627A (en) Rare earth phosphate, method for producing the same and rare earth phosphate fluorescent substance
US6423248B1 (en) Method of making green emitting alkaline earth aluminate phosphor for VUV excited light emitting device
Gedekar et al. Ce 3+ and Eu 2+ luminescence in calcium and strontium aluminates
WO2000071637A1 (en) Coated phosphors
JP2002519502A (en) Small particle blue emitting lanthanum phosphate based phosphors for displays and lamps and methods of forming the same
EP1176119B1 (en) Method of producing barium-containing composite metal oxide
US6284155B1 (en) Method for making small particle red emitting phosphors
JP2001303039A (en) Inorganic fluorescent substance and method for producing the same
JP3955648B2 (en) Rare earth activated barium fluoride halide phosphor powder and method for producing the same
JP2003213254A (en) Method for producing silicate phosphor
JPH11106748A (en) Preparation of tetradecahedral type rare earth-activated alkaline earth metal halogenated fluoride phosphor
JPH05132668A (en) Formation of highly light-transmitting fluorescent membrane
JP3938820B2 (en) Method for producing rare earth activated alkaline earth metal fluoride halide phosphor, and radiation image conversion panel using rare earth activated alkaline earth metal fluoride halide phosphor obtained by the production method
JPH09255950A (en) Preparation of light-storing luminescent pigment
JPH04120189A (en) Production of fluorescent substrate of yttrium aluminum garnet
JP2001199723A (en) BaFI CRYSTAL AND METHOD FOR TREATING THE SURFACE THEREOF
JPH05273706A (en) X-ray intensifying screen which uses phosphor of mixed form structure
JP2005314573A (en) Composite material by using zeolite, phosphor and method for producing them

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060307

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7