JP3781151B2 - Method for producing powder slurry paint - Google Patents

Method for producing powder slurry paint Download PDF

Info

Publication number
JP3781151B2
JP3781151B2 JP24857197A JP24857197A JP3781151B2 JP 3781151 B2 JP3781151 B2 JP 3781151B2 JP 24857197 A JP24857197 A JP 24857197A JP 24857197 A JP24857197 A JP 24857197A JP 3781151 B2 JP3781151 B2 JP 3781151B2
Authority
JP
Japan
Prior art keywords
resin
rotor
aqueous medium
synthetic resin
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24857197A
Other languages
Japanese (ja)
Other versions
JPH1180371A (en
Inventor
恭義 柏木
宗和 林
謹爾 真造
英宣 石川
昇 小越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP24857197A priority Critical patent/JP3781151B2/en
Publication of JPH1180371A publication Critical patent/JPH1180371A/en
Application granted granted Critical
Publication of JP3781151B2 publication Critical patent/JP3781151B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は塗料等の技術分野において用いられる、粉体スラリー塗料(紫外線硬化型粉体スラリー塗料を含む、以下同文)の製造方法に関する。
【0002】
【従来の技術】
粉体塗料等の製造方法としては、従来から湿式法と乾式法がある。
湿式法は、通常の溶剤型塗料とほとんど同じ方法で塗料を作った後、溶剤を留去して粉砕するか、大量の非溶剤の中に噴出分散後、ろ別乾燥するか、あるいは加温空気中にスプレーして、溶剤を除去する等の方法が行われている。しかし技術上の問題が多く、現在乾式法に比べてコスト高となる為、実用されていない。
【0003】
また乾式法は各種原料を混合、加熱溶融、混練し、さらに冷却、粉砕、分級する各工程からなる。有機溶剤を使用しない塗料として今後さらなる発展が考えられる。
【0004】
しかし乾式法には、下記の問題点が列記される。
1)粉体塗料の形状は不定形にならざるを得ず、特に体積平均径が20ミクロン以下の粉体塗料の場合には粉体としての流動性が極端に悪化する。
【0005】
2)粉体が小粒径になればなるほど粉体重量当たりに必要な粉砕エネルギーが飛躍的に増大し、コスト高になってしまう。近年粉体塗料の動向として、表面の平滑性および光沢性向上の要請から粉体塗料の平均粒子径は益々小粒径化する方向にあり、近い将来10ミクロン以下の超微粒子粉体塗料の出現が期待されているが、従来技術の粉砕法の粉体塗料では、製造が非常に困難であり、またできたとしてもコスト高になる。
【0006】
3)粉体塗料の中でも紫外線硬化型粉体塗料は、軟化点が通常の粉体塗料よりも低く60〜120℃である。その為紫外線硬化型粉体塗料を製造する際の粉砕工程で粉体同士で融着しない様な処理が不可欠となる。
【0007】
上記問題を従来の湿式法、乾式法で克服するのは非常に困難である。
本発明の粉体スラリー塗料は、従来上記で得られる粉体塗料を水性媒体に乳化分散させることによって製造される。
【0008】
【発明が解決しようとする課題】
本発明は、従来法を抜本的に改良して、その問題点を解決した粉体スラリー塗料の製造方法を提供することを目的とするものである。
【0009】
具体的には
▲1▼本発明は、乾式法における粉砕工程が全く不要な粉体スラリー塗料の製造方法を提供する。
【0010】
▲2▼本発明は、10ミクロン以下の超微粒子の粉体塗料を容易に製造可能で、簡易でかつ生産性の高い連続製造方法を提供する。
▲3▼本発明は、粉砕工程が不要で粉砕しにくい軟化点の低い紫外線硬化型粉体塗料の製造が容易な製造方法を提供する。
【0011】
▲4▼粉体塗装ラインのような設備が不要で、既存の水系塗装ラインであればほとんど手を加えずに導入できる製造方法を提供する。
【0012】
【課題を解決するための手段】
本発明者らは、有機溶剤を全く使用しない乾式法のメリットと、湿式法の球形で微粒子の粉体塗料のメリットの両方を併せ持つ粉体塗料ができないかと鋭意試行検討を繰り返した結果、連続式乳化分散機で機械的に乳化分散させる工程を経ることによって上記課題が達成できることを見出し、本発明に到達したものである。
【0013】
すなわち本発明は、(1)粉体塗料用合成樹脂と、硬化剤及び/又は光開始剤との混練物を加熱熔融して成る樹脂熔融体(a)と、該合成樹脂の軟化点±30℃に加熱した水性媒体(b)とを混合し、(2)該混合物の温度を該合成樹脂の軟化点±30℃に維持しながら、前記樹脂熔融体(a)を水性媒体(b)中に機械的手段により乳化分散させ、(3)その後直ちに急速冷却することを特徴とする粉体スラリー塗料の製造方法である。
【0014】
また乳化分散の機械的手段として、スリットを有するリング状固定子とスリットを有するリング状回転子とを、僅かな間隙を保って、該固定子と該回転子が相互に咬み合うように同軸上に設けた高速回転型連続式乳化分散機を使用する粉体スラリ塗料の製造方法であり、粉体塗料用合成樹脂と、硬化剤及び/又は光開始剤と、必要に応じて着色顔料との混練物を加熱熔融して成る樹脂熔融体と、水性媒体との混合物を、前記高速回転型連続式乳化分散機に供給し、該混合物を、前記回転子の高速回転により前記スリットと前記間隙とを通して回転子の内心から遠心の方向に流し、前記固定子のスリットと回転子のスリットを通過する間にせん断力を与えるとともに、該混合物が該固定子と該回転子との間の隙間を通過する間にズリ応力を与えることによって、該樹脂熔融体を水性媒体中に乳化分散する粉体スラリー塗料の製造方法である。
【0015】
【発明の実施の態様】
本発明は、溶剤を使わずに樹脂微粒子を水性媒体中に機械的に乳化分散させ、この水分散液からなる粉体スラリー塗料の製造方法(以下水系乳化分散法という)であり、3つの工程を経るものである。
【0016】
まず本発明の第1工程について説明する。
すなわち粉体塗料用合成樹脂と、硬化剤及び/又は光開始剤と、必要に応じて着色顔料との混練物を加熱熔融して成る樹脂熔融体(a)と、必要に応じて分散剤または界面活性剤を含むとともに、加熱し、必要に応じてさらに加圧することにより該合成樹脂の軟化点前後の温度に加熱した水性媒体(b)とを混合する工程である。
【0017】
この工程で用いる粉体塗料用合成樹脂は、粉体塗料に適していれば、どのようなものであってもかまわない。例えばアクリル樹脂、エポキシ樹脂、アミン変性樹脂、フェノール樹脂、キシレン樹脂、ポリエステル樹脂、尿素樹脂、ウレタン樹脂、ブロックイソシアネート樹脂およびこれらの混合物等が挙げられる。これらのうち、紫外線硬化型粉体塗料用樹脂としては、特に不飽和ポリエステル樹脂とウレタンアクリレートやウレタン化ビニルエーテルの組み合わせが好適であり、通常の粉体塗料用樹脂としてはアクリル樹脂、ポリエステル樹脂、エポキシ系樹脂等が好適である。
【0018】
硬化剤、光開始剤は、粉体塗料に適していればどのようなものであってもかまわない。硬化剤としては、例えばポリカルボン酸(ドデカン二酸、トリメリット酸等)、アミノ樹脂やブロックポリイソシアネート、ポリエポキシド、ポリオール等が挙げられる。また光開始剤としては、例えばアセトフェノン、ベンゾフェノン、ミヒラーケトン、ベンジル、ベンゾイン、ベンゾインイソブチルエーテル、ベンジルジメチルケタール(イルガキュア−651)、1−ヒドロキシシクロヘキシルフェニルケトン(イルガキュア−184)、2−ヒドロキシ−2−ジメチル−1−フェニルプロパン−1−オン、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、アゾビスイソブチルニトリル、ベンゾイルパーオキサイド、ジ−tert−ブチルパーオキサイド等が挙げられる。
【0019】
硬化剤、光開始剤は、合成樹脂の種類により、それぞれ単独に使用する場合、両者を併用する場合がある。
合成樹脂には、硬化剤、光開始剤の他、必要に応じて着色顔料を添加することができる。着色顔料としては、有機顔料、無機顔料等が挙げられる。有機顔料としては、有機顔料としては、例えばアゾ系顔料、フタロシアニン系顔料、縮合多環系顔料、ニトロソ系顔料等が挙げられ、無機顔料としては、例えば酸化物系顔料、フタロシアニン化物、クロム酸塩系顔料、炭素系顔料、マイカ系顔料、金属粉末顔料等が挙げられる。これらの顔料は、顔料分散剤によって被覆されてもよい。
【0020】
その他、添加剤として、必要に応じて充填剤、防錆剤、紫外線安定剤、紫外線吸収剤、流動調整剤、ハジキ防止剤等が配合される。
上記の原料を混練し、加熱熔融し、樹脂熔融体を製造する。この樹脂熔融体を製造するには公知の方法が用いられる。具体的には、硬化剤を含有しない場合は、合成樹脂、光開始剤、必要に応じて着色顔料、添加剤をミキサーでドライブレンドした後、攪拌機付きの加熱溶融槽で完全に溶融させ、樹脂溶融体タンクに送られる。また硬化剤を含有する場合は、合成樹脂、硬化剤、必要に応じて光開始剤、着色顔料、添加剤をミキサーでドライブレンドした後、スクリューミキサーに送られ、押出機で加熱、溶融、混練されて、この混練物を直接下記の回転型連続式乳化分散機に送り込む。
【0021】
次に本発明の水性媒体について説明する。一般に水性媒体は基本的には水であり、安定な樹脂溶融体の水分散液をつくるために、必要により分散剤、界面活性剤を添加してもよい。分散剤としては、特に限定されないが、例えばスチレン等の懸濁重合で良く用いられているポリビニルアルコール、ヒドロキシエチルセルローズなどの水溶性高分子分散安定剤、あるいは燐酸カルシウムなど難水溶性の無機系分散安定剤等が挙げられ、これらの中から適当なものを使用すればよい。また界面活性剤としては、特に限定されないが、例えば2,6,8ートリメチルー4ーノニルオキシポリエチレンオキシエタノール等が挙げられる。
【0022】
合成樹脂に対する水性媒体の比率は水系乳化分散液を作るのに充分な量である必要がある。
本発明の無溶剤水系乳化分散法においては、前記の合成樹脂熔融体と水性媒体とを樹脂の軟化点前後の温度に加熱しておくことを特徴とする。軟化点前後の温度は、特に限定されないが、合成樹脂を熔融状態に維持するためには±30℃以内が好ましい。
【0023】
上記の水性媒体は、加熱し、必要により加圧した高温の水性媒体である。加熱用熱交換器等の使用により、粉体塗料用合成樹脂を熔融させるため合成樹脂の軟化点前後の温度まで加熱される。このため、水性媒体は、使用する合成樹脂の軟化点によって、工程中に設けられた1Kg/cm2〜20Kg/cm2程度の加圧手段によって圧力をかけ、適性温度に調整される。特に合成樹脂の軟化点が低い場合は必ずしも加圧手段を用いる必要はないが、軟化点が100℃以上の場合には、水性媒体が沸騰しないように加圧する必要がある。
【0024】
次に本発明の第2工程について説明する。
第2の工程は、上記の樹脂第1工程で得られる樹脂熔融体と高温水性媒体との混合物を、合成樹脂の軟化点前後の温度を維持しながら、樹脂溶融体を水性媒体に機械的に乳化分散させるものである。
【0025】
合成樹脂の軟化点前後の温度を維持しながら、樹脂熔融体を水性媒体に機械的に乳化分散させるための装置としては、特に限定しないが、スリットを有するリング状固定子とスリットを有するリング状回転子とを、僅かな間隙を保って、該固定子と該回転子が相互に咬み合うように同軸上に設けた構造を有する高速回転型連続式乳化分散機を用いるのが好ましい。
【0026】
この本発明の高速回転型連続式乳化分散機は、樹脂熔融体と100℃以上の高温高圧の水性媒体とを連続的に圧入して、合成樹脂の軟化点前後の温度で、合成樹脂の分解温度以下の高温高圧下で急速に均一混合して乳化分散し、連続的に排出できる構造の装置である。
【0027】
高速回転型連続式乳化分散機は、前記回転子を高速回転させることによって合成樹脂熔融体を水性媒体中に乳化分散することができる。この乳化機の温度は、合成樹脂を一定の熔融状態に保持するため、前記混合物の温度を合成樹脂の軟化点前後の温度に維持する必要があり、このため乳化機には保温のためのジャケットを設置することが好ましい。合成樹脂の最適温度は、目的とする粒子の粒子径、樹脂の分子量などによって異なるが、80℃〜220℃に設定するのが好ましい。
【0028】
高速回転型連続式乳化分散機内の温度は、供給する樹脂熔融体の温度、供給する水性媒体の温度、ジャケットの保温効果と機内でのせん断力による発熱量のバランスで、一定温度に制御される。
【0029】
また高速回転型連続式乳化分散機内の圧力は、水性媒体の機内温度における蒸気圧と回転子のポンプ機能による吐出圧で決まる。通常、樹脂微粒子の水分散液を冷却した後に自動圧力制御弁を設け、内部圧を一定に保ち、該水分散液を大気圧下に連続的に取り出す方法が好ましい。
【0030】
高速回転型連続式乳化分散機内では、樹脂熔融体と、高温水性媒体との混合物を、高速回転型連続式乳化分散機に供給し、該混合物を、前記回転子の高速回転により前記スリットと前記間隙とを通して回転子の内心から遠心の方向に流し、前記固定子のスリットと回転子のスリットを通過する間にせん断力を与えるとともに、該混合物が該固定子と該回転子との間の隙間を通過する間にズリ応力を与えることによって、微分散がなされる。この固定子及び回転子のスリットはノズルでも、同様な効果を奏することができるので、固定子、回転子の両方、又はいずれか一方のスリットをノズルに変えることもできる。
【0031】
以下図面により本発明の機械的微分散に好ましく用いられる高速回転型連続式乳化分散機について説明する。
高速回転型乳化分散機の固定子1は、同一中心で固着され、その中心が原料入口と連通する液入口2となって開口している。固定子1の円形面には、固定子と同心円でリング状の突起3が1段又は2段以上の多段状に突設されている。突起同士の間隙には、円周溝4が形成されており、それぞれの突起に複数のスリット5が形成されている。これらのスリットの幅は、0.6mm〜3.0mmであり、スリットは各リング状突起に12〜72本付いていて櫛の歯状となっている。このスリットの幅は、供給された液の粒子径を小さくするため、外周の突起ほど小さくなるのが好ましい。
【0032】
高速回転型連続式乳化分散機内の他方の内壁の中心には駆動軸6が付設され、駆動部に接続されて、高速回転される。
高速回転型連続式乳化分散機の回転子7は、この駆動部の先端に、固定子と平行にかつ同一中心軸上に固定されている。固定子に対向する回転子の対向面には、回転子と同心円で円環状の1段又は2段以上の多段状突起8が突設されている。それぞれの回転突起は固定子と同様に、突起同士の間隙には円周溝9が形成され、それぞれの突起には複数のスリット10が形成されている。
【0033】
この固定子1と回転子7とは、固定子の突起3及び円周溝4、回転子の突起8及び円周溝10が僅かな間隙を維持しつつ挿入状態で咬み合わされた状態で使用に供される。
【0034】
本発明で用いる高速回転型連続式乳化分散機は、この咬み合わせによって形成された間隙に樹脂溶融体と高温高圧水性媒体との混合物が供給され、該混合物が回転子の内心から遠心方向へ流れ、前記回転子の高速回転によってせん断力を受け、及び該混合物が該固定子と該回転子との間の隙間を通過する間にズリ応力を受けることによって樹脂熔融体が水性媒体中に乳化分散するものである。
【0035】
この高速回転型連続式乳化分散機の主液入口2に供給された樹脂溶融体と高温高圧水性媒体は、回転子7が高速回転すると、最内側の回転子の突起のスリットに入り、遠心力により該回転子の突起の外周から吐出され、最内側の固定子の突起に押しつけられ、その固定子の突起のスリットに入る。このスリットに入った混合液は、遠心力により最内側の回転子のスリットに入った混合物に押されて第2回転子の円周溝に押し出される。このとき該混合物は、最内側の固定子の突起と第2回転子の突起によってせん断力を加えられるとともに、固定子と回転子との間隔を通過するに伴って、ズリ応力が加えられる。混合液が合流するとさらにせん断力が加えられ、後の混合液に押されて第2固定子の突起のスリットに入り、前記と同様のことを繰り返して受けながら、混合物が順次遠心方向に移動され、微分散が完了される。
【0036】
この混合物の流れと、せん断力及びズリ応力の関係については、図4に示されるとおりである。
高速回転型連続式乳化分散機の回転子の回転数は駆動軸に接続された駆動モーターで制御される。回転数が大きく周速が大きいほど大きいせん断力を受けて、合成樹脂の粒子径が小さくなる。直径10cmの回転子を使用して、平均粒子径が10ミクロン以下の粉体塗料を製造する場合、好ましい回転数は3,000〜10,000rpmである。
【0037】
本発明の高速回転型連続式乳化分散機として市販されている装置の例としては、キャビトロン(株式会社ユーロテック)を挙げることができる。
次に本発明の第3工程について説明する。
【0038】
上記高速回転型連続式乳化分散機の出口から得られた樹脂微粒子の水分散液を、生成した樹脂粒子同士が衝突して凝集物が発生しない間に、出来るだけ速やかに合成樹脂のガラス転移温度以下の温度まで急速に冷却する。
【0039】
急速に冷却する装置としては、市販されている熱交換器を用いることができ、冷却水と熱交換させながら冷却する。冷却速度は特に限定しないが、凝集物が発生しないようにするためには、10℃/秒以上であることが好ましい。
【0040】
合成樹脂のガラス転移温度付近まで急速に冷却した後は、圧力制御弁により圧力を大気圧にまで戻すことにより、樹脂微粒子のスラリ−として得られる。
このスラリーを直接粉体スラリ塗料として用いることも可能であるが、必要に応じて粘度調整剤を入れることができる。粘度調整剤を加えることにより、浮遊した樹脂微粒子を維持し、スプレー塗布に好適なレオロジーを与えるという効果が得られる。粘度調整剤としては、例えばアクリル樹脂等が挙げられ、具体的製品としては、プライマル ASEー60(日本アクリル化学製)が挙げられる。
【0041】
以上の第1工程から第3工程までのフローの1例を図5により説明する。
すなわち上記の方法で製造された樹脂熔融体を入れたタンク12から樹脂ポンプ13を介して高速回転型連続式乳化分散機11に樹脂熔融体を供給すると同時に、水性媒体を入れた水性媒体タンク14から加熱用熱交換器15を通して高温水性媒体を得、この高温水性媒体をポンプ16を介して高速回転型連続式乳化分散機11に供給する。樹脂熔融体と高温水性媒体はこの乳化分散機11内で乳化分散され、樹脂熔融体水分散液が得られる。この水分散液を直ちに冷却用熱交換器17に通し冷却して樹脂水分散液を得る。このフロー全工程の圧力を圧力調整弁18で調整する。
【0042】
本発明の粉体スラリー塗料の製造方法は、樹脂溶融体と高温水性媒体から、高速回転型連続式乳化分散機を経て冷却までの一連の工程を連続で行うことができるものである。
【0043】
本発明は、上記のとおり樹脂熔融体と高温高圧水性媒体との混合物を高速回転型乳化分散機で高せん断力、ズリ応力及び高周波レベルの圧力変動を発生させ、強力な攪拌・破砕作用を利用して無溶剤乳化分散を行うものである。
【0044】
また、水可溶成分の溶出が全くゼロではないが合成樹脂粒子の洗浄はほとんど不要であり、単に濾別するだけでも良い。この点においても、本発明は工程がシンプルで全体工程を連続化するのに有利である。
【0045】
生成する樹脂微粒子の平均粒子径の支配因子は、▲1▼乳化分散機の回転子の回転速度、▲2▼合成樹脂および水性媒体の温度である。これらの支配因子はすべてその数値を大きくしてやると合成樹脂の水分散性がアップし、合成樹脂微粒子の粒子径は小さくなる。
【0046】
この樹脂微粒子のスラリ−を脱水し、乾燥し、次いで乾式法の場合と同様に所望の粒度分布になるように分級して特定の粒子径を有する樹脂微粒子からなる粉体塗料を得ることができる。この場合冷却用熱交換器にさらに洗浄装置、脱水装置、乾燥装置、及び分級装置を接続することにより、樹脂熔融体と高温水性媒体から、高速回転型連続式乳化分散機を経て乾燥、分級までの一連の工程を連続で行うことができる。もちろん急速冷却までを連続プロセスにし、粉体スラリを得た後は、タンク中で樹脂を水洗、脱水乾燥してもよい。なお分級工程は湿式サイクロンを用いる湿式分級を併用してもよい。
【0047】
【実施例】
以下本発明の実施例を示すが、本発明はこれらの実施例によって制限されるものではない。また実施例中の部、%はすべて重量基準によるものとする。
【0048】
実施例1 <紫外線硬化型粉体スラリー塗料の製造>
▲1▼紫外線硬化型粉体スラリー塗料に使用するウレタンアクリレートの製造
下記の組成物を使用した。
【0049】
イソホロンジイソシアネート 58.2部
ジブチル錫ジラウレート 0.1部
3,5-ジ-t-ブチル-4-ヒドロキシトルエン 0.3部
これらの混合物を65℃に加熱し、そこへヒドロキシプロピルアクリレート 32.4部を滴下して、次にこの混合物を13%以下のNCO含有量になるまで攪拌した。次に攪拌回転数を上げて且つ120℃までゆっくり昇温した。その間グリセロール9部を1時間にわたって滴下する。次いで樹脂溶融物を取り出して冷却し、粉砕して軟化点(環球法)が75℃、溶融粘度(ICIコーンプレート型粘度計)が150℃で76dPasの白色粉末を得た。
【0050】
▲2▼紫外線硬化型粉体スラリー塗料の製造
このウレタンアクリレートを100部、ポリライトPB958(不飽和ポリエステル樹脂:大日本インキ化学工業製)233部、ジアセトンアクリルアミド 11部、イルガキュア 651(ベンジルジメチルケタール チバガイギー製)15部、BYK361(アクリル樹脂 BYK Chemie社製)11部の混合物を図5の混練物溶融体タンクに仕込み、110℃に加熱してキャビトロンCD1010に毎分100gの速度で送り込んだ。
【0051】
図5の水性媒体タンクのポリビニルアルコール(以下PVAという)を0.1%含むイオン交換水を、熱交換器で100℃に加熱しながら毎分1リットルの速度でキャビトロンに送り込んだ。回転子の回転速度は8000rpm、圧力は2Kg/cm2で運転し、製造したスラリーは110℃から65℃まで10秒以内に冷却して取り出した。
【0052】
このスラリーにスプレー塗装し易くするためにプライマルASE−60(酸含有架橋型アクリルエマルジョン、粘度調整剤:日本アクリル社製)を1重量%入れた。得られたスラリーをホモジナイザーで凝集物を粉砕して均一にした後400メッシュスクリーン(37ミクロン)で濾過して、平均粒径2ミクロン、最大粒径10ミクロン以下のほぼ球形の紫外線硬化型粉体スラリー塗料を得た。
【0053】
▲3▼紫外線硬化型粉体塗料の塗膜
このスラリー塗料を冷間圧延鋼のパネルに厚さ約1ミルにスプレー塗装した。この塗膜を15分間、100℃に加熱して水を蒸発させ、樹脂を溶融した後、紫外線ランプで照射(120w/cm、10m/min、7Pass、840mj/cm2)したところ、透明で硬く、耐引掻性のある塗膜を得た。
【0054】
実施例2 <粉体スラリー塗料の製造>
ファインデックA−207S(アクリル樹脂:大日本インキ化学工業製)を84%、ドデカン二酸(硬化剤)16%、アクロナール4F(流動調節剤:BASF社製)0.5%をミキサーで予備混合し、図5の12のスクリューミキサーに送り込む。そのスクリューミキサーによって図5の13の押出機に送られ、押出機で、100℃に加熱して混練し、キャビトロンCD1010に毎分100gの速度で送り込んだ。図5の水性媒体タンクのPVAを0.1%を含むイオン交換水を、熱交換器で100℃に加熱しながら毎分1リットルの速度でキャビトロンに送り込んだ。回転子の回転速度は8000rpm、圧力は2Kg/cm2で運転し、製造したスラリーは100℃から65℃まで10秒以内に冷却して取り出した。
【0055】
このスラリーにスプレー塗装し易くするためにプライマルASE−60を1重量%入れ、ホモジナイザーで凝集物を粉砕して均一にした後400メッシュスクリーン(37ミクロン)で濾過して、平均粒径2ミクロン、10ミクロン以下のほぼ球形の粉体スラリー塗料を得た。
【0056】
このスラリー塗料を綺麗にした冷間圧延鋼のパネルに厚さ約1ミルにスプレー塗装をした。このパネルを100℃で15分間前焼き付けした後、150℃で20分間焼き付けたところ、透明で硬く、平滑性のある塗膜を得た。
【0057】
【発明の効果】
本発明によれば、有機溶剤を使わずに、極めて容易かつ生産性が高い連続製法で小粒径の粉体スラリー塗料が製造できる。
【0058】
また本発明の合成樹脂粒子の製造法によれば従来の粉砕手段では粉体化できなかったような樹脂でも経済的に粉体化できる。
【図面の簡単な説明】
【図1】本発明に用いる回転型連続式乳化分散機の固定子及び回転子の斜視図である。
【図2】本発明に用いる回転型連続式乳化分散機の要部断面を表した図である。
【図3】図2のA−A'部を側面から見たときの固定子突起と回転子突起の組み合わせ状態を表した図である。
【図4】本発明に用いる回転型連続式乳化分散機の回転子の回転より固定子と回転子の間を流れる流体にかかる力を表した図である。
【図5】本発明にかかる粉体スラリー塗料の製造方法の説明図である。
【符号の説明】
1 固定子
2 液入口
3 固定子の突起
4 固定子の円周溝
5 突起のスリット
6 駆動軸
7 回転子
8 回転子の突起
9 回転子の円周溝
10 突起のスリット
11 回転型連続式乳化分散機
12 樹脂熔融体タンクまたはスクリューミキサー
13 樹脂ポンプまたは押出機
14 水性媒体タンク
15 加熱用熱交換器
16 水性媒体ポンプ
17 冷却用熱交換器
18 圧力制御弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a powder slurry paint (including an ultraviolet curable powder slurry paint, hereinafter the same sentence) used in the technical field of paints and the like.
[0002]
[Prior art]
Conventionally, there are a wet method and a dry method as a method for producing a powder paint or the like.
In the wet method, a paint is made in almost the same way as a normal solvent-type paint, and then the solvent is distilled off and pulverized, or after being dispersed in a large amount of non-solvent, filtered and dried, or heated. A method of removing the solvent by spraying in the air is performed. However, there are many technical problems and the cost is higher than that of the dry method at present, so it is not put into practical use.
[0003]
In addition, the dry method includes various steps of mixing, heating and melting, kneading various materials, and further cooling, pulverizing and classifying. Further development is possible in the future as a paint that does not use organic solvents.
[0004]
However, the following problems are listed in the dry method.
1) The shape of the powder coating must be indefinite, and the fluidity as a powder is extremely deteriorated particularly in the case of a powder coating having a volume average diameter of 20 microns or less.
[0005]
2) The smaller the powder has a smaller particle size, the more the pulverization energy required per powder weight increases dramatically, resulting in higher costs. As a trend of powder coatings in recent years, the average particle size of powder coatings is becoming smaller due to the demand for surface smoothness and glossiness, and the appearance of ultrafine powder coatings of 10 microns or less will appear in the near future. However, it is very difficult to manufacture the powder coating material by the conventional pulverization method, and even if it is possible, the cost is high.
[0006]
3) Among the powder paints, the ultraviolet curable powder paint has a softening point of 60 to 120 ° C. lower than that of a normal powder paint. Therefore, it is indispensable to treat the powder so as not to be fused with each other in the pulverization process when manufacturing the ultraviolet curable powder coating material.
[0007]
It is very difficult to overcome the above problems by the conventional wet method and dry method.
The powder slurry paint of the present invention is produced by emulsifying and dispersing the powder paint obtained above in an aqueous medium.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing a powder slurry paint that drastically improves the conventional method and solves the problems.
[0009]
Specifically, (1) The present invention provides a method for producing a powder slurry paint that does not require a pulverization step in a dry process.
[0010]
{Circle around (2)} The present invention provides a simple and highly productive continuous production method that can easily produce an ultrafine powder coating of 10 microns or less.
{Circle around (3)} The present invention provides a production method that makes it easy to produce an ultraviolet curable powder coating material that does not require a pulverization step and is difficult to pulverize and has a low softening point.
[0011]
(4) Providing a manufacturing method that does not require equipment like a powder coating line and can be introduced with little modification if it is an existing water-based coating line.
[0012]
[Means for Solving the Problems]
The inventors of the present invention have repeatedly conducted intensive trial studies on whether or not a powder paint having both the merit of a dry method using no organic solvent and the advantage of a spherical powder and a fine powder paint of a wet method can be obtained. It has been found that the above-mentioned problems can be achieved through a step of mechanically emulsifying and dispersing with an emulsifying and dispersing machine, and the present invention has been achieved.
[0013]
That is, the present invention includes (1) a resin melt (a) obtained by heating and melting a kneaded product of a synthetic resin for powder coating, a curing agent and / or a photoinitiator, and a softening point of the synthetic resin ± 30. (2) While maintaining the temperature of the mixture at the softening point of the synthetic resin ± 30 ° C., the resin melt (a) is mixed in the aqueous medium (b). (3) A method for producing a powder slurry paint characterized in that it is rapidly cooled immediately thereafter.
[0014]
As a mechanical means for emulsification and dispersion, a ring-shaped stator having a slit and a ring-shaped rotor having a slit are coaxially arranged so that the stator and the rotor are engaged with each other while maintaining a slight gap. Is a method for producing a powder slurry paint using a high-speed rotation type continuous emulsification disperser provided in the method, comprising: a synthetic resin for powder paint, a curing agent and / or a photoinitiator, and, if necessary, a color pigment. A mixture of a resin melt formed by heating and melting the kneaded material and an aqueous medium is supplied to the high-speed rotation type continuous emulsification disperser, and the mixture is separated from the slit and the gap by high-speed rotation of the rotor. Through the rotor from the inner center of the rotor in a centrifugal direction, applying shearing force while passing through the stator slit and the rotor slit, and the mixture passes through the gap between the stator and the rotor Apply shear stress during By, the resin melt which is a method of producing a powder slurry coating material emulsified and dispersed in an aqueous medium.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention is a method for producing a powder slurry coating comprising an aqueous dispersion by mechanically emulsifying and dispersing resin fine particles in an aqueous medium without using a solvent (hereinafter referred to as an aqueous emulsion dispersion method). It goes through.
[0016]
First, the first step of the present invention will be described.
That is, a resin melt (a) obtained by heating and melting a kneaded product of a synthetic resin for powder coating, a curing agent and / or a photoinitiator, and, if necessary, a color pigment, and a dispersant or It is a step of mixing the aqueous medium (b) containing a surfactant, heated and further pressurized as necessary to a temperature around the softening point of the synthetic resin.
[0017]
The synthetic resin for powder coating used in this process may be any material as long as it is suitable for the powder coating. Examples thereof include acrylic resins, epoxy resins, amine-modified resins, phenol resins, xylene resins, polyester resins, urea resins, urethane resins, blocked isocyanate resins, and mixtures thereof. Among these, a combination of an unsaturated polyester resin and urethane acrylate or urethanized vinyl ether is particularly suitable as an ultraviolet curable powder coating resin, and an acrylic resin, a polyester resin, or an epoxy is used as a normal powder coating resin. A resin or the like is preferable.
[0018]
Any curing agent and photoinitiator may be used as long as they are suitable for powder coatings. Examples of the curing agent include polycarboxylic acids (such as dodecanedioic acid and trimellitic acid), amino resins, block polyisocyanates, polyepoxides, polyols, and the like. Examples of the photoinitiator include acetophenone, benzophenone, Michler ketone, benzyl, benzoin, benzoin isobutyl ether, benzyl dimethyl ketal (Irgacure-651), 1-hydroxycyclohexyl phenyl ketone (Irgacure-184), 2-hydroxy-2-dimethyl. -1-phenylpropan-1-one, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, azobisisobutylnitrile, benzoyl peroxide, di-tert-butyl peroxide, etc. Can be mentioned.
[0019]
Depending on the type of synthetic resin, the curing agent and photoinitiator may be used in combination when used alone.
In addition to a curing agent and a photoinitiator, a colored pigment can be added to the synthetic resin as necessary. Examples of the color pigment include organic pigments and inorganic pigments. Examples of organic pigments include azo pigments, phthalocyanine pigments, condensed polycyclic pigments, nitroso pigments, and the like, and inorganic pigments include, for example, oxide pigments, phthalocyanine compounds, and chromate salts. Pigments, carbon pigments, mica pigments, metal powder pigments and the like. These pigments may be coated with a pigment dispersant.
[0020]
In addition, a filler, a rust preventive agent, a UV stabilizer, a UV absorber, a flow regulator, a repellency inhibitor, and the like are blended as additives.
The above raw materials are kneaded and melted by heating to produce a resin melt. A known method is used to produce this resin melt. Specifically, if it does not contain a curing agent, after synthetic blending, photoinitiator, and if necessary, color pigments and additives are dry blended with a mixer, they are completely melted in a heating and melting tank equipped with a stirrer. Sent to the melt tank. If it contains a curing agent, dry blend the synthetic resin, curing agent and, if necessary, photoinitiator, coloring pigment, and additives with a mixer, then send to a screw mixer, and heat, melt, and knead with an extruder. Then, this kneaded product is fed directly to the following rotary continuous emulsifying disperser.
[0021]
Next, the aqueous medium of the present invention will be described. In general, the aqueous medium is basically water, and a dispersant and a surfactant may be added as necessary in order to form an aqueous dispersion of a stable resin melt. The dispersant is not particularly limited. For example, water-soluble polymer dispersion stabilizers such as polyvinyl alcohol and hydroxyethyl cellulose, which are often used in suspension polymerization such as styrene, or poorly water-soluble inorganic dispersions such as calcium phosphate. A stabilizer etc. are mentioned, What is necessary is just to use a suitable thing from these. The surfactant is not particularly limited, and examples thereof include 2,6,8-trimethyl-4-nonyloxypolyethyleneoxyethanol.
[0022]
The ratio of the aqueous medium to the synthetic resin needs to be an amount sufficient to make an aqueous emulsion dispersion.
The solventless aqueous emulsion dispersion method of the present invention is characterized in that the synthetic resin melt and the aqueous medium are heated to a temperature around the softening point of the resin. The temperature before and after the softening point is not particularly limited, but is preferably within ± 30 ° C. in order to maintain the synthetic resin in a molten state.
[0023]
The aqueous medium is a high-temperature aqueous medium that is heated and pressurized as necessary. By using a heat exchanger or the like for heating, the synthetic resin for powder coating is heated to a temperature around the softening point of the synthetic resin in order to melt it. Therefore, the aqueous medium, the softening point of the synthetic resin used, pressured by 1Kg / cm 2 ~20Kg / cm 2 of about pressurizing means provided in the process, is adjusted to proper temperature. In particular, when the softening point of the synthetic resin is low, it is not always necessary to use a pressurizing means. However, when the softening point is 100 ° C. or higher, it is necessary to pressurize so that the aqueous medium does not boil.
[0024]
Next, the second step of the present invention will be described.
In the second step, the mixture of the resin melt obtained in the first resin step and the high-temperature aqueous medium is mechanically converted into the aqueous medium while maintaining the temperature around the softening point of the synthetic resin. Emulsified and dispersed.
[0025]
An apparatus for mechanically emulsifying and dispersing the resin melt in an aqueous medium while maintaining the temperature around the softening point of the synthetic resin is not particularly limited, but a ring-shaped stator having a slit and a ring-shaped having a slit. It is preferable to use a high-speed rotation type continuous emulsification disperser having a structure in which a rotor is provided on the same axis so that the stator and the rotor are engaged with each other while maintaining a slight gap.
[0026]
The high-speed rotation type continuous emulsification disperser of the present invention continuously injects a resin melt and a high-temperature and high-pressure aqueous medium of 100 ° C. or higher, and decomposes the synthetic resin at a temperature around the softening point of the synthetic resin. It is a device with a structure that can be rapidly and uniformly mixed, emulsified and dispersed under a high temperature and high pressure below the temperature, and continuously discharged.
[0027]
The high-speed rotation type continuous emulsification disperser can emulsify and disperse the synthetic resin melt in the aqueous medium by rotating the rotor at a high speed. The temperature of this emulsifier is required to maintain the temperature of the mixture at a temperature around the softening point of the synthetic resin in order to keep the synthetic resin in a constant molten state. It is preferable to install. The optimum temperature of the synthetic resin varies depending on the particle diameter of the target particles, the molecular weight of the resin, etc., but is preferably set to 80 ° C. to 220 ° C.
[0028]
The temperature in the high-speed rotation type continuous emulsification disperser is controlled at a constant temperature by the balance of the temperature of the resin melt to be supplied, the temperature of the supplied aqueous medium, the heat retention effect of the jacket and the amount of heat generated by the shearing force in the machine. .
[0029]
The pressure in the high-speed rotation type continuous emulsification disperser is determined by the vapor pressure at the in-machine temperature of the aqueous medium and the discharge pressure by the pump function of the rotor. Usually, a method of providing an automatic pressure control valve after cooling the aqueous dispersion of resin fine particles, keeping the internal pressure constant, and continuously taking out the aqueous dispersion under atmospheric pressure is preferable.
[0030]
In the high-speed rotation type continuous emulsification disperser, a mixture of the resin melt and the high-temperature aqueous medium is supplied to a high-speed rotation type continuous emulsification disperser, and the mixture is fed into the slit and the above-mentioned by high-speed rotation of the rotor. Flowing through the gap from the inner center of the rotor in a centrifugal direction, applying shearing force while passing through the stator slit and the rotor slit, and the mixture is a gap between the stator and the rotor. Fine dispersion is achieved by applying shear stress while passing through. Since the stator and the slit of the rotor can achieve the same effect with a nozzle, both the stator and / or the rotor can be changed to a nozzle.
[0031]
The high-speed rotation type continuous emulsification disperser preferably used for mechanical fine dispersion of the present invention will be described below with reference to the drawings.
The stator 1 of the high-speed rotating type emulsifying disperser is fixed at the same center, and the center is opened as a liquid inlet 2 communicating with the raw material inlet. On the circular surface of the stator 1, ring-shaped projections 3 that are concentric with the stator and project in a multistage shape with one or more stages. A circumferential groove 4 is formed in the gap between the protrusions, and a plurality of slits 5 are formed in each protrusion. The widths of these slits are 0.6 mm to 3.0 mm, and 12 to 72 slits are attached to each ring-shaped protrusion to form a comb tooth shape. The width of the slit is preferably smaller as the protrusions on the outer periphery decrease the particle diameter of the supplied liquid.
[0032]
A drive shaft 6 is attached to the center of the other inner wall of the high-speed rotation type continuous emulsification disperser, and is connected to the drive unit to rotate at high speed.
The rotor 7 of the high-speed rotation type continuous emulsification disperser is fixed to the tip of the drive unit in parallel with the stator and on the same central axis. On the facing surface of the rotor that faces the stator, a multi-stage projection 8 having one or two or more annular steps that are concentric with the rotor is provided. Similar to the stator, each rotating protrusion has a circumferential groove 9 formed in the gap between the protrusions, and a plurality of slits 10 are formed in each protrusion.
[0033]
The stator 1 and the rotor 7 are used in a state in which the protrusion 3 and the circumferential groove 4 of the stator and the protrusion 8 and the circumferential groove 10 of the rotor are engaged with each other while maintaining a slight gap. Provided.
[0034]
In the high-speed rotation type continuous emulsification disperser used in the present invention, a mixture of the resin melt and the high-temperature high-pressure aqueous medium is supplied to the gap formed by the biting, and the mixture flows in the centrifugal direction from the inner core of the rotor. The resin melt is emulsified and dispersed in an aqueous medium by receiving shearing force due to high-speed rotation of the rotor and receiving shear stress while the mixture passes through the gap between the stator and the rotor. To do.
[0035]
When the rotor 7 rotates at a high speed, the resin melt and the high-temperature high-pressure aqueous medium supplied to the main liquid inlet 2 of the high-speed rotation type continuous emulsification disperser enter the slits of the protrusions of the innermost rotor, and the centrifugal force Is discharged from the outer periphery of the protrusion of the rotor, pressed against the protrusion of the innermost stator, and enters the slit of the protrusion of the stator. The mixed liquid that has entered the slit is pushed by the mixture that has entered the slit of the innermost rotor by centrifugal force and is pushed out into the circumferential groove of the second rotor. At this time, the mixture is subjected to shearing force by the innermost stator protrusion and the second rotor protrusion, and is also subjected to shear stress as it passes through the interval between the stator and rotor. When the mixed solution joins, further shearing force is applied, and it is pushed by the subsequent mixed solution and enters the slit of the protrusion of the second stator, and the mixture is sequentially moved in the centrifugal direction while receiving the same thing as above. , Fine dispersion is completed.
[0036]
The relationship between the flow of this mixture and the shearing force and shear stress is as shown in FIG.
The rotation speed of the rotor of the high-speed rotation type continuous emulsification disperser is controlled by a drive motor connected to the drive shaft. The larger the rotation speed and the higher the peripheral speed, the larger the shearing force, and the smaller the particle diameter of the synthetic resin. When a powder coating material having an average particle diameter of 10 microns or less is produced using a rotor having a diameter of 10 cm, the preferred number of rotations is 3,000 to 10,000 rpm.
[0037]
Cavitron (Eurotech Co., Ltd.) can be cited as an example of an apparatus commercially available as the high-speed rotation type continuous emulsification disperser of the present invention.
Next, the third step of the present invention will be described.
[0038]
The glass transition temperature of the synthetic resin as quickly as possible while the generated resin particles collide with each other in the aqueous dispersion of resin fine particles obtained from the outlet of the high-speed rotating continuous emulsion disperser. Cool rapidly to the following temperature.
[0039]
As a device for rapidly cooling, a commercially available heat exchanger can be used, and cooling is performed while exchanging heat with cooling water. The cooling rate is not particularly limited, but is preferably 10 ° C./second or more so as not to generate aggregates.
[0040]
After being rapidly cooled to near the glass transition temperature of the synthetic resin, the pressure is returned to atmospheric pressure by a pressure control valve to obtain a slurry of resin fine particles.
Although it is possible to directly use this slurry as a powder slurry paint, a viscosity modifier can be added as necessary. By adding a viscosity modifier, it is possible to obtain the effect of maintaining the suspended resin fine particles and giving a rheology suitable for spray coating. As a viscosity modifier, an acrylic resin etc. are mentioned, for example, Primal ASE-60 (made by Nippon Acrylic Chemical) is mentioned as a specific product.
[0041]
One example of the flow from the first step to the third step will be described with reference to FIG.
That is, the resin melt is supplied from the tank 12 containing the resin melt produced by the above method to the high-speed rotation type continuous emulsification disperser 11 through the resin pump 13 and at the same time, the aqueous medium tank 14 containing the aqueous medium. From this, a high-temperature aqueous medium is obtained through the heat exchanger 15 for heating, and this high-temperature aqueous medium is supplied to the high-speed rotation type continuous emulsification disperser 11 via the pump 16. The resin melt and the high-temperature aqueous medium are emulsified and dispersed in the emulsification disperser 11 to obtain a resin melt aqueous dispersion. The aqueous dispersion is immediately passed through the cooling heat exchanger 17 and cooled to obtain a resin aqueous dispersion. The pressure in the entire flow process is adjusted by the pressure adjusting valve 18.
[0042]
The method for producing a powder slurry paint of the present invention can continuously perform a series of steps from a resin melt and a high-temperature aqueous medium to cooling through a high-speed rotation type continuous emulsification disperser.
[0043]
In the present invention, as described above, a mixture of a resin melt and a high-temperature high-pressure aqueous medium is used to generate high shearing force, shear stress, and high-frequency pressure fluctuations with a high-speed rotary type emulsifying disperser, and use a powerful stirring and crushing action Thus, solventless emulsification dispersion is performed.
[0044]
Further, although elution of water-soluble components is not zero at all, washing of the synthetic resin particles is almost unnecessary, and it may be simply filtered off. Also in this respect, the present invention is advantageous in that the process is simple and the entire process is continuous.
[0045]
The governing factors of the average particle size of the resin fine particles to be produced are (1) the rotational speed of the rotor of the emulsifying disperser, and (2) the temperature of the synthetic resin and the aqueous medium. If these numerical values are all increased, the water dispersibility of the synthetic resin increases, and the particle diameter of the synthetic resin fine particles decreases.
[0046]
This slurry of resin fine particles can be dehydrated, dried, and then classified so as to have a desired particle size distribution in the same manner as in the dry method to obtain a powder coating material composed of resin fine particles having a specific particle size. . In this case, by connecting a washing device, a dehydrating device, a drying device, and a classification device to the cooling heat exchanger, from a resin melt and a high-temperature aqueous medium to drying and classification through a high-speed rotation type continuous emulsification disperser. The series of steps can be performed continuously. Of course, after the rapid cooling is made into a continuous process and the powder slurry is obtained, the resin may be washed in a tank and dehydrated and dried. In the classification step, wet classification using a wet cyclone may be used in combination.
[0047]
【Example】
Examples of the present invention are shown below, but the present invention is not limited by these Examples. All parts and% in the examples are based on weight.
[0048]
Example 1 <Production of UV-curable powder slurry coating>
(1) Manufacture of urethane acrylate used for UV curable powder slurry paint The following composition was used.
[0049]
Isophorone diisocyanate 58.2 parts Dibutyltin dilaurate 0.1 part 3,5-di-tert-butyl-4-hydroxytoluene 0.3 part These mixtures are heated to 65 ° C., whereupon 32.4 parts hydroxypropyl acrylate Was then added dropwise and the mixture was then stirred until the NCO content was 13% or less. Next, the number of stirring revolutions was increased and the temperature was slowly raised to 120 ° C. Meanwhile, 9 parts of glycerol are added dropwise over 1 hour. Next, the resin melt was taken out, cooled, and pulverized to obtain a white powder having a softening point (ring ball method) of 75 ° C. and a melt viscosity (ICI cone plate viscometer) of 76 dPas at 150 ° C.
[0050]
(2) Production of UV curable powder slurry paint 100 parts of this urethane acrylate, 233 parts of polylite PB958 (unsaturated polyester resin: manufactured by Dainippon Ink and Chemicals), 11 parts of diacetone acrylamide, Irgacure 651 (benzyldimethyl ketal Ciba Geigy) 15 parts and 11 parts of BYK361 (acrylic resin BYK Chemie) were charged in the kneaded material melt tank shown in FIG. 5, heated to 110 ° C., and fed into the Cavitron CD1010 at a rate of 100 g / min.
[0051]
Ion exchange water containing 0.1% of polyvinyl alcohol (hereinafter referred to as PVA) in the aqueous medium tank of FIG. The rotor was operated at a rotational speed of 8000 rpm and a pressure of 2 kg / cm 2 , and the produced slurry was cooled from 110 ° C. to 65 ° C. within 10 seconds and taken out.
[0052]
In order to facilitate spray coating on this slurry, 1% by weight of Primal ASE-60 (acid-containing crosslinked acrylic emulsion, viscosity modifier: manufactured by Nippon Acrylic Co., Ltd.) was added. The obtained slurry is homogenized by pulverizing the agglomerate and then filtered through a 400 mesh screen (37 microns), and is substantially spherical UV curable powder having an average particle size of 2 microns and a maximum particle size of 10 microns or less. A slurry paint was obtained.
[0053]
(3) UV-curable powder coating film This slurry coating was spray-coated on a cold-rolled steel panel to a thickness of about 1 mil. This coating was heated to 100 ° C. for 15 minutes to evaporate water, melt the resin, and then irradiated with an ultraviolet lamp (120 w / cm, 10 m / min, 7 Pass, 840 mj / cm 2 ). A scratch-resistant coating film was obtained.
[0054]
Example 2 <Production of powder slurry paint>
Fined A-207S (acrylic resin: manufactured by Dainippon Ink & Chemicals) 84%, dodecanedioic acid (curing agent) 16%, acronal 4F (flow control agent: manufactured by BASF) 0.5% premixed with a mixer Then, it is fed into the screw mixer 12 in FIG. The screw mixer was sent to the extruder 13 shown in FIG. 5. The extruder was heated to 100 ° C. and kneaded, and fed into the Cavitron CD1010 at a rate of 100 g / min. Ion exchange water containing 0.1% of PVA in the aqueous medium tank of FIG. 5 was fed into the Cavitron at a rate of 1 liter per minute while being heated to 100 ° C. with a heat exchanger. The rotor was operated at a rotational speed of 8000 rpm and a pressure of 2 kg / cm 2 , and the produced slurry was cooled from 100 ° C. to 65 ° C. within 10 seconds and taken out.
[0055]
In order to facilitate spray coating on this slurry, 1% by weight of Primal ASE-60 was added, and the agglomerates were pulverized and homogenized with a homogenizer and then filtered through a 400 mesh screen (37 microns). A nearly spherical powder slurry paint of 10 microns or less was obtained.
[0056]
The slurry paint was spray coated to a cold rolled steel panel with a thickness of about 1 mil. This panel was pre-baked at 100 ° C. for 15 minutes and then baked at 150 ° C. for 20 minutes to obtain a transparent, hard and smooth coating film.
[0057]
【The invention's effect】
According to the present invention, a powder slurry paint having a small particle diameter can be produced by a continuous production method that is extremely easy and highly productive without using an organic solvent.
[0058]
Further, according to the method for producing synthetic resin particles of the present invention, even a resin that could not be pulverized by conventional pulverization means can be pulverized economically.
[Brief description of the drawings]
FIG. 1 is a perspective view of a stator and a rotor of a rotary continuous emulsification disperser used in the present invention.
FIG. 2 is a view showing a cross section of a main part of a rotary continuous emulsification disperser used in the present invention.
FIG. 3 is a diagram illustrating a combination state of a stator protrusion and a rotor protrusion when the AA ′ portion of FIG. 2 is viewed from the side surface.
FIG. 4 is a diagram showing the force applied to the fluid flowing between the stator and the rotor due to the rotation of the rotor of the rotary continuous emulsification disperser used in the present invention.
FIG. 5 is an explanatory diagram of a method for producing a powder slurry paint according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Stator 2 Liquid inlet 3 Stator protrusion 4 Stator circumferential groove 5 Protrusion slit 6 Drive shaft 7 Rotor 8 Rotor protrusion 9 Rotor circumferential groove 10 Protrusion slit 11 Rotary continuous emulsification Disperser 12 Resin melt tank or screw mixer 13 Resin pump or extruder 14 Aqueous medium tank 15 Heating heat exchanger 16 Aqueous medium pump 17 Cooling heat exchanger 18 Pressure control valve

Claims (8)

(1)粉体塗料用合成樹脂と、硬化剤及び/又は光開始剤との混練物を加熱熔融して成る樹脂熔融体(a)と、該合成樹脂の軟化点±30℃に加熱した水性媒体(b)とを混合し、(2)該混合物の温度を該合成樹脂の軟化点±30℃に維持しながら、前記樹脂熔融体(a)を水性媒体(b)中に機械的手段により乳化分散させ、(3)その後直ちに急速冷却することを特徴とする粉体スラリー塗料の製造方法。(1) Resin melt (a) obtained by heating and melting a kneaded product of a synthetic resin for powder coating, a curing agent and / or a photoinitiator, and an aqueous solution heated to a softening point of the synthetic resin ± 30 ° C. (2) Mixing the resin melt (a) in the aqueous medium (b) by mechanical means while maintaining the temperature of the mixture at the softening point of the synthetic resin ± 30 ° C. (3) A method for producing a powder slurry paint, characterized in that it is rapidly cooled immediately after being emulsified and dispersed. 急速冷却後、得られた粉体スラリー塗料に粘度調整剤を添加する請求項1記載の製造方法。  The manufacturing method of Claim 1 which adds a viscosity modifier to the obtained powder slurry coating material after rapid cooling. 前記粉体塗料用合成樹脂が、アクリル樹脂、エポキシ樹脂、ポリエステル樹脂からなる群から選択される1種以上の樹脂を含む請求項1又は2記載の製造方法。  The manufacturing method of Claim 1 or 2 with which the said synthetic resin for powder coatings contains 1 or more types of resin selected from the group which consists of an acrylic resin, an epoxy resin, and a polyester resin. 前記粉体塗料用合成樹脂が、不飽和ポリエステル樹脂とウレタンアクリレート及び/又はウレタン化ビニルエーテルからなる請求項1又は2記載の製造方法。  The method according to claim 1 or 2, wherein the synthetic resin for powder coating comprises an unsaturated polyester resin and urethane acrylate and / or urethanized vinyl ether. 乳化分散の機械的手段として、スリットを有するリング状固定子とスリットを有するリング状回転子とを、僅かな間隙を保って、該固定子と該回転子が相互に咬み合うように同軸上に設けた高速回転型連続式乳化分散機を使用する請求項1〜4のいずれか1項記載の製造方法。  As a mechanical means for emulsification and dispersion, a ring-shaped stator having slits and a ring-shaped rotor having slits are coaxially arranged so that the stator and the rotor are engaged with each other while maintaining a slight gap. The manufacturing method of any one of Claims 1-4 which uses the provided high-speed rotation type continuous emulsion disperser. 粉体塗料用合成樹脂と、硬化剤及び/又は光開始剤と、必要に応じて着色顔料との混練物を加熱熔融して成る樹脂熔融体と、水性媒体との混合物を、前記高速回転型連続式乳化分散機に供給し、該混合物を、前記回転子の高速回転により前記スリットと前記間隙とを通して回転子の内心から遠心の方向に流し、前記固定子のスリットと回転子のスリットを通過する間にせん断力を与えるとともに、該混合物が該固定子と該回転子との間の隙間を通過する間にズリ応力を与えることによって、該樹脂熔融体を水性媒体中に乳化分散する請求項5記載の製造方法。  A mixture of a resin melt obtained by heating and melting a kneaded product of a synthetic resin for powder coating, a curing agent and / or a photoinitiator, and, if necessary, a color pigment, and an aqueous medium, the high-speed rotation type The mixture is supplied to a continuous emulsifying disperser, and the mixture is caused to flow from the inner center of the rotor to the centrifugal direction through the slit and the gap by high-speed rotation of the rotor, and passes through the stator slit and the rotor slit. The resin melt is emulsified and dispersed in an aqueous medium by applying a shearing force while applying a shear stress while the mixture passes through a gap between the stator and the rotor. 5. The production method according to 5. 前記樹脂熔融体(a)が着色顔料を含有する樹脂熔融体である請求項1〜6のいずれか1項記載の製造方法。  The manufacturing method according to claim 1, wherein the resin melt (a) is a resin melt containing a color pigment. 前記水性媒体(b)が加熱と、更に加圧することにより該合成樹脂の軟化点±30℃に加熱した水性媒体である請求項1〜6のいずれか1項記載の製造方法。  The production method according to claim 1, wherein the aqueous medium (b) is an aqueous medium heated to a softening point of ± 30 ° C. of the synthetic resin by heating and further pressurization.
JP24857197A 1997-09-12 1997-09-12 Method for producing powder slurry paint Expired - Fee Related JP3781151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24857197A JP3781151B2 (en) 1997-09-12 1997-09-12 Method for producing powder slurry paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24857197A JP3781151B2 (en) 1997-09-12 1997-09-12 Method for producing powder slurry paint

Publications (2)

Publication Number Publication Date
JPH1180371A JPH1180371A (en) 1999-03-26
JP3781151B2 true JP3781151B2 (en) 2006-05-31

Family

ID=17180128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24857197A Expired - Fee Related JP3781151B2 (en) 1997-09-12 1997-09-12 Method for producing powder slurry paint

Country Status (1)

Country Link
JP (1) JP3781151B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4793609B2 (en) * 2001-02-28 2011-10-12 Dic株式会社 Method for producing thermoplastic resin particle dispersion
JP4713821B2 (en) * 2002-07-10 2011-06-29 大日精化工業株式会社 Method for producing particulate photocurable resin, particulate photocurable resin and surface treatment method for article
US7910634B2 (en) * 2004-03-25 2011-03-22 Ppg Industries Ohio, Inc. Aqueous dispersions of polymer-enclosed particles, related coating compositions and coated substrates
US7790011B2 (en) * 2006-05-03 2010-09-07 Basf Coatings Gmbh Solid resin-crosslinker mixture for use in aqueous coatings
EP2078052B1 (en) 2006-10-31 2010-07-28 Surmodics Pharmaceuticals, Inc. Spheronized polymer particles

Also Published As

Publication number Publication date
JPH1180371A (en) 1999-03-26

Similar Documents

Publication Publication Date Title
JP4405938B2 (en) Raw material mixed powder composition and manufacturing method thereof
CA2004213C (en) Coating compositions
EP2406056B1 (en) Powder coating extrusion process
JPH07196953A (en) Production of powder coating composition
JPH08503721A (en) Manufacturing method of coating material
EP0372860A1 (en) Coloured powder coating compositions
JPH0931360A (en) Production of water-base pigment dispersion, and water-base colorant composition containing the same
JPH11166145A (en) Production of water-base recording fluid for ink jet printer
JP3781151B2 (en) Method for producing powder slurry paint
JP4214318B2 (en) Granulated powder paint and method for producing the same
EP0459048A1 (en) Coloured powder coating compositions
US6228981B1 (en) Process for preparing an aqueous dispersion coating material and process for preparing a powder coating material
JPH1180602A (en) Preparation of powder slurry coating
JP5300044B2 (en) Coating film forming composition and coating film forming method
JP4939022B2 (en) Method for producing powder coating
JP2000176373A (en) Tap water pipe with inner surface coated and method
JP4713821B2 (en) Method for producing particulate photocurable resin, particulate photocurable resin and surface treatment method for article
JP2012111833A (en) Method for producing regenerated powder coating
KR100310906B1 (en) Process for preparing thermosetting powder paint binder composition
JP4088065B2 (en) Method for producing glitter powder coating
JP2004018827A (en) Method for producing powder coating
JPS63159480A (en) Powder coating
JP4111287B2 (en) Painting method
JP4111295B2 (en) How to apply powder paint
JP2012111834A (en) Method for producing regenerated powder coating

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040413

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040413

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060301

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees