JP3780493B2 - Transitional floor to seismic isolation floor - Google Patents

Transitional floor to seismic isolation floor Download PDF

Info

Publication number
JP3780493B2
JP3780493B2 JP29151798A JP29151798A JP3780493B2 JP 3780493 B2 JP3780493 B2 JP 3780493B2 JP 29151798 A JP29151798 A JP 29151798A JP 29151798 A JP29151798 A JP 29151798A JP 3780493 B2 JP3780493 B2 JP 3780493B2
Authority
JP
Japan
Prior art keywords
floor
seismic isolation
transition
fixed
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29151798A
Other languages
Japanese (ja)
Other versions
JP2000104395A (en
Inventor
久吉 杉山
克弘 後藤
滋 藤本
健一 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Corp
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Plant Systems and Services Corp filed Critical Toshiba Corp
Priority to JP29151798A priority Critical patent/JP3780493B2/en
Publication of JP2000104395A publication Critical patent/JP2000104395A/en
Application granted granted Critical
Publication of JP3780493B2 publication Critical patent/JP3780493B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)
  • Floor Finish (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、免震装置31によって支持された免震床30と、免震床30を囲む固定の支持フレーム15または固定床20と、を渡るための渡り板10と、その支持構造とで構成された渡り床1の改良に関する。
【0002】
【従来の技術】
従来型の渡り床1は、図8,図9の如く、免震床30と固定の支持フレーム15または固定床とを渡るための日常の足場であり、地震に際しては、これらの相対運動の隙間を確実に塞ぐための可動の蓋としての機能を使命とする。免震装置には、水平動のみに対応する2次元(X、Y方向)免震装置と、上下動(Z方向)にも対応する3次元免震装置とがあった。何れの場合も、渡り床1の上面は水平で、その高さが免震床30の平常時の床面高さに一致していた。そして、その免震床30の平常時の床面高さが、図8の実線の如く、周囲の支持フレーム15に隣接した図示しない固定床とほぼ同等であることが、連続する室内の美観を損なわない、との認識のもとに設計・施工される傾向があった。しかし、室内装置として、安全性がより高く、より経済的で合理的な免震床を追求する必要があった。
【0003】
何故ならば、図8,図9に示すように、地震の際、免震床30が鎖線Aの如く水平方向に渡り床1に近づけば、その速度が一定、或いは小さくても、渡り板10の上り勾配は加速度的に増し、渡り板10は固定床側に容易に反転させられる。或いは反転させられなくても、その渡り板が元に戻るときには免震床に衝突し、衝撃を与える。
【0004】
そして、渡り板10が上り勾配を呈すれば、免震床30の床面からの立ち上がりを生じ、急遽、避難する者にとって極めて危険である。また、渡り板10が反転し、固定床と免震床30との間に開口を生ずれば、揺れ動く免震床30上に取り残された者にとっての危険性は説明するまでもない。
通常、この渡り床1は、免震床の周囲に数十枚程度取付けられており、免震床に与える影響が懸念されている。
また、従来の渡り床を支持フレームに取り付けるには、地震時の移動を考慮して、ヒンジや差し込みピンが使用されていた。しかしなから、ヒンジによる場合には渡り床が免震床によって前記の如く跳ね上げられ、免震床に衝撃を与えることになる。そして過度に跳ね上げられた場合にはそれが復帰できなくなる。また差し込みピンによるものは、図9の如き構造がとられ、免震床が鎖線Aの如く斜め上方に急激に移動した場合に、その差し込みピン13aが支持フレーム15の穴に咬み込む現象が生じる。この現象の対処法として支持フレーム15の穴を大きくしたり、穴をテーパ状に加工する方法がとられているが、咬み込み現象を完全になくすことができなかった。
【0005】
【発明が解決しようとする課題】
本発明は上記の事情に鑑みてなされたもので、より安全で、経済的かつ合理的な免震床への渡り床を提供しようとするものである。
【0006】
【課題を解決するための手段】
前記の課題を解決するための請求項1に記載の発明は、建屋のコンクリート床等の基部に免震装置により支持された免震床と、
同一の基部に敷設されて免震床30の外側を囲む固定の支持フレーム15または固定床20と、
その免震床30と支持フレーム15または固定床20との間を相対移動自在に架橋する渡り床1とを具備するものにおいて、
その渡り床1の免震床側が先下がりに傾斜され、その渡り床1の上端部高さが、免震床30の上下動の設計値の上限以上に位置し、
その渡り床1が、その上端部側で支持フレーム15または固定床20に上下方向へ回動自在の係止手段13によって係止され且つ、その下端部側で免震床30に摺動自在に載置されたことを特徴とする免震床への渡り床である。
上記の発明によれば、固定の支持フレーム15または固定床20の床面が、免震床30の上下動の設計値の上限以上に位置し、かつ、渡り板10の一端が支持フレーム15または固定床20で係止され、他端が免震床30に載置されて摺動するので、渡り板10が反転するおそれがなく、より安全で経済的な、日常の保守管理も容易な、免震床30への渡り床1を提供できる。
【0007】
請求項2に記載の発明は、建屋のコンクリート床40等の基部に免震装置31により支持された免震床30と、
同一の基部に敷設されて免震床30の外側を囲む固定の支持フレーム15または固定床20と、
その免震床30と固定の支持フレーム15または固定床20との間を相対移動自在に架橋する渡り床1とを具備するものにおいて、
その渡り床1が支持フレーム15側または固定床20側に先下がりに傾斜され、その渡り床1の下端部高さが、免震床30の上下動の設計値の下限以下に位置し、
その渡り床1が、その上端部側で免震床30に上下方向へ回動自在の係止手段13によって係止され且つ、その下端部側で固定の支持フレーム15または固定床20に摺動自在に載置されたことを特徴とする免震床への渡り床である。
上記の発明によれば、固定の支持フレーム15または固定床20の床面が、免震床30の上下動の設計値の下限以下に位置し、かつ、渡り板10の一端が免震床30側で係止され、他端が支持フレーム15または固定床20に載置されて摺動するので、渡り板10が反転するおそれがなく、より安全で経済的な、日常の保守管理も容易な、免震床30への渡り床1を提供できる。
【0008】
請求項3に記載の発明は、請求項1または請求項2において、
渡り床1の回動自在の係止手段13が、渡り床1の裏面の端部に突設された係止ピン13Aと、
支持フレーム15または固定床20、または免震床30側の係止箇所で前記係止ピン13Aが遊挿されるピン穴13Bと、によって構成され、
前記係止ピン13Aは、下向きに小径の円錐台部13yが上端部に位置し、その円錐台部13yの下端に前記小径の円柱部13xが延在され、
前記ピン穴13Bは、円錐台部13yの最大外径と嵌合する鉛直方向の丸穴、で形成されたことを特徴とする免震床への渡り床である。
上記の発明によれば、渡り板10の回動自在の係止手段13が、単純な構造の係止ピン13Aとピン穴13Bと、によって構成されたので、安全かつ経済的で日常の保守管理も容易な、免震床30への渡り床1を提供できる。
即ち、免震床30の上下動時に係止ピン13Aがピン穴13B内を円滑に回動し、信頼性の高い渡り床を提供できる。
【0009】
請求項4に記載の発明は、請求項3において、
前記係止ピン13Aは、その円錐台部13yと同一軸心で、その台形側に取付ネジ13zが設けられた免震床への渡り床である。
この発明によれば、係止ピン13Aの取付が容易である。
【0010】
請求項5に記載の発明は、請求項1〜請求項4のいずれかにおいて、
渡り床1の裏面側摺動部位に、緩衝・滑り材12を備えたことを特徴とする免震床への渡り床である。
この発明によれば、渡り床10が裏面に緩衝・滑り材12を備え、平常時は歩行による衝撃音を吸収して静粛で、地震時には床面を滑らかに摺動するので、安全で経済的な免震床30への渡り床1を提供できる。
請求項6に記載の発明は、請求項3又は請求項4において、
その渡り床1の上端部が金属板を断面コ字状に曲折したものからなり、そのコ字状の下面側に前記係止ピン13Aが突設され、コ字状の上端面が断面への字状に曲折されかつ、そのへの字の先端縁が僅かに逆向きのへの字状に曲折されたものからなる免震床への渡り床である
この発明によれば、渡り床1を軽量に構成できる。
【0011】
請求項7に記載の発明は、請求項6において、
渡り床1は免震床30の辺に沿った複数の適宜位置で分断され、その継目に大きな隙間が生じないように各分割体が隣接して配置されてなり、夫々の分割体の幅方向の両側に、裏面を内にして90°折り曲げられた補強用のリブ11を備えたことを特徴とする免震床への渡り床である。
上記の発明によれば、請求項6において、渡り板10は免震床30の辺に沿って分断された各分割体が、幅方向の両側に、裏面を内にして90゜折り曲げられたリブ11を備えたので、軽量・安価に製造可能で、経済的な、日常の保守管理も容易な免震床30への渡り床1を提供できる。
請求項8に記載の発明は、請求項1または請求項2において、
免震床30を囲む固定床が、その他の固定床20より、段差22をもって高められた段付床21を備えたことを特徴とする免震床への渡り床。
上記の発明によれば、免震床30を囲む固定床が、その他の固定床20より、段差22をもって高められた段付床21を備え、安全で合理的な免震床30への渡り床1を提供できる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
図1は本発明の免震床30への渡り床1(以下、本渡り床1と呼ぶ)の一実施例を示すもので、その要部を示すための説明図である。図2はその係止ピン13Aの斜視図、図3は本渡り床1の動作説明図、図4は免震床および本渡り床の全体的斜視図である。
また本発明の図5は、本発明の免震床30への本渡り床1の他の一実施例を示すもので、全体構成を示すための全体断面図である。図6は図5に示す本渡り床1について、固定床20が免震床30の上下動の上限以上の高さにある場合を示す模式説明図である。図7は本渡り床1とは別の一実施例を示すもので、固定床20が免震床30の上下動の下限以下に位置する場合を示す模式説明図である。
【0013】
次に、図面を参照して本渡り床1の構成を説明する。
免震装置31には、水平方向の免震作用をなす2次元のものと、水平および上下方向の免震作用をなす3次元のものとがある。以下、特に区別を要するときは、3次元免震装置32と呼ぶことがある。
図1〜図5において、本渡り床1の主要部の1つは、渡り板10である。渡り板10は、免震床30の水平方向の振幅をaとすれば、渡りの向きに少なくとも2a(図5)の長さを有し、通常数十枚の渡り板10が免震床30の辺に沿って図4の如く間断なく並列敷設される。
図1の例ではその渡り板10は薄い金属板等で構成され、その上端部に断面コ字状部2が形成されている。その渡り板の上面の上部には断面への字状部3が形成され、下端部には断面逆への字状部4が形成されている。そして、その渡り板10の幅方向の両わきにはリブ11を有し、免震床30との摺動部にテフロン板等の緩衝・滑り材12が付設されている。その渡り板10のコ字状部2の裏面に係止ピン13Aが突設され、固定床20側に設置された支持フレーム15上のピン穴13Bとともに、回動自在の係止手段13を構成する。
【0014】
すなわち、渡り板10は、その係止手段13に係止され、免震床30の床面に支持されて摺動しつつ、その揺動に追随する。係止ピン13Aは、図2の如く円柱部13x、円錐台部13y、取付ネジ13z、を有する。
そして、多数のその渡り板10の集合体で渡り床が構成され、その渡り床1の免震床側が先下がりに傾斜され、その渡り床1の上端部高さが、免震床30の上下動の設計値の上限以上に位置する。そして、渡り床1が、その上端部側で支持フレーム15または固定床20に上下方向へ回動自在の係止手段13によって係止され且つ、その下端部側で免震床30に摺動自在に載置されている。
その結果、免震床が支持フレーム15側に移動しかつ最上位置に移動しても、渡り床1は図3の鎖線Aに位置し、それが跳ね上げられることがない。また、その際に、係止ピン13Aは円滑に回動し、ピン穴13Bと咬みあうことがない。
【0015】
次に、図5の例の渡り板10は二箇所が曲折された平板状のものであり、その一端を係止手段13で係止する支持フレーム15の上端が、固定床20より段差22分、高められている。
次に、図6の例は固定床20の上面と支持フレーム15の上面の高さが同一のものである。
さらに、図7に示す実施例では、渡り板10が免震床30側に設けられた係止手段13に係止され、段付床21の床面で支持されている。即ち、渡り板10の集合体で渡り床1が構成され、その渡り床1が固定の支持フレーム15側または固定床20側に先下がりに傾斜され、その渡り床1の下端部高さが、免震床30の上下動の設計値の下限以下に位置する。そして、その渡り床1が、その上端部側で免震床30に上下方向へ回動自在の係止手段13によって係止され且つ、その下端部側で前記支持フレーム15または固定床20に摺動自在に載置されたものである。これら図1〜図6の例と図7の例とは、渡り床の転倒防止の原理が同一である。
【0016】
以下、図面を参照して本渡り床1の作用を説明する。
図1,図5において、渡り板10が、回動自在の係止手段13によって支持フレーム15に係止されたとき、免震床30を取り囲む渡り板10の上端面の高さが、免震床30の上下動の上限以上にあることの作用を説明する。
渡り板10には、本来、固定床20と免震床30とを橋渡しする役割がある。地震発生時には、3次元的な動きにより免震効果を発揮する免震床30に追随して、固定床20と免震床30との間隙を確実に塞ぎ、人や、物の転落、などの事故を、未然に防ぐ使命が課せられている。
従って、渡り板10は、少なくとも固定床20と免震床30との何れかに、回動自在に係止される必要がある。然るに、固定床20側に係止されたとき、固定床20の高さが、免震床30の上下方向の可動範囲の上限より高ければ、渡り板10は、固定床20から免震床30に向けて、常に下り勾配に保たれる。そして渡り板10は、下り勾配の下端で、常に免震床30の床面によって支持される。すなわち、免震床30が大きな速度で上昇しても、渡り板10が免震床30に跳ね上げられて固定床20側に反転する可能性が強く排除されている。
【0017】
次に、図7の如く、渡り板10が回動自在の係止手段13によって免震床30側に係止されたとき、免震床30を囲む固定床20の高さが、免震床30の上下動の下限以下にあることの作用を説明する。
この場合には、渡り板10は、免震床30から固定床20に向けて、常に下り勾配に保たれ、下り勾配の下端で固定床20の床面によって摺動・支持される。仮に、免震床30が大きな速度で下降し、下限位置に来ても、渡り板10の立ち上がりは無く、免震床30側に反転する可能性は完全に排除されてる。
【0018】
次に、渡り板10のリブ11構造と、緩衝・滑り材12について説明する。
免震床30は、免震装置31を含めて自身の質量を減らせば、その分だけ搭載機器の質量を増して同一機能を発揮できる。この場合、渡り板10は回動運動をするから搭載機器の質量と全く同等ではない。しかし、渡り板10の質量や床面との摩擦抵抗が低減されれば、ほぼ同様の効果を得ることができる。
然るに、渡り板10は、渡り方向に少なくとも揺れ中心から揺れ幅aの2倍の長さ、たとえば600mmを要して両端支持梁を形成し、床として、歩行者の動的な体重、即ち集中荷重を違和感なく支える必要がある。両端支持梁の幅方向長さは、免震床30の4辺の周長に相当する。従って、渡り板10は、免震床30に搭載される電子機器などの重量に比べれば、概して相当の比率を占め、一般に、その軽量化は必要な要件である。
【0019】
渡り板10は、機能上、歩行者による集中荷重への耐力を備える必要がある。また製造面では、造りやすさも重要であり、保守面では取扱い性を考慮する必要もある。この意味では、免震床30の1辺ごとに一体構成とするより、渡り方向の長さは、渡り床が載置される免震床1および20の載置代を夫々αとすれば、2(a+α)で基本的に一定であり、免震床30の辺方向の長さだけが対象ごとに変わるから、分断された同一小片を間断なく並列敷設する方式は、製作上も保守上も都合が良い。薄板構造で曲げ加工によるリブ11を備えた構成は、軽量化のみならず、これらの諸条件を満たす優れた選択である。
また、テフロン等による緩衝・滑り材12は、日常的には歩行者の足元の衝撃音を吸収し、大地震の発生時には、渡り板10と床面との摺動を円滑に保つ作用がある。
【0020】
次に、係止ピン13Aとピン穴13Bと、による渡り板10の係止手段13について説明する。
係止ピン13Aは、渡り板10の裏面に垂直に取り付けられ、組立時の軸心は鉛直面内にある。その回動角は、免震床30の上下の可動範囲に対応する渡り板10の回動角θに等しい。従って、係止ピン13Aは、係止箇所のピン穴13Bに挿通され、鉛直の円筒穴に水平位置を拘束されて、円錐台部13yとの干渉を生ずることなく回動することができる。
また、渡り板10は、常に渡り方向の両端で支持され、重心がじかに押し上げられることはない。従って、係止ピン13A側が脱落する可能性は極めて低い。それでもなお、ピンの先端に円柱部13xが設けられ、脱落する可能性を排除する一方で、平常の保守のために、渡り板10の分解組立性を容易にしている。かくして回動自在の係止手段13が、簡便な構造で実現されている。
【0021】
次に、図5,図7の如く、免震床30を囲む固定床20が、その他の固定床20より、段差22を以って高められた段付床21であることの作用を説明する。地震はしばしば発生するものではなく、発生しても小規模なら免震装置31は作動しない。また、室内の美観を保つ意味から、免震床30に、目立たない同一床レベルが期待されることもある。地震時にはこの免震エリアは他の場所に比較してより安全な場所となる。そこで、段差22により免震エリア内を明確に他と区別することができる。
【0022】
段付床21は、無意識に他と区別させる手段であるのみならず、物理的な意味もある。一般に、免震床30は床下に免震装置31の設置空間を必要とする。更に、上下動にも対処する3次元免震装置32を備えた免震床30では、通常の床面レベルから上下方向に、それぞれ許容最大振幅hだけは可動できなくてはならない。
このため、天井までの床上高さが詰まらぬように、免震装置31の背丈が低く納まるよう努められることは勿論である。しかし、床下に格別の装置を要しない通常の固定床20に比べれば、免震床30の床面が高くなる傾向、があることは避けられない。
然るに、免震床30を囲む固定床20が、免震床30の上限位置より高いときは、室内の天井高さが相対的に低くなる可能性が高い。必要に応じて段差22を設け、段付床21とすることにより、免震床30の周辺以外の室内の天井高さを高くできて合理的である。
【0023】
免震床30を囲む固定床20が、免震床30の下限位置より低いときも同様の問題が有る。必要があれば、同様にして室内空間を広げる効果があるが、むしろこの場合には、別の独特の作用がある。
【0024】
免震床30を囲む固定床20が、免震床30の下限位置より低く、渡り板10が免震床30側に係止されたときは、前述のように、段付床21を付設することが安全上、望まれる。この場合、上限位置より高く、かつ、固定床20側に係止されたときに比べて、免震床30の有効面積を変えることなく、その質量を大幅に低減することができる。
免震装置31の水平振幅をaとすれば、渡り床1の渡り方向の実効長さは3a+2α(渡り床の幅方向両端における載置代を夫々αとする)である。細部を省いて云えば、渡り板10の係止位置の内側を免震床30の有効範囲、とするとき、その境界から距離aの空間を隔てて固定床20が端にある。固定床20の端から距離aの位置に、渡り板10の正規位置の端があり、さらに距離aの振幅範囲の先で固定床20の有効範囲が始まる。すなわち、固定床20が幅2aの摺動支持範囲を備えている。もし渡り板10の係止位置を固定床20側にすれば、免震床30が、1辺ごとに、2aの幅の摺動支持範囲を備える必要がある。
すなわち、もし渡り板10の係止位置を免震床30側にすれば、免震床30の梁の長さは、X,Y両方向にそれぞれ4aだけ短縮できる。免震装置31を含む免震床30の総質量を、大幅に低減することができる。
【0025】
【発明の効果】
以上のように請求項1及び請求項2に記載の免震床への渡り床によれば、大地震に際しても、渡り板10の立ち上がりや、固定床20側への反転による固定床20と免震床30との間の開口を生ずることがなく、安全な免震床30への渡り床1を実施できる。
請求項3に記載の発明によれば、渡り板10の回動自在の係止手段13が、単純な構造の係止ピン13Aとピン穴13Bと、によって構成されたので、安全且つ経済的で日常の保守管理も容易な、免震床30への渡り床1を提供できる。
即ち、免震床30の上下動時に係止ピン13Aがピン穴13B内を円滑に回動し、信頼性の高い渡り床1を提供できる。
請求項4に記載の発明によれば、係止ピン13Aの取付が容易である。
請求項5に記載の発明によれば、渡り板10が裏面に緩衝・滑り材12を備え、平常時は歩行による衝撃音を吸収して静粛で、地震時には床面を滑らかに摺動するので、安全で経済的な免震床30への渡り床1を提供できる。
【0026】
請求項6に記載の発明によれば、渡り床1を軽量に構成できる。
請求項7に記載の発明によれば、請求項6において、渡り板10は、免震床30の辺に沿って分断された各分割体が、幅方向の両側に、裏面を内にして90°折り曲げられたリブ11を備えたので、軽量・安価に製造可能で、経済的な、日常の保守管理も容易な免震床30への渡り床1を提供できる。
請求項8に記載の発明によれば、免震床30を囲む固定床が、その他の固定床20より、段差22を以って高められた段付床21を備えても、安全で合理的な免震床30への渡り床1を提供できる。そして、その段差22により固定床と免震床とを区別させ、地震時に安全な免震床を常に意識させることができる。
【図面の簡単な説明】
【図1】本発明の免震床への渡り床の一実施例の要部を示す説明図。
【図2】同実施例に用いられる係止ピン13Aの斜視図。
【図3】同実施例の動作説明図。
【図4】同実施例の渡り床を有する免震床の全体的斜視図。
【図5】本発明の免震床への渡り床の他の一実施例の要部を示す全体断面図。
【図6】図5に示す渡り床1について、固定床20が免震床30の上下動の上限以上の高さに設定されたときの模式説明図。
【図7】本発明の免震床への渡り床のさらに別の実施例を示すもので、固定床20が免震床30の上下動の下限以下の高さに設定されたときの模式説明図。
【図8】従来型渡り床の説明図。
【図9】同渡り床の拡大動作説明図。
【符号の説明】
1 渡り床(本渡り床)
2 コ字状部
3 への字状部
4 逆への字状部
10 渡り板
11 リブ
12 緩衝・滑り材
13 係止手段
13A 係止ピン
13a 差し込みピン
13B ピン穴
13x 円柱部
13y 円錐台部
13z 取付ネジ
15 支持フレーム
20 固定床
21 段付床
22 段差
30 免震床
31 免震装置
32 3次元免震装置
40 コンクリート床
[0001]
BACKGROUND OF THE INVENTION
The present invention includes a base isolation floor 30 supported by a base isolation device 31, a fixed support frame 15 or a fixed floor 20 that surrounds the base isolation floor 30, and a crossover plate 10 and a support structure thereof. It relates to the improvement of the traveling floor 1
[0002]
[Prior art]
As shown in FIGS. 8 and 9, the conventional transition floor 1 is a daily scaffold for crossing the base isolation floor 30 and the fixed support frame 15 or the fixed floor. The mission is to function as a movable lid to securely close the door. The seismic isolation devices include a two-dimensional (X, Y direction) seismic isolation device that supports only horizontal motion and a three-dimensional seismic isolation device that also supports vertical motion (Z direction). In any case, the upper surface of the transition floor 1 was horizontal, and its height coincided with the normal floor surface height of the seismic isolation floor 30. Further, the normal floor surface height of the seismic isolation floor 30 is substantially equal to a fixed floor (not shown) adjacent to the surrounding support frame 15 as shown by a solid line in FIG. There was a tendency to design and construct with the recognition that it would not be damaged. However, it was necessary to pursue a more safe, more economical and rational seismic isolation floor as an indoor device.
[0003]
This is because, as shown in FIGS. 8 and 9, when the seismic isolation floor 30 approaches the floor 1 in the horizontal direction as shown by the chain line A, even if the speed is constant or small, the transition board 10 The ascending slope increases at an accelerated rate, and the transition board 10 is easily reversed to the fixed floor side. Or even if it is not reversed, when the bridge plate returns, it collides with the seismic isolation floor and gives an impact.
[0004]
And if the transition board 10 exhibits an ascending slope, the seismic isolation floor 30 rises from the floor surface, which is extremely dangerous for those who hurry and evacuate. Further, if the crossover plate 10 is inverted and an opening is formed between the fixed floor and the base isolation floor 30, the danger to the person left behind on the swinging base isolation floor 30 need not be described.
Usually, about several tens of the transition floors 1 are attached around the base isolation floor, and there is concern about the influence on the base isolation floor.
In addition, hinges and insertion pins have been used to attach a conventional transit floor to a support frame in consideration of movement during an earthquake. However, in the case of using a hinge, the transition floor is spun up as described above by the base isolation floor, and the base isolation floor is impacted. And if it is flipped up excessively, it cannot be restored. Further, the structure using the insertion pin has the structure as shown in FIG. 9, and the phenomenon that the insertion pin 13 a bites into the hole of the support frame 15 occurs when the base isolation floor suddenly moves obliquely upward as indicated by the chain line A. . As a countermeasure for this phenomenon, a method of enlarging the hole of the support frame 15 or processing the hole into a tapered shape has been adopted, but the biting phenomenon could not be completely eliminated.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and intends to provide a safer, economical and rational transitional floor to a base-isolated floor.
[0006]
[Means for Solving the Problems]
The invention according to claim 1 for solving the above-mentioned problem is a seismic isolation floor supported by a base isolation device such as a concrete floor of a building,
A fixed support frame 15 or a fixed floor 20 laid on the same base and surrounding the outside of the base isolation floor 30;
In what comprises the transition floor 1 that bridges the seismic isolation floor 30 and the support frame 15 or the fixed floor 20 so as to be relatively movable,
The seismic isolation floor side of the transition floor 1 is inclined downward, and the upper end height of the transition floor 1 is located above the upper limit of the vertical movement design value of the seismic isolation floor 30,
The transition floor 1 is locked to the support frame 15 or the fixed floor 20 on the upper end side thereof by the locking means 13 that is rotatable in the vertical direction, and is slidable on the seismic isolation floor 30 on the lower end side. It is a transitional floor to a base-isolated floor characterized by being placed.
According to the above invention, the floor surface of the fixed support frame 15 or the fixed floor 20 is positioned above the upper limit of the design value of the vertical motion of the seismic isolation floor 30, and one end of the bridge plate 10 is the support frame 15 or the fixed floor. Since it is locked by the floor 20 and the other end is placed on the seismic isolation floor 30 and slides, there is no risk of the crossover plate 10 being inverted, and it is safer and more economical and easy for daily maintenance management. A transition floor 1 to the floor 30 can be provided.
[0007]
The invention according to claim 2 is the seismic isolation floor 30 supported by the base isolation device 31 at the base of the concrete floor 40 of the building,
A fixed support frame 15 or a fixed floor 20 laid on the same base and surrounding the outside of the base isolation floor 30;
In what comprises the transition floor 1 that bridges the seismic isolation floor 30 and the fixed support frame 15 or the fixed floor 20 so as to be relatively movable,
The transition floor 1 is inclined downward toward the support frame 15 side or the fixed floor 20 side, and the lower end height of the transition floor 1 is located below the lower limit of the vertical movement design value of the seismic isolation floor 30,
The transit floor 1 is locked to the seismic isolation floor 30 on the upper end side thereof by a locking means 13 that is rotatable in the vertical direction, and slides on the fixed support frame 15 or the fixed floor 20 on the lower end side. It is a transitional floor to a seismic isolation floor characterized by being placed freely.
According to the above invention, the floor surface of the fixed support frame 15 or the fixed floor 20 is positioned below the lower limit of the design value of the vertical motion of the seismic isolation floor 30, and one end of the transition board 10 is on the seismic isolation floor 30 side. Since the other end is placed on the support frame 15 or the fixed floor 20 and slides, there is no possibility that the crossover plate 10 is reversed, and it is safer and more economical and easy for daily maintenance management. The transition floor 1 to the seismic floor 30 can be provided.
[0008]
The invention according to claim 3 is the invention according to claim 1 or 2,
A locking pin 13A, which is provided at the end of the back surface of the transition floor 1, has a locking means 13 that can rotate the transition floor 1.
A pin hole 13B into which the locking pin 13A is loosely inserted at a locking position on the support frame 15 or the fixed floor 20, or the seismic isolation floor 30 side,
The locking pin 13A has a small-diameter truncated cone portion 13y located at the upper end portion, and the small-diameter cylindrical portion 13x extends to the lower end of the truncated cone portion 13y.
The pin hole 13B is a transit floor to the base-isolated floor, which is formed by a vertical round hole fitted to the maximum outer diameter of the truncated cone part 13y.
According to the above invention, the pivotable locking means 13 of the bridge plate 10 is constituted by the locking pin 13A and the pin hole 13B having a simple structure, so that safe and economical daily maintenance management is also possible. The easy transition floor 1 to the base isolation floor 30 can be provided.
That is, when the seismic isolation floor 30 moves up and down, the locking pin 13A smoothly rotates in the pin hole 13B, and a highly reliable transition floor can be provided.
[0009]
The invention according to claim 4 is the invention according to claim 3,
The locking pin 13A is a transition floor to the base isolation floor having the same axis as the truncated cone portion 13y and provided with a mounting screw 13z on the trapezoidal side.
According to the present invention, it is easy to attach the locking pin 13A.
[0010]
Invention of Claim 5 in any one of Claim 1-4,
This is a transition floor to a base-isolated floor characterized in that a cushioning / sliding material 12 is provided at the back side sliding portion of the transition floor 1.
According to the present invention, the transition floor 10 is provided with the cushioning / sliding material 12 on the back surface, absorbs the impact sound caused by walking during normal times, and quietly slides on the floor surface during an earthquake, so it is safe and economical. The transition floor 1 to the seismically isolated floor 30 can be provided.
The invention according to claim 6 is the invention according to claim 3 or claim 4 ,
The upper end portion of the crossing floor 1 is formed by bending a metal plate into a U-shaped cross section, and the locking pin 13A protrudes from the U-shaped lower surface side, and the U-shaped upper end surface extends to the cross section. It is a transitional floor to a seismic isolation floor that is bent in a letter shape and whose tip edge is bent in a slightly reverse letter shape.
According to this invention, the transition floor 1 can be comprised lightweight.
[0011]
The invention according to claim 7 is the invention according to claim 6,
The transition floor 1 is divided at a plurality of appropriate positions along the side of the seismic isolation floor 30, and the divided bodies are arranged adjacent to each other so that a large gap is not formed at the joint, and the width direction of each divided body This is a transition floor to a seismic isolation floor, characterized in that reinforcing ribs 11 bent 90 ° with the back side inward are provided on both sides.
According to the above invention, in the sixth aspect of the present invention, the ribs 11 are obtained by bending each of the divided members divided along the side of the base isolation floor 30 by 90 ° on both sides in the width direction with the back surface inward. Therefore, it is possible to provide the transition floor 1 to the seismic isolation floor 30 that can be manufactured at a light weight and at a low cost, is economical, and is easy for daily maintenance.
The invention according to claim 8 is the invention according to claim 1 or 2,
A fixed floor surrounding the seismic isolation floor 30 includes a stepped floor 21 having a step 22 higher than the other fixed floors 20.
According to the above invention, the fixed floor surrounding the seismic isolation floor 30 includes the stepped floor 21 raised from the other fixed floors 20 by the step 22, and the transition floor to the safe and rational seismic isolation floor 30 is provided. 1 can be provided.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an embodiment of a transition floor 1 (hereinafter referred to as the main transition floor 1) to the seismic isolation floor 30 according to the present invention, and is an explanatory diagram for showing the main part thereof. 2 is a perspective view of the locking pin 13A, FIG. 3 is an explanatory view of the operation of the main transfer floor 1, and FIG. 4 is an overall perspective view of the seismic isolation floor and the main transfer floor.
Moreover, FIG. 5 of this invention shows another Example of the main transfer floor 1 to the seismic isolation floor 30 of this invention, and is a whole sectional drawing for showing the whole structure. FIG. 6 is a schematic explanatory diagram showing a case where the fixed floor 20 is at a height equal to or higher than the upper limit of the vertical movement of the seismic isolation floor 30 for the main transfer floor 1 shown in FIG. FIG. 7 is a schematic explanatory diagram showing a case where the fixed floor 20 is located below the lower limit of the vertical motion of the base isolation floor 30, showing another embodiment different from the main transfer floor 1.
[0013]
Next, the structure of the main floor 1 will be described with reference to the drawings.
The seismic isolation device 31 includes a two-dimensional device that performs horizontal seismic isolation and a three-dimensional device that performs horizontal and vertical seismic isolation. Hereinafter, when it is particularly necessary to distinguish, it may be referred to as a three-dimensional seismic isolation device 32.
In FIG. 1 to FIG. 5, one of the main parts of the transition floor 1 is a transition board 10. The transition board 10 has a length of at least 2a (FIG. 5) in the transition direction, where a is the horizontal amplitude of the seismic isolation floor 30, and usually several tens of transition boards 10 are the sides of the seismic isolation floor 30. 4 are laid in parallel without interruption as shown in FIG.
In the example of FIG. 1, the connecting plate 10 is formed of a thin metal plate or the like, and a U-shaped section 2 is formed at the upper end portion thereof. A character-like portion 3 to the cross section is formed at the upper part of the upper surface of the transition plate, and a character-like portion 4 to the reverse of the cross section is formed at the lower end portion. Further, ribs 11 are provided on both sides of the crossing plate 10 in the width direction, and a buffer / sliding material 12 such as a Teflon plate is attached to a sliding portion with the seismic isolation floor 30. A locking pin 13A protrudes from the back surface of the U-shaped portion 2 of the transition plate 10 and constitutes a rotatable locking means 13 together with a pin hole 13B on the support frame 15 installed on the fixed floor 20 side. .
[0014]
That is, the transition board 10 is locked by the locking means 13 and supported by the floor surface of the seismic isolation floor 30 and slides while following the swing. As shown in FIG. 2, the locking pin 13A has a cylindrical portion 13x, a truncated cone portion 13y, and a mounting screw 13z.
And the transition floor is comprised by the aggregate | assembly of many such transition boards 10, the seismic isolation floor side of the transition floor 1 is inclined forward, and the upper end part height of the transition floor 1 is the vertical motion of the seismic isolation floor 30. It is located above the upper limit of the design value. The transition floor 1 is locked to the support frame 15 or the fixed floor 20 on the upper end side thereof by the locking means 13 that is rotatable in the vertical direction, and is slidable on the seismic isolation floor 30 on the lower end side. It is mounted on.
As a result, even if the seismic isolation floor moves to the support frame 15 side and moves to the uppermost position, the transition floor 1 is located at the chain line A in FIG. 3 and is not flipped up. At that time, the locking pin 13A rotates smoothly and does not bite with the pin hole 13B.
[0015]
Next, the crossover plate 10 in the example of FIG. 5 is a flat plate having two bent portions, and the upper end of the support frame 15 whose one end is locked by the locking means 13 is 22 steps from the fixed floor 20. Has been enhanced.
Next, in the example of FIG. 6, the height of the upper surface of the fixed floor 20 and the upper surface of the support frame 15 are the same.
Further, in the embodiment shown in FIG. 7, the bridge plate 10 is locked by the locking means 13 provided on the seismic isolation floor 30 side and supported by the floor surface of the stepped floor 21. That is, the transition floor 1 is constituted by an aggregate of the transition boards 10, and the transition floor 1 is inclined downward toward the fixed support frame 15 side or the fixed floor 20 side. It is located below the lower limit of the design value of the vertical motion of the seismic floor 30. The transition floor 1 is locked to the seismic isolation floor 30 on the upper end side thereof by the locking means 13 that is rotatable in the vertical direction, and slides on the support frame 15 or the fixed floor 20 on the lower end side. It is placed freely. The example of FIGS. 1 to 6 and the example of FIG. 7 have the same principle for preventing the falling floor from falling.
[0016]
Hereinafter, the operation of the main floor 1 will be described with reference to the drawings.
In FIG. 1 and FIG. 5, when the transition board 10 is locked to the support frame 15 by the pivotable locking means 13, the height of the upper end surface of the transition board 10 surrounding the base isolation floor 30 is the seismic isolation floor 30. The effect of being above the upper limit of the vertical movement will be described.
The transition board 10 originally has a role of bridging the fixed floor 20 and the seismic isolation floor 30. In the event of an earthquake, follow the seismic isolation floor 30 that exhibits a seismic isolation effect by three-dimensional movement, and reliably close the gap between the fixed floor 20 and the seismic isolation floor 30, The mission is to prevent accidents.
Therefore, the transition board 10 needs to be pivotably locked to at least one of the fixed floor 20 and the seismic isolation floor 30. However, if the height of the fixed floor 20 is higher than the upper limit of the movable range in the vertical direction of the seismic isolation floor 30 when locked to the fixed floor 20 side, the transition board 10 is moved from the fixed floor 20 to the base isolation floor 30. It always keeps a downward slope. The transition board 10 is always supported by the floor surface of the seismic isolation floor 30 at the lower end of the downward slope. That is, even if the base isolation floor 30 rises at a high speed, the possibility that the transition board 10 is jumped up to the base isolation floor 30 and reversed to the fixed floor 20 side is strongly excluded.
[0017]
Next, as shown in FIG. 7, when the bridge plate 10 is locked to the seismic isolation floor 30 by the pivotable locking means 13, the height of the fixed floor 20 surrounding the base isolation floor 30 is the seismic isolation floor 30. The effect of being below the lower limit of the vertical movement will be described.
In this case, the transition board 10 is always kept in a downward slope from the seismic isolation floor 30 toward the fixed floor 20, and is slid and supported by the floor surface of the fixed floor 20 at the lower end of the downward slope. Even if the seismic isolation floor 30 descends at a high speed and reaches the lower limit position, the transition board 10 does not rise, and the possibility of reversing to the seismic isolation floor 30 side is completely eliminated.
[0018]
Next, the rib 11 structure of the transition plate 10 and the cushioning / sliding material 12 will be described.
If the seismic isolation floor 30 including its seismic isolation device 31 reduces its own mass, it can increase the mass of the mounted equipment by that amount and exhibit the same function. In this case, since the transition board 10 performs a rotational motion, it is not completely equivalent to the mass of the mounted equipment. However, if the mass of the transition board 10 and the frictional resistance with the floor surface are reduced, substantially the same effect can be obtained.
However, the crossover plate 10 forms a support beam at both ends in the crossing direction from the center of the swing at least twice as long as the swing width a, for example 600 mm, and forms the dynamic weight of the pedestrian, that is, the concentrated load, as the floor. It is necessary to support this without a sense of incongruity. The length in the width direction of the both-end support beams corresponds to the circumferential length of the four sides of the base isolation floor 30. Therefore, the transition board 10 generally occupies a considerable ratio as compared with the weight of the electronic device or the like mounted on the seismic isolation floor 30, and in general, the weight reduction is a necessary requirement.
[0019]
The crossover board 10 is required to have a resistance to a concentrated load by a pedestrian in terms of function. In terms of manufacturing, ease of manufacturing is also important, and in terms of maintenance, handling must be considered. In this sense, the length in the crossing direction can be set as an integral structure for each side of the seismic isolation floor 30, where α is the placement cost of the seismic isolation floors 1 and 20 on which the transition floor is placed, respectively. 2 (a + α) is basically constant, and only the length in the side direction of the seismic isolation floor 30 changes for each object. Therefore, the method of laying the same divided pieces in parallel without interruption is both in production and maintenance. convenient. The structure provided with the rib 11 by bending with a thin plate structure is an excellent choice that satisfies these various conditions as well as weight reduction.
Further, the cushioning / sliding material 12 made of Teflon or the like absorbs the impact sound at the foot of a pedestrian on a daily basis, and has an effect of maintaining smooth sliding between the transition board 10 and the floor surface when a large earthquake occurs.
[0020]
Next, the locking means 13 of the transition board 10 by the locking pin 13A and the pin hole 13B will be described.
The locking pin 13A is vertically attached to the back surface of the crossover plate 10, and the axis at the time of assembly is in the vertical plane. The rotation angle is equal to the rotation angle θ of the bridge plate 10 corresponding to the upper and lower movable ranges of the base isolation floor 30. Therefore, the locking pin 13A is inserted into the pin hole 13B at the locking location, the horizontal position is constrained by the vertical cylindrical hole, and the locking pin 13A can be rotated without causing interference with the truncated cone part 13y.
Further, the crossover plate 10 is always supported at both ends in the crossover direction, and the center of gravity is not pushed up directly. Therefore, the possibility that the locking pin 13A side falls off is extremely low. Nevertheless, a cylindrical portion 13x is provided at the tip of the pin, which eliminates the possibility of falling off, while facilitating disassembly and assembly of the transition plate 10 for normal maintenance. Thus, the rotatable locking means 13 is realized with a simple structure.
[0021]
Next, as shown in FIGS. 5 and 7, the operation of the fixed floor 20 surrounding the base isolation floor 30 being a stepped floor 21 raised by a step 22 from the other fixed floors 20 will be described. . Earthquakes do not often occur. Even if they occur, the seismic isolation device 31 does not operate if it is small. In addition, in order to maintain the aesthetics of the room, an inconspicuous identical floor level may be expected for the seismic isolation floor 30. In the event of an earthquake, this seismic isolation area is a safer place than other places. Therefore, the step 22 can clearly distinguish the seismic isolation area from the others.
[0022]
The stepped floor 21 is not only a means for unconsciously distinguishing it from others, but also has a physical meaning. Generally, the seismic isolation floor 30 requires an installation space for the seismic isolation device 31 under the floor. Furthermore, in the seismic isolation floor 30 provided with the three-dimensional seismic isolation device 32 that also copes with vertical movement, it is necessary to move only the maximum allowable amplitude h from the normal floor surface level in the vertical direction.
For this reason, it goes without saying that the height of the seismic isolation device 31 is kept low so as not to clog the floor height to the ceiling. However, it is inevitable that the floor surface of the seismic isolation floor 30 tends to be higher than the normal fixed floor 20 that does not require any special equipment under the floor.
However, when the fixed floor 20 surrounding the base isolation floor 30 is higher than the upper limit position of the base isolation floor 30, the indoor ceiling height is likely to be relatively low. By providing the step 22 as necessary and using the stepped floor 21, the ceiling height in the room other than the vicinity of the seismic isolation floor 30 can be increased, which is reasonable.
[0023]
There is a similar problem when the fixed floor 20 surrounding the base isolation floor 30 is lower than the lower limit position of the base isolation floor 30. If necessary, there is an effect of expanding the indoor space in the same way, but in this case, there is another unique action.
[0024]
When the fixed floor 20 surrounding the base isolation floor 30 is lower than the lower limit position of the base isolation floor 30 and the transition board 10 is locked to the base isolation floor 30 side, the stepped floor 21 is attached as described above. Is desired for safety. In this case, the mass can be greatly reduced without changing the effective area of the seismic isolation floor 30 as compared with the case where it is higher than the upper limit position and locked to the fixed floor 20 side.
Assuming that the horizontal amplitude of the seismic isolation device 31 is a, the effective length of the transition floor 1 in the transition direction is 3a + 2α (the mounting margins at both ends in the width direction of the transition floor are α). If details are omitted, when the inside of the locking position of the crossover plate 10 is set as the effective range of the seismic isolation floor 30, the fixed floor 20 is at the end with a space a distance a from the boundary. The end of the normal position of the crossover plate 10 is located at a distance a from the end of the fixed floor 20, and the effective range of the fixed floor 20 begins beyond the amplitude range of the distance a. That is, the fixed floor 20 has a sliding support range with a width 2a. If the locking position of the crossover plate 10 is set to the fixed floor 20 side, the seismic isolation floor 30 needs to have a sliding support range having a width of 2a for each side.
That is, if the locking position of the crossover plate 10 is on the seismic isolation floor 30 side, the length of the beam of the seismic isolation floor 30 can be shortened by 4a in both the X and Y directions. The total mass of the seismic isolation floor 30 including the seismic isolation device 31 can be significantly reduced.
[0025]
【The invention's effect】
As described above, according to the transition floor to the seismic isolation floor according to claim 1 and claim 2, even in the event of a large earthquake, the fixed floor 20 and the seismic isolation due to the rising of the transition board 10 or the inversion to the fixed floor 20 side. The transition floor 1 to the safe seismic isolation floor 30 can be implemented without creating an opening with the floor 30.
According to the third aspect of the present invention, since the pivotable locking means 13 of the crossover plate 10 is constituted by the locking pin 13A and the pin hole 13B having a simple structure, it is safe and economical and is used daily. It is possible to provide the transition floor 1 to the seismic isolation floor 30 that is easy to maintain.
That is, the locking pin 13A smoothly rotates in the pin hole 13B when the seismic isolation floor 30 moves up and down, and the transition floor 1 with high reliability can be provided.
According to the fourth aspect of the present invention, it is easy to attach the locking pin 13A.
According to the fifth aspect of the present invention, the transition board 10 is provided with the cushioning / sliding material 12 on the back surface, and in normal times it absorbs the impact sound caused by walking and is quiet, and in the event of an earthquake, it smoothly slides on the floor surface. The transition floor 1 to the safe and economical base isolation floor 30 can be provided.
[0026]
According to the invention described in claim 6, the transit floor 1 can be configured to be lightweight.
According to the invention described in claim 7, in the crossing plate 10 according to claim 6, each of the divided bodies divided along the sides of the base isolation floor 30 is 90 ° on both sides in the width direction with the back surface inward. Since the bent rib 11 is provided, it is possible to provide the transition floor 1 to the seismic isolation floor 30 that can be manufactured at a light weight and at a low cost, and that is economical and easy for daily maintenance management.
According to the invention described in claim 8, even if the fixed floor surrounding the seismic isolation floor 30 includes the stepped floor 21 that is raised by the step 22 from the other fixed floors 20, it is safe and reasonable. The transition floor 1 to the seismically isolated floor 30 can be provided. And the fixed floor | bed and a base isolation floor can be distinguished by the level | step difference 22, and a safe base isolation floor can always be made aware at the time of an earthquake.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a main part of an embodiment of a transition floor to a seismic isolation floor according to the present invention.
FIG. 2 is a perspective view of a locking pin 13A used in the embodiment.
FIG. 3 is an operation explanatory diagram of the embodiment.
FIG. 4 is an overall perspective view of a base-isolated floor having a transition floor according to the embodiment.
FIG. 5 is an overall cross-sectional view showing the main part of another embodiment of the transition floor to the seismic isolation floor of the present invention.
6 is a schematic explanatory diagram of the transition floor 1 shown in FIG. 5 when the fixed floor 20 is set to a height equal to or higher than the upper limit of the vertical movement of the seismic isolation floor 30. FIG.
FIG. 7 shows still another embodiment of the transition floor to the seismic isolation floor of the present invention, and is a schematic explanation when the fixed floor 20 is set to a height equal to or lower than the lower limit of the vertical motion of the seismic isolation floor 30. Figure.
FIG. 8 is an explanatory diagram of a conventional type transition floor.
FIG. 9 is an explanatory view of an expansion operation of the same floor.
[Explanation of symbols]
1 Transition floor (Main transition floor)
2 U-shaped portion 3 Character-shaped portion 4 Reverse-shaped portion 10 Crossing plate 11 Rib 12 Buffer / sliding material 13 Locking means 13A Locking pin 13a Insertion pin 13B Pin hole 13x Cylindrical portion 13y Frustum portion 13z Mounting Screw 15 Support frame 20 Fixed floor 21 Stepped floor 22 Step 30 Seismic isolation floor 31 Seismic isolation device 32 3D seismic isolation device 40 Concrete floor

Claims (8)

建屋のコンクリート床等の基部に免震装置により支持された免震床と、
同一の基部に敷設されて免震床の外側を囲む固定の支持フレームまたは固定床と、
その免震床と支持フレームまたは固定床との間を相対移動自在に架橋する渡り床とを具備するものにおいて、
その渡り床の免震床側が先下がりに傾斜され、その渡り床の上端部高さが、免震床の上下動の設計値の上限以上に位置し、
その渡り床が、その上端部側で支持フレームまたは固定床に上下方向へ回動自在の係止手段によって係止され且つ、その下端部側で免震床に摺動自在に載置されたことを特徴とする免震床への渡り床。
A seismic isolation floor supported by a seismic isolation device at the base of the building concrete floor,
A fixed support frame or fixed floor laid on the same base and surrounding the base-isolated floor;
In what comprises a transition floor that bridges the seismic isolation floor and a support frame or a fixed floor in a relatively movable manner,
The seismic isolation floor side of the transition floor is inclined downwards, and the upper end height of the transition floor is located above the upper limit of the design value of the vertical motion of the seismic isolation floor,
The transition floor was locked on the support frame or fixed floor by the upper and lower side locking means that can be rotated in the vertical direction, and slidably mounted on the seismic isolation floor on the lower end side. A transitional floor to a seismic isolation floor.
建屋のコンクリート床等の基部に免震装置により支持された免震床と、
同一の基部に敷設されて免震床の外側を囲む固定の支持フレームまたは固定床と、
その免震床と支持フレームまたは固定床との間を相対移動自在に架橋する渡り床とを具備するものにおいて、
その渡り床が固定の支持フレーム側または固定床側に先下がりに傾斜され、その渡り床の下端部高さが、免震床の上下動の設計値の下限以下に位置し、
その渡り床が、その上端部側で免震床に上下方向へ回動自在の係止手段によって係止され且つ、その下端部側で前記支持フレームまたは固定床に摺動自在に載置されたことを特徴とする免震床への渡り床。
A seismic isolation floor supported by a seismic isolation device at the base of the building concrete floor,
A fixed support frame or fixed floor laid on the same base and surrounding the base-isolated floor;
In what comprises a transition floor that bridges the seismic isolation floor and a support frame or a fixed floor in a relatively movable manner,
The transition floor is inclined downward toward the fixed support frame side or fixed floor side, and the lower end height of the transition floor is located below the lower limit of the design value of the vertical motion of the base isolation floor,
The transit floor is locked to the seismic isolation floor on the upper end side thereof by a locking means that is rotatable in the vertical direction, and is slidably mounted on the support frame or the fixed floor on the lower end side. A transitional floor to a seismic isolation floor.
請求項1または請求項2において、
渡り床の回動自在の係止手段が、渡り床の裏面の端部に突設された係止ピンと、
支持フレームまたは固定床、または免震床側の係止箇所で前記係止ピンが遊挿されるピン穴と、によって構成され、
前記係止ピンは、下向きに小径の円錐台部が上端部に位置し、その円錐台部の下端に前記小径の円柱部が延在され、
前記ピン穴は、円錐台部の最大外径と嵌合する鉛直方向の丸穴、で形成されたことを特徴とする免震床への渡り床。
In claim 1 or claim 2,
A locking pin that is pivotable on the transition floor, and a locking pin that projects from the end of the back surface of the transition floor,
A support frame or a fixed floor, or a pin hole into which the locking pin is loosely inserted at a locking position on the seismic isolation floor side,
The locking pin has a small-diameter truncated cone portion located at the upper end portion downward, and the small-diameter cylindrical portion extends to the lower end of the truncated cone portion,
The said pin hole is formed in the vertical round hole fitted with the largest outer diameter of a truncated cone part, The transition floor to the seismic isolation floor characterized by the above-mentioned.
請求項3において、前記円錐台部と同一軸心で、その台形側に取付ネジが設けられた免震床への渡り床。In Claim 3, The transition floor to the seismic isolation floor which is the same axial center as the said truncated-cone part, and was provided with the attachment screw in the trapezoid side. 請求項1〜請求項4のいずれかにおいて、
渡り床の裏面側摺動部位に、緩衝・滑り材を備えたことを特徴とする免震床への渡り床。
In any one of Claims 1-4,
A transition floor to a seismic isolation floor, characterized in that a buffer / sliding material is provided on the back side sliding part of the transition floor.
請求項3又は請求項4において、
その渡り床の上端部が金属板を断面コ字状に曲折したものからなり、そのコ字状の下面側に前記係止ピンが突設され、コ字状の上端面が断面への字状に曲折され、そのへの字の先端縁が僅かに逆向きのへの字状に曲折されたものからなる免震床への渡り床。
In claim 3 or claim 4 ,
The upper end of the transition floor is made of a metal plate bent into a U-shaped cross section, and the locking pin protrudes on the lower side of the U-shaped, and the U-shaped upper end surface is shaped like a cross section. A transitional floor to a base-isolated floor that is bent in the shape of a bend and the tip edge of the bevel is bent in a slightly reverse shape.
請求項6において、
渡り床は免震床の辺に沿った複数の適宜位置で分断され、その継目に大きな隙間が生じないように且つ各分割体が隣接して配置されてなり、夫々の分割体の幅方向の両側に、裏面を内にして90°折り曲げられた補強用のリブを備えたことを特徴とする免震床への渡り床。
In claim 6,
The transition floor is divided at a plurality of appropriate positions along the side of the seismic isolation floor, and the divided bodies are arranged adjacent to each other so that a large gap is not formed at the joint, and in the width direction of each divided body A transitional floor to a base-isolated floor, characterized by having reinforcing ribs bent at 90 ° with the back side inward on both sides.
請求項1または請求項2において、
免震床を囲む固定床が、その他の固定床より、段差をもって高められた段付床を備えたことを特徴とする免震床への渡り床。
In claim 1 or claim 2,
A transitional floor to a seismic isolation floor, characterized in that the fixed floor surrounding the base isolation floor is provided with a stepped floor raised by a step from the other fixed floors.
JP29151798A 1998-09-29 1998-09-29 Transitional floor to seismic isolation floor Expired - Fee Related JP3780493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29151798A JP3780493B2 (en) 1998-09-29 1998-09-29 Transitional floor to seismic isolation floor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29151798A JP3780493B2 (en) 1998-09-29 1998-09-29 Transitional floor to seismic isolation floor

Publications (2)

Publication Number Publication Date
JP2000104395A JP2000104395A (en) 2000-04-11
JP3780493B2 true JP3780493B2 (en) 2006-05-31

Family

ID=17769927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29151798A Expired - Fee Related JP3780493B2 (en) 1998-09-29 1998-09-29 Transitional floor to seismic isolation floor

Country Status (1)

Country Link
JP (1) JP3780493B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5685282B2 (en) * 2013-04-08 2015-03-18 和田装備株式会社 Seismic isolation joint floor sliding device
JP7061307B2 (en) * 2018-01-05 2022-04-28 ベルテクス株式会社 L-shaped retaining wall block, L-shaped retaining wall block assembly and corner construction method
CN114059580B (en) * 2021-11-08 2023-06-20 北京九州一轨环境科技股份有限公司 Equipment vibration reduction horizontal limiter and construction method thereof

Also Published As

Publication number Publication date
JP2000104395A (en) 2000-04-11

Similar Documents

Publication Publication Date Title
JP2002543018A (en) Pitless elevator
JP4556129B2 (en) Fall bridge prevention device
JP3780493B2 (en) Transitional floor to seismic isolation floor
JP2778514B2 (en) Partition wall
JPH11190390A (en) Base isolation device
KR200445741Y1 (en) Climbing System
JP2016180299A (en) Ceiling structure
JP4529564B2 (en) Seismic structure of suspended ceiling
JP2007045547A (en) Landing door installation structure of elevator for base-isolated building
JP4956377B2 (en) Seismic isolation structure
JP6844832B2 (en) Floor joint cover device
JP2006226517A (en) Seismic isolation pipe holding construction
JP5325711B2 (en) Crossroad corridor floor joint equipment
JP4456904B2 (en) Elevator device for seismic isolation building
KR102690176B1 (en) walking training device
JP6718330B2 (en) Expansion joint device and expansion joint device for ceiling
KR102512568B1 (en) Soundproof tunnel with seismic structure
KR102549618B1 (en) Bridge installation structure connecting overpass and elevator
JP4764656B2 (en) Elevator device for seismic isolation building and fescher plate used therefor
JP7262109B2 (en) ceiling device
JP3028407U (en) Seismic safety support device
JP2997631B2 (en) Seismic moving wall structure
JP2009298531A (en) Seismic control structure of elevator shaft
JP3636925B2 (en) Foundation structure
JP4889107B2 (en) Falling object prevention fence and manufacturing method of falling object prevention fence

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees