JP3781483B2 - Screw support method and apparatus for injection molding machine - Google Patents

Screw support method and apparatus for injection molding machine Download PDF

Info

Publication number
JP3781483B2
JP3781483B2 JP21239896A JP21239896A JP3781483B2 JP 3781483 B2 JP3781483 B2 JP 3781483B2 JP 21239896 A JP21239896 A JP 21239896A JP 21239896 A JP21239896 A JP 21239896A JP 3781483 B2 JP3781483 B2 JP 3781483B2
Authority
JP
Japan
Prior art keywords
rear end
end shaft
screw
shaft portion
molding machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21239896A
Other languages
Japanese (ja)
Other versions
JPH1052840A (en
Inventor
伸之 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Plastic Industrial Co Ltd
Original Assignee
Nissei Plastic Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Plastic Industrial Co Ltd filed Critical Nissei Plastic Industrial Co Ltd
Priority to JP21239896A priority Critical patent/JP3781483B2/en
Publication of JPH1052840A publication Critical patent/JPH1052840A/en
Application granted granted Critical
Publication of JP3781483B2 publication Critical patent/JP3781483B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は単一の駆動部材により平行に配した複数軸のスクリュを支持する射出成形機のスクリュ支持方法及び装置に関する。
【0002】
【従来の技術】
従来、スクリュに対する成形材料の食込性及び可塑化時における樹脂の混練性を高めることを目的とした二軸のスクリュを備える成形装置は、特開昭50−150763号公報で知られている。
【0003】
ところで、一般的な射出成形機のように、射出シリンダの射出ピストン(駆動部材)により一軸のスクリュを支持する場合には、射出ピストンとスクリュが一体に回転可能となるが、射出ピストンにより二軸のスクリュを支持する場合には、スクリュの回転時に射出ピストンを回転させることが不可能となるため、各スクリュは射出ピストンに対して回転可能に結合する必要がある。
【0004】
このため、上記公報に開示される従来の成形装置では、射出ピストンと各スクリュ間にベアリングを配設し、このベアリングを介して射出ピストンと各スクリュを回転可能に結合していた。
【0005】
【発明が解決しようとする課題】
しかし、上述した従来の成形装置におけるスクリュ支持構造は、次のような問題点があった。
【0006】
即ち、押出成形機として用いる場合には、成形時のスクリュに付与されるスラスト荷重の大きさは、概ね300〜350kg/cm2程度であるため、スクリュを支持するベアリングは当該スラスト荷重に十分耐えることができるが、射出成形機として用いる場合には、射出時(スクリュ前進時)のスラスト荷重が、通常、1500〜2000kg/cm2程度になるため、かなり大きな荷重がベアリングに付与されることになる。
【0007】
このため、ベアリングを用いた従来のスクリュ支持構造では、ベアリングの変形や破損等を招く虞れがあり信頼性を確保できないとともに、成形できる成形品がスラスト荷重の大きさに制限されてしまう難点があった。
【0008】
本発明はこのような従来の技術に存在する課題を解決したものであり、駆動部材によりスクリュを支持する際における信頼性を飛躍的に高めることができるとともに、スクリュに付与されるスラスト荷重の大きさに制限されることなく射出成形を行うことができる射出成形機のスクリュ支持方法及び装置の提供を目的とする。
【0009】
【課題を解決するための手段及び実施の形態】
本発明に係る射出成形機のスクリュ支持方法は、単一の駆動部材2により平行に配した複数軸のスクリュ3x,3yを支持するに際し、駆動部材2の先端の凹部21に設けた複数のシリンダ部4x,4yにより、各スクリュ3x,3yの後端軸部5x,5yを軸方向に変位自在に支持するとともに、スクリュ3x,3yの回転駆動時に、後端軸部5x,5yの外周面とシリンダ部4x,4yの内周面間の隙間及び凹部21と後端軸部5x,5yの後端面間に圧油を供給して当該後端軸部5x,5yを設定位置Psまで変位させることによりシリンダ部4x,4yと後端軸部5x,5yを非接触にし、かつスクリュ3x,3yの前進駆動時に、圧油の供給を解除して後端軸部5x,5yの後端面を凹部21に当接させるようにしたことを特徴とする。
【0010】
また、本発明に係る射出成形機のスクリュ支持装置1は、駆動部材2の先端の凹部21に複数のシリンダ部4x,4yを設け、シリンダ部4x,4yにより各スクリュ3x,3yの後端軸部5x,5yを軸方向に変位自在に支持するとともに、スクリュ3x,3yの回転駆動時に、後端軸部5x,5yの外周面とシリンダ部4x,4yの内周面間の隙間及び凹部21と後端軸部5x,5yの後端面間に圧油を供給して当該後端軸部5x,5yを設定位置Psまで変位させることによりシリンダ部4x,4yと後端軸部5x,5yを非接触にし、かつスクリュ3x,3yの前進駆動時に、圧油の供給を解除して後端軸部5x,5yの後端面を凹部21に当接させる油圧回路部6を備えることを特徴とする。
【0011】
この場合、好適な実施の形態により、油圧回路部6は後端軸部5x,5yの軸方向における位置を検出する位置センサ7を有するとともに、シリンダ部4x,4yと後端軸部5x,5y間に圧油を供給した際に、後端軸部5x,5yが設定位置Psとなるように圧油の供給を制御する制御部8を備える。また、隙間Ssx,Ssyには、一又は二以上の螺旋状の油通路Sr…が含まれる。
【0012】
これにより、スクリュ3x,3yの回転駆動時には、後端軸部5x,5yの外周面とシリンダ部4x,4yの内周面間の隙間及び凹部21と後端軸部5x,5yの後端面間に圧油が供給されるため、シリンダ部4x,4yと後端軸部5x,5yは非接触になり、スクリュ3x,3yは円滑に回転するとともに、スクリュ3x,3yの前進駆動時には、圧油の供給が解除されるため、後端軸部5x,5yの後端面と凹部21が接触し、スクリュ3x,3yは駆動部材2と一体となって前進する。
【0013】
【実施例】
次に、本発明に係る好適な実施例を挙げ、図面に基づき詳細に説明する。
【0014】
まず、本実施例に係るスクリュ支持装置1を備える射出成形機Mの全体的構成について、図5及び図6を参照して説明する。
【0015】
図5中、Nは射出成形機Mにおける型締装置を除く射出装置を示す。11は加熱筒であり、前端に射出ノズル12を有するとともに、後部にはホッパー(材料供給口)13を有する。
【0016】
また、加熱筒11の内部には図6に示す左右一対のスクリュ挿通孔14x,14yを有し、各スクリュ挿通孔14x,14yにはスクリュ3x,3yをそれぞれ挿入する。これにより、スクリュ3xと3yは平行に配した二軸のスクリュ機構を構成する。この場合、スクリュ3x,3yに設けた螺旋条3xs,3ysはそれぞれ反対方向となる。
【0017】
一方、加熱筒11の後端にはスクリュ駆動装置15を備え、スクリュ駆動装置15はスクリュ3x,3yを進退駆動するスクリュ進退駆動部16と、スクリュ3x,3yを回転駆動するスクリュ回転駆動部17を備える。スクリュ進退駆動部16は射出シリンダ18を有し、この射出シリンダ18には片ロッドタイプの射出ピストン2p(駆動部材2)を内蔵する。なお、射出ピストン2pは前方に突出したピストンロッド19を有する。そして、射出ピストン2p(ピストンロッド19)の前端にはスクリュ支持装置1を設けて各スクリュ3x,3yの後端を支持する。
【0018】
次に、スクリュ支持装置1及びスクリュ回転駆動部17の構成について、図1〜図4を参照して説明する。
【0019】
まず、ピストンロッド19の前端面には凹部21を形成し、この凹部21に軸受部材20を嵌着する。この場合、凹部21に挿入する軸受部材20の端面と凹部21の底面間には油室22を設ける。一方、軸受部材20には一対のシリンダ部4x,4yを設ける。各シリンダ部4x,4yの内端は油室22を介して相連通する。また、各シリンダ部4x,4yの内周面にはそれぞれ螺旋溝状の油通路Sr…を設ける。図2はシリンダ部4xの内周面を展開した油通路Sr…を示す。なお、実施例の油通路Sr…は3本であり、各油通路Sr…はそれぞれ独立し、両端は閉じている。さらに、軸受部材20の内部には図3に示すように、油ジャケット23を設け、この油ジャケット23と各油通路Sr…の一端部を連通接続するとともに、油ジャケット23は圧油の給油ポート24に連通接続する。
【0020】
他方、スクリュ3x,3yの後端には後端軸部5x,5yを設け、この後端軸部5x,5yをシリンダ部4x,4yに挿入する。この場合、後端軸部5x,5yの径は、シリンダ部4x,4yに挿入した際に、図4に示すように、当該後端軸部5x,5yの外周面とシリンダ部4x,4yの内周面間に、僅かなクリアランスLcが生ずる大きさを選定する。このクリアランスLcと油通路Sr…は、圧油が侵入可能な隙間Ssx,Ssyを構成する。一方、ピストンロッド19には油室22に連通する排油ポート25を設ける。また、凹部21の底面には後端軸部5xの端面に対向する位置センサ7を配設する。この位置センサ7は、後端軸部5xの軸方向の位置を検出する。なお、実施例は後端軸部5x側にのみ位置センサ7を設けたが、後端軸部5xと5y側の双方に設けてもよい。
【0021】
6は油圧回路部である。油圧回路部6は油圧ポンプ31,リリーフ弁32,方向切換弁33,メータアウト回路を構成するリリーフ弁34を備え、この油圧回路部6には前記給油ポート24と排油ポート25を接続する。また、油圧回路部6には制御部8を備える。制御部8の入力側には前記位置センサ7及び射出シリンダ18の圧力を検出する圧力センサ35を接続するとともに、出力側には方向切換弁33及びドライバ36を介してリリーフ弁34を接続する。なお、37は制御部8に接続した中央コントローラを示す。中央コントローラ37ではシリンダ部4x,4yと後端軸部5x,5y間に圧油を供給した際における後端軸部5x,5yの変位量、即ち、設定位置Psを設定して制御部8に付与する。
【0022】
一方、シリンダ部4x,4yから露出した後端軸部5x,5yの前部にはギア部41x,41yをそれぞれ設け、各ギア部41xと41yは相噛合させる。また、一方のギア部41yには伝達ギア部42を噛合させ、この伝達ギア部42に対して不図示の回転駆動部から回転が伝達されるように構成する。これにより、スクリュ回転駆動部17が構成される。また、各ギア部41xと41yの前方に位置するスクリュ3x,3yの後端は、軸受部材20に一体に取付けた軸受プレート43により回動自在に支持される。なお、R…はOリングを示す。
【0023】
次に、本実施例に係るスクリュ支持方法を含むスクリュ支持装置1の機能について、各図を参照して説明する。
【0024】
まず、スクリュ3x,3yの回転駆動時(計量時)には、スクリュ回転駆動部17によりスクリュ3x,3yが回転する。即ち、伝達ギア部42の回転はギア部41y、さらに、ギア部41xに伝達され、スクリュ3x,3yはそれぞれ反対方向に同一速度で回転する。これにより、材料供給口13から供給される成形材料は加熱筒11内で可塑化混練されるとともに、溶融樹脂はスクリュ3x,3yの前方に計量蓄積され、スクリュ3x,3yは後退する。この場合、二軸のスクリュ機構により、一軸のスクリュに比べてスクリュ3x,3yに対する成形材料の食込性及び可塑時における樹脂の混練性が高められる。
【0025】
また、スクリュ3x,3yの回転駆動時には、方向切換弁33が切換えられ、油圧回路部6から給油ポート24に圧油が供給されるとともに、さらに、圧油は油ジャケット23を介して油通路Sr…を含む隙間Ssx,Ssyに供給される。この結果、圧油はシリンダ部4x,4yの内周面と後端軸部5x,5yの外周面間に侵入し、後端軸部5x,5yに対しラジアル方向に圧油が作用する。これにより、後端軸部5x,5yは軸中心に位置し、シリンダ部4x,4yの内周面と後端軸部5x,5yの外周面は非接触となる。
【0026】
さらに、隙間Ssx,Ssyに供給された圧油は油室22に供給され、後端軸部5x,5yの端面に油圧が作用することにより、後端軸部5x,5yを前方に変位させる。この際の変位量Lsは位置センサ7により検出し、制御部8はリリーフ弁34をフィードバック制御することにより、後端軸部5x,5yを設定位置Psに維持する。なお、設定位置Psまでの変位量Lsは、通常、0.1〜1.0mm程度に設定する。この結果、後端軸部5x,5yの端面とシリンダ部4x,4yの底面は非接触となる。
【0027】
この場合、圧油は油通路Sr…を含む隙間Ssx,Ssyを介して油室22に供給されるため、後端軸部5x,5yの外周面に作用する油圧は、隙間Ssx,Ssyにより生ずる流体抵抗によって、後端軸部5x,5yの端面に作用する油圧よりも高くなり、安定かつ的確な支持圧力が得られる。よって、スクリュ3x,3yの回転時には、シリンダ部4x,4yと後端軸部5x,5yは非接触状態が維持され、スクリュ3x,3yは円滑に回転する。
【0028】
他方、スクリュ3x,3yの前進駆動時(射出時)には、スクリュ進退駆動部16における射出シリンダ18により射出ピストン2pが前進し、スクリュ3x,3yの前方に計量された溶融樹脂が射出ノズル12から不図示の金型内に射出充填される。
【0029】
また、スクリュ3x,3yの前進駆動時には、方向切換弁33を切換えることにより、給油ポート24に対する圧油の供給を解除する。これにより、シリンダ部4x,4yと後端軸部5x,5yは接触し、スクリュ3x,3yは駆動部材2と一体に前進する。
【0030】
以上、実施例について詳細に説明したが、本発明はこのような実施例に限定されるものではない。例えば、実施例は二軸のスクリュを例示したが、三軸以上のスクリュであってもよい。また、駆動部材は射出ピストンを例示したが、サーボモータにより前進する駆動部材であってもよい。その他、細部の構成,形状,手法等において、本発明の要旨を逸脱しない範囲で任意に実施できる。
【0031】
【発明の効果】
このように、本発明に係る射出成形機のスクリュ支持方法は、単一の駆動部材により平行に配した複数軸のスクリュを支持するに際し、駆動部材の先端の凹部に設けた複数のシリンダ部により、各スクリュの後端軸部を軸方向に変位自在に支持するとともに、スクリュの回転駆動時に、後端軸部の外周面とシリンダ部の内周面間の隙間及び凹部と後端軸部の後端面間に圧油を供給して後端軸部を設定位置まで変位させることによりシリンダ部と後端軸部を非接触にし、かつスクリュの前進駆動時に、圧油の供給を解除して後端軸部の後端面を凹部に当接させ、また、本発明に係る射出成形機のスクリュ支持装置は、駆動部材の先端の凹部に複数のシリンダ部を設け、シリンダ部により各スクリュの後端軸部を軸方向に変位自在に支持するとともに、スクリュの回転駆動時に、後端軸部の外周面とシリンダ部の内周面間の隙間及び凹部と後端軸部の後端面間に圧油を供給して後端軸部を設定位置まで変位させることによりシリンダ部と後端軸部を非接触にし、かつスクリュの前進駆動時に、圧油の供給を解除して後端軸部の後端面を凹部に当接させる油圧回路部を備えるため、駆動部材によりスクリュを支持する際における信頼性を飛躍的に高めることができるとともに、スクリュに付与されるスラスト荷重の大きさに制限されることなく射出成形を行うことができるという顕著な効果を奏する。
【図面の簡単な説明】
【図1】本発明に係るスクリュ支持装置の油圧回路部を含む断面側面図、
【図2】同スクリュ支持装置を構成するシリンダ部における内周面の展開図、
【図3】同スクリュ支持装置におけるシリンダ部と後端軸部の断面正面図、
【図4】本発明に係る射出成形機のスクリュ支持装置の要部を示す拡大断面側面図、
【図5】同スクリュ支持装置を備える射出成形機の全体的断面側面図、
【図6】同射出成形機の加熱筒における断面正面図、
【符号の説明】
1 スクリュ支持装置
2 駆動部材
3x… スクリュ
4x… シリンダ部
5x… 後端軸部
6 油圧回路部
7 位置センサ
8 制御部
21 凹部
Ps 設定位置
Ssx 隙間
Sr… 油通路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a screw support method and apparatus for an injection molding machine that supports a multi-axis screw arranged in parallel by a single drive member.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a molding apparatus provided with a biaxial screw for the purpose of improving the biting property of a molding material with respect to a screw and the kneading property of a resin during plasticization is known from Japanese Patent Laid-Open No. 50-150763.
[0003]
By the way, when a uniaxial screw is supported by an injection piston (drive member) of an injection cylinder as in a general injection molding machine, the injection piston and the screw can rotate integrally. When the screw is supported, it is impossible to rotate the injection piston when the screw is rotated. Therefore, each screw needs to be rotatably connected to the injection piston.
[0004]
For this reason, in the conventional molding apparatus disclosed in the above publication, a bearing is disposed between the injection piston and each screw, and the injection piston and each screw are rotatably coupled via this bearing.
[0005]
[Problems to be solved by the invention]
However, the screw support structure in the conventional molding apparatus described above has the following problems.
[0006]
That is, when used as an extrusion molding machine, the magnitude of the thrust load applied to the screw at the time of molding is about 300 to 350 kg / cm 2 , so the bearing that supports the screw sufficiently withstands the thrust load. However, when used as an injection molding machine, the thrust load at the time of injection (screw advancement) is usually about 1500 to 2000 kg / cm 2 , so that a considerably large load is applied to the bearing. Become.
[0007]
For this reason, in a conventional screw support structure using a bearing, there is a risk that deformation or damage of the bearing may occur, and reliability cannot be ensured, and the molded product that can be molded is limited to the size of the thrust load. there were.
[0008]
The present invention solves such a problem existing in the prior art, and can dramatically improve the reliability when the screw is supported by the driving member, and the thrust load applied to the screw is large. It is an object of the present invention to provide a screw support method and apparatus for an injection molding machine that can perform injection molding without being limited thereto.
[0009]
[Means for Solving the Problems and Embodiments]
The screw support method of the injection molding machine according to the present invention is such that a plurality of cylinders provided in the recesses 21 at the tip of the drive member 2 when supporting a plurality of screws 3x, 3y arranged in parallel by a single drive member 2. The rear end shaft portions 5x and 5y of the screws 3x and 3y are supported by the portions 4x and 4y so as to be displaceable in the axial direction, and when the screws 3x and 3y are driven to rotate, the outer peripheral surfaces of the rear end shaft portions 5x and 5y Pressure oil is supplied between the gap between the inner peripheral surfaces of the cylinder portions 4x and 4y and the recess 21 and the rear end surfaces of the rear end shaft portions 5x and 5y to displace the rear end shaft portions 5x and 5y to the set position Ps. Thus, the cylinder parts 4x, 4y and the rear end shaft parts 5x, 5y are brought into non-contact, and when the screws 3x, 3y are driven forward, the supply of pressure oil is released, and the rear end surfaces of the rear end shaft parts 5x, 5y are recessed. It is characterized by being made to contact That.
[0010]
Further, the screw support device 1 of the injection molding machine according to the present invention is provided with a plurality of cylinder portions 4x and 4y in the concave portion 21 at the tip of the driving member 2, and the rear end shafts of the screws 3x and 3y by the cylinder portions 4x and 4y. The portions 5x and 5y are supported so as to be displaceable in the axial direction, and the clearance between the outer peripheral surface of the rear end shaft portions 5x and 5y and the inner peripheral surface of the cylinder portions 4x and 4y and the concave portion 21 when the screws 3x and 3y are rotationally driven. Then, pressure oil is supplied between the rear end surfaces of the rear end shaft portions 5x and 5y to displace the rear end shaft portions 5x and 5y to the set position Ps, thereby connecting the cylinder portions 4x and 4y and the rear end shaft portions 5x and 5y. The hydraulic circuit unit 6 is provided so as to be non-contact and to release the supply of pressure oil and abut the rear end surfaces of the rear end shaft portions 5x and 5y against the recess 21 when the screws 3x and 3y are driven forward. .
[0011]
In this case, according to a preferred embodiment, the hydraulic circuit section 6 includes a position sensor 7 that detects the position of the rear end shaft sections 5x and 5y in the axial direction, and the cylinder sections 4x and 4y and the rear end shaft sections 5x and 5y. A control unit 8 is provided for controlling the supply of pressure oil so that the rear end shaft portions 5x and 5y are at the set position Ps when the pressure oil is supplied therebetween. Further, the gaps Ssx and Ssy include one or more spiral oil passages Sr.
[0012]
As a result, during the rotational driving of the screws 3x and 3y, the gap between the outer peripheral surface of the rear end shaft portions 5x and 5y and the inner peripheral surface of the cylinder portions 4x and 4y and the gap between the concave portion 21 and the rear end surfaces of the rear end shaft portions 5x and 5y. Since the pressure oil is supplied to the cylinder portions 4x and 4y and the rear end shaft portions 5x and 5y are not in contact with each other, the screws 3x and 3y rotate smoothly, and when the screws 3x and 3y are driven forward, the pressure oil Is released, the rear end surfaces of the rear end shaft portions 5x and 5y come into contact with the concave portion 21, and the screws 3x and 3y move forward together with the drive member 2.
[0013]
【Example】
Next, preferred embodiments according to the present invention will be given and described in detail with reference to the drawings.
[0014]
First, an overall configuration of an injection molding machine M including the screw support device 1 according to the present embodiment will be described with reference to FIGS. 5 and 6.
[0015]
In FIG. 5, N indicates an injection device excluding the mold clamping device in the injection molding machine M. A heating cylinder 11 has an injection nozzle 12 at the front end and a hopper (material supply port) 13 at the rear.
[0016]
The heating cylinder 11 has a pair of left and right screw insertion holes 14x and 14y shown in FIG. 6, and the screws 3x and 3y are inserted into the screw insertion holes 14x and 14y, respectively. Thereby, the screws 3x and 3y constitute a biaxial screw mechanism arranged in parallel. In this case, the spiral strips 3xs and 3ys provided on the screws 3x and 3y are in opposite directions.
[0017]
On the other hand, a screw driving device 15 is provided at the rear end of the heating cylinder 11, and the screw driving device 15 drives the screw 3x, 3y back and forth, and a screw rotation driving unit 17 drives the screws 3x, 3y to rotate. Is provided. The screw advancing / retreating drive unit 16 has an injection cylinder 18, and the injection cylinder 18 incorporates a single rod type injection piston 2p (drive member 2). The injection piston 2p has a piston rod 19 protruding forward. A screw support device 1 is provided at the front end of the injection piston 2p (piston rod 19) to support the rear ends of the screws 3x and 3y.
[0018]
Next, the structure of the screw support apparatus 1 and the screw rotation drive part 17 is demonstrated with reference to FIGS.
[0019]
First, a recess 21 is formed in the front end surface of the piston rod 19, and the bearing member 20 is fitted into the recess 21. In this case, an oil chamber 22 is provided between the end surface of the bearing member 20 to be inserted into the recess 21 and the bottom surface of the recess 21. On the other hand, the bearing member 20 is provided with a pair of cylinder portions 4x and 4y. The inner ends of the cylinder portions 4x and 4y communicate with each other via the oil chamber 22. Further, spiral groove-like oil passages Sr are provided on the inner peripheral surfaces of the cylinder portions 4x and 4y, respectively. FIG. 2 shows oil passages Sr... In which the inner peripheral surface of the cylinder portion 4x is developed. In the embodiment, there are three oil passages Sr, each oil passage Sr is independent and both ends are closed. Further, as shown in FIG. 3, an oil jacket 23 is provided inside the bearing member 20, and the oil jacket 23 and one end of each oil passage Sr are connected to each other, and the oil jacket 23 is an oil supply port for pressure oil. 24 is connected in communication.
[0020]
On the other hand, rear end shaft portions 5x and 5y are provided at the rear ends of the screws 3x and 3y, and the rear end shaft portions 5x and 5y are inserted into the cylinder portions 4x and 4y. In this case, when the rear end shaft portions 5x and 5y are inserted into the cylinder portions 4x and 4y, the outer end surfaces of the rear end shaft portions 5x and 5y and the cylinder portions 4x and 4y, as shown in FIG. A size at which a slight clearance Lc is generated between the inner peripheral surfaces is selected. This clearance Lc and the oil passages Sr ... constitute gaps Ssx, Ssy through which pressure oil can enter. On the other hand, the piston rod 19 is provided with an oil discharge port 25 communicating with the oil chamber 22. Further, a position sensor 7 facing the end surface of the rear end shaft portion 5x is disposed on the bottom surface of the recess 21. The position sensor 7 detects the position of the rear end shaft portion 5x in the axial direction. Although the position sensor 7 is provided only on the rear end shaft portion 5x side in the embodiment, it may be provided on both the rear end shaft portion 5x and the 5y side.
[0021]
6 is a hydraulic circuit part. The hydraulic circuit section 6 includes a hydraulic pump 31, a relief valve 32, a direction switching valve 33, and a relief valve 34 constituting a meter-out circuit, and the oil supply port 24 and the oil discharge port 25 are connected to the hydraulic circuit section 6. The hydraulic circuit unit 6 includes a control unit 8. A pressure sensor 35 for detecting the pressure of the position sensor 7 and the injection cylinder 18 is connected to the input side of the control unit 8, and a relief valve 34 is connected to the output side via a direction switching valve 33 and a driver 36. Reference numeral 37 denotes a central controller connected to the control unit 8. In the central controller 37, the displacement amount of the rear end shaft portions 5x, 5y when the pressure oil is supplied between the cylinder portions 4x, 4y and the rear end shaft portions 5x, 5y, that is, the set position Ps is set to the control unit 8. Give.
[0022]
On the other hand, gear portions 41x and 41y are respectively provided in front portions of the rear end shaft portions 5x and 5y exposed from the cylinder portions 4x and 4y, and the gear portions 41x and 41y are in mesh with each other. Further, the transmission gear portion 42 is engaged with the one gear portion 41y, and the rotation is transmitted to the transmission gear portion 42 from a rotation driving unit (not shown). Thereby, the screw rotation drive part 17 is comprised. The rear ends of the screws 3x and 3y located in front of the gear portions 41x and 41y are rotatably supported by a bearing plate 43 that is integrally attached to the bearing member 20. R ... represents an O-ring.
[0023]
Next, functions of the screw support device 1 including the screw support method according to the present embodiment will be described with reference to the drawings.
[0024]
First, when the screws 3x and 3y are rotationally driven (measured), the screws 3x and 3y are rotated by the screw rotational drive unit 17. That is, the rotation of the transmission gear portion 42 is transmitted to the gear portion 41y and further to the gear portion 41x, and the screws 3x and 3y rotate at the same speed in opposite directions. Thereby, the molding material supplied from the material supply port 13 is plasticized and kneaded in the heating cylinder 11, and the molten resin is measured and accumulated in front of the screws 3x and 3y, and the screws 3x and 3y move backward. In this case, the biaxial screw mechanism enhances the biting property of the molding material for the screws 3x and 3y and the kneading property of the resin at the time of plasticization as compared with the uniaxial screw.
[0025]
When the screws 3x and 3y are driven to rotate, the direction switching valve 33 is switched, pressure oil is supplied from the hydraulic circuit section 6 to the oil supply port 24, and the pressure oil is further passed through the oil jacket 23 to the oil passage Sr. Are supplied to the gaps Ssx and Ssy including. As a result, the pressure oil enters between the inner peripheral surfaces of the cylinder portions 4x and 4y and the outer peripheral surfaces of the rear end shaft portions 5x and 5y, and the pressure oil acts in the radial direction on the rear end shaft portions 5x and 5y. As a result, the rear end shaft portions 5x and 5y are located at the axial center, and the inner peripheral surfaces of the cylinder portions 4x and 4y and the outer peripheral surfaces of the rear end shaft portions 5x and 5y are not in contact with each other.
[0026]
Further, the pressure oil supplied to the gaps Ssx and Ssy is supplied to the oil chamber 22, and hydraulic pressure acts on the end surfaces of the rear end shaft portions 5x and 5y, thereby displacing the rear end shaft portions 5x and 5y forward. The displacement amount Ls at this time is detected by the position sensor 7, and the control unit 8 performs feedback control of the relief valve 34, thereby maintaining the rear end shaft portions 5x and 5y at the set position Ps. The displacement amount Ls up to the set position Ps is normally set to about 0.1 to 1.0 mm. As a result, the end surfaces of the rear end shaft portions 5x and 5y and the bottom surfaces of the cylinder portions 4x and 4y are not in contact with each other.
[0027]
In this case, since the pressure oil is supplied to the oil chamber 22 via the gaps Ssx and Ssy including the oil passages Sr..., The hydraulic pressure acting on the outer peripheral surfaces of the rear end shaft portions 5x and 5y is generated by the gaps Ssx and Ssy. The fluid resistance is higher than the hydraulic pressure acting on the end surfaces of the rear end shaft portions 5x and 5y, and a stable and accurate support pressure can be obtained. Therefore, when the screws 3x and 3y are rotated, the cylinder portions 4x and 4y and the rear end shaft portions 5x and 5y are maintained in a non-contact state, and the screws 3x and 3y rotate smoothly.
[0028]
On the other hand, when the screws 3x and 3y are driven forward (injection), the injection piston 2p is advanced by the injection cylinder 18 in the screw advance / retreat drive unit 16, and the molten resin measured in front of the screws 3x and 3y is injected into the injection nozzle 12. Are injected into a mold (not shown).
[0029]
Further, when the screws 3x and 3y are driven forward, the supply of pressure oil to the oil supply port 24 is canceled by switching the direction switching valve 33. Thereby, the cylinder portions 4x and 4y and the rear end shaft portions 5x and 5y come into contact with each other, and the screws 3x and 3y move forward together with the drive member 2.
[0030]
While the embodiments have been described in detail, the present invention is not limited to such embodiments. For example, although the example illustrated a biaxial screw, a triaxial or more screw may be used. Moreover, although the drive member illustrated the injection piston, the drive member advanced by a servomotor may be sufficient. In addition, the detailed configuration, shape, technique, and the like can be arbitrarily implemented without departing from the scope of the present invention.
[0031]
【The invention's effect】
As described above, the screw support method of the injection molding machine according to the present invention uses a plurality of cylinder portions provided in the recesses at the front end of the drive member when supporting a plurality of screws arranged in parallel by a single drive member. The rear end shaft portion of each screw is supported so as to be displaceable in the axial direction, and the clearance between the outer peripheral surface of the rear end shaft portion and the inner peripheral surface of the cylinder portion and the concave portion and the rear end shaft portion are By supplying pressure oil between the rear end faces and displacing the rear end shaft portion to the set position, the cylinder portion and the rear end shaft portion are brought into non-contact, and when the screw is driven forward, the supply of pressure oil is released and The screw support device for an injection molding machine according to the present invention is provided with a plurality of cylinder portions in the recess at the tip of the drive member, and the rear end of each screw by the cylinder portion. To support the shaft part so that it can be displaced in the axial direction. When the screw is driven to rotate, the gap between the outer peripheral surface of the rear end shaft portion and the inner peripheral surface of the cylinder portion and the pressure oil is supplied between the recess and the rear end surface of the rear end shaft portion to set the rear end shaft portion to the set position. A hydraulic circuit unit that brings the cylinder part and the rear end shaft part into non-contact by displacing the rear end part and releases the supply of pressure oil and abuts the rear end surface of the rear end shaft part in the recess when the screw is driven forward. Therefore, the reliability when the screw is supported by the driving member can be remarkably enhanced, and the remarkable effect that injection molding can be performed without being limited by the magnitude of the thrust load applied to the screw. Play.
[Brief description of the drawings]
FIG. 1 is a cross-sectional side view including a hydraulic circuit portion of a screw support device according to the present invention;
FIG. 2 is a development view of an inner peripheral surface of a cylinder portion constituting the screw support device;
FIG. 3 is a cross-sectional front view of a cylinder portion and a rear end shaft portion in the screw support device;
FIG. 4 is an enlarged sectional side view showing a main part of a screw support device of an injection molding machine according to the present invention;
FIG. 5 is an overall cross-sectional side view of an injection molding machine including the screw support device;
FIG. 6 is a sectional front view of a heating cylinder of the injection molding machine,
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Screw support device 2 Drive member 3x ... Screw 4x ... Cylinder part 5x ... Rear end shaft part 6 Hydraulic circuit part 7 Position sensor 8 Control part 21 Recessed part Ps Setting position Ssx Gap Sr ... Oil passage

Claims (7)

単一の駆動部材により平行に配した複数軸のスクリュを支持する射出成形機のスクリュ支持方法において、前記駆動部材の先端の凹部に設けた複数のシリンダ部により、各スクリュの後端軸部を軸方向に変位自在に支持するとともに、前記スクリュの回転駆動時に、前記後端軸部の外周面と前記シリンダ部の内周面間の隙間及び前記凹部と前記後端軸部の後端面間に圧油を供給して当該後端軸部を設定位置まで変位させることにより前記シリンダ部と前記後端軸部を非接触にし、かつ前記スクリュの前進駆動時に、前記圧油の供給を解除して前記後端軸部の後端面を前記凹部に当接させることを特徴とする射出成形機のスクリュ支持方法。  In a screw support method for an injection molding machine that supports a plurality of screw screws arranged in parallel by a single drive member, a rear end shaft portion of each screw is provided by a plurality of cylinder portions provided in a recess at the tip of the drive member. The shaft is supported so as to be displaceable in the axial direction, and when the screw is driven to rotate, the clearance between the outer peripheral surface of the rear end shaft portion and the inner peripheral surface of the cylinder portion, and between the concave portion and the rear end surface of the rear end shaft portion. By supplying pressure oil and displacing the rear end shaft portion to a set position, the cylinder portion and the rear end shaft portion are brought into non-contact, and when the screw is driven forward, the supply of the pressure oil is released. A screw support method for an injection molding machine, wherein a rear end surface of the rear end shaft portion is brought into contact with the concave portion. 前記シリンダ部と前記後端軸部間に圧油を供給した際に、前記後端軸部の軸方向における位置を検出し、前記後端軸部が前記設定位置となるように前記圧油の供給を制御することを特徴とする請求項1記載の射出成形機のスクリュ支持方法。  When pressure oil is supplied between the cylinder portion and the rear end shaft portion, the position of the rear end shaft portion in the axial direction is detected, and the pressure oil is adjusted so that the rear end shaft portion becomes the set position. 2. The screw support method for an injection molding machine according to claim 1, wherein the supply is controlled. 前記隙間には一又は二以上の螺旋状の油通路を含むことを特徴とする請求項1記載の射出成形機のスクリュ支持方法。  The screw support method for an injection molding machine according to claim 1, wherein the gap includes one or more spiral oil passages. 単一の駆動部材により平行に配した複数軸のスクリュを支持する射出成形機のスクリュ支持装置において、前記駆動部材の先端の凹部に複数のシリンダ部を設け、前記シリンダ部により各スクリュの後端軸部を軸方向に変位自在に支持するとともに、前記スクリュの回転駆動時に、前記後端軸部の外周面と前記シリンダ部の内周面間の隙間及び前記凹部と前記後端軸部の後端面間に圧油を供給して当該後端軸部を設定位置まで変位させることにより前記シリンダ部と前記後端軸部を非接触にし、かつ前記スクリュの前進駆動時に、前記圧油の供給を解除して前記後端軸部の後端面を前記凹部に当接させる油圧回路部を備えることを特徴とする射出成形機のスクリュ支持装置。  In a screw support device of an injection molding machine that supports a plurality of screws arranged in parallel by a single drive member, a plurality of cylinder portions are provided in a recessed portion at a tip of the drive member, and the rear end of each screw is provided by the cylinder portion. The shaft portion is supported so as to be displaceable in the axial direction, and when the screw is driven to rotate, the clearance between the outer peripheral surface of the rear end shaft portion and the inner peripheral surface of the cylinder portion, and the rear portion of the recess and the rear end shaft portion. By supplying pressure oil between the end faces and displacing the rear end shaft portion to a set position, the cylinder portion and the rear end shaft portion are brought into non-contact, and when the screw is driven forward, the pressure oil is supplied. A screw support device for an injection molding machine, comprising: a hydraulic circuit portion that is released to bring the rear end surface of the rear end shaft portion into contact with the recess. 前記駆動部材は射出シリンダの射出ピストンであることを特徴とする請求項4記載の射出成形機のスクリュ支持装置。  5. The screw support device for an injection molding machine according to claim 4, wherein the driving member is an injection piston of an injection cylinder. 前記油圧回路部は前記後端軸部の軸方向における位置を検出する位置センサを有するとともに、前記シリンダ部と前記後端軸部間に圧油を供給した際に、前記後端軸部が前記設定位置となるように前記圧油の供給を制御する制御部を備えることを特徴とする請求項4記載の射出成形機のスクリュ支持装置。  The hydraulic circuit portion includes a position sensor that detects a position of the rear end shaft portion in the axial direction, and when the hydraulic oil is supplied between the cylinder portion and the rear end shaft portion, the rear end shaft portion is The screw support device for an injection molding machine according to claim 4, further comprising a control unit that controls supply of the pressure oil so as to be in a set position. 前記隙間には一又は二以上の螺旋状の油通路を含むことを特徴とする請求項4記載の射出成形機のスクリュ支持装置。  The screw support device for an injection molding machine according to claim 4, wherein the gap includes one or more spiral oil passages.
JP21239896A 1996-08-12 1996-08-12 Screw support method and apparatus for injection molding machine Expired - Fee Related JP3781483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21239896A JP3781483B2 (en) 1996-08-12 1996-08-12 Screw support method and apparatus for injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21239896A JP3781483B2 (en) 1996-08-12 1996-08-12 Screw support method and apparatus for injection molding machine

Publications (2)

Publication Number Publication Date
JPH1052840A JPH1052840A (en) 1998-02-24
JP3781483B2 true JP3781483B2 (en) 2006-05-31

Family

ID=16621932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21239896A Expired - Fee Related JP3781483B2 (en) 1996-08-12 1996-08-12 Screw support method and apparatus for injection molding machine

Country Status (1)

Country Link
JP (1) JP3781483B2 (en)

Also Published As

Publication number Publication date
JPH1052840A (en) 1998-02-24

Similar Documents

Publication Publication Date Title
JP6250128B1 (en) Injection molding machine
EP1321275A2 (en) Thermoplastic resin injection molding machine
JP2007007887A (en) Injection device of injection molding machine
JP6281999B1 (en) Injection molding machine
KR20180102513A (en) Injection molding machine
JP6840577B2 (en) Injection molding machine
US6368095B1 (en) Injection drive mechanism for a servo injection molding machine
JP3781483B2 (en) Screw support method and apparatus for injection molding machine
JPH0433616B2 (en)
JPH11114990A (en) Preplasticating type injecting apparatus and method for injection molding by using it
JP2007216285A (en) Injection device of metal injection-forming machine
US20060188597A1 (en) Injection drive mechanism for a servo injection molding machine
JP7434017B2 (en) injection device
JP2638626B2 (en) Feedback control method for injection molding machine
JP3506834B2 (en) Injection molding machine
JPH1163U (en) Hydraulic motor for injection molding machine
JP2612069B2 (en) Injection molding machine sealing mechanism
US6247622B1 (en) Electric injection apparatus
JPH0691709A (en) Injection molding machine
JP3455488B2 (en) Hydraulic drive of injection molding machine
JP5755261B2 (en) Injection molding machine and injection molding method
JPH11268092A (en) Injection apparatus
JP2761442B2 (en) Injection molding machine
JP2000326376A (en) Preplasticating injection device
JP2007245594A (en) Online-blend type injection molding machine

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060307

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees