JPH11106748A - Preparation of tetradecahedral type rare earth-activated alkaline earth metal halogenated fluoride phosphor - Google Patents

Preparation of tetradecahedral type rare earth-activated alkaline earth metal halogenated fluoride phosphor

Info

Publication number
JPH11106748A
JPH11106748A JP28451397A JP28451397A JPH11106748A JP H11106748 A JPH11106748 A JP H11106748A JP 28451397 A JP28451397 A JP 28451397A JP 28451397 A JP28451397 A JP 28451397A JP H11106748 A JPH11106748 A JP H11106748A
Authority
JP
Japan
Prior art keywords
rare earth
based phosphor
slurry
alkaline earth
earth metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28451397A
Other languages
Japanese (ja)
Inventor
Masato Funahashi
真人 舟橋
Yuji Isoda
勇治 礒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP28451397A priority Critical patent/JPH11106748A/en
Publication of JPH11106748A publication Critical patent/JPH11106748A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a process for preparing a tetradecahedral type accelerated phosphor having improved properties in stimulated emission, erasing properties, afterimage properties, fading properties, X-ray afterglow, etc. SOLUTION: A process for preparing a tetradecahedral type rare earth- accelerated alkaline earth metal halogenated fluoride phosphor of the formula Ba1-x Cax FBr1-y Iy :aEu, bM, eA (wherein M is Li, Na, K, Rb or Cs; A is an oxide such as Al2 O3 and SiO2 ; 0<x<=0.03, 0<y<=0.03, 0.0001<=a<=0.01, 0<b<=0.05 and 0<e<=0.05) comprises (a) a step of preparing a barium bromine fluoride phosphor precursor, (b) a step of forming a barium iodine fluoride phosphor precursor, (c) a step of mixing said phosphor precursors with an oxide A for preventing calcining, optionally, a halide M, (d) a step of calcining, (e) a step of unfastening, classifying and decanting and (f) a step of solid-liquid separation and drying.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、14面体型の希土
類付活アルカリ土類金属弗化ハロゲン化物系の輝尽性蛍
光体の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a stimulable phosphor based on a tetrahedral rare earth-activated alkaline earth metal fluorinated halide.

【0002】[0002]

【従来の技術】従来の放射線写真法に代わる方法とし
て、輝尽性蛍光体を用いる放射線像記録再生方法が知ら
れている。この方法は、輝尽性蛍光体を含有する放射線
像変換パネル(蓄積性蛍光体シート)を利用するもの
で、被写体を透過した、あるいは被検体から発せられた
放射線を該パネルの輝尽性蛍光体に吸収させ、そののち
に輝尽性蛍光体を可視光線、赤外線などの電磁波(励起
光)で時系列的に励起することにより、該輝尽性蛍光体
中に蓄積されている放射線エネルギーを蛍光(輝尽発光
光)として放出させ、この蛍光を光電的に読み取って電
気信号を得、次いで得られた電気信号に基づいて被写体
あるいは被検体の放射線画像を可視像として再生するも
のである。読み取りを終えた該パネルは、残存する画像
の消去が行なわれた後、次の撮影のために備えられる。
すなわち、放射線像変換パネルは繰り返し使用すること
ができる。
2. Description of the Related Art A radiation image recording / reproducing method using a stimulable phosphor is known as an alternative to the conventional radiographic method. This method uses a radiation image conversion panel (a stimulable phosphor sheet) containing a stimulable phosphor, and transmits radiation transmitted through a subject or emitted from a subject to the stimulable phosphor of the panel. By absorbing the stimulable phosphor with electromagnetic waves (excitation light) such as visible light and infrared light in a time series manner, the radiation energy stored in the stimulable phosphor is absorbed by the body. The fluorescent light is emitted (stimulated emission light), the fluorescent light is read photoelectrically to obtain an electric signal, and a radiation image of a subject or a subject is reproduced as a visible image based on the obtained electric signal. . After the reading of the panel is completed, after the remaining image is deleted, the panel is prepared for the next photographing.
That is, the radiation image conversion panel can be used repeatedly.

【0003】上記の放射線像記録再生方法によれば、従
来の放射線写真フィルムと増感紙との組合せを用いる放
射線写真法による場合に比較して、はるかに少ない被曝
線量で情報量の豊富な放射線画像を得ることができると
いう利点がある。さらに、従来の放射線写真法では一回
の撮影ごとに放射線写真フィルムを消費するのに対し
て、この放射線像記録再生方法では放射線像変換パネル
を繰返し使用するので、資源保護、経済効率の面からも
有利である。
According to the above-described radiographic image recording / reproducing method, a radiation having a much smaller amount of exposure and a richer amount of information than a conventional radiographic method using a combination of a radiographic film and an intensifying screen. There is an advantage that an image can be obtained. Furthermore, while the conventional radiographic method consumes radiographic film for each shot, the radiographic image recording / reproducing method uses a radiographic image conversion panel repeatedly, which leads to resource conservation and economic efficiency. Is also advantageous.

【0004】輝尽性蛍光体は、放射線を照射した後、励
起光を照射すると輝尽発光を示す蛍光体であるが、実用
上では、波長が400〜900nmの範囲にある励起光
によって300〜500nmの波長範囲の輝尽発光を示
す蛍光体が一般的に利用される。従来より放射線像変換
パネルに用いられてきた輝尽性蛍光体の例としては、希
土類付活アルカリ土類金属ハロゲン化物系蛍光体を挙げ
ることができる。
A stimulable phosphor is a phosphor that emits stimulable light when irradiated with radiation and then with excitation light. However, in practice, the stimulable phosphor has a wavelength of 400 to 900 nm due to the excitation light. Phosphors that exhibit stimulated emission in the 500 nm wavelength range are commonly used. Examples of the stimulable phosphor conventionally used in the radiation image conversion panel include a rare earth activated alkaline earth metal halide-based phosphor.

【0005】放射線像記録再生方法に用いられる放射線
像変換パネルは、基本構造として、支持体とその表面に
設けられた輝尽性蛍光体層とからなるものである。ただ
し、蛍光体層が自己支持性である場合には必ずしも支持
体を必要としない。輝尽性蛍光体層は、通常は輝尽性蛍
光体とこれを分散状態で含有支持する結合剤とからな
る。ただし、輝尽性蛍光体層としては、蒸着法や焼結法
によって形成される結合剤を含まないで輝尽性蛍光体の
凝集体のみから構成されるものも知られている。また、
輝尽性蛍光体の凝集体の間隙に高分子物質が含浸されて
いる輝尽性蛍光体層を持つ放射線像変換パネルも知られ
ている。これらのいずれの蛍光体層でも、輝尽性蛍光体
はX線などの放射線を吸収したのち励起光の照射を受け
ると輝尽発光を示す性質を有するものであるから、被写
体を透過したあるいは被検体から発せられた放射線は、
その放射線量に比例して放射線像変換パネルの輝尽性蛍
光体層に吸収され、パネルには被写体あるいは被検体の
放射線像が放射線エネルギーの蓄積像として形成され
る。この蓄積像は、上記励起光を照射することにより輝
尽発光光として放出させることができ、この輝尽発光光
を光電的に読み取って電気信号に変換することにより放
射線エネルギーの蓄積像を画像化することが可能とな
る。
The radiation image conversion panel used in the radiation image recording / reproducing method has, as a basic structure, a support and a stimulable phosphor layer provided on the surface of the support. However, when the phosphor layer is self-supporting, a support is not necessarily required. The stimulable phosphor layer usually comprises a stimulable phosphor and a binder containing and supporting the stimulable phosphor in a dispersed state. However, there is also known a stimulable phosphor layer which does not include a binder formed by a vapor deposition method or a sintering method and is composed of only an aggregate of the stimulable phosphor. Also,
There is also known a radiation image conversion panel having a stimulable phosphor layer in which a polymer substance is impregnated in a gap between stimulable phosphor aggregates. In any of these phosphor layers, the stimulable phosphor has a property of exhibiting stimulable emission when irradiated with excitation light after absorbing radiation such as X-rays. The radiation emitted from the specimen
The radiation image is absorbed by the stimulable phosphor layer of the radiation image conversion panel in proportion to the radiation dose, and a radiation image of the subject or the subject is formed on the panel as a radiation energy accumulation image. This accumulated image can be emitted as stimulated emission light by irradiating the excitation light, and the accumulated image of radiation energy is imaged by photoelectrically reading the stimulated emission light and converting it into an electric signal. It is possible to do.

【0006】前記の希土類付活アルカリ土類金属ハロゲ
ン化物系輝尽性蛍光体は、感度が優れ、また放射線像変
換パネルとして使用した場合に鮮鋭度の高い放射線再生
画像をもたらすため、実用上において優れた輝尽性蛍光
体ということができる。しかしながら、放射線像記録再
生方法の実用化が進むにつれて、更に高特性の輝尽性蛍
光体への要望が高まっている。
The rare earth-activated alkaline earth metal halide-based stimulable phosphor has excellent sensitivity and, when used as a radiation image conversion panel, provides a radiation-reproduced image with high sharpness. It can be called an excellent stimulable phosphor. However, as radiation image recording / reproducing methods have been put to practical use, demands for stimulable phosphors having higher characteristics have been increasing.

【0007】特開平7−233369号公報は、従来用
いられている希土類付活アルカリ土類金属弗化ハロゲン
化物系輝尽性蛍光体が板状粒子からなっていることに注
目して、その問題点を明らかにし、その解決として、特
定の基本組成式を有し、14面体型形状にある希土類付
活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体お
よびその製造法と、該輝尽性蛍光体を放射線像変換パネ
ルに利用することを提案している。
[0007] Japanese Patent Application Laid-Open No. 7-233369 discloses the problem that the conventionally used rare earth activated alkaline earth metal fluorinated halide stimulable phosphor is composed of plate-like particles. As a solution to the problem, a rare-earth activated alkaline earth metal fluorinated halide stimulable phosphor having a specific basic composition formula and having a tetrahedral shape and a method for producing the same, It has been proposed to use a luminescent phosphor for a radiation image conversion panel.

【0008】[0008]

【発明が解決しようとする課題】本発明は、放射線像記
録再生方法に利用した場合に、輝尽発光、消去特性、残
像特性、フェーディング特性、そしてX線残光性などの
実用上の特性が更に優れている特定組成の14面体型希
土類付活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍
光体を製造するための新規な方法を提供する。
SUMMARY OF THE INVENTION The present invention, when used in a radiation image recording / reproducing method, has practical characteristics such as stimulated emission, erasing characteristics, afterimage characteristics, fading characteristics, and X-ray persistence. The present invention provides a novel method for producing a tetrahedral rare earth activated alkaline earth metal fluorohalide-based stimulable phosphor having a specific composition, which is more excellent.

【0009】[0009]

【課題を解決するための手段】本発明は、組成式
(I): Ba1-x Cax FBr1-yy :aEu,bM,eA …(I) [ただし、MはLi、Na、K、Rb及びCsからなる
群より選ばれる少なくとも一種のアルカリ金属を表わ
し;AはAl23 、SiO2 などの酸化物を表わし;
x、y、a、b及びeはそれぞれ、0<x≦0.03、
0<y≦0.30、0.0001≦a≦0.01、0<
b≦0.05、そして0<e≦0.05の条件を満足す
る数値である。]で表わされる14面体型希土類付活ア
ルカリ土類金属弗化ハロゲン化物系蛍光体を製造するた
めの下記の工程の組合せからなる方法: a)BaBr2 の水溶液にEuのハロゲン化物、Caの
ハロゲン化物および必要によりMX(Xは、ハロゲン、
NO3 、NO2 およびカルボン酸残基からなる群より選
ばれる少なくとも一種である)を添加して、BaBr2
濃度が0.9〜1.6モル/L、温度が20〜100℃
の溶液を調製し、次にこの溶液に無機弗化物を一定速度
で添加して希土類付活弗化臭化バリウム系蛍光体前駆体
を得る工程; b)BaI2 の水溶液にEuのハロゲン化物を添加して
BaI2 濃度が2.9〜4.2モル/L、温度が20〜
100℃の溶液を調製し、次にこの溶液に無機弗化物を
一定速度で添加して希土類付活弗化沃化バリウム系蛍光
体前駆体を得る工程; c)工程a)で得られた希土類付活弗化臭化バリウム系
蛍光体前駆体、工程b)で得られた希土類付活弗化沃化
バリウム系蛍光体前駆体、焼結を防止するためのAから
なる酸化物、および必要によりMのハロゲン化物、Ba
2 および/またはBaBr2 を混合する工程; d)工程c)で得られた混合物を、微量酸素含有窒素ガ
ス雰囲気中で、700〜900℃の温度で、1〜6時間
焼成する工程; e)工程d)で得られた焼成物を、低級アルコール中ま
たはBa2+を含む水溶液に分散させて焼成による焼結お
よび凝集を緩和した後、湿式分級により一定粒度以上の
粒子が除去されたスラリーを得、次いで該スラリーを一
定時間静置した後上澄み液を取り除いて、過剰な酸化物
Aが除去されたスラリーを得る工程; f)工程e)で得られたスラリーに固液分離を行った
後、乾燥し、次いで乾式分級を行う工程; なお、本明細書中に記載した蛍光体組成における上記の
x、y、a、b、eなどの係数は、得られた蛍光体を分
析して求めた数値である。蛍光体製造時の焼成工程の前
後で、組成の変化が生じるため、蛍光体製造時に用いた
各原料の各成分の比と出来上がった蛍光体の各成分の比
は若干異なる。
SUMMARY OF THE INVENTION The present invention, formula (I): Ba 1-x Ca x FBr 1-y I y: aEu, bM, eA ... (I) [ however, M is Li, Na, A represents at least one alkali metal selected from the group consisting of K, Rb and Cs; A represents an oxide such as Al 2 O 3 or SiO 2 ;
x, y, a, b and e are respectively 0 <x ≦ 0.03,
0 <y ≦ 0.30, 0.0001 ≦ a ≦ 0.01, 0 <
It is a numerical value satisfying the conditions of b ≦ 0.05 and 0 <e ≦ 0.05. A method comprising the combination of the following steps for producing a tetrahedral rare earth activated alkaline earth metal fluorohalide-based phosphor represented by the formula: a) Eu halide and Ca halogen in an aqueous solution of BaBr 2 And optionally MX (X is a halogen,
At least one amount of) the addition of selected from the group consisting of NO 3, NO 2 and carboxylic acid residues, BaBr 2
Concentration is 0.9 to 1.6 mol / L, temperature is 20 to 100 ° C
Preparing a rare earth-activated barium fluorobromide-based phosphor precursor by adding an inorganic fluoride to the solution at a constant rate; and b) adding a Eu halide to an aqueous solution of BaI 2. When added, the BaI 2 concentration is 2.9 to 4.2 mol / L and the temperature is 20 to
Preparing a solution at 100 ° C. and then adding inorganic fluoride at a constant rate to the solution to obtain a rare earth activated barium fluoroiodide-based phosphor precursor; c) the rare earth obtained in step a) Activated barium fluorobromide-based phosphor precursor, rare-earth activated barium fluoroiodide-based phosphor precursor obtained in step b), oxide comprising A for preventing sintering, and if necessary M halide, Ba
Mixing F 2 and / or BaBr 2 ; d) baking the mixture obtained in step c) in a trace oxygen-containing nitrogen gas atmosphere at a temperature of 700 to 900 ° C. for 1 to 6 hours; e. ) The slurry obtained by dispersing the calcined product obtained in the step d) in a lower alcohol or an aqueous solution containing Ba 2+ to reduce sintering and agglomeration due to calcining, and then removing particles having a certain particle size or more by wet classification. And then leaving the slurry to stand for a certain period of time, removing the supernatant to obtain a slurry from which excess oxide A has been removed; f) performing solid-liquid separation on the slurry obtained in step e) After that, a step of drying and then performing a dry classification; the above-described coefficients such as x, y, a, b, and e in the phosphor composition described in the present specification are obtained by analyzing the obtained phosphor. It is the numerical value obtained. Since the composition changes before and after the firing step in the manufacture of the phosphor, the ratio of each component of each raw material used in the manufacture of the phosphor and the ratio of each component of the completed phosphor are slightly different.

【0010】上記組成式(I)において、得られる輝尽
発光の量および消去・残像特性などを考慮すると、x、
y、a、b及びeはそれぞれ、0.001≦x≦0.0
3、0.10≦y≦0.20、0.001≦a≦0.0
1、5x10-5≦b≦0.005、及び0.001≦e
≦0.03の範囲にある数値であることが好ましい。
In the above composition formula (I), considering the amount of stimulable luminescence to be obtained and the erasing / afterimage characteristics, x,
y, a, b and e are each 0.001 ≦ x ≦ 0.0
3, 0.10 ≦ y ≦ 0.20, 0.001 ≦ a ≦ 0.0
1, 5 × 10 −5 ≦ b ≦ 0.005 and 0.001 ≦ e
It is preferable that the value be in the range of ≦ 0.03.

【0011】[0011]

【発明の実施の形態】本発明の14面体型希土類付活ア
ルカリ土類金属弗化ハロゲン化物系蛍光体の製造方法
を、以下に詳しく説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing a tetrahedral rare earth activated alkaline earth metal fluorohalide phosphor of the present invention will be described in detail below.

【0012】a)まず、BaBr2 の水溶液にEuのハ
ロゲン化物およびCaのハロゲン化物を添加する。更
に、必要に応じてアルカリ金属Mの化合物(ハロゲン化
物、亜硝酸塩、硝酸塩、酢酸塩など)を添加する。な
お、このアルカリ金属化合物は、必ずしもここで添加す
る必要はなく、工程c)における蛍光体前駆体結晶と酸
化物との混合時に添加してもよい。アルカリ金属Mとし
ては、好ましくはK、CsおよびLiである。このと
き、所望により更に、少量の酸、アンモニア、アルコー
ル、水溶性高分子ポリマー、不溶性の金属酸化物微粒子
粉体などを添加してもよい。この溶液(反応母液)は2
0〜100℃の温度に維持される。また、反応開始前の
この溶液中のBaBr2 濃度は、好ましくは0.9〜
1.6モル/Lであり、特には1.0モル/L程度であ
る。次に、20〜100℃、好ましくは40〜80℃、
特に60℃付近に維持されたこの溶液(反応母液)を撹
拌しながら、無機弗化物(弗化アンモニウムの水溶液、
弗化バリウムのスラリーなど)をポンプ付きのパイプな
どを用いて一定の速度で注入する。この注入は、撹拌が
特に激しく実施されている領域部分に行うのが好まし
い。この無機弗化物の反応母液への注入によって、14
面体型の希土類付活弗化臭化バリウム系蛍光体前駆体結
晶(以下、BFB結晶という)が沈殿する。次いで、上
記のBFB結晶を濾過、遠心分離などによって溶媒から
分離し、メタノールなどによって充分に洗浄し、乾燥す
る。
A) First, a halide of Eu and a halide of Ca are added to an aqueous solution of BaBr 2 . Further, a compound of an alkali metal M (a halide, a nitrite, a nitrate, an acetate, or the like) is added as needed. The alkali metal compound need not always be added here, and may be added at the time of mixing the phosphor precursor crystal and the oxide in step c). The alkali metal M is preferably K, Cs and Li. At this time, if desired, a small amount of acid, ammonia, alcohol, water-soluble polymer, insoluble metal oxide fine powder, or the like may be further added. This solution (reaction mother liquor) contains 2
It is maintained at a temperature of 0-100 ° C. The concentration of BaBr 2 in this solution before the start of the reaction is preferably 0.9 to 0.9%.
It is 1.6 mol / L, especially about 1.0 mol / L. Next, 20 to 100 ° C, preferably 40 to 80 ° C,
In particular, while stirring this solution (reaction mother liquor) maintained at about 60 ° C., an inorganic fluoride (an aqueous solution of ammonium fluoride,
Barium fluoride slurry) is injected at a constant rate using a pipe with a pump or the like. This injection is preferably carried out in the region where the stirring is particularly violent. By injection of the inorganic fluoride into the reaction mother liquor, 14
A facet type rare earth activated barium fluorobromide-based phosphor precursor crystal (hereinafter, referred to as a BFB crystal) precipitates. Next, the BFB crystals are separated from the solvent by filtration, centrifugation, or the like, sufficiently washed with methanol or the like, and dried.

【0013】b)BaI2 の水溶液にEuのハロゲン化
物を添加する。このとき、所望により更に少量の酸、ア
ンモニア、アルコール、水溶性高分子ポリマー、不溶性
の金属酸化物微粒子粉体などを添加してもよい。この溶
液(反応母液)は20〜100℃の温度に維持される。
また、反応開始前のこの溶液中のBaI2 濃度は、好ま
しくは2.9〜4.2モル/Lであり、特には3.8モ
ル/L程度である。次に、20〜100℃、好ましくは
40〜80℃、特に60℃付近に維持されたこの溶液
(反応母液)を撹拌しながら、無機弗化物(弗化水素の
水溶液、弗化バリウムのスラリーなど)をポンプ付きの
パイプなどを用いて一定の速度で注入する。この注入
は、撹拌が特に激しく実施されている領域部分に行うの
が好ましい。この無機弗化物の反応母液への注入によっ
て、14面体型の希土類付活弗化沃化バリウム系蛍光体
前駆体結晶(以下、BFI結晶という)が沈殿する。次
いで、上記のBFI結晶を、濾過、遠心分離などによっ
て溶媒から分離し、イソプロパノールなどによって充分
に洗浄し、乾燥する。
B) Eu halide is added to the aqueous solution of BaI 2 . At this time, a small amount of acid, ammonia, alcohol, water-soluble polymer, insoluble metal oxide fine particles, or the like may be further added as needed. This solution (reaction mother liquor) is maintained at a temperature of 20-100 ° C.
Further, BaI 2 concentration in the solution before initiation of the reaction is preferably 2.9 to 4.2 mol / L, especially about 3.8 mol / L. Next, while stirring this solution (reaction mother liquor) maintained at 20 to 100 ° C., preferably 40 to 80 ° C., especially around 60 ° C., an inorganic fluoride (aqueous solution of hydrogen fluoride, a slurry of barium fluoride, etc.) ) Is injected at a constant rate using a pipe with a pump. This injection is preferably carried out in the region where the stirring is particularly violent. By injecting the inorganic fluoride into the reaction mother liquor, a tetrahedral rare earth activated barium fluoroiodide-based phosphor precursor crystal (hereinafter, referred to as a BFI crystal) precipitates. Next, the BFI crystals are separated from the solvent by filtration, centrifugation or the like, sufficiently washed with isopropanol or the like, and dried.

【0014】c)上記のBFB結晶およびBFI結晶
に、酸化物A(Al23 、SiO2など)の微粒子、
並びに必要に応じてアルカリ金属Mのハロゲン化物、B
aF2および/またはBaBr2 を撹拌しながら充分に
混合する。なお、この酸化物Aは、次の工程d)におけ
る焼成の際に蛍光体前駆体結晶の焼結による粒子形状の
変化や粒子間融着による粒子サイズ分布の変化を防止す
る目的で添加される。この混合によって酸化物Aの微粒
子は結晶表面に均一に付着する。酸化物Aは、好ましく
はAl23 であり、その添加量は蛍光体前駆体結晶の
0.1〜1.0重量%が適当である。
C) Fine particles of oxide A (Al 2 O 3 , SiO 2, etc.) are added to the BFB crystal and the BFI crystal.
And, if necessary, a halide of an alkali metal M, B
Mix aF 2 and / or BaBr 2 thoroughly with stirring. The oxide A is added for the purpose of preventing a change in particle shape due to sintering of the phosphor precursor crystal and a change in particle size distribution due to fusion between particles during firing in the next step d). . By this mixing, the fine particles of oxide A uniformly adhere to the crystal surface. The oxide A is preferably Al 2 O 3 , and its addition amount is suitably from 0.1 to 1.0% by weight of the phosphor precursor crystal.

【0015】d)上記の混合物を、石英ボート、アルミ
ナルツボ、石英ルツボなどの耐熱性容器に充填し、電気
炉の炉芯に入れて焼成を行う。焼成温度は700〜90
0℃の範囲が適当であり、特に750〜900℃の範囲
が好ましい。焼成雰囲気としては、微量の酸素ガスを含
有する窒素ガス雰囲気が利用される。焼成時間は、混合
物の充填量、焼成温度および炉からの取出し温度などに
よっても異なるが、一般には1〜6時間が適当であり、
特に2〜6時間が好ましい。
D) The above mixture is filled in a heat-resistant container such as a quartz boat, an alumina crucible, a quartz crucible, etc., and placed in a furnace core of an electric furnace for firing. Firing temperature is 700-90
A range of 0 ° C. is appropriate, and a range of 750 to 900 ° C. is particularly preferable. As the firing atmosphere, a nitrogen gas atmosphere containing a small amount of oxygen gas is used. The firing time varies depending on the filling amount of the mixture, the firing temperature, the temperature at which the mixture is taken out of the furnace, and the like.
Particularly, 2 to 6 hours are preferable.

【0016】例えば、まず、混合物を電気炉で750〜
900℃の範囲の一定温度で2〜6時間焼成する。その
間に、少なくとも1回は炉内を真空排気した後微量の酸
素ガスを含有する窒素ガス雰囲気に置換する。次に、炉
内の温度を30分以上かけて750℃以下の温度に下げ
た後、再度微量の酸素ガスを含有する窒素ガス雰囲気に
置換する。次いで、炉内を大気に触れないようにして3
50℃以下の温度まで冷却した後、焼成物を大気中に取
り出す。
For example, first, the mixture is placed in an electric furnace at 750 to
Bake at a constant temperature in the range of 900 ° C. for 2 to 6 hours. During this time, the inside of the furnace is evacuated at least once, and then replaced with a nitrogen gas atmosphere containing a small amount of oxygen gas. Next, the temperature in the furnace is lowered to a temperature of 750 ° C. or less over 30 minutes or more, and then replaced with a nitrogen gas atmosphere containing a trace amount of oxygen gas again. Next, keep the inside of the furnace out of
After cooling to a temperature of 50 ° C. or lower, the fired product is taken out to the atmosphere.

【0017】なお、上記蛍光体前駆体結晶の全重量m
(kg)と電気炉の炉内容積l(L)との比率は、m/
l≧0.05(kg/L)であるのが好ましい。
The total weight of the phosphor precursor crystals m
(Kg) and the furnace volume l (L) of the electric furnace are m /
It is preferable that l ≧ 0.05 (kg / L).

【0018】e)上記の焼成物を、メタノールなどの低
級アルコール中またはBa2+を含む水溶液に分散させた
後、ロールミルなどを用いてほぐし処理を施すことによ
り、焼成による焼結および凝集を緩和する。次に、この
焼成物のスラリーに振動篩などを用いて湿式分級を施す
ことにより一定粒度以上の粗大粒子が除去されたスラリ
ーを得る。次いで、このスラリーを一定時間(例えば、
10時間)静置した後上澄み液を取り除くことによって
デカントを施し、酸化物Aの過剰分が除去されたスラリ
ーを得る。この工程において、Ba2+を含む水溶液は組
成式(I)に実質的に従う蛍光体を水に溶解させて作製
したものであることが好ましい。
E) The above fired product is dispersed in a lower alcohol such as methanol or an aqueous solution containing Ba 2+ , and then subjected to a loosening treatment using a roll mill or the like, thereby alleviating sintering and aggregation due to firing. I do. Next, the slurry of the fired product is subjected to wet classification using a vibration sieve or the like to obtain a slurry from which coarse particles having a certain particle size or more have been removed. Next, the slurry is allowed to stand for a certain period of time (for example,
After leaving still for 10 hours, the supernatant is removed to carry out decanting, thereby obtaining a slurry from which the excess of the oxide A has been removed. In this step, the aqueous solution containing Ba 2+ is preferably prepared by dissolving a phosphor substantially conforming to the composition formula (I) in water.

【0019】f)上記の焼成物スラリーに、減圧濾過も
しくは加圧濾過などによって固液分離を行った後、メタ
ノールなどで洗浄し、乾燥する。更に、この焼成物に振
動篩などにより乾式分級を施す。
F) The solid slurry is subjected to solid-liquid separation by filtration under reduced pressure or filtration under pressure, washed with methanol or the like, and dried. Further, the fired product is subjected to dry classification using a vibration sieve or the like.

【0020】このようにして、目的の14面体型の希土
類付活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光
体が得られる。
In this way, the desired tetrahedral rare earth activated alkaline earth metal fluorinated halide stimulable phosphor is obtained.

【0021】[0021]

【実施例】【Example】

[実施例1]Ba0.993 Ca0.007 FBr0.850.15
0.004Eu,0.0006K,0.00002 Cs,0.01Al2
3 の製造 a)BaBr2 水溶液(2.5モル/L)1200mL
を4000mLの容積の反応器を入れ、これにEuBr
3 水溶液(0.2モル/L)37.5mL、KBr3
0.9g、CaBr2 ・2H2 O3.54g、および水
1762.5mLを添加した。この反応器中の反応母液
(BaBr2 濃度:1.00モル/L)を60℃に保温
し、直径60mmのスクリュー型撹拌羽根を500rp
mで回転させて、反応母液を撹拌した。NH4 F水溶液
(5モル/L)300mLを撹拌下に保温している上記
の反応母液中にローラーポンプを用いて5.0mL/分
の送液速度で注入し、沈殿物を生成させた。注入の完了
後も保温と撹拌を2時間続けて沈殿物の熟成を行った。
次に沈殿物を濾別し、メタノール2Lで洗浄した。次い
で、洗浄した沈殿物を取り出し、120℃で4時間真空
乾燥して、ユーロピウム付活弗化臭化バリウム系蛍光体
前駆体結晶(BFB結晶)を約350g得た。得られた
結晶を走査型電子顕微鏡で観察したところ、その大部分
が14面体型の結晶であった。次に、この結晶を光回折
型粒子サイズ分布測定器(堀場製作所株式会社製:LA
−500)で測定したところ、平均結晶サイズは5.0
μmであることが確認された。
[Example 1] Ba 0.993 Ca 0.007 FBr 0.85 I 0.15 :
0.004Eu, 0.0006K, 0.00002 Cs, 0.01Al 2
Production of O 3 a) 1200 mL of an aqueous solution of BaBr 2 (2.5 mol / L)
Into a reactor having a volume of 4000 mL, into which EuBr
3 aqueous solution (0.2 mol / L) 37.5 mL, KBr3
0.9 g, 3.54 g of CaBr 2 .2H 2 O, and 1762.5 mL of water were added. The reaction mother liquor (BaBr 2 concentration: 1.00 mol / L) in this reactor was kept at 60 ° C., and a screw stirring blade having a diameter of 60 mm was rotated at 500 rpm.
and the reaction mother liquor was stirred. 300 mL of an NH 4 F aqueous solution (5 mol / L) was injected into the above-described reaction mother liquor kept under stirring at a liquid sending rate of 5.0 mL / min using a roller pump to generate a precipitate. After completion of the injection, the precipitate was ripened by continuing the warming and stirring for 2 hours.
Next, the precipitate was separated by filtration and washed with 2 L of methanol. Next, the washed precipitate was taken out and vacuum dried at 120 ° C. for 4 hours to obtain about 350 g of a europium-activated barium fluorobromide-based phosphor precursor crystal (BFB crystal). Observation of the obtained crystal with a scanning electron microscope revealed that most of the crystal was a tetrahedral crystal. Next, this crystal was used as a light diffraction type particle size distribution measuring device (manufactured by Horiba, Ltd .: LA).
-500), the average crystal size was 5.0.
μm was confirmed.

【0022】b)BaI2 水溶液(4.0モル/L)2
850mLを4000mLの容積の反応器に入れ、これ
にEuI3 水溶液(0.2モル/L)90mLおよび水
60mLを添加した。この反応器中の反応母液(BaI
2 濃度:3.80モル/L)を60℃に保温し、直径6
0mmのスクリュー型撹拌羽根を500rpmで回転さ
せて、反応母液を撹拌した。HF水溶液(5モル/L)
720mLを、撹拌下に保温している上記の反応母液中
にローラーポンプを用いて12mL/分の送液速度で注
入し、沈殿物を生成させた。注入の完了後も保温と撹拌
とを2時間続けて沈殿物の熟成を行った。次に沈殿物を
濾別し、イソプロパノール2Lで洗浄した。次いで、洗
浄した沈殿物を取り出し、120℃で4時間真空乾燥し
て、ユーロピウム付活弗化沃化バリウム蛍光体前駆体結
晶(BFI結晶)を約1000g得た。得られた結晶を
走査型電子顕微鏡で観察したところ、その大部分が14
面体型の結晶であった。次に、この結晶を光回折型粒子
サイズ分布測定器で測定したところ、平均結晶サイズは
6.5μmであることが確認された。
B) BaI 2 aqueous solution (4.0 mol / L) 2
Put 850mL reactor volume 4000 mL, this was added EuI 3 aqueous solution (0.2 mol / L) 90 mL and water 60 mL. The reaction mother liquor (BaI) in this reactor
2 concentration: 3.80 mol / L) at 60 ° C.
The reaction mother liquor was stirred by rotating a 0 mm screw type stirring blade at 500 rpm. HF aqueous solution (5 mol / L)
720 mL was injected into the above-mentioned reaction mother liquor kept under stirring at a liquid sending rate of 12 mL / min using a roller pump to generate a precipitate. After completion of the injection, the keeping and stirring were continued for 2 hours to ripen the precipitate. Next, the precipitate was separated by filtration and washed with 2 L of isopropanol. Next, the washed precipitate was taken out and vacuum-dried at 120 ° C. for 4 hours to obtain about 1000 g of a europium-activated barium fluoroiodide phosphor precursor crystal (BFI crystal). Observation of the obtained crystals with a scanning electron microscope revealed that most of them were 14
It was a faceted crystal. Next, when the crystals were measured by a light diffraction type particle size distribution analyzer, it was confirmed that the average crystal size was 6.5 μm.

【0023】c)上記のBFB結晶を165gおよびB
FI結晶を35g取り、これにCsBr0.10g、そ
して焼成時の焼結を防止するためにアルミナ(Al2
3 )の超微粒子粉体1.0g(0.5重量%)を添加
し、ダブルコーンミキサーで充分に撹拌混合して、結晶
表面にアルミナの超微粒子粉体を均一に付着させた。
C) 165 g of the above BFB crystal and B
35 g of FI crystal was taken, 0.10 g of CsBr was added thereto, and alumina (Al 2 O) was used to prevent sintering during firing.
3 ) Ultrafine particle powder (1.0 g, 0.5% by weight) was added, and the mixture was sufficiently stirred and mixed with a double cone mixer to uniformly adhere the ultrafine alumina powder to the crystal surface.

【0024】d)上記の混合物を石英ボートに充填し、
チューブ炉を用い、窒素ガス雰囲気中、820℃で3時
間焼成した。焼成の途中で酸素ガスを0.6%導入して
微量の酸素ガスを含有する窒素ガス雰囲気とした。次
に、炉内の温度を1時間半かけて700℃まで降温した
後、真空排気し微量の酸素ガスを含有する窒素ガス雰囲
気に置換した。次いで、炉内を大気に触れないようにし
て350℃以下まで冷却した後、焼成物を大気中に取り
出した。
D) filling the above mixture into a quartz boat,
Using a tube furnace, baking was performed at 820 ° C. for 3 hours in a nitrogen gas atmosphere. Oxygen gas was introduced at a rate of 0.6% during the firing to form a nitrogen gas atmosphere containing a trace amount of oxygen gas. Next, after the temperature in the furnace was lowered to 700 ° C. over one and a half hours, the furnace was evacuated and replaced with a nitrogen gas atmosphere containing a small amount of oxygen gas. Next, the inside of the furnace was cooled to 350 ° C. or less without being exposed to the atmosphere, and then the fired product was taken out to the atmosphere.

【0025】e)上記の焼成物1000gをメタノール
1.5L中に分散させた後、ロールミル(回転速度:5
0rpm)を用いて15時間ほぐし処理を行った。次
に、この焼成物のスラリーを振動篩(ナイロンメッシ
ュ;#508)にかけて湿式分級を行った。次いで、こ
のスラリーを10時間静置した後上澄み液を取り除い
て、過剰なアルミナが除去されたスラリーを得た。
E) After dispersing 1000 g of the above calcined product in 1.5 L of methanol, a roll mill (rotation speed: 5
(0 rpm) for 15 hours. Next, the slurry of the fired product was passed through a vibration sieve (nylon mesh; # 508) to perform wet classification. Next, the slurry was allowed to stand for 10 hours, and then the supernatant was removed to obtain a slurry from which excess alumina was removed.

【0026】f)上記の焼成物スラリーを減圧濾過して
固液分離を行った後、メタノールで洗浄し、150℃で
10時間真空乾燥した。次に、この焼成物を再度振動篩
(ナイロンメッシュ;#460)にかけて乾式分級を行
った。このようにして、標記の組成式で表わされるユー
ロピウム付活弗化臭化バリウム系蛍光体粒子を得た。得
られた蛍光体粒子を走査型電子顕微鏡で観察したとこ
ろ、その大部分が原料結晶と同じく14面体の形状にあ
った。また、この結晶を光回折型粒子サイズ分布測定器
で測定したところ、平均結晶サイズは7.0μmであっ
た。
F) The calcined product slurry was filtered under reduced pressure to perform solid-liquid separation, washed with methanol, and vacuum dried at 150 ° C. for 10 hours. Next, the fired product was again passed through a vibration sieve (nylon mesh; # 460) to perform dry classification. In this way, europium-activated barium fluorobromide-based phosphor particles represented by the composition formula described above were obtained. Observation of the obtained phosphor particles with a scanning electron microscope revealed that most of the particles were in the shape of a tetrahedron, like the raw material crystal. The average crystal size of the crystals measured by an optical diffraction type particle size distribution analyzer was 7.0 μm.

【0027】[蛍光体の評価]上記の蛍光体について、
各種特性を下記の方法で評価した。 [輝尽発光量]蛍光体に80kVp、100mRのX線
を照射した後、He−Neレーザ光を12.4J/m2
で照射し、その蛍光体から放射された輝尽発光光の発光
量(PSL)を測定した。
[Evaluation of phosphor] Regarding the above phosphor,
Various characteristics were evaluated by the following methods. [Stimulated luminescence] After irradiating the phosphor with X-rays of 80 kVp and 100 mR, He-Ne laser light was applied at 12.4 J / m 2.
And the luminescence (PSL) of stimulated emission emitted from the phosphor was measured.

【0028】[消去特性(消去値)]蛍光体に80kV
p、100mRのX線を照射した後、He−Neレーザ
光を12.4J/m2 で照射し、その蛍光体から放射さ
れた輝尽発光光の発光量(PSL)を測定して初期値と
した。次に、この蛍光体に白色蛍光灯を40万lx・s
の条件で照射して消去操作を行ったのち、He−Neレ
ーザ光を12.4J/m2 で照射し、その蛍光体の輝尽
発光量を測定して消去レベル値を得た。初期値に対する
消去レベル値の比(消去レベル値/初期値)を消去値と
した。
[Erase Characteristics (Erase Value)] 80 kV
After irradiating X-rays of p, 100 mR, He-Ne laser light is irradiated at 12.4 J / m 2 , and the luminescence (PSL) of photostimulated luminescence emitted from the phosphor is measured and the initial value is obtained. And Next, a white fluorescent light was applied to this phosphor at 400,000 lx · s.
After performing an erasing operation by irradiating under the conditions described above, He-Ne laser light was applied at 12.4 J / m 2 , and the amount of stimulated emission of the phosphor was measured to obtain an erasing level value. The ratio of the erase level value to the initial value (erase level value / initial value) was defined as the erase value.

【0029】[残像特性(残像値)]上記の方法で消去
レベル値を測定した後、蛍光体を60℃で24時間放置
し、次いでHe−Neレーザ光を12.4J/m2 で照
射し、その蛍光体の輝尽発光量を測定して残像レベル値
を得た。初期値に対する残像レベル値の比(残像レベル
値/初期値)を残像値とした。
[Afterimage Characteristics (Afterimage Value)] After the erase level value was measured by the above method, the phosphor was allowed to stand at 60 ° C. for 24 hours, and then irradiated with a He—Ne laser beam at 12.4 J / m 2. The amount of stimulated emission of the phosphor was measured to obtain an afterimage level value. The ratio of the afterimage level value to the initial value (afterimage level value / initial value) was defined as the afterimage value.

【0030】[フェーディング特性(フェーディング
値)]上記の方法で蛍光体の輝尽発光量(初期値)を測
定したのち、32℃で1時間放置し、次いでHe−Ne
レーザ光を12.4J/m2 で照射し、その蛍光体の輝
尽発光量を測定してフェーディングレベル値を得た。初
期値に対するフェーディングレベル値の比(フェーディ
ングレベル値/初期値)x100をフェーディング値と
した。
[Fading Characteristics (Fading Value)] After measuring the stimulating light emission amount (initial value) of the phosphor by the above-mentioned method, the phosphor was left at 32 ° C. for 1 hour, and then He-Ne.
Laser light was applied at 12.4 J / m 2 , and the amount of stimulated emission of the phosphor was measured to obtain a fading level value. The ratio of the fading level value to the initial value (fading level value / initial value) × 100 was defined as the fading value.

【0031】[X線残光性(X線残光値)]蛍光体に8
0kVp、100mRのX線を照射したのち、そのまま
46秒間放置し、次いでその蛍光体から放射された残光
の光量を測定して残光レベル値を得た。初期値に対する
残光レベル値の比を常用対数で表わして(log10(残
光レベル値/初期値))、X線残光値とした。
[X-ray persistence (X-ray persistence value)]
After irradiating with X-rays of 0 kVp and 100 mR, it was left as it was for 46 seconds, and then the amount of afterglow emitted from the phosphor was measured to obtain the afterglow level value. The ratio of the afterglow level value to the initial value was represented by a common logarithm (log 10 (afterglow level value / initial value)), which was taken as the X-ray afterglow value.

【0032】[実験結果]本発明の方法によって製造さ
れた14面体型ユーロピウム付活弗化臭化バリウム系蛍
光体は、輝尽発光量が大きく、消去値および残像値が低
く、フェーディング値が高く、そしてX線残光値が低か
った。
[Experimental Results] The tetrahedral europium-activated barium fluorobromide-based phosphor produced by the method of the present invention has a large stimulating luminescence, a low erase value and a low afterimage value, and a low fading value. High and low X-ray persistence.

【0033】[0033]

【発明の効果】本発明の方法に従って製造された14面
体型の希土類付活アルカリ土類金属弗化ハロゲン化物系
蛍光体は、輝尽発光、消去特性、残像特性、フェーディ
ング特性、そしてX線残光性において優れた改良特性を
示す。
The tetrahedral rare earth activated alkaline earth metal fluorinated halide phosphor prepared according to the method of the present invention has photostimulable emission, erasing, afterimage, fading, and X-ray emission properties. It shows excellent improved properties in persistence.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 組成式(I): Ba1-x Cax FBr1-yy :aEu,bM,eA …(I) [ただし、MはLi、Na、K、Rb及びCsからなる
群より選ばれる少なくとも一種のアルカリ金属を表わ
し;AはAl23 およびSiO2 からなる群より選ば
れる酸化物を表わし;x、y、a、b及びeは、それぞ
れ、0<x≦0.03、0<y≦0.30、0.000
1≦a≦0.01、0<b≦0.05、そして0<e≦
0.05の条件を満足する数値である。]で表わされる
14面体型希土類付活アルカリ土類金属弗化ハロゲン化
物系蛍光体を製造するための下記の工程の組合せからな
る方法: a)BaBr2 の水溶液にEuのハロゲン化物、Caの
ハロゲン化物および必要によりMX(Xは、ハロゲン、
NO3 、NO2 およびカルボン酸残基からなる群より選
ばれる少なくとも一種である)を添加して、BaBr2
濃度が0.9〜1.6モル/L、温度が20〜100℃
の溶液を調製し、次にこの溶液に無機弗化物を一定速度
で添加して希土類付活弗化臭化バリウム系蛍光体前駆体
を得る工程; b)BaI2 の水溶液にEuのハロゲン化物を添加して
BaI2 濃度が2.9〜4.2モル/L、温度が20〜
100℃の溶液を調製し、次にこの溶液に無機弗化物を
一定速度で添加して希土類付活弗化沃化バリウム系蛍光
体前駆体を得る工程; c)工程a)で得られた希土類付活弗化臭化バリウム系
蛍光体前駆体、工程b)で得られた希土類付活弗化沃化
バリウム系蛍光体前駆体、焼結を防止するためのAから
なる酸化物、および必要によりMのハロゲン化物、Ba
2 および/またはBaBr2 を混合する工程; d)工程c)で得られた混合物を、微量酸素含有窒素ガ
ス雰囲気中で、700〜900℃の温度で、1〜6時間
焼成する工程; e)工程d)で得られた焼成物を、低級アルコール中ま
たはBa2+を含む水溶液に分散させて焼成による焼結お
よび凝集を緩和した後、湿式分級により一定粒度以上の
粒子が除去されたスラリーを得、次いで該スラリーを一
定時間静置した後上澄み液を取り除いて、過剰な酸化物
Aが除去されたスラリーを得る工程; f)工程e)で得られたスラリーに固液分離を行った
後、乾燥し、次いで乾式分級を行う工程。
1. A composition formula (I): Ba 1-x Ca x FBr 1-y I y: aEu, bM, eA ... (I) [ however, M is a group consisting of Li, Na, K, Rb and Cs A represents an oxide selected from the group consisting of Al 2 O 3 and SiO 2 ; x, y, a, b and e each represent 0 <x ≦ 0. 03, 0 <y ≦ 0.30, 0.000
1 ≦ a ≦ 0.01, 0 <b ≦ 0.05, and 0 <e ≦
It is a numerical value satisfying the condition of 0.05. A method comprising the combination of the following steps for producing a tetrahedral rare earth activated alkaline earth metal fluorohalide-based phosphor represented by the formula: a) Eu halide and Ca halogen in an aqueous solution of BaBr 2 And optionally MX (X is a halogen,
At least one amount of) the addition of selected from the group consisting of NO 3, NO 2 and carboxylic acid residues, BaBr 2
Concentration is 0.9 to 1.6 mol / L, temperature is 20 to 100 ° C
Preparing a rare earth-activated barium fluorobromide-based phosphor precursor by adding an inorganic fluoride to the solution at a constant rate; and b) adding a Eu halide to an aqueous solution of BaI 2. When added, the BaI 2 concentration is 2.9 to 4.2 mol / L and the temperature is 20 to
Preparing a solution at 100 ° C. and then adding inorganic fluoride at a constant rate to the solution to obtain a rare earth activated barium fluoroiodide-based phosphor precursor; c) the rare earth obtained in step a) Activated barium fluorobromide-based phosphor precursor, rare-earth activated barium fluoroiodide-based phosphor precursor obtained in step b), oxide comprising A for preventing sintering, and if necessary M halide, Ba
Mixing F 2 and / or BaBr 2 ; d) baking the mixture obtained in step c) in a trace oxygen-containing nitrogen gas atmosphere at a temperature of 700 to 900 ° C. for 1 to 6 hours; e. ) The slurry obtained by dispersing the calcined product obtained in the step d) in a lower alcohol or an aqueous solution containing Ba 2+ to reduce sintering and agglomeration due to calcining, and then removing particles having a certain particle size or more by wet classification. And then leaving the slurry to stand for a certain period of time, removing the supernatant to obtain a slurry from which excess oxide A has been removed; f) performing solid-liquid separation on the slurry obtained in step e) Thereafter, a step of drying and then performing dry classification.
【請求項2】 工程a)において、無機弗化物が弗化ア
ンモニウム溶液もしくはBaF2 のスラリーである請求
項1に記載の14面体型希土類付活アルカリ土類金属弗
化ハロゲン化物系蛍光体の製造方法。
2. The method of claim 1, wherein in step a), the inorganic fluoride is an ammonium fluoride solution or a slurry of BaF 2. Method.
【請求項3】 工程b)において、無機弗化物が弗化水
素溶液もしくはBaF2 のスラリーである請求項1もし
くは2に記載の14面体型希土類付活アルカリ土類金属
弗化ハロゲン化物系蛍光体の製造方法。
3. The tetrahedral rare earth activated alkaline earth metal fluoride halide-based phosphor according to claim 1, wherein in step b), the inorganic fluoride is a hydrogen fluoride solution or a slurry of BaF 2. Manufacturing method.
【請求項4】 工程d)が、混合物を750〜900℃
の範囲の一定温度で2〜6時間焼成炉で焼成し、その間
に少なくとも1回炉内を真空排気したのち微量の酸素を
含む窒素ガス雰囲気に置換する工程、炉内の温度を30
分以上かけて750℃以下の温度に下げた後再度微量の
酸素を含む窒素ガス雰囲気に置換する工程、および大気
に触れない状態で350℃以下の温度まで冷却した後焼
成物を大気中に取り出す工程からなる、請求項1乃至3
のうちのいずれかの項に記載の14面体型希土類付活ア
ルカリ土類金属弗化ハロゲン化物系蛍光体の製造方法。
4. The method according to claim 1, wherein the mixture is heated to 750-900 ° C.
Baking at a constant temperature in the range of 2 to 6 hours in a baking furnace, during which the inside of the furnace is evacuated at least once and then replaced with a nitrogen gas atmosphere containing a trace amount of oxygen.
A step of reducing the temperature to 750 ° C. or lower over a period of at least one minute and then replacing the atmosphere with a nitrogen gas atmosphere containing a small amount of oxygen again, and cooling the temperature to 350 ° C. or lower without touching the air, and then taking out the fired product into the air 4. The method according to claim 1, which comprises the steps of:
The method for producing a tetrahedral rare earth activated alkaline earth metal fluorohalide-based phosphor according to any one of the above items.
【請求項5】 工程d)において、焼成に用いられる蛍
光体前駆体の全重量m(kg)と焼成に用いられる炉の
内側容積l(L)との比率がm/l≧0.05(kg/
L)である請求項1乃至4のうちのいずれかの項に記載
の14面体型希土類付活アルカリ土類金属弗化ハロゲン
化物系蛍光体の製造方法。
5. In step d), the ratio of the total weight m (kg) of the phosphor precursor used for firing to the inner volume l (L) of the furnace used for firing is m / l ≧ 0.05 ( kg /
The method for producing a tetrahedral rare earth activated alkaline earth metal fluorinated halide-based phosphor according to any one of claims 1 to 4, which is L).
【請求項6】 工程e)において、Ba2+を含む水溶液
は組成式(I)に実質的に従う蛍光体を水に溶解させて
作製したものである請求項1乃至5のうちのいずれかの
項に記載の14面体型希土類付活アルカリ土類金属弗化
ハロゲン化物系蛍光体の製造方法。
6. The method according to claim 1, wherein in step e), the aqueous solution containing Ba 2+ is prepared by dissolving a phosphor substantially conforming to the composition formula (I) in water. 13. The method for producing a tetrahedral rare earth activated alkaline earth metal fluorohalide-based phosphor according to item 8.
【請求項7】 工程f)において固液分離の方法が加圧
濾過である請求項1乃至6のうちのいずれかの項に記載
の14面体型希土類付活アルカリ土類金属弗化ハロゲン
化物系蛍光体の製造方法。
7. The tetrahedral rare earth activated alkaline earth metal fluorinated halide according to claim 1, wherein the solid-liquid separation method in step f) is pressure filtration. A method for producing a phosphor.
【請求項8】 組成式(II): Ba1-x Cax FBr1-yy :aEu,bK,cCs,dLi,eAl23 …(II) [ただし、x、y、a、b、c、dおよびeはそれぞ
れ、0<x≦0.03、0<y≦0.30、0.000
1≦a≦0.01、0<b≦0.001、0≦c≦0.
001、0≦d≦0.001、そして0<e≦0.05
の条件を満足する数値である。]で表わされる14面体
型希土類付活アルカリ土類金属弗化ハロゲン化物系蛍光
体を製造するための下記の工程の組合せからなる方法: a)BaBr2 の水溶液にEuBr3 、CaBr2 及び
必要によりMBr(MはK、Csおよび/またはLi)
を添加して、BaBr2 濃度が0.9〜1.6モル/
L、温度が20〜100℃の溶液を調製し、次にこの溶
液に無機弗化物を一定速度で添加して希土類付活弗化臭
化バリウム系蛍光体前駆体を得る工程; b)BaI2 の水溶液にEuI3 を添加してBaI2
度が2.9〜4.2モル/L、温度が20〜100℃の
溶液を調製し、次にこの溶液に無機弗化物を一定速度で
添加して希土類付活弗化沃化バリウム系蛍光体前駆体を
得る工程; c)工程a)で得られた希土類付活弗化臭化バリウム系
蛍光体前駆体、工程b)で得られた希土類付活弗化沃化
バリウム系蛍光体前駆体、焼結を防止するためのAl2
3 、および必要によりMBr(MはK、Csおよび/
またはLi)、BaF2 および/またはBaBr2 を混
合する工程; d)工程c)で得られた混合物を、微量酸素含有窒素ガ
ス雰囲気中で、700〜900℃の温度で、1〜6時間
焼成する工程; e)工程d)で得られた焼成物を、低級アルコール中ま
たはBa2+を含む水溶液に分散させて焼成による焼結お
よび凝集を緩和した後、湿式分級により一定粒度以上の
粒子が除去されたスラリーを得、次いで該スラリーを一
定時間静置した後上澄み液を取り除いて、過剰なAl2
3 が除去されたスラリーを得る工程; f)工程e)で得られたスラリーに固液分離を行った
後、乾燥し、次いで乾式分級を行う工程。
8. The formula (II): Ba 1-x Ca x FBr 1-y I y: aEu, bK, cCs, dLi, eAl 2 O 3 ... (II) [ However, x, y, a, b , C, d and e are respectively 0 <x ≦ 0.03, 0 <y ≦ 0.30, 0.000
1 ≦ a ≦ 0.01, 0 <b ≦ 0.001, 0 ≦ c ≦ 0.
001, 0 ≦ d ≦ 0.001, and 0 <e ≦ 0.05
Is a numerical value that satisfies the condition of The method comprises the following combination of steps for fabricating the tetradecahedral rare earth activated alkaline earth metal fluoride halide phosphors represented by]: a) an aqueous solution of BaBr 2 EuBr 3, the CaBr 2 and need MBr (M is K, Cs and / or Li)
It was added, BaBr 2 concentration 0.9 to 1.6 mol /
L, preparing a solution having a temperature of 20 to 100 ° C., and then adding an inorganic fluoride to the solution at a constant rate to obtain a rare earth-activated barium fluorobromide-based phosphor precursor; b) BaI 2 EuI 3 was added to the aqueous solution of the above to prepare a solution having a BaI 2 concentration of 2.9 to 4.2 mol / L and a temperature of 20 to 100 ° C. Then, an inorganic fluoride was added to this solution at a constant rate. Obtaining a rare earth-activated barium fluoroiodide-based phosphor precursor by heating; c) the rare earth-activated barium fluorobromide-based phosphor precursor obtained in step a); the rare earth-activated barium fluorobromide-based phosphor precursor obtained in step b) Active barium fluoroiodide-based phosphor precursor, Al 2 for preventing sintering
O 3 and, if necessary, MBr (M is K, Cs and / or
Or Li), mixing BaF 2 and / or BaBr 2 ; d) calcining the mixture obtained in step c) in a trace oxygen-containing nitrogen gas atmosphere at a temperature of 700 to 900 ° C. for 1 to 6 hours. E) dispersing the calcined product obtained in the step d) in a lower alcohol or an aqueous solution containing Ba 2+ to alleviate sintering and agglomeration due to the calcining; After obtaining the removed slurry, and then allowing the slurry to stand for a certain period of time, the supernatant was removed to remove excess Al 2
F) a step of obtaining a slurry from which O 3 has been removed; f) a step of performing solid-liquid separation on the slurry obtained in step e), followed by drying and then dry classification.
【請求項9】 工程a)において、無機弗化物が弗化ア
ンモニウム溶液もしくはBaF2 のスラリーである請求
項8に記載の14面体型希土類付活アルカリ土類金属弗
化ハロゲン化物系蛍光体の製造方法。
9. The method of claim 8, wherein in step a), the inorganic fluoride is an ammonium fluoride solution or a slurry of BaF 2. Method.
【請求項10】 工程b)において、無機弗化物が弗化
水素溶液もしくはBaF2 のスラリーである請求項8も
しくは9に記載の14面体型希土類付活アルカリ土類金
属弗化ハロゲン化物系蛍光体の製造方法。
10. The tetrahedral rare earth activated alkaline earth metal fluoride halide phosphor according to claim 8, wherein in step b), the inorganic fluoride is a hydrogen fluoride solution or a slurry of BaF 2. Manufacturing method.
【請求項11】 工程d)が、混合物を750〜900
℃の範囲の一定温度で2〜6時間焼成炉で焼成し、その
間に少なくとも1回炉内を真空排気したのち微量の酸素
を含む窒素ガス雰囲気に置換する工程、炉内の温度を3
0分以上かけて750℃以下の温度に下げた後再度微量
の酸素を含む窒素ガス雰囲気に置換する工程、および大
気に触れない状態で350℃以下の温度まで冷却した後
焼成物を大気中に取り出す工程からなる、請求項8乃至
10のうちのいずれかの項に記載の14面体型希土類付
活アルカリ土類金属弗化ハロゲン化物系蛍光体の製造方
法。
11. The step d) comprises mixing the mixture with 750-900
Baking in a baking furnace at a constant temperature in the range of 2 ° C. for 2 to 6 hours, during which the furnace is evacuated at least once and then replaced with a nitrogen gas atmosphere containing a trace amount of oxygen.
A step of lowering the temperature to 750 ° C. or lower over 0 minutes or more and then replacing the atmosphere with a nitrogen gas atmosphere containing a small amount of oxygen again, and cooling the fired product to 350 ° C. or lower without contacting the air, The method for producing a tetrahedral rare earth-activated alkaline earth metal fluorohalide-based phosphor according to any one of claims 8 to 10, comprising a removing step.
【請求項12】 工程d)において、焼成に用いられる
蛍光体前駆体の全重量m(kg)と焼成に用いられる炉
の内側容積l(L)との比率がm/l≧0.05(kg
/L)である請求項8乃至11のうちのいずれかの項に
記載の14面体型希土類付活アルカリ土類金属弗化ハロ
ゲン化物系蛍光体の製造方法。
12. In step d), the ratio of the total weight m (kg) of the phosphor precursor used for firing to the inner volume l (L) of the furnace used for firing is m / l ≧ 0.05 ( kg
/ L), the method for producing a tetrahedral rare earth activated alkaline earth metal fluorohalide-based phosphor according to any one of claims 8 to 11.
【請求項13】 工程e)において、Ba2+を含む水溶
液は組成式(I)に実質的に従う蛍光体を水に溶解させ
て作製したものである請求項8乃至12のうちのいずれ
かの項に記載の14面体型希土類付活アルカリ土類金属
弗化ハロゲン化物系蛍光体の製造方法。
13. The method according to claim 8, wherein in step e), the aqueous solution containing Ba 2+ is prepared by dissolving a phosphor substantially according to the composition formula (I) in water. 13. The method for producing a tetrahedral rare earth activated alkaline earth metal fluorohalide-based phosphor according to item 8.
【請求項14】 工程f)において固液分離の方法が加
圧濾過である請求項8乃至13のうちのいずれかの項に
記載の14面体型希土類付活アルカリ土類金属弗化ハロ
ゲン化物系蛍光体の製造方法。
14. The tetrahedral rare earth activated alkaline earth metal fluorohalide system according to claim 8, wherein the solid-liquid separation method in step f) is pressure filtration. A method for producing a phosphor.
JP28451397A 1997-09-30 1997-09-30 Preparation of tetradecahedral type rare earth-activated alkaline earth metal halogenated fluoride phosphor Withdrawn JPH11106748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28451397A JPH11106748A (en) 1997-09-30 1997-09-30 Preparation of tetradecahedral type rare earth-activated alkaline earth metal halogenated fluoride phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28451397A JPH11106748A (en) 1997-09-30 1997-09-30 Preparation of tetradecahedral type rare earth-activated alkaline earth metal halogenated fluoride phosphor

Publications (1)

Publication Number Publication Date
JPH11106748A true JPH11106748A (en) 1999-04-20

Family

ID=17679479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28451397A Withdrawn JPH11106748A (en) 1997-09-30 1997-09-30 Preparation of tetradecahedral type rare earth-activated alkaline earth metal halogenated fluoride phosphor

Country Status (1)

Country Link
JP (1) JPH11106748A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011440A (en) * 1999-07-02 2001-01-16 Fuji Photo Film Co Ltd Stimulable flluorescent substance and radiographic image-converting panel
US6290873B1 (en) * 1998-12-25 2001-09-18 Fuji Photo Film Co., Ltd. Phosphor preparation method
US7153450B2 (en) 1999-09-01 2006-12-26 Fuji Photo Film Co., Ltd. Method and apparatus for preparing rare earth-activated barium fluorohalide based phosphor
WO2007048200A1 (en) * 2005-10-28 2007-05-03 Visionglow Ip Pty Ltd Long after-glow photoluminescent material
US7361378B1 (en) 1999-07-07 2008-04-22 Fujifilm Corporation Method for manufacturing radiation image conversion panel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6290873B1 (en) * 1998-12-25 2001-09-18 Fuji Photo Film Co., Ltd. Phosphor preparation method
JP2001011440A (en) * 1999-07-02 2001-01-16 Fuji Photo Film Co Ltd Stimulable flluorescent substance and radiographic image-converting panel
US7361378B1 (en) 1999-07-07 2008-04-22 Fujifilm Corporation Method for manufacturing radiation image conversion panel
US7153450B2 (en) 1999-09-01 2006-12-26 Fuji Photo Film Co., Ltd. Method and apparatus for preparing rare earth-activated barium fluorohalide based phosphor
WO2007048200A1 (en) * 2005-10-28 2007-05-03 Visionglow Ip Pty Ltd Long after-glow photoluminescent material

Similar Documents

Publication Publication Date Title
JP3258183B2 (en) Tetrahedral rare earth activated alkaline earth metal fluorohalide-based stimulable phosphor, method for producing the same, and radiation image conversion panel
JPH11106748A (en) Preparation of tetradecahedral type rare earth-activated alkaline earth metal halogenated fluoride phosphor
WO2006054532A1 (en) Process for producing rare earth activated alkaline earth metal fluorohalide photostimulable phosphor
JP3955648B2 (en) Rare earth activated barium fluoride halide phosphor powder and method for producing the same
JP3938820B2 (en) Method for producing rare earth activated alkaline earth metal fluoride halide phosphor, and radiation image conversion panel using rare earth activated alkaline earth metal fluoride halide phosphor obtained by the production method
JP4165029B2 (en) Method for producing rare earth activated alkaline earth metal fluoride halide photostimulable phosphor
JP4054639B2 (en) Method for producing rare earth activated barium fluorohalide phosphor precursor
JP3959984B2 (en) Oxygen-introduced rare earth activated alkaline earth metal fluoride halide photostimulable phosphor, method for producing the same, and radiation image conversion panel
JP2002267800A (en) Preparation method for phosphor layer application liquid for radiological image conversion panel, and manufacturing method for radiological image conversion panel
JP2004018839A (en) Rare earth-activated fluorinated halogenated alkaline-earth metal-based stimulable phosphor and radiological image-converting panel
JP4254037B2 (en) Radiation image conversion panel and radiation image capturing method
JP4148745B2 (en) Method for producing rare earth activated barium fluorohalide phosphor precursor
JP4228550B2 (en) Method for producing rare earth activated alkaline earth metal fluoroiodide stimulable phosphor
JP3863688B2 (en) Method for producing rare earth activated alkaline earth metal fluoride halide phosphor
JP4011794B2 (en) Manufacturing method of radiation image conversion panel
JP4207393B2 (en) Rare earth activated alkaline earth metal fluoroiodide stimulable phosphor manufacturing method, radiation image conversion panel, and radiation image capturing method
JP2004018601A (en) Rare earth-activated alkaline earth metal fluoro-halide photostimulable phosphor, method for producing the same and radiation image conversion panel
JPH10239499A (en) Radiation image converting panel and manufacture of stimulable phosphor used therefor
JP2006282863A (en) Manufacturing method of rare earth-activated barium fluoride halide phosphor precursor
JP3877469B2 (en) Method for producing barium fluorohalide phosphor
JP3820957B2 (en) Oxygen-introduced rare earth activated alkaline earth metal fluoride halide photostimulable phosphor and radiation image conversion panel
JP3877470B2 (en) Method for producing barium fluorohalide phosphor
JP2002161271A (en) Stimulable phosphor, method for producing stimulable phosphor and radiation image conversion panel
JP2000192029A (en) Preparation of rare earth-activated, alkaline earth metal fluoride halide-based stimulable phosphor
JP2002249316A (en) Method for producing barium fluorohalide-based crystal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041207