JP3780111B2 - Film laminated steel sheet for 2-piece cans with excellent processing adhesion and corrosion resistance - Google Patents

Film laminated steel sheet for 2-piece cans with excellent processing adhesion and corrosion resistance Download PDF

Info

Publication number
JP3780111B2
JP3780111B2 JP415599A JP415599A JP3780111B2 JP 3780111 B2 JP3780111 B2 JP 3780111B2 JP 415599 A JP415599 A JP 415599A JP 415599 A JP415599 A JP 415599A JP 3780111 B2 JP3780111 B2 JP 3780111B2
Authority
JP
Japan
Prior art keywords
resin
layer
film
adhesion
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP415599A
Other languages
Japanese (ja)
Other versions
JP2000202944A (en
Inventor
慎一郎 森
淳一 北川
浩樹 岩佐
明彦 諸藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Toyo Seikan Group Holdings Ltd
Original Assignee
JFE Steel Corp
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Toyo Seikan Kaisha Ltd filed Critical JFE Steel Corp
Priority to JP415599A priority Critical patent/JP3780111B2/en
Publication of JP2000202944A publication Critical patent/JP2000202944A/en
Application granted granted Critical
Publication of JP3780111B2 publication Critical patent/JP3780111B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、加工後の密着性および耐食性に優れたフィルムラミネート鋼板に関し、特に、フィルムラミネート後に厳しい加工を施される2ピース缶用フィルムラミネート鋼板に関する。
【0002】
【従来の技術】
従来の製缶工程においては、ぶりき、電解クロメート処理鋼板(以下、TFSと称する)、アルミニウムなどの金属板に1回あるいは複数回の塗装を施し、その後製缶加工を行う場合と、製缶加工した後に塗装を行う場合がある。
【0003】
また、近年、金属板に有機樹脂フィルムをラミネートする技術が開発され、実用化されている。特開昭57−182428号公報,特公昭61−3676号公報等には、金属板側をフィルムの融点以上に加熱し、熱融着によって接着する方法が開示されている。
【0004】
フィルムラミネート後に施される加工としては種々の方法があるが、特に加工度の高いものとしては、金属板に絞り,しごき,引張り,曲げなどの加工を単独あるいは組み合わせ、必要に応じて繰り返し施すことにより、缶底部および缶銅部を一体成形する2ピース缶製造方法がある。
【0005】
一方、近年、製缶メーカーでは材料節減の観点から缶体の薄肉化が進められており、そのために2ピース缶では製缶時の加工度の増大といった手段が講じられている。
【0006】
ところで、フィルムラミネート後に施される厳しい加工は、下地表面処理鋼板のめっき皮膜の形態に大きな影響を与える。例えばTFSの場合、ドロービード加工後の素材からフィルムを溶解除去してめっき皮膜を観察すると、金属クロム層および水和クロム酸化物層には多数の亀裂が生じ、金属クロムおよび鉄の新生面が現れることが判明した。すなわち、最表層の有機樹脂フィルムは大きな延性を有するため、かなり厳しい加工を施しても健全な外観を呈するが、有機樹脂フィルムや下地鋼板に比べて極めて薄い皮膜である電解クロメート皮膜は特に影響を受けやすく、下地鋼板が滑りを起こして界面に新生面を生じながら変形する際に、亀裂が生じるものと考えられる。
【0007】
有機樹脂フィルムと下地表面処理鋼板の密着性は、有機樹脂フィルムと電解クロメート処理皮膜との界面の接着状態に依存するため、電解クロメート処理皮膜に亀裂が生じて健全な接着界面が減少することにより、加工した後の密着性(以下、加工密着性と称する)および耐食性は劣化する。
【0008】
このように、材料節減を目的とした薄肉化を進めるために加工度を大きくすれば、加工密着性および耐食性等の性能の劣化が大きくなる。これは、前述の熱融着によるフィルム接着方法を用いた場合においても同様であり、加工密着性および加工耐食性の劣化が大きく実用には供し難い。
【0009】
このような問題を解決するための技術として、エポキシ樹脂とその硬化剤を含む重合組成物等を予め塗布した有機樹脂フィルムを金属板にラミネートする方法が、特公昭63−13829号公報,特開平1−249331号公報,特公平4−74176号公報,特公平5−71035号公報,特開平2−70430号公報等に開示されている。また、鋼板の片面または両面にエポキシ・フェノール系、エポキシ・ユリア系、ウレタン系等の接着用プライマーを塗布する方法が特開平4−344231号公報に開示されている。
【0010】
これらの方法によれば加工密着性および耐食性はある程度改善されるが、内容物が酸性飲料等の腐食性飲料では塗装缶等には劣り耐食性の面からは十分だとはいえない。
【0011】
また、製造工程で特に厳しい加工を施す場合にはより以上の加工密着性および耐食性が要求され、缶に外部から打痕等の衝撃が与えられた場合にはさらに性能劣化の程度が大きくなることから、これらの技術による加工密着性および耐食性の改善では不十分であり、一部の内容物では適用することができないという問題がある。
【0012】
【本発明が解決しようとする課題】
本発明はかかる事情に鑑みてなされたものであって、フィルムラミネート後に厳しい加工を施される缶体の、加工密着性および耐食性の劣化を抑制し、あらゆる内容物に対して適用可能な、2ピース缶用フィルムラミネート鋼板を提供することを課題とする。
【0013】
【課題を解決するための手段】
本発明者らは、上記課題を達成するために、ラミネートフィルムのような熱可塑性樹脂からなる従来の有機樹脂フィルムとの密着性が比較的良好な表面処理鋼板であるTFSを下地として、かかる有機樹脂フィルムとTFSとの接着界面における接着機構を詳細に検討した。本発明者らは、さらに、かかる従来の有機樹脂フィルムと接着した後に厳しい加工を受けた場合の接着界面を詳細に調査し、内容物充填後の内面の水性環境あるいはレトルト処理時の高温水蒸気環境において、加工密着性および耐食性が劣化する機構についても詳細に調査した。
【0014】
そして、接着機構を調査した結果、樹脂フィルムとTFS界面との接着は水素結合が支配的因子になっていることが判明した。その接着力は水素結合によるものであるため共有結合によるもの等に比べてあまり高くない。
【0015】
密着性が不十分な場合、高加工により樹脂フィルムにずれが生じ、フィルムが破断を起こす場合もあり、金属部分が露出すると耐食性が劣化する。
【0016】
また、加工密着性および耐食性が劣化する機構を調査した結果、フィルムラミネート後に施される厳しい加工は、下地表面処理鋼板のめっき皮膜の形態に大きな影響を与えることも判明した。例えばTFSの場合、金属クロム層および水和クロム酸化物層には頻繁に亀裂が生じ、金属クロムおよび鉄の新生面が現れていたことがわかった。すなわち、最表層の有機樹脂フィルムは大きな延性を有するため、かなり厳しい加工を施しても健全な外観を呈するが、有機樹脂フィルムや下地鋼板に比べて極薄い皮膜である電解クロメート処理皮膜は特に影響を受けやすく、下地鋼板が滑りを起こして界面に新生面を生じながら変形する際に、亀裂が生じるものと考えられる。
【0017】
有機樹脂フィルムと下地表面処理鋼板の密着性は、有機樹脂フィルムと電解クロメート処理皮膜との界面の接着状態に依存するため、電解クロメート処理皮膜に亀裂が生じて健全な接着界面が減少することにより、加工した後の密着性は劣化する。また、その密着性の劣化は、フィルムが破断を起こす場合もあり、耐食性をも劣化させる。
【0018】
また、内容物充填後の内面の水性環境あるいはレトルト処理時の高温水蒸気環境においては、樹脂フィルムを透過した水分子がフィルム/TFS界面を攻撃するため、密着性の劣るものは、その劣化をより促進させられる。
【0019】
以上に加工密着性および耐食性が劣化する機構について説明したが、かかる知見に基づき、本発明者らは、この劣化を抑制するために従来材にない有機樹脂層の導入を見出した。すなわち、従来の樹脂フィルムとTFSとの界面に、界面における密着性を向上させ、かつ、高加工により破断することなく、金属の露出および金属イオンの溶出を防ぐ有機樹脂層(以下、第1の樹脂層とも称する。)を介挿することである。
【0020】
この第1の樹脂層の介挿により従来の最表層の樹脂フィルム(以下、第2の樹脂フィルム層とも称する。)とTFSとの両界面における密着性を向上させるには、TFSおよび第2の樹脂フィルム層それぞれに対して、この第1の樹脂層の密着性が優れ、かつ、材料自体が凝集破壊を起こさないことが必要である。
【0021】
凝集破壊を起こさないためには、第1の樹脂層を形成する有機物成分がある程度の高分子量体であることが好ましい。また、TFSとの密着性に優れるには、TFSとの水素結合を向上させること、あるいは共有結合、配位結合を起こさせることが好ましいと考えられる。水素結合を向上させるためには水酸基、カルボキシルキ等の極性基の導入が好ましく、また、配位結合を形成するためにも水酸基、カルボキシル基等を導入することが好ましい。
【0022】
また、第2の樹脂フィルム層との密着性を高めるためには、樹脂フィルムとの相溶性を高めることにより二次結合力を向上させることが好ましいと考えられる。例えば第2の樹脂フィルム層がポリエステル系樹脂の場合には、第1の樹脂層を形成する有機物成分に芳香環等を導入することにより溶解パラメータをポリエステル系樹脂に近づけることが有効である。
【0023】
この第1の樹脂層が高加工により破断しないで金属の露出を防ぐためには、高加工の際の伸びに耐え、電解クロメート処理皮膜の上を覆っている必要があり、そのためには第1の樹脂層を形成している有機物が高分子量体で、かつフレキシブルな骨格を有することを必要とする。また、覆うだけでなく、その材料自体も耐食性を有することが必要であり、そのためには、有機物が例えば芳香環等の剛直な骨格を有することが必要となる。
【0024】
また、金属イオンの溶出を防止するためには、金属イオンとの間で配位結合を形成する可能性の有る水酸基、カルボキシル基等の導入が望ましい。
【0025】
これらのことをまとめると、第1の樹脂層を形成する有機物としては剛直な構造(例えば芳香環)とフレキシブルな構造とのバランスが必要となり、また水酸基、カルボキシル基等の極性基の導入が必要となる。
【0026】
このような知見に基づき、本発明者らは、従来のラミネート時のフィルムあるいは鋼板への有機溶媒系接着剤塗布といった方法とは全く関係なく、TFSの水和クロム酸化物層にある特定の水系有機物あるいは有機溶媒系有機物、環境問題の観点からは好ましくは水系有機物を塗布することにより、フィルムラミネート後の鋼板に厳しい加工を施した後の加工密着性および耐食性が著しく改善されることを見出した。
【0027】
すなわち、本発明は、鋼板と、この鋼板の少なくとも一方の面上に形成され、下層が片面あたり30mg/m以上の付着量を有する金属クロム層で、上層が片面あたり金属クロム換算で5〜30mg/mの付着量を有する水和クロム酸化物層の電解クロメート処理層と、この電解クロメート処理層上に形成された第1の樹脂層と、この第1の樹脂層上に形成された熱可塑性の第2の樹脂フィルム層とを具備し、前記第1の樹脂層はカルボキシル基含有ラジカル共重合性単量体がグラフト重合せしめられた共重合ポリエステル樹脂と石炭酸及び/又はクレゾール系レゾール型フェノール樹脂を含むことを特徴とする加工密着性および耐食性に優れた2ピース缶用フィルムラミネート鋼板を提供する。
【0028】
なお、本発明においては、前記第1の樹脂層の平均付着量が固形分濃度として50〜10000mg/mであることが好ましく、その樹脂組成物の主成分はカルボキシル基含有ラジカル重合性単量体がグラフト重合せしめられた共重合ポリエステル樹脂60〜99重量部と石炭酸及び/又はクレゾール系レゾール型フェノール樹脂1〜40重量部からなることが好ましい。
【0029】
また、本発明においては、前記熱可塑性の第2の樹脂フィルム層は、厚さ10μm以上のポリエステル系樹脂フィルム層であることが好ましい。
【0030】
このような構成を有する本発明によれば、省資源の観点から進められている缶体の薄肉化に伴う加工度の増大による加工密着性および耐食性の劣化を抑制し、高温水蒸気環境であるレトルト処理等が必要な内容物にも適用可能な2ピース缶用フィルムラミネート鋼板をコストの増大を伴うことなく提供することが可能となる。
【0031】
【発明の実施の態様】
以下、本発明について詳細に説明する。
【0032】
本発明に係る2ピース缶用フィルムラミネート鋼板は、下地鋼板の少なくとも一方の面上に形成され、下層が片面あたり30mg/m以上の付着量を有する金属クロム層で、上層が片面あたり金属クロム換算で5〜30mg/mの付着量を有する水和クロム酸化物層の電解クロメート処理層と、このクロメート処理層上に形成された第1の樹脂層と、この第1の樹脂層上に形成された熱可塑性の第2の樹脂フィルム層とを具備し、前記第1の樹脂層はカルボキシル基含有ラジカル共重合性単量体がグラフト重合せしめられた共重合ポリエステル樹脂(以下、カルボキシルグラフト共重合ポリエステル樹脂とも称する。)と石炭酸及び/又はクレゾール系レゾール型フェノール樹脂を含む。
【0033】
本発明において、下地鋼板は特に限定されるものではなく、通常この種の表面処理鋼板に用いられる鋼板であれば使用することができる。例えば、板厚0.1〜0.3mmの通常の低炭素冷延鋼板、低炭素Alキルド鋼板等が用いられる。
【0034】
このような下地鋼板の少なくとも一方の面に、直接またはクロムめっき後に表面処理皮膜として、下層が金属クロム層、上層が水和クロム酸化物層からなる二層の電解クロメート処理皮膜が形成される。この際の電解クロメート処理方法としては通常用いられる公知の方法を採用することができ、金属クロムと水和クロム酸化物とを同時に析出させる一液法、および金属クロム層形成後に水和クロム酸化物を析出させる二液法のいずれでもよい。
【0035】
ここで下層の金属クロム付着量は、好ましくは片面あたり30mg/m2 以上であるが、より好ましくは30〜300mg/m2 である。その付着量が30mg/m2 未満の場合には耐食性に問題を生じる。300mg/m2 を超えても性能上全く劣ることはないが、経済的観点から好ましくない。いずれにしても、通常の電解クロメート処理鋼板に用いられる量であれば問題ない。
【0036】
上層の水和クロム酸化物の付着量は、好ましくは片面あたり金属クロム換算で5〜30mg/m2 である。その付着量が5mg/m2 未満では金属クロム層が水和クロム酸化物によって均一に覆われず金属層の露出面積が大となり、耐食性および耐経時劣化性、加工密着性が劣るため好ましくない。また、30mg/m2 を超えると水和クロム酸化物層が厚すぎることによって生じる外観の劣化および密着性の劣化を引き起こし好ましくない。
【0037】
電解クロメート処理皮膜の上には、カルボキシルグラフト共重合ポリエステル樹脂と石炭酸及び/又はクレゾール系レゾール型フェノール樹脂を含む樹脂組成物からなる第1の樹脂層が形成される。これらの樹脂組成物は有機溶媒系、水系どちらの形態でも得られるが、どちらの形態でも本発明に用いることができる。
【0038】
カルボキシルグラフト共重合ポリエステル樹脂を得る技術は数多く公開されている公知の方法により行うことができる。
【0039】
例えば低分子量の共重合ポリエステルの溶剤溶解型のグラフト変性や水分散する方法は特開昭57−57065号公報、米国特許3634351号、米国特許4517322号等に開示されている。また、高分子量の共重合ポリエステルの主鎖または末端に重合性不飽和二重結合を導入し、それに対してラジカル重合性単量体をグラフトまたはブロック重合せしめる方法は特開昭57−38810号公報、特開平3−294322号公報、特開平5−262870号公報等に、水分散化する方法は特公昭61−57874号公報、特開昭59−223374号公報、特開昭61−200109号公報、特開昭62−525510号公報、特開平6−256437号公報、特開平7−330841号公報、特開平9−25450号公報等に開示されている。
【0040】
本発明における共重合ポリエステル樹脂は、本来それ自身で水に分散または溶解しないものであり、一般的に溶融重合で合成される。その数平均分子量(GPCによる)は好ましくは5000〜100000である。共重合ポリエステルはジカルボン酸成分とグリコール成分とから合成されるが、ジカルボン酸成分の好ましい重合組成は、芳香族ジカルボン酸60〜99mol%、脂肪族および/または脂環族ジカルボン酸0〜40mol%、重合性不飽和二重結合を含有するジカルボン酸0.5〜10mol%である。かかる組成比が好ましいのは、共重合ポリエステル樹脂の安定性からである。
【0041】
芳香族ジカルボン酸としてはテレフタル酸、イソフタル酸、ナフタレンジカルボン酸等を挙げることができる。また、脂肪族ジカルボン酸としては、アジピン酸、セバシン酸、コハク酸、アゼライン酸等を挙げることができ、脂環族ジカルボン酸としては、1,4−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸等とその無水物を挙げることができる。また、重合性不飽和二重結合を含有するジカルボン酸類としてフマル酸、マレイン酸、無水マレイン酸、イタコン酸、2,5−ノルボルナンジカルボン酸無水物、テトラヒドロ無水フタル酸等を挙げることができる。
【0042】
一方、グリコール成分は炭素数2〜10の脂肪族グリコール及び/又は炭素数6〜12の脂環族グリコール及び/又はエーテル結合含有グリコールである。炭素数2〜10の脂肪族グリコールとしては、エチレングリコール、1,2−プロピレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、ネオペンチルグリコール等を挙げることができ、炭素数6〜12の脂環族グリコールとしては、1,4−シクロヘキサンジメタノール等を、エーテル結合含有グリコールとしては、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール等を挙げることができる。これらグリコール類は単独でも二以上の組み合わせでも可能である。
【0043】
共重合ポリエステルをグラフト重合するカルボキシル基含有ラジカル重合性単量体としては、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸、マレイン酸無水物等を挙げることができる。また、これらのカルボキシル基含有ラジカル重合性単量体の他にカルボキシル基を含有しない重合性単量体を併用することも可能である。また、ラジカル重合性単量体は単独でも二以上の組み合わせでも可能である。
【0044】
本発明のポリエステル系グラフト重合体は、前記共重合ポリエステル中の重合性不飽和二重結合に、ラジカル重合性単量体をグラフト重合させることにより効率的に得られる。一般的には共重合ポリエステル重合体を有機溶媒中に溶解させた状態において、ラジカル開始剤およびラジカル重合性単量体を反応せしめることにより合成される。
【0045】
また、本発明に係る第1の樹脂層を形成する樹脂組成物は有機溶媒系、水系いずれの形態においても用いられ得ることは前述の通りであるが、グラフト化反応生成物は塩基性化合物で中和することによって容易に平均粒子径500nm以下の微粒子に水分散化することができる。グラフト化反応が終了した時点で直ちに塩基性化合物を含有する水を投入し、さらに加熱攪拌を継続して水分散体を得る方法が望ましい。さらにグラフト化反応に用いた溶媒を蒸留によって一部または全部を容易に取り除くことができる。本発明の水系分散体は必要に応じて水を添加することにより固形分濃度を調整することができる。
【0046】
本発明の第1の樹脂層は上述のカルボキシルグラフト共重合ポリエステル樹脂と石炭酸及び/又はクレゾール系レゾール型フェノール樹脂とを主成分とする樹脂組成物により形成される。
【0047】
石炭酸及び/又はクレゾール系レゾール型フェノール樹脂としては、石炭酸、o−クレゾール、m−クレゾール、p−クレゾール又はこれらの混合物をアンモニア、トリエチルアミン、苛性ソーダ、苛性カリ等のアルカリを触媒として縮合させたもの、又はこれをメタノール、エタノール、n−ブタノール等のアルコールでアルキルエーテル化したものを使用することができる。
【0048】
かかる石炭酸及び/又はクレゾール系レゾール型フェノール樹脂はそのままカルボキシルグラフト共重合ポリエステル樹脂に混合させるだけでも良いが、あらかじめ石炭酸及び/又はクレゾール系レゾール型フェノール樹脂をゲル化しない程度に反応させたものを用いても良い。
【0049】
なお、このカルボキシルグラフト共重合ポリエステル樹脂と石炭酸及び/又はクレゾール系レゾール型フェノール樹脂とを含む樹脂組成物に、必要に応じてさらにメラミン樹脂、尿素樹脂等のアミノ樹脂、ブロックウレタン樹脂等の硬化物、エポキシ樹脂、ウレタン樹脂、他のポリエステル樹脂、ノボラック型フェノール樹脂等を配合することもできる。さらに、耐食性を上げるために、必要に応じてストロンチウムクロメート、カルシウムクロメート、ジンククロメート、カルシウムシリケート、トリポリリン酸アルミ等の防錆剤を配合することもできる。
【0050】
このようにして得られるカルボキシルグラフト共重合ポリエステル樹脂と石炭酸及び/又はクレゾール系レゾール型フェノール樹脂を主成分とする樹脂組成物が第1の樹脂層として上述の電解クロメート処理皮膜上に形成される。その形成方法としては、鋼板にあらかじめ第1の樹脂層を形成させる方法あるいは熱可塑性の第2の樹脂フィルム層の鋼板側面にあらかじめ第1の樹脂層を形成させておく方法があるが、どちらの方法も使用することができる。
【0051】
また、その塗布方法としては、いずれの場合においても通常用いられる公知の方法を採用することができ、例えばロールコート方式、カーテンフロー方式、ダイコーター方式、浸漬方式、スプレーコート方式、カーテンフローコート方式、しごき塗装方式、ブレードコーター塗装方式、ロッドコーター塗装方式、エアードクターコーター塗装方式、キスコーター塗装方式等を挙げることができる。
【0052】
乾燥方法としては、鋼板に塗装した場合はジャケットロール方式、乾燥炉を使用する方式のどちらでも構わず、公知の方法により行うことができ、乾燥炉は例えば熱風炉、赤外線炉、誘導加熱炉等を使用することができる。乾燥温度は鋼板に塗装した場合は100〜270℃、熱可塑性樹脂フィルムに塗装した場合は50〜110℃の樹脂フィルムの耐熱温度以下で行うことが望ましい。乾燥温度はいずれの場合も2秒〜2分が望ましい。
【0053】
この第1の樹脂層の好ましい付着量は、固形分濃度として50〜10000mg/m2 であり、その樹脂組成物の好ましい組成はカルボキシルグラフト共重合ポリエステル樹脂60〜99重量部と石炭酸及び/又はクレゾール系レゾール型フェノール樹脂1〜40重量部からなるものである。
【0054】
その付着量が固形分濃度として50mg/m2 未満の場合には充分な被覆度が得られないため耐食性が低下し、10000mg/m2 を超えると第1の樹脂層内部で凝集破壊を引き起こし易くなり、その結果、加工性および耐食性が低下する傾向にある。
【0055】
また、カルボキシルグラフト共重合体が60重量部未満では加工密着性、耐食性が低下し、99重量部を超えると耐食性が低下する。
【0056】
本発明のラミネート鋼板では、耐食性等の観点から前記第1の樹脂層の上に熱可塑性の第2の樹脂フィルム層がラミネートされる。熱可塑性樹脂フィルムとしては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、エチレンテレフタレート/イソフタレート共重合体等のポリエステル系あるいはポリプロピレン、ポリエチレン等のポリオレフィン系、ナイロン6、ナイロン66等のポリアミド系等、通常用いられるいずれの有機樹脂フィルムも用いることができるが、加工密着性、耐食性等の観点からはポリエステル系樹脂フィルムが好ましい。
【0057】
さらに、熱可塑性の第2の樹脂フィルム層の厚さは、10μm以上であることが好ましい。厚さが10μm未満になると、耐傷つき性に劣ることおよびフィルム製造の際ピンホール等を生じやすくなりその結果耐食性に劣る結果となるからである。
【0058】
熱可塑性樹脂をフィルムにするためには、押出溶融した樹脂をTダイ方式でフィルム化する一般的な方法を使用することができる。また、そのフィルムはそのままの無延伸の状態あるいは二軸延伸等の延伸処理を行った状態のどちらで使用しても構わない。
【0059】
また、熱可塑性の第2の樹脂フィルムをラミネートする方法については、あらかじめフィルムを作製しておいてラミネートする方法とTダイ方式で押出溶融した樹脂をそのままラミネートする方法等があるが、いずれの方法を用いてラミネートしても構わない。
【0060】
熱可塑性の第2の樹脂フィルムが熱溶着によりラミネートされる場合、鋼板を第2の樹脂フィルムの融点以上に加熱しロールを使用してフィルムを圧着する方法が一般的である。そのラミネート技術は数多く公開されている公知の方法により行うことができる。例えば金属板に有機樹脂フィルムをラミネートする技術として特開昭57−182428号公報、特公昭61−3676号公報等には、金属板側をフィルムの融点以上に加熱し、熱融着によって接着する方法が開示されている。
【0061】
【実施例】
以下、本発明の具体的な実施例を順次説明する。
【0062】
[供試材]
(1)表面処理鋼板
全ての実施例および比較例は、低炭素Alキルド連鋳鋼で、厚さ0.20mmのT4CA材を原板鋼帯とし、これに後述する表面処理を施して製造した。
【0063】
(2)塗布用有機材(第1の樹脂フィルム材)
有機物種別:A
ジカルボン酸成分としてテレフタル酸47mol%、イソフタル酸48mol%、フマル酸5mol%、ジオール成分として1,4−ブタンジオール50mol%、エチレングリコール50mol%の組成比の共重合ポリエステル樹脂を合成した。その共重合ポリエステル樹脂300重量部、メチルエチルケトン450重量部、イソプロピルアルコール150重量部、アクリル酸35重量部、アクリル酸エチル65重量部、オクチルメルカプタン1.5重量部、アゾビスイソブチルニトリル6重量部を反応させグラフト体溶液を得、その後トリエチルアミンで中和した後イオン交換水を添加、有機溶剤を蒸留で取り除き、水系カルボキシルグラフト共重合ポリエステル樹脂を得た。生成した水分散体は平均粒子径70mm、グラフト効率50%であった。
【0064】
つぎに上記カルボキシル基含有ラジカル重合性単量体がグラフト重合せしめられた共重合ポリエステル樹脂95重量部と熱硬化型石炭酸・ホルムアルデヒド樹脂を水中に分散させた石炭酸系レゾール型フェノール樹脂エマルジョン(粘度3000cP、ゲル化時間160sec[150℃],不揮発分51%[105℃/3h]、乳白色液状体)5重量部を混合し、樹脂組成物とした(有機物種別A)。
【0065】
有機物種別B:
有機物種別Aと同様のポリエステル系グラフト共重合体95重量部と熱硬化型石炭酸/メタクレゾール=1/1・ホルムアルデヒド樹脂を水中に分散させた石炭酸/メタクレゾール系レゾール型フェノール樹脂エマルジョン(粘度3500cP、ゲル化時間180sec[150℃]、不揮発分53%[105℃/3h]、乳白色液状体)5重量部を混合し、樹脂組成物とした(有機物種別B)。
【0066】
有機物種別C:
有機物種別Aと同様のポリエステル系グラフト共重合体95重量部と熱硬化型メタクレゾール・ホルムアルデヒド樹脂を水中に分散させたメタクレゾール系レゾール型フェノール樹脂エマルジョン(粘度3200cP、ゲル化時間170sec[150℃]、不揮発分51%[105℃/3h]、乳白色液状体)5重量部を混合し、樹脂組成物とした(有機物種別C)。
【0067】
有機物種別D:
ジカルボン酸成分としてテレフタル酸45mol%、イソフタル酸40mol%、セバシン酸10%、フマル酸5mol%、ジオール成分として1,4−ブタンジオール80mol%、エチレングリコール20mol%の組成比の共重合ポリエステル樹脂を合成した。その共重合ポリエステル樹脂300重量部、メチルエチルケトン450重量部、イソプロピルアルコール150重量部、アクリル酸35重量部、アクリル酸エチル65重量部、オクチルメルカプタン1.5重量部、アゾビスイソブチルニトリル6重量部を反応させグラフト体溶液を得、その後トリエチルアミンで中和した後イオン交換水を添加、有機溶剤を蒸留で取り除き、水系カルボキシルグラフト共重合ポリエステル樹脂を得た。生成した水分散体は平均粒子径90nm、グラフト効率45%であった。
【0068】
つぎに上記カルボキシルグラフト共重合ポリエステル樹脂60重量部と熱硬化型石炭酸・ホルムアルデヒド樹脂を水中に分散させた石炭酸系レゾール型フェノール樹脂エマルジョン(粘度3000cP、ゲル化時間160sec[150℃]、不揮発分51%[105℃/3h]、乳白色液状体)40重量部を混合し、樹脂組成物とした(有機物種別D)。
【0069】
有機物種別E:
ジカルボン酸成分としてテレフタル酸47mol%、イソフタル酸48mol%、フマル酸5mol%、ジオール成分としてネオペンチルグリコール50mol%、エチレングリコール50mol%の組成比の共重合ポリエステル樹脂を合成した。その共重合ポリエステル樹脂300重量部、メチルエチルケトン450重量部、イソプロピルアルコール150重量部、アクリル酸65重量部、アクリル酸エチル65重量部、オクチルメルカプタン1.5重量部、アゾビスイソブチルニトリル6重量部を反応させグラフト体溶液を得、その後トリエチルアミンで中和した後イオン交換水を添加、有機溶剤を蒸留で取り除き、水系カルボキシルグラフト共重合ポリエステル樹脂を得た。生成した水分散体は平均粒子径60nm、グラフト効率60%であった。
【0070】
つぎに上記カルボキシルグラフト共重合ポリエステル樹脂99重量部と熱硬化型石炭酸・ホルムアルデヒド樹脂を水中に分散させた石炭酸系レゾール型フェノール樹脂エマルジョン(粘度3000cP、ゲル化時間160sec[150℃]、不揮発分51%[105℃/3h]、乳白色液状体)1重量部をブレンドし、樹脂組成物とした(有機物種別E)。
【0071】
有機物種別F:
ジカルボン酸成分としてテレフタル酸47mol%、イソフタル酸48mol%、フマル酸5mol%、ジオール成分として、1,4−ブタンジオール50mol%、エチレングリコール50mol%の組成比の共重合ポリエステル樹脂を合成した。その共重合ポリエステル樹脂300重量部、メチルエチルケトン450重量部、イソプロピルアルコール150重量部、アクリル酸35重量部、アクリル酸エチル65重量部、オクチルメルカプタン1.5重量部、アゾビスイソブチルニトリル6重量部を反応させグラフト効率50%の有機溶媒系カルボキシルグラフト共重合ポリエステル樹脂を得た。
【0072】
つぎに上記カルボキシルグラフト共重合ポリエステル樹脂95重量部と石炭酸・ホルムアルデヒド樹脂より合成した有機溶媒系石炭酸系レゾール型フェノール樹脂(粘度6000cP、ゲル化時間140sec[150℃]、不揮発分52%[105℃/3h]、褐色液状体)5重量部を混合し、樹脂組成物とした(有機物種別F)。
【0073】
有機物種別G:
有機物種別Aと同様のカルボキシル基含有ラジカルグラフト共重合ポリエステル樹脂40重量部と熱硬化型石炭酸・ホルムアルデヒド樹脂を水中に分散させたメタクレゾール系レゾール型フェノール樹脂エマルジョン(粘度3300cP、ゲル化時間170sec[150℃]、不揮発分51%[105℃/3h]、乳白色液状体)60重量部を混合し、樹脂組成物とした(有機物種別G)。
【0074】
有機物種別H:
ジカルボン酸成分としてテレフタル酸47mol%、イソフタル酸48mol%、フマル酸5mol%、ジオール成分としてネオペンチルグリコール50mol%、エチレングリコール50mol%の組成比の共重合ポリエステル樹脂を合成した。その共重合ポリエステル樹脂をグラフト重合しないまま、メチルエチルケトンに溶解させ、有機溶媒系の共重合ポリエステル樹脂を得た。
【0075】
つぎに上記カルボキシルグラフト共重合ポリエステル樹脂95重量部と石炭酸・ホルムアルデヒド樹脂より合成した有機溶媒系石炭酸系レゾール型フェノール樹脂(粘度6000cP、ゲル化時間140sec[150℃]、不揮発分52%[105℃/3h],褐色液状体)5重量部を混合し、樹脂組成物とした(有機物種別H)。
【0076】
有機物種別I:
有機物種別Aと同様のカルボキシルグラフト共重合ポリエステル樹脂のみを樹脂組成物とした(有機物種別I)。
【0077】
有機物種別J:
分子量約7000のビスフェノールタイプの有機溶媒系エポキシ樹脂80重量部と石炭酸・ホルムアルデヒド樹脂より合成した有機溶媒系石炭酸系レゾール型フェノール樹脂(粘度6000cP、ゲル化時間140sec[150℃]、不揮発分52%[105℃/3h]、褐色液状体)20重量部をブレンドし、樹脂組成物とした(有機物種別J)。
【0078】
(3)フィルムラミネート
実施例、比較例に記載された表面処理鋼板を200×300mmの切板にし、その両面に次に示す条件で市販のポリエステルフィルムを第2の樹脂フィルム層としてラミネートした。
【0079】
フィルム:二軸配向ポリエステルフィルム(ポリエチレングリコールとテレフタル酸/イソフタル酸の共重合体)
フィルム厚さ:25μm
フィルムの結晶融解温度:229℃
ラミネート直前の鋼板温度:235℃
ラミネート速度:2m/秒
ラミネート後の冷却:水冷(急冷)
[2]評価
(1)絞り加工性
・密着性評価
ラミネート板を直径158mmの円板に打抜き、絞り比2.98で円筒状カップに絞り加工を施した後、カップ内面のフィルムの剥離状況をルーペで観察した。その際に、剥離なしの良好な状態を5点とし、4点、3点、2点、1点と小さくなるにつれて剥離の程度が大きくなるように5段階に分けて評価した。
【0080】
・耐食性評価
また、絞り加工したカップを、0.4%クエン酸水溶液中に50℃、14日間浸漬し、水洗、乾燥後、同様にカップ内面の剥離程度を同基準で5段階評価した。
【0081】
(2)曲げ曲げ戻し加工
・密着性評価
フィルムラミネート板を30×300mmのたんざく状に切り出し、先端Rが0.25mmの工具を用い、押さえ圧400kgfでドロービードテストを行い、サンプル表面をルーペで観察した。その際、絞り加工性評価と同様に剥離の程度を5段階で評価した。
【0082】
・耐食性評価
また、曲げ曲げ戻し加工したフィルムラミネート板を、0.4%クエン酸水溶液中に50℃、14日間浸漬し、水洗、乾燥後、同様にカップ内面の剥離程度を同基準で5段階評価した。
【0083】
(3)リパックテスト
・密着性評価
フィルムラミネート板を直径110mmの円板に打抜き、まず最初に絞り比1.51で円筒状カップ絞り加工を施し、次いで絞り比1.20で再絞り加工を施して、円筒状カップ(全絞り比1.81)を作成した。このカップの内面のフィルムの剥離状況をルーペで観察し、絞り加工性評価と同じ基準で剥離程度を5段階評価した。
【0084】
・耐食性評価
さらに、本カップ中に0.4%クエン酸をリパックし、カップの中央部に直径1/2インチ、1kgの鋼球を高さ100mmより落下させた後、38℃で4カ月間の貯蔵を行い、この貯蔵テスト後のカップ内面のフィルムと金属板の剥離状況をルーペで観察し、上と同じ基準で5段階評価した。
【0085】
加工性の評価は、絞り加工、曲げ曲げ戻し加工、リパックテストによる加工性を外観の良否等により目視で判断し、いずれも良好なものを○とし、それ以外を×と評価した。
【0086】
また、密着性の評価は絞り加工、曲げ曲げ戻し加工、リパックテストによる加工後のルーペ観察による剥離状況の5段階評価が、いずれも5、4の良好なものを○と、3の普通のものを△、それ以外を×と評価した。
【0087】
また、耐食性の評価は絞り加工、曲げ曲げ戻し加工、リパックテストによる加工後の耐食性評価の5段階評価が、いずれも5、4の良好なものを○と、3の普通のものを△、それ以外を×と評価した。
【0088】
表1および表2に示す実施例1〜27および比較例1〜8についてこれらの評価を行った。その結果を表1、2に示す。
【0089】
【表1】

Figure 0003780111
【0090】
【表2】
Figure 0003780111
【0091】
(実施例1)
前記表面処理原板に、表1に示すように、金属Cr付着量125mg/m2 、金属クロム換算での水和クロム酸化物付着量17mg/m2 となるような電解クロメート処理を施した後、前記水系カルボキシルグラフト共重合ポリエステル樹脂と石炭酸系レゾール型フェノール樹脂からなる樹脂組成物(有機物種別A)をリバースロールコーターで塗布し、乾燥することによって付着量960mg/m2 の第1の樹脂層を形成した。その表面処理鋼板に対し、先に示す条件下で第2の樹脂フィルム層としてポリエステルフィルムをラミネートし、その後、絞り加工、曲げ曲げ戻し加工、リパックテストにより、加工性、密着性、耐食性を評価した。これらの評価結果を、表1に併せて示す。
【0092】
その結果本表面処理鋼板は、フィルムラミネート後の加工性が優れているばかりでなく、加工後の密着性、処理後の耐食性にも優れていることが確認された。
【0093】
(実施例2〜7、比較例1〜3)
これらにおいては、表1、表2に示すように、電解クロメート処理条件を種々に変え、それ以外は実施例1と同様の操作を行って表面処理鋼板を得た。これらの評価結果を表1、表2に併記する。
【0094】
表1、表2から明らかなように、下層の金属クロム付着量が、片面あたり30mg/m2 以上、上層の水和クロム酸化物の付着量が5〜30mg/m2 の実施例2〜7はいずれも加工性、密着性、耐食性とも優れていた。
【0095】
これに対し、下層の金属クロム付着量が30mg/m2 未満の比較例1は、耐食性に劣っていた。また上層の水和クロム酸化物の付着量が、5mg/m2 未満の比較例2は、密着性および耐食性が劣っていた。さらに、上層クロム水和酸化物の付着量が30mg/m2 を超えた比較例3は外観が劣化し密着性および耐食性が劣っていた。
【0096】
(実施例8〜11、21、22)
これらにおいてはカルボキシルグラフト共重合ポリエステル樹脂と石炭酸系レゾール型フェノール樹脂を含む樹脂組成物(有機物種別A)の付着量を種々に変化させ、それ以外は実施例1と同様の操作を行って表面処理鋼板を得た。これらの評価結果を表1、表2に併記する。
【0097】
表1、表2から明らかなように、いずれも、加工性、密着性、耐食性において良好な評価を得た。特に付着量が50〜10000mg/m2 の実施例8〜11は、いずれも、加工性、密着性、耐食性が優れていた。
【0098】
(実施例12〜16、23)
ここにおいては、前記に示すように、第1の樹脂層を構成するカルボキシルグラフト共重合ポリエステル樹脂と石炭酸及び/又はクレゾール系レゾール型フェノール樹脂を含む樹脂組成物の組成あるいは組成比を変化させ、それ以外は実施例1と同様の操作を行って表面処理鋼板を得た。これらの評価結果を表1に併記する。
【0099】
表1、表2から明らかなように、実施例12〜16は、加工性、密着性、耐食性が特に優れていた。
【0100】
(比較例4〜7)
比較例4では、従来の技術である第1の樹脂層を形成しないこと以外は実施例1と同様の操作を行って表面処理鋼板を得た。また、比較例5では第1の樹脂層としてグラフト重合を行っていない共重合ポリエステル樹脂を用いた(有機物種別H)以外は実施例1と同様の操作を行って表面処理鋼板を得た。また、比較例6ではカルボキシルグラフト共重合ポリエステル樹脂のみを第1の樹脂層(有機物種別I)として用いた以外は実施例1と同様の操作を行って表面処理鋼板を得た。また、比較例7では第1の樹脂層としてエポキシフェノール樹脂(有機物種別J)を用いた以外は実施例1と同様の操作を行って表面処理鋼板を得た。
【0101】
これらの評価結果を表2に併記する。
【0102】
表2から明らかなように、いずれも耐食性が劣っていた。
【0103】
(実施例17〜19、24、比較例8)
ここにおいては、最表層である第2の樹脂フィルム層の厚みを10μm(実施例17)、50μm(実施例18)、80μm(実施例19)、8μm(実施例24)と変化させ、それ以外は実施例1と同様の操作を行って表面処理鋼板を得た。また、比較例8では第2の樹脂フィルム層を形成しないこと以外は実施例1と同様の操作を行って表面処理鋼板を得た。これらの評価結果を表1、表2に併記する。
【0104】
表1、表2から明らかなように、実施例17〜19は、加工性、密着性、耐食性が特に優れていた。またフィルムの無い比較例8は耐食性が劣っていた。
【0105】
(実施例20、25〜27)
ここにおいては、Tダイ方式で押出溶融した実施例1と同様の共重合ポリエステル樹脂をそのままラミネートして25μmのフィルム層を形成した。それ以外は実施例1と同様の操作を行って表面処理鋼板を得た(実施例20)。また実施例25〜27ではフィルムを25μmのポリプロピレン(実施例25)、ポリエチレン(実施例26)、ナイロン6(実施例27)に変えた以外は実施例1と同様の操作を行って表面処理鋼板を得た。これらの評価結果を表1、表2に併記する。
【0106】
表1、表2から明らかなように、実施例20は、加工性、密着性、耐食性が特に優れていたのに対し、実施例25〜27は、耐食性においてこれより劣っていた。
【0107】
【発明の効果】
以上説明したように、本発明によれば、フィルムラミネート後に厳しい加工を施された際にも加工密着性および耐食性に優れ、缶体の薄肉化に伴う加工度の増大に対応することができるものであって、レトルト処理を必要とするような内容物等あらゆる内容物に適用可能な2ピース缶用フィルムラミネート鋼板が提供される。このように本発明では、繁雑な工程を経ることなく、優れた加工密着性および加工耐食性が得られるので、その経済的価値は極めて高い。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a film-laminated steel sheet having excellent adhesion and corrosion resistance after processing, and more particularly to a film-laminated steel sheet for a two-piece can that is subjected to severe processing after film lamination.
[0002]
[Prior art]
In the conventional can manufacturing process, a tin plate, an electrolytic chromate-treated steel plate (hereinafter referred to as TFS), a metal plate such as aluminum is applied once or a plurality of times, and then the can manufacturing process is performed. Sometimes it is painted after processing.
[0003]
In recent years, a technique for laminating an organic resin film on a metal plate has been developed and put into practical use. JP-A-57-182428, JP-B-61-3676, etc. disclose a method in which the metal plate side is heated to the melting point of the film or higher and bonded by thermal fusion.
[0004]
There are various methods for processing after film laminating, but as a particularly high degree of processing, processing such as drawing, squeezing, pulling, bending, etc. on a metal plate can be repeated alone or in combination and repeated as necessary. There is a two-piece can manufacturing method in which the can bottom and the can copper part are integrally formed.
[0005]
On the other hand, in recent years, can makers have been proceeding to reduce the thickness of cans from the viewpoint of saving materials. For this reason, measures have been taken to increase the degree of processing at the time of can making two-piece cans.
[0006]
By the way, severe processing applied after film lamination has a great influence on the form of the plating film of the base surface-treated steel sheet. For example, in the case of TFS, when the film is dissolved and removed from the material after the draw bead processing and the plating film is observed, many cracks are generated in the metal chromium layer and the hydrated chromium oxide layer, and new surfaces of metal chromium and iron appear. There was found. In other words, the outermost organic resin film has a large ductility, so it has a sound appearance even when subjected to fairly severe processing, but the electrolytic chromate film, which is an extremely thin film compared to the organic resin film and the underlying steel sheet, is particularly affected. It is easy to receive, and it is considered that a crack occurs when the base steel sheet is deformed while causing a slip and forming a new surface at the interface.
[0007]
Adhesion between the organic resin film and the base surface-treated steel sheet depends on the adhesion state at the interface between the organic resin film and the electrolytic chromate treatment film. The adhesion after processing (hereinafter referred to as processing adhesion) and corrosion resistance deteriorate.
[0008]
As described above, when the degree of processing is increased in order to reduce the thickness for the purpose of reducing the material, performance deterioration such as processing adhesion and corrosion resistance increases. The same applies to the case of using the above-described film adhesion method by heat fusion, and the deterioration of the processing adhesion and the processing corrosion resistance is large and it is difficult to put it to practical use.
[0009]
As a technique for solving such a problem, a method of laminating an organic resin film previously coated with a polymerization composition containing an epoxy resin and a curing agent thereof on a metal plate is disclosed in Japanese Patent Publication No. 63-13829, No. 1-249331, Japanese Patent Publication No. 4-74176, Japanese Patent Publication No. 5-71035, Japanese Patent Application Laid-Open No. 2-70430, and the like. Japanese Patent Laid-Open No. 4-344231 discloses a method of applying an adhesion primer such as epoxy / phenolic, epoxy / urea or urethane based on one or both surfaces of a steel plate.
[0010]
According to these methods, the work adhesion and the corrosion resistance are improved to some extent, but the corrosive beverage such as an acidic beverage is inferior to a paint can etc., and it cannot be said that it is sufficient in terms of corrosion resistance.
[0011]
In addition, when processing particularly severe in the manufacturing process, more work adhesion and corrosion resistance are required, and when the can is subjected to impacts such as dents from the outside, the degree of performance deterioration will be further increased. Therefore, there is a problem that improvement in processing adhesion and corrosion resistance by these techniques is insufficient and cannot be applied to some contents.
[0012]
[Problems to be solved by the present invention]
The present invention has been made in view of such circumstances, and can be applied to all contents by suppressing deterioration in processing adhesion and corrosion resistance of a can body subjected to severe processing after film lamination. It aims at providing the film laminated steel plate for piece cans.
[0013]
[Means for Solving the Problems]
In order to achieve the above-mentioned problems, the present inventors have made such an organic material using TFS, which is a surface-treated steel sheet having relatively good adhesion to a conventional organic resin film made of a thermoplastic resin such as a laminate film, as a base. The adhesion mechanism at the adhesion interface between the resin film and TFS was examined in detail. The present inventors further investigated in detail the adhesion interface when subjected to severe processing after bonding with such conventional organic resin film, and the aqueous environment on the inner surface after filling the contents or the high-temperature steam environment during retort processing In this study, the mechanism of deterioration of the work adhesion and corrosion resistance was also investigated in detail.
[0014]
As a result of investigating the adhesion mechanism, it has been found that hydrogen bonding is a dominant factor in the adhesion between the resin film and the TFS interface. Since the adhesive force is due to hydrogen bonding, it is not so high as compared to that due to covalent bonding.
[0015]
If the adhesion is insufficient, the resin film may be displaced due to high processing, and the film may be broken. If the metal part is exposed, the corrosion resistance is deteriorated.
[0016]
In addition, as a result of investigating the mechanism of deterioration in work adhesion and corrosion resistance, it has been found that severe processing applied after film lamination has a great influence on the form of the plated film of the base surface-treated steel sheet. For example, in the case of TFS, it was found that cracks frequently occurred in the metal chromium layer and the hydrated chromium oxide layer, and new surfaces of metal chromium and iron appeared. In other words, the outermost organic resin film has a large ductility, so it has a sound appearance even when subjected to fairly severe processing, but the electrolytic chromate treatment film, which is an extremely thin film compared to the organic resin film and the base steel sheet, is particularly affected. It is considered that cracking occurs when the base steel sheet is deformed while causing slippage and generating a new surface at the interface.
[0017]
Adhesion between the organic resin film and the base surface-treated steel sheet depends on the adhesion state at the interface between the organic resin film and the electrolytic chromate treatment film. The adhesion after processing deteriorates. In addition, the deterioration of the adhesion may cause the film to break and also deteriorate the corrosion resistance.
[0018]
In addition, in an aqueous environment on the inner surface after filling the contents or in a high temperature steam environment during retort processing, water molecules that permeate the resin film attack the film / TFS interface, so those with poor adhesion are more likely to deteriorate. Promoted.
[0019]
The mechanism of deterioration of work adhesion and corrosion resistance has been described above. Based on this knowledge, the present inventors have found the introduction of an organic resin layer not present in conventional materials in order to suppress this deterioration. That is, an organic resin layer (hereinafter referred to as a first organic resin layer) that improves the adhesion at the interface between the conventional resin film and TFS and prevents the metal exposure and metal ion elution without breaking by high processing. It is also referred to as a resin layer.).
[0020]
In order to improve the adhesion at both interfaces between the conventional outermost resin film (hereinafter also referred to as the second resin film layer) and the TFS by the insertion of the first resin layer, the TFS and the second It is necessary that the adhesion of the first resin layer is excellent with respect to each of the resin film layers, and that the material itself does not cause cohesive failure.
[0021]
In order not to cause cohesive failure, the organic component that forms the first resin layer is preferably a certain amount of high molecular weight. Moreover, in order to be excellent in adhesiveness with TFS, it is considered preferable to improve a hydrogen bond with TFS, or to cause a covalent bond or a coordinate bond. In order to improve the hydrogen bond, it is preferable to introduce a polar group such as a hydroxyl group or a carboxyl group, and it is also preferable to introduce a hydroxyl group, a carboxyl group or the like in order to form a coordination bond.
[0022]
Moreover, in order to improve adhesiveness with a 2nd resin film layer, it is thought that it is preferable to improve a secondary bond strength by improving compatibility with a resin film. For example, in the case where the second resin film layer is a polyester resin, it is effective to bring the solubility parameter close to that of the polyester resin by introducing an aromatic ring or the like into the organic component forming the first resin layer.
[0023]
In order to prevent the metal from being exposed without breaking the first resin layer due to high processing, it is necessary to withstand elongation during high processing and to cover the electrolytic chromate-treated film. The organic material forming the resin layer is required to have a high molecular weight and a flexible skeleton. In addition to covering, the material itself needs to have corrosion resistance, and for that purpose, the organic material needs to have a rigid skeleton such as an aromatic ring.
[0024]
In order to prevent elution of metal ions, introduction of a hydroxyl group, a carboxyl group, or the like that may form a coordinate bond with the metal ions is desirable.
[0025]
In summary, the organic substance forming the first resin layer must have a balance between a rigid structure (for example, an aromatic ring) and a flexible structure, and it is necessary to introduce polar groups such as hydroxyl groups and carboxyl groups. It becomes.
[0026]
Based on such knowledge, the present inventors have no particular relationship with the conventional method of applying an organic solvent-based adhesive to a film or steel plate during lamination, and a specific aqueous system in the hydrated chromium oxide layer of TFS. From the viewpoint of organic matter or organic solvent-based organic matter, and environmental problems, it has been found that, by applying a water-based organic matter, the processing adhesion and corrosion resistance after severe processing on the steel sheet after film lamination is remarkably improved. .
[0027]
That is, the present invention is formed on a steel plate and at least one surface of the steel plate, and the lower layer is 30 mg / m per side. 2 It is a metal chromium layer having the above adhesion amount, and the upper layer is 5 to 30 mg / m in terms of metal chromium per side. 2 An electrolytic chromate-treated layer of a hydrated chromium oxide layer having an adhesion amount of: a first resin layer formed on the electrolytic chromate-treated layer, and a thermoplastic second layer formed on the first resin layer. 2, wherein the first resin layer includes a copolymerized polyester resin in which a carboxyl group-containing radical copolymerizable monomer is graft-polymerized and a carboxylic acid and / or a cresol-based resol type phenol resin. Provided is a film laminated steel sheet for a two-piece can excellent in processing adhesion and corrosion resistance.
[0028]
In the present invention, the average adhesion amount of the first resin layer is 50 to 10,000 mg / m as the solid content concentration. 2 The resin composition is mainly composed of 60 to 99 parts by weight of a copolymerized polyester resin obtained by graft polymerization of a carboxyl group-containing radical polymerizable monomer, and carboxylic acid and / or cresol-based resol type phenol resin 1. It preferably consists of ˜40 parts by weight.
[0029]
In the present invention, the second thermoplastic resin film layer is preferably a polyester resin film layer having a thickness of 10 μm or more.
[0030]
According to the present invention having such a configuration, retort which is a high-temperature steam environment is able to suppress deterioration in processing adhesion and corrosion resistance due to increase in processing degree accompanying thinning of a can body, which has been promoted from the viewpoint of resource saving. It becomes possible to provide a film-laminated steel sheet for a two-piece can that can be applied to contents that require processing or the like without increasing costs.
[0031]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0032]
The film laminated steel plate for a two-piece can according to the present invention is formed on at least one surface of the base steel plate, and the lower layer is 30 mg / m per side. 2 It is a metal chromium layer having the above adhesion amount, and the upper layer is 5 to 30 mg / m in terms of metal chromium per side. 2 An electrolytic chromate-treated layer of a hydrated chromium oxide layer having an adhesion amount of: a first resin layer formed on the chromate-treated layer; and a thermoplastic second layer formed on the first resin layer. The first resin layer is a copolymerized polyester resin obtained by graft polymerization of a carboxyl group-containing radical copolymerizable monomer (hereinafter also referred to as a carboxyl graft copolymerized polyester resin). Includes carboxylic acid and / or cresol-based resol type phenolic resin.
[0033]
In the present invention, the base steel plate is not particularly limited, and any steel plate that is usually used for this type of surface-treated steel plate can be used. For example, a normal low carbon cold rolled steel sheet having a thickness of 0.1 to 0.3 mm, a low carbon Al killed steel sheet, or the like is used.
[0034]
On at least one surface of such a base steel sheet, a two-layer electrolytic chromate-treated film comprising a metal chromium layer as a lower layer and a hydrated chromium oxide layer as a surface-treated film is formed directly or after chromium plating. As the electrolytic chromate treatment method in this case, a known method that is usually used can be adopted, and a one-component method in which metallic chromium and hydrated chromium oxide are simultaneously precipitated, and hydrated chromium oxide after forming the metallic chromium layer. Any of the two-liquid methods for precipitating selenium may be used.
[0035]
Here, the metal chromium adhesion amount of the lower layer is preferably 30 mg / m per side. 2 More preferably, 30 to 300 mg / m 2 It is. The adhesion amount is 30 mg / m 2 If it is less than this, there will be a problem with corrosion resistance. 300 mg / m 2 However, it is not preferable from the economical point of view. In any case, there is no problem as long as it is an amount used for a normal electrolytic chromate-treated steel sheet.
[0036]
The adhesion amount of the hydrated chromium oxide in the upper layer is preferably 5 to 30 mg / m in terms of metal chromium per side. 2 It is. The adhesion amount is 5 mg / m 2 If it is less than 1, the metal chromium layer is not uniformly covered with the hydrated chromium oxide, and the exposed area of the metal layer becomes large, and the corrosion resistance, aging resistance and work adhesion are inferior. 30 mg / m 2 If it exceeds 1, the hydrated chromium oxide layer is unfavorably caused by deterioration of the appearance and adhesiveness caused by being too thick.
[0037]
A first resin layer made of a resin composition containing a carboxyl graft copolymerized polyester resin and carboxylic acid and / or a cresol-based resol type phenol resin is formed on the electrolytic chromate-treated film. These resin compositions can be obtained in either an organic solvent system or an aqueous system, but both forms can be used in the present invention.
[0038]
Many techniques for obtaining a carboxyl graft copolymerized polyester resin can be performed by publicly known methods.
[0039]
For example, solvent-soluble graft modification of low molecular weight copolymer polyester and water dispersion are disclosed in JP-A-57-57065, US Pat. No. 3,634,351, US Pat. No. 4,517,322, and the like. JP-A-57-38810 discloses a method of introducing a polymerizable unsaturated double bond into the main chain or terminal of a high molecular weight copolymer polyester and grafting or block polymerizing a radical polymerizable monomer thereto. JP-A-3-294322, JP-A-5-262870, etc., the methods for dispersing in water are disclosed in JP-B-61-57874, JP-A-59-223374, JP-A-61-200109. JP-A-62-252510, JP-A-6-256437, JP-A-7-330841, JP-A-9-25450, and the like.
[0040]
The copolyester resin in the present invention is originally not dispersed or dissolved in water by itself and is generally synthesized by melt polymerization. The number average molecular weight (by GPC) is preferably 5,000 to 100,000. The copolyester is synthesized from a dicarboxylic acid component and a glycol component, and the preferred polymerization composition of the dicarboxylic acid component is an aromatic dicarboxylic acid 60 to 99 mol%, an aliphatic and / or alicyclic dicarboxylic acid 0 to 40 mol%, It is 0.5-10 mol% of dicarboxylic acid containing a polymerizable unsaturated double bond. This composition ratio is preferable because of the stability of the copolyester resin.
[0041]
Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid and the like. Examples of the aliphatic dicarboxylic acid include adipic acid, sebacic acid, succinic acid, and azelaic acid. Examples of the alicyclic dicarboxylic acid include 1,4-cyclohexanedicarboxylic acid and 1,3-cyclohexanedicarboxylic acid. Etc. and their anhydrides. Examples of dicarboxylic acids containing a polymerizable unsaturated double bond include fumaric acid, maleic acid, maleic anhydride, itaconic acid, 2,5-norbornane dicarboxylic anhydride, and tetrahydrophthalic anhydride.
[0042]
On the other hand, the glycol component is an aliphatic glycol having 2 to 10 carbon atoms and / or an alicyclic glycol having 6 to 12 carbon atoms and / or an ether bond-containing glycol. Examples of the aliphatic glycol having 2 to 10 carbon atoms include ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol and the like. Examples of the alicyclic glycol having 6 to 12 carbon atoms include 1,4-cyclohexanedimethanol, and examples of the ether bond-containing glycol include diethylene glycol, triethylene glycol, and polyethylene glycol. These glycols can be used alone or in combination of two or more.
[0043]
Examples of the carboxyl group-containing radical polymerizable monomer for graft polymerization of the copolyester include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, and maleic anhydride. In addition to these carboxyl group-containing radical polymerizable monomers, polymerizable monomers that do not contain a carboxyl group can be used in combination. Moreover, the radically polymerizable monomer can be used alone or in combination of two or more.
[0044]
The polyester-based graft polymer of the present invention can be efficiently obtained by graft polymerizing a radically polymerizable monomer to the polymerizable unsaturated double bond in the copolymerized polyester. Generally, it is synthesized by reacting a radical initiator and a radical polymerizable monomer in a state where a copolymerized polyester polymer is dissolved in an organic solvent.
[0045]
In addition, as described above, the resin composition forming the first resin layer according to the present invention can be used in any of the organic solvent system and the aqueous system, but the grafting reaction product is a basic compound. By neutralizing, it can be easily dispersed in fine particles having an average particle diameter of 500 nm or less. It is desirable to immediately add water containing a basic compound at the time when the grafting reaction is completed, and then continue heating and stirring to obtain an aqueous dispersion. Furthermore, a part or all of the solvent used in the grafting reaction can be easily removed by distillation. The aqueous dispersion of this invention can adjust solid content concentration by adding water as needed.
[0046]
The first resin layer of the present invention is formed of a resin composition containing as a main component the above-mentioned carboxyl graft copolymerized polyester resin and carboxylic acid and / or cresol type resol type phenol resin.
[0047]
As the carboxylic acid and / or cresol-based resol type phenol resin, a product obtained by condensing carboxylic acid, o-cresol, m-cresol, p-cresol or a mixture thereof with an alkali such as ammonia, triethylamine, caustic soda, caustic potash, or the like, or This can be used by alkyl etherification with an alcohol such as methanol, ethanol or n-butanol.
[0048]
Such a carboxylic acid and / or cresol type resol type phenol resin may be simply mixed with a carboxyl graft copolymer polyester resin as it is, but a carboxylic acid and / or cresol type resol type phenol resin previously reacted to such an extent that it does not gel is used. May be.
[0049]
A resin composition containing this carboxyl graft copolymerized polyester resin and a carboxylic acid and / or cresol-based resol type phenol resin, and a cured product such as an amino resin such as melamine resin or urea resin, or a block urethane resin, if necessary. Epoxy resins, urethane resins, other polyester resins, novolac type phenol resins, and the like can also be blended. Furthermore, in order to raise corrosion resistance, rust preventives, such as strontium chromate, calcium chromate, zinc chromate, calcium silicate, aluminum tripolyphosphate, can also be mix | blended as needed.
[0050]
A resin composition mainly composed of the carboxyl graft copolymerized polyester resin and carboxylic acid and / or cresol type resol type phenol resin obtained as described above is formed on the above-mentioned electrolytic chromate-treated film as the first resin layer. As the formation method, there is a method in which the first resin layer is formed in advance on the steel plate or a method in which the first resin layer is formed in advance on the side surface of the thermoplastic second resin film layer. Methods can also be used.
[0051]
Moreover, as the coating method, a known method that is usually used in any case can be adopted, for example, a roll coating method, a curtain flow method, a die coater method, a dipping method, a spray coating method, a curtain flow coating method. , Iron coating method, blade coater coating method, rod coater coating method, air doctor coater coating method, kiss coater coating method and the like.
[0052]
As a drying method, when coated on a steel sheet, either a jacket roll method or a method using a drying furnace may be used, and it can be performed by a known method. The drying furnace is, for example, a hot air furnace, an infrared furnace, an induction heating furnace, etc. Can be used. The drying temperature is preferably 100 to 270 ° C. when coated on a steel sheet and 50 to 110 ° C. below the heat resistant temperature of the resin film when coated on a thermoplastic resin film. In any case, the drying temperature is preferably 2 seconds to 2 minutes.
[0053]
The preferable adhesion amount of the first resin layer is 50 to 10,000 mg / m as the solid content concentration. 2 The preferred composition of the resin composition is composed of 60 to 99 parts by weight of a carboxyl graft copolymerized polyester resin and 1 to 40 parts by weight of carboxylic acid and / or cresol-based resol type phenol resin.
[0054]
The adhesion amount is 50 mg / m as the solid content concentration. 2 If it is less than 1, sufficient coverage cannot be obtained, so the corrosion resistance decreases, and 10000 mg / m 2 If it exceeds 1, it tends to cause cohesive failure inside the first resin layer, and as a result, workability and corrosion resistance tend to be reduced.
[0055]
Further, when the carboxyl graft copolymer is less than 60 parts by weight, the work adhesion and the corrosion resistance decrease, and when it exceeds 99 parts by weight, the corrosion resistance decreases.
[0056]
In the laminated steel sheet of the present invention, a thermoplastic second resin film layer is laminated on the first resin layer from the viewpoint of corrosion resistance and the like. Examples of thermoplastic resin films include polyesters such as polyethylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, ethylene terephthalate / isophthalate copolymer, polyolefins such as polypropylene and polyethylene, polyamides such as nylon 6 and nylon 66, etc. Any commonly used organic resin film can be used, but a polyester-based resin film is preferred from the viewpoint of processing adhesion, corrosion resistance, and the like.
[0057]
Furthermore, the thickness of the thermoplastic second resin film layer is preferably 10 μm or more. This is because if the thickness is less than 10 μm, the scratch resistance is inferior, and pinholes are likely to be produced during film production, resulting in poor corrosion resistance.
[0058]
In order to make a thermoplastic resin into a film, a general method of forming a film of an extruded and melted resin by a T-die method can be used. Further, the film may be used in an unstretched state as it is or a state in which a stretching process such as biaxial stretching is performed.
[0059]
In addition, as a method of laminating the thermoplastic second resin film, there are a method of laminating a film in advance and a method of laminating a resin extruded and melted by a T-die method as it is. You may laminate using.
[0060]
When the thermoplastic second resin film is laminated by thermal welding, a method is generally used in which the steel plate is heated to a temperature equal to or higher than the melting point of the second resin film and the film is pressure-bonded using a roll. The lamination technique can be performed by a publicly known method. For example, as a technique for laminating an organic resin film on a metal plate, Japanese Patent Application Laid-Open No. 57-182428, Japanese Patent Publication No. 61-3676, etc., heat the metal plate side to a temperature higher than the melting point of the film and bond it by thermal fusion. A method is disclosed.
[0061]
【Example】
Hereinafter, specific examples of the present invention will be sequentially described.
[0062]
[Sample material]
(1) Surface-treated steel sheet
All examples and comparative examples were made of low carbon Al killed continuous cast steel using a T4CA material having a thickness of 0.20 mm as a base steel strip, and subjected to surface treatment described later.
[0063]
(2) Organic material for application (first resin film material)
Organic substance type: A
A copolymer polyester resin having a composition ratio of 47 mol% terephthalic acid, 48 mol% isophthalic acid, 5 mol% fumaric acid as the dicarboxylic acid component, and 50 mol% 1,4-butanediol as the diol component and 50 mol% ethylene glycol was synthesized. Reaction of 300 parts by weight of the copolyester resin, 450 parts by weight of methyl ethyl ketone, 150 parts by weight of isopropyl alcohol, 35 parts by weight of acrylic acid, 65 parts by weight of ethyl acrylate, 1.5 parts by weight of octyl mercaptan, and 6 parts by weight of azobisisobutylnitrile A graft body solution was obtained, neutralized with triethylamine, ion-exchanged water was added, and the organic solvent was removed by distillation to obtain an aqueous carboxyl graft copolymer polyester resin. The produced aqueous dispersion had an average particle diameter of 70 mm and a graft efficiency of 50%.
[0064]
Next, 95 parts by weight of a copolymerized polyester resin graft-polymerized with the carboxyl group-containing radical polymerizable monomer and a thermosetting carboxylic acid / formaldehyde resin dispersed in water are added to a carboxylic acid-based resol type phenol resin emulsion (viscosity 3000 cP, Gelation time 160 sec [150 ° C.], nonvolatile content 51% [105 ° C./3 h], milky white liquid) 5 parts by weight were mixed to obtain a resin composition (organic matter type A).
[0065]
Organic matter type B:
95 parts by weight of the same polyester-based graft copolymer as organic type A and thermosetting carboxylic acid / metacresol = 1/1. A carboxylic acid / metacresol-based resol type phenol resin emulsion in which formaldehyde resin is dispersed in water (viscosity 3500 cP, Gelation time 180 sec [150 ° C., non-volatile content 53% [105 ° C./3 h], milky white liquid) 5 parts by weight were mixed to obtain a resin composition (organic matter type B).
[0066]
Organic type C:
Metacresol resol type phenol resin emulsion (viscosity 3200 cP, gelation time 170 sec [150 ° C.]) in which 95 parts by weight of polyester graft copolymer similar to organic type A and thermosetting metacresol / formaldehyde resin are dispersed in water 5 parts by weight of non-volatile content 51% [105 ° C./3h], milky white liquid) was mixed to obtain a resin composition (organic matter type C).
[0067]
Organic matter type D:
A copolymer polyester resin having a composition ratio of terephthalic acid 45 mol% as dicarboxylic acid component, isophthalic acid 40 mol%, sebacic acid 10%, fumaric acid 5 mol%, diol component as 1,4-butanediol 80 mol% and ethylene glycol 20 mol% is synthesized. did. Reaction of 300 parts by weight of the copolyester resin, 450 parts by weight of methyl ethyl ketone, 150 parts by weight of isopropyl alcohol, 35 parts by weight of acrylic acid, 65 parts by weight of ethyl acrylate, 1.5 parts by weight of octyl mercaptan, and 6 parts by weight of azobisisobutylnitrile A graft body solution was obtained, neutralized with triethylamine, ion-exchanged water was added, and the organic solvent was removed by distillation to obtain an aqueous carboxyl graft copolymer polyester resin. The produced aqueous dispersion had an average particle diameter of 90 nm and a graft efficiency of 45%.
[0068]
Next, 60 parts by weight of the above carboxyl graft copolymerized polyester resin and thermosetting carboxylic acid / formaldehyde resin dispersed in water, carboxylic acid-based resol type phenol resin emulsion (viscosity 3000 cP, gelation time 160 sec [150 ° C.], non-volatile content 51% [105 ° C / 3h], milky white liquid) 40 parts by weight were mixed to obtain a resin composition (organic matter type D).
[0069]
Organic substance type E:
A copolymerized polyester resin having a composition ratio of terephthalic acid 47 mol%, isophthalic acid 48 mol%, fumaric acid 5 mol% as the dicarboxylic acid component, and neopentyl glycol 50 mol% and ethylene glycol 50 mol% as the diol component was synthesized. Reaction of 300 parts by weight of the copolyester resin, 450 parts by weight of methyl ethyl ketone, 150 parts by weight of isopropyl alcohol, 65 parts by weight of acrylic acid, 65 parts by weight of ethyl acrylate, 1.5 parts by weight of octyl mercaptan, and 6 parts by weight of azobisisobutylnitrile A graft body solution was obtained, neutralized with triethylamine, ion-exchanged water was added, and the organic solvent was removed by distillation to obtain an aqueous carboxyl graft copolymer polyester resin. The produced aqueous dispersion had an average particle diameter of 60 nm and a graft efficiency of 60%.
[0070]
Next, 99 parts by weight of the above-mentioned carboxyl graft copolymerized polyester resin and thermosetting carboxylic acid / formaldehyde resin dispersed in water, carboxylic acid-based resol type phenol resin emulsion (viscosity 3000 cP, gelation time 160 sec [150 ° C.], nonvolatile content 51% [105 ° C / 3h], milky white liquid) 1 part by weight was blended to obtain a resin composition (organic matter type E).
[0071]
Organic substance type F:
A copolymer polyester resin having a composition ratio of 47 mol% terephthalic acid, 48 mol% isophthalic acid, 5 mol% fumaric acid as the dicarboxylic acid component, and 50 mol% 1,4-butanediol and 50 mol% ethylene glycol as the diol component was synthesized. Reaction of 300 parts by weight of the copolyester resin, 450 parts by weight of methyl ethyl ketone, 150 parts by weight of isopropyl alcohol, 35 parts by weight of acrylic acid, 65 parts by weight of ethyl acrylate, 1.5 parts by weight of octyl mercaptan, and 6 parts by weight of azobisisobutylnitrile Thus, an organic solvent-based carboxyl graft copolymerized polyester resin having a graft efficiency of 50% was obtained.
[0072]
Next, an organic solvent-based carboxylic acid-based resol type phenol resin (viscosity: 6000 cP, gelation time: 140 sec [150 ° C.], non-volatile content: 52% [105 ° C./105° C.] 3h], 5 parts by weight of a brown liquid) was mixed to obtain a resin composition (organic matter type F).
[0073]
Organic matter type G:
Metacresol-based resol type phenol resin emulsion in which 40 parts by weight of a carboxyl group-containing radical graft copolymerized polyester resin similar to organic type A and thermosetting carboxylic acid / formaldehyde resin are dispersed in water (viscosity 3300 cP, gelation time 170 sec [150 [° C.], 51% non-volatile content [105 ° C./3h], milky white liquid) was mixed to obtain a resin composition (organic matter type G).
[0074]
Organic matter type H:
A copolymerized polyester resin having a composition ratio of terephthalic acid 47 mol%, isophthalic acid 48 mol%, fumaric acid 5 mol% as the dicarboxylic acid component, and neopentyl glycol 50 mol% and ethylene glycol 50 mol% as the diol component was synthesized. The copolymer polyester resin was dissolved in methyl ethyl ketone without graft polymerization to obtain an organic solvent-based copolymer polyester resin.
[0075]
Next, an organic solvent-based carboxylic acid-based resol type phenol resin (viscosity: 6000 cP, gelation time: 140 sec [150 ° C.], non-volatile content: 52% [105 ° C./105° C.] 3h], 5 parts by weight of a brown liquid) were mixed to obtain a resin composition (organic matter type H).
[0076]
Organic matter type I:
Only the same carboxyl graft copolymerized polyester resin as organic type A was used as the resin composition (organic type I).
[0077]
Organic substance type J:
Organic solvent-based carboxylic acid-based resol-type phenol resin synthesized from 80 parts by weight of a bisphenol-type organic solvent-based epoxy resin having a molecular weight of about 7000 and a carboxylic acid / formaldehyde resin (viscosity 6000 cP, gelation time 140 sec [150 ° C.], nonvolatile content 52% [ 105 ° C./3 h], 20 parts by weight of a brown liquid) was blended to obtain a resin composition (organic matter type J).
[0078]
(3) Film lamination
The surface-treated steel sheets described in Examples and Comparative Examples were cut into 200 × 300 mm plates, and a commercially available polyester film was laminated on both sides as a second resin film layer under the following conditions.
[0079]
Film: Biaxially oriented polyester film (polyethylene glycol and terephthalic acid / isophthalic acid copolymer)
Film thickness: 25 μm
Crystal melting temperature of film: 229 ° C
Steel plate temperature just before lamination: 235 ° C
Laminating speed: 2m / sec
Cooling after lamination: Water cooling (rapid cooling)
[2] Evaluation
(1) Drawing processability
・ Adhesion evaluation
The laminate plate was punched into a disk having a diameter of 158 mm, and after drawing the cylindrical cup with a drawing ratio of 2.98, the peeling state of the film on the inner surface of the cup was observed with a loupe. At that time, the good state without peeling was set to 5 points, and the evaluation was divided into 5 stages so that the degree of peeling increased as it became 4 points, 3 points, 2 points and 1 point.
[0080]
・ Corrosion resistance evaluation
Further, the drawn cup was immersed in a 0.4% citric acid aqueous solution at 50 ° C. for 14 days, washed with water and dried, and similarly, the degree of peeling of the inner surface of the cup was evaluated in five stages based on the same criteria.
[0081]
(2) Bending and bending back processing
・ Adhesion evaluation
The film laminate plate was cut into a 30 × 300 mm shape, a draw bead test was performed with a pressing pressure of 400 kgf using a tool with a tip R of 0.25 mm, and the sample surface was observed with a loupe. At that time, the degree of peeling was evaluated in five stages as in the drawing processability evaluation.
[0082]
・ Corrosion resistance evaluation
Further, the film laminate plate bent and bent back was immersed in a 0.4% aqueous citric acid solution at 50 ° C. for 14 days, washed with water and dried, and then the degree of peeling of the inner surface of the cup was similarly evaluated on the basis of five levels.
[0083]
(3) Repack test
・ Adhesion evaluation
A film laminate plate is punched into a disk having a diameter of 110 mm, first a cylindrical cup drawing process is performed with a drawing ratio of 1.51, and then a redrawing process is performed with a drawing ratio of 1.20. 1.81) was prepared. The peeling state of the film on the inner surface of the cup was observed with a magnifying glass, and the degree of peeling was evaluated in five stages based on the same standard as the drawing workability evaluation.
[0084]
・ Corrosion resistance evaluation
Furthermore, 0.4% citric acid was repacked in this cup, and after dropping a 1/2 inch diameter steel ball from the height of 100 mm to the center of the cup, it was stored at 38 ° C. for 4 months. After the storage test, the peeling state between the film on the inner surface of the cup and the metal plate was observed with a magnifying glass, and was evaluated in five stages according to the same criteria as above.
[0085]
For the evaluation of workability, the workability by drawing, bending / bending / rewinding, and repack test was visually determined based on the quality of the appearance and the like.
[0086]
In addition, the evaluation of adhesion is a five-step evaluation of the peeling state by magnifying observation after drawing, bending and unbending processing, and repacking test. Was evaluated as Δ, and the others were evaluated as ×.
[0087]
Corrosion resistance is evaluated by a 5-step evaluation of post-processing corrosion resistance evaluation by drawing, bending and unbending, and repack test. Was evaluated as x.
[0088]
These evaluation was performed about Examples 1-27 and Comparative Examples 1-8 shown in Table 1 and Table 2. The results are shown in Tables 1 and 2.
[0089]
[Table 1]
Figure 0003780111
[0090]
[Table 2]
Figure 0003780111
[0091]
Example 1
As shown in Table 1, the surface treatment original plate has a metal Cr adhesion amount of 125 mg / m. 2 Amount of hydrated chromium oxide 17mg / m in terms of metallic chromium 2 After applying the electrolytic chromate treatment to become, the resin composition (organic type A) consisting of the water-based carboxyl graft copolymerized polyester resin and the carboxylic acid-based resol-type phenol resin is applied by a reverse roll coater and adhered by drying. 960 mg / m 2 The first resin layer was formed. The surface-treated steel sheet was laminated with a polyester film as the second resin film layer under the conditions shown above, and then evaluated for workability, adhesion, and corrosion resistance by drawing, bending and unbending, and a repack test. . These evaluation results are also shown in Table 1.
[0092]
As a result, it was confirmed that this surface-treated steel sheet not only has excellent processability after film lamination, but also has excellent adhesion after processing and corrosion resistance after processing.
[0093]
(Examples 2-7, Comparative Examples 1-3)
In these, as shown in Tables 1 and 2, the electrolytic chromate treatment conditions were variously changed, and otherwise, the same operation as in Example 1 was performed to obtain a surface-treated steel sheet. These evaluation results are also shown in Tables 1 and 2.
[0094]
As is clear from Tables 1 and 2, the lower layer metal chromium adhesion was 30 mg / m per side. 2 As described above, the adhesion amount of the upper layer hydrated chromium oxide is 5 to 30 mg / m. 2 Examples 2 to 7 were all excellent in workability, adhesion and corrosion resistance.
[0095]
On the other hand, the lower layer metal chromium adhesion amount is 30 mg / m. 2 Less than Comparative Example 1 was inferior in corrosion resistance. Moreover, the adhesion amount of the hydrated chromium oxide in the upper layer is 5 mg / m 2 Less than Comparative Example 2 was inferior in adhesion and corrosion resistance. Furthermore, the adhesion amount of the upper layer chromium hydrated oxide is 30 mg / m 2 In Comparative Example 3 exceeding the range, the appearance was deteriorated and the adhesion and corrosion resistance were inferior.
[0096]
(Examples 8 to 11, 21, 22)
In these, the amount of adhesion of the resin composition (organic matter type A) containing the carboxyl graft copolymerized polyester resin and the carboxylic acid-based resol type phenol resin is variously changed, and otherwise the surface treatment is performed by performing the same operations as in Example 1. A steel plate was obtained. These evaluation results are also shown in Tables 1 and 2.
[0097]
As is clear from Tables 1 and 2, all obtained good evaluations in workability, adhesion, and corrosion resistance. Particularly, the adhesion amount is 50 to 10000 mg / m 2 All of Examples 8 to 11 were excellent in workability, adhesion, and corrosion resistance.
[0098]
(Examples 12-16, 23)
In this case, as shown above, the composition or composition ratio of the resin composition containing the carboxyl graft copolymerized polyester resin constituting the first resin layer and the carboxylic acid and / or cresol-based resol type phenol resin is changed, Except for this, the same operation as in Example 1 was performed to obtain a surface-treated steel sheet. These evaluation results are also shown in Table 1.
[0099]
As is clear from Tables 1 and 2, Examples 12 to 16 were particularly excellent in workability, adhesion, and corrosion resistance.
[0100]
(Comparative Examples 4-7)
In Comparative Example 4, a surface-treated steel sheet was obtained by performing the same operation as in Example 1 except that the first resin layer, which is a conventional technique, was not formed. Further, in Comparative Example 5, a surface-treated steel sheet was obtained by performing the same operation as in Example 1 except that a copolymerized polyester resin not subjected to graft polymerization was used as the first resin layer (organic type H). In Comparative Example 6, a surface-treated steel sheet was obtained by performing the same operation as in Example 1 except that only the carboxyl graft copolymerized polyester resin was used as the first resin layer (organic matter type I). In Comparative Example 7, a surface-treated steel sheet was obtained by performing the same operation as in Example 1 except that an epoxy phenol resin (organic type J) was used as the first resin layer.
[0101]
These evaluation results are also shown in Table 2.
[0102]
As is clear from Table 2, the corrosion resistance was inferior in all cases.
[0103]
(Examples 17 to 19, 24, Comparative Example 8)
Here, the thickness of the second resin film layer, which is the outermost layer, is changed to 10 μm (Example 17), 50 μm (Example 18), 80 μm (Example 19), and 8 μm (Example 24). Performed the same operation as in Example 1 to obtain a surface-treated steel sheet. In Comparative Example 8, a surface-treated steel sheet was obtained by performing the same operation as in Example 1 except that the second resin film layer was not formed. These evaluation results are also shown in Tables 1 and 2.
[0104]
As is clear from Tables 1 and 2, Examples 17 to 19 were particularly excellent in workability, adhesion, and corrosion resistance. Moreover, the comparative example 8 without a film was inferior in corrosion resistance.
[0105]
(Example 20, 25-27)
Here, the copolymer polyester resin similar to Example 1 extruded and melted by the T-die method was laminated as it was to form a 25 μm film layer. Otherwise, the same operation as in Example 1 was performed to obtain a surface-treated steel sheet (Example 20). In Examples 25 to 27, a surface-treated steel sheet was prepared by performing the same operation as in Example 1 except that the film was changed to 25 μm polypropylene (Example 25), polyethylene (Example 26), and nylon 6 (Example 27). Got. These evaluation results are also shown in Tables 1 and 2.
[0106]
As is clear from Tables 1 and 2, Example 20 was particularly excellent in workability, adhesion, and corrosion resistance, while Examples 25 to 27 were inferior in corrosion resistance.
[0107]
【The invention's effect】
As described above, according to the present invention, even when severe processing is performed after film lamination, it has excellent processing adhesion and corrosion resistance, and can cope with an increase in processing degree accompanying thinning of a can body. And the film laminated steel plate for 2 piece cans which can be applied to all contents, such as a content which requires a retort process, is provided. As described above, in the present invention, excellent processing adhesion and processing corrosion resistance can be obtained without going through complicated steps, and thus the economic value is extremely high.

Claims (3)

鋼板と、この鋼板の少なくとも一方の面上に形成され、下層が片面あたり30mg/m以上の付着量を有する金属クロム層で、上層が片面あたり金属クロム換算で5〜30mg/mの付着量を有する水和クロム酸化物層の電解クロメート処理層と、この電解クロメート処理層上に形成された第1の樹脂層と、この第1の樹脂層上に形成された熱可塑性の第2の樹脂フィルム層とを具備し、前記第1の樹脂層はカルボキシル基含有ラジカル共重合性単量体がグラフト重合せしめられた共重合ポリエステル樹脂と石炭酸及び/又はクレゾール系レゾール型フェノール樹脂を主成分とすることを特徴とする加工密着性および耐食性に優れた2ピース缶用フィルムラミネート鋼板。And the steel sheet, is formed on at least one surface of the steel sheet, a metal layer of chromium underlayer has a deposition amount of 30 mg / m 2 or more per one side, the upper layer adhesion of 5 to 30 mg / m 2 on one surface per reckoned as metal chromium An electrolytic chromate-treated layer of a hydrated chromium oxide layer having a quantity, a first resin layer formed on the electrolytic chromate-treated layer, and a thermoplastic second layer formed on the first resin layer. A resin film layer, and the first resin layer is mainly composed of a copolymerized polyester resin obtained by graft polymerization of a carboxyl group-containing radical copolymerizable monomer and a carboxylic acid and / or cresol-based resol type phenol resin. A film laminated steel sheet for a two-piece can excellent in processing adhesion and corrosion resistance. 前記第1の樹脂層の平均付着量が固形分濃度として50〜10000mg/mであり、その樹脂組成物の主成分はカルボキシル基含有ラジカル重合性単量体がグラフト重合せしめられた共重合ポリエステル樹脂60〜99重量部と石炭酸及び/又はクレゾール系レゾール型フェノール樹脂1〜40重量部からなることを特徴とする請求項1に記載の加工密着性および耐食性に優れた2ピース缶用フィルムラミネート鋼板。The average adhesion amount of the first resin layer is 50 to 10,000 mg / m 2 as a solid content concentration, and the main component of the resin composition is a copolymerized polyester in which a carboxyl group-containing radical polymerizable monomer is graft-polymerized. The film-laminated steel sheet for two-piece cans having excellent work adhesion and corrosion resistance according to claim 1, comprising 60 to 99 parts by weight of resin and 1 to 40 parts by weight of carboxylic acid and / or cresol-based resol type phenol resin. . 前記熱可塑性の第2の樹脂フィルム層が、厚さ10μm以上のポリエステル系樹脂フィルム層であることを特徴とする請求項1または2に記載の加工密着性および耐食性に優れた2ピース缶用フィルムラミネート鋼板。The two-piece can film having excellent work adhesion and corrosion resistance according to claim 1 or 2, wherein the second thermoplastic resin film layer is a polyester resin film layer having a thickness of 10 µm or more. Laminated steel sheet.
JP415599A 1999-01-11 1999-01-11 Film laminated steel sheet for 2-piece cans with excellent processing adhesion and corrosion resistance Expired - Fee Related JP3780111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP415599A JP3780111B2 (en) 1999-01-11 1999-01-11 Film laminated steel sheet for 2-piece cans with excellent processing adhesion and corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP415599A JP3780111B2 (en) 1999-01-11 1999-01-11 Film laminated steel sheet for 2-piece cans with excellent processing adhesion and corrosion resistance

Publications (2)

Publication Number Publication Date
JP2000202944A JP2000202944A (en) 2000-07-25
JP3780111B2 true JP3780111B2 (en) 2006-05-31

Family

ID=11576873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP415599A Expired - Fee Related JP3780111B2 (en) 1999-01-11 1999-01-11 Film laminated steel sheet for 2-piece cans with excellent processing adhesion and corrosion resistance

Country Status (1)

Country Link
JP (1) JP3780111B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4910273B2 (en) * 2003-09-12 2012-04-04 東洋紡績株式会社 Film for covering squeezed iron cans, aluminum plate for squeezed iron cans using the same, and squeezed iron cans
US8871351B2 (en) 2006-02-09 2014-10-28 Toyo Seikan Kaisha, Ltd. Easy-open end
CN101394999A (en) * 2006-03-06 2009-03-25 东洋制罐株式会社 Easy-open lid having excellent high-temperature openability
JP4646966B2 (en) * 2007-12-13 2011-03-09 日本パーカライジング株式会社 Metal surface treatment agent, surface treatment method of metal material, and surface treatment metal material

Also Published As

Publication number Publication date
JP2000202944A (en) 2000-07-25

Similar Documents

Publication Publication Date Title
JP6812968B2 (en) Surface-treated metal plate and organic resin-coated surface-treated metal plate
EP3205494B1 (en) Coated metal plate and organic resin-coated coated metal plate
JP3780111B2 (en) Film laminated steel sheet for 2-piece cans with excellent processing adhesion and corrosion resistance
JP5311266B2 (en) Resin-coated seamless aluminum can with excellent corrosion resistance and adhesion
JP3926052B2 (en) Film laminated steel sheet for 2-piece cans with excellent processing adhesion and corrosion resistance
EP1939100B1 (en) Easy open lid
JP2010234750A (en) Laminated metal sheet for container
JP4984812B2 (en) Easy open lid
JP4090794B2 (en) Resin-laminated metal plate with excellent flavor
WO2019077746A1 (en) Organic resin coated surface-treated metal plate
JP4278272B2 (en) Film-coated two-piece can
JP3791278B2 (en) Polyester resin laminated steel sheet
JPH11276984A (en) Surface-treated steel sheet for film-laminated two-piece can excellent in worked adhesion and corrosion resistance and its production
JPH02242738A (en) Can formed of laminated tin plate material
JP3282994B2 (en) Surface treatment method of steel sheet, surface treated steel sheet, and thermoplastic resin coated steel sheet using the surface treated steel sheet
JP3218925B2 (en) Surface-treated steel sheet for painted or film-laminated two-piece can with excellent work adhesion and work corrosion resistance, and method for producing the same
JP3218923B2 (en) Surface-treated steel sheet for painted or film-laminated two-piece can with excellent work adhesion and work corrosion resistance, and method for producing the same
JP2934182B2 (en) Resin coated metal plate for thinned deep drawn cans
JP2001253032A (en) Thermoplastic resin film, thermoplastic resin film-coated metal plate and can using the same
JPH07242714A (en) Water-based resin dispersion
JP3147716B2 (en) Surface-treated steel sheet for painted or film-laminated two-piece can with excellent work adhesion and work corrosion resistance, and method for producing the same
JP3218926B2 (en) Surface-treated steel sheet for painted or film-laminated two-piece can with excellent work adhesion and work corrosion resistance, and method for producing the same
JP2003253466A (en) Polyester resin-coated tin alloy plated steel sheet
JP3218924B2 (en) Surface-treated steel sheet for painted or film-laminated two-piece can with excellent work adhesion and work corrosion resistance, and method for producing the same
JP2001303273A (en) Surface treated aluminum sheet with resin coating for drawing and ironing and container for capacitor package using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060306

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees