JP3779192B2 - Method and apparatus for producing long fiber reinforced resin foam - Google Patents

Method and apparatus for producing long fiber reinforced resin foam Download PDF

Info

Publication number
JP3779192B2
JP3779192B2 JP2001327967A JP2001327967A JP3779192B2 JP 3779192 B2 JP3779192 B2 JP 3779192B2 JP 2001327967 A JP2001327967 A JP 2001327967A JP 2001327967 A JP2001327967 A JP 2001327967A JP 3779192 B2 JP3779192 B2 JP 3779192B2
Authority
JP
Japan
Prior art keywords
mold
stock solution
long fiber
resin stock
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001327967A
Other languages
Japanese (ja)
Other versions
JP2003127164A (en
Inventor
匠 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2001327967A priority Critical patent/JP3779192B2/en
Publication of JP2003127164A publication Critical patent/JP2003127164A/en
Application granted granted Critical
Publication of JP3779192B2 publication Critical patent/JP3779192B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、複数本の長繊維束に発泡性熱硬化性樹脂原液を付着させて合流させた後、発泡・硬化させる繊維補強樹脂成形品の製造方法及び製造装置に関する。
【0002】
【従来の技術】
熱硬化性樹脂発泡体の曲げ強度等を高めるために、長繊維束により熱可塑性樹脂発泡体を補強した成形品が従来より様々な用途で用いられている。
【0003】
このような補強樹脂成形品の製造方法の一例が特開平10−119141号公報に開示されている。
図13は、この先行技術に開示されている繊維補強樹脂成形品製造装置の要部を示す縦断面図である。
【0004】
樹脂原液含浸領域Aと、樹脂原液含浸領域Aの下部に連ねられた樹脂原液含浸繊維収束領域Bとが備えられている。この2つの領域A,Bは、円柱状部分と、その下方の円錐状部分を有する内型91と、内型91の周囲の外型92との間隙により構成されている。
【0005】
領域Aには、型間間隙上端部の輪状繊維導入口93と、その下部の繊維を下部に送るための筒状間隙94と、筒状間隙94の下部の樹脂原液溜まり用兼樹脂原液含浸用輪状間隙95と、間隙95へ樹脂原液を送るための注入管96と、樹脂原液含浸繊維を間隙95から下部の領域Bへ送り込むための輪状樹脂原液溜まり出口97とが設けられている。他方、領域Bには、内型91の錐状部分の先端99方向に向かって厚みが漸増するように間隙98が設けられている。
【0006】
この装置を用い、複数本の繊維Fが繊維導入口93に輪状に送り込まれる。筒状間隙94を通して繊維Fが輪状間隙95内に導かれると、輪状間隙95に溜められていた樹脂原液Lが繊維Fに含浸される。次に、輪状樹脂原液溜まり出口97から樹脂原液含浸繊維F/Lが引き抜かれるとともに収束され、樹脂原液が含浸された繊維束が引き抜かれる。この樹脂原液が含浸された繊維束の樹脂原液を硬化させることにより、長繊維強化樹脂成形体が得られる。
【0007】
しかしながら、上記先行技術に記載の装置では、以下のような問題があった。(1)樹脂原液Lとして、通常、熱硬化性樹脂組成物が用いられるが、長期間に渡り製造装置が用いられると、間隙95に付着した樹脂が硬化して堆積し、間隙95を閉塞することがあった。従って、比較的短期間で運転を停止し、間隙95内を清掃しなければならなかった。しかしながら、運転を停止しただけでは清掃は困難であり、その度に、内型91と外型92と注入管とを解体しなければならず、清掃作業が非常に煩雑であった。
【0008】
また、上記装置に複数本の長繊維束を導入する直前に、複数本の長繊維束を輪状に配置しなければならない。このために、図14に示すような配列板151を用いなければならない。配列板151では、複数の穴152が周方向に沿って分散配置されている。複数個の穴152にそれぞれ長繊維束が導入される。ところが、開繊し易い長繊維束を用いた場合には、配列板151を用いた配列の際に繊維が毛羽立ち、配列板151において詰まりや切断が生じたりする恐れがある。そこで、使用する長繊維束としては、ある程度集束性の強いものを用いる必要があった。
【0009】
ところが、強く集束された長繊維束を用いて上記先行技術に記載の繊維補強樹脂成形品製造装置により成形を行った場合、開繊不足により長繊維束に樹脂が十分に浸透され難い。そのため、長繊維束が保持し得る樹脂の量が少なくなり、発泡成形型内において、樹脂が垂れ、垂れた樹脂が異常発泡し、成形型の入口側に逆流する恐れがあった。
【0010】
また、上記先行技術に記載の繊維補強樹脂成形品製造装置では、図13に示されている含浸型を上下方向に配置して利用しなければならなかった。すなわち、含浸型を横向きに配置した場合には、樹脂が自重で下方に移動し、輪状の間隙部に樹脂原液が均一に溜まり難くなる。従って、樹脂原液の分散性が低下し、長繊維束に樹脂原液を均一に含浸させることができない。
【0011】
【発明が解決しようとする課題】
本発明は、上述した従来技術の欠点を解消し、強く集束された長繊維束を用いた場合であっても、該長繊維束を開繊させつつ発泡性樹脂原液を十分にかつ均一に含浸させることができ、長期間に渡って連続的に成形を行うことができ、さらに樹脂原液含浸型を縦向き及び横向きのいずれにも配置し得る繊維補強樹脂成形品の製造方法及び製造装置を提供することにある。
【0012】
【課題を解決するための手段】
本発明に係る繊維補強樹脂成形品の製造方法は、複数本の長繊維束に熱硬化性発泡樹脂原液を含浸させ、該複数本の長繊維束を束ね、発泡・硬化させて繊維補強樹脂成形品を製造する方法であって、複数本の長繊維束を樹脂原液含浸型の内型と筒状の外型との間にできる輪状の間隙に導入し、複数本の長繊維束を輪状に配列する工程と、前記内型の外周面及び/または外型の内周面に周方向に延びる環状突起が形成されており、該環状突起により長繊維束を開繊する工程と、前記環状突起よりも下流において内型の外周壁面に設けられた複数の樹脂原液吐出口から樹脂原液を吐出し、複数本の長繊維束に樹脂原液を付着させる工程と、前記樹脂原液が付着された複数本の長繊維束を樹脂原液含浸型内または外部で合流させる工程と、前記内型と外型とからなる樹脂原液含浸型の下流に配置されており、合流された複数本の前記長繊維束と同じ方向に移動される筒状の可動成形型に導き、前記樹脂原液を発泡・硬化させ、長繊維強化樹脂発泡体を成形する工程とを備える。
【0013】
本発明に係る製造方法の特定の局面では、前記内型及び/または外型が前記外型及び内型の中心軸周りに回転され、それによって、開繊工程において長繊維束がより確実に開繊され、かつ発泡性樹脂原液が長繊維束にさらに確実に含浸される。
【0014】
本発明に係る製造方法のさらに他の特定の局面では、前記内型の中心軸が、前記樹脂含浸型の中心軸に対して傾けられた状態で前記内型が回転される。この場合には、輪状の間隙の大きさが周方向に沿って変化することになり、さらに効果的に長繊維束の開繊及び樹脂原液の含浸が行われる。
【0015】
本発明に係る長繊維強化樹脂発泡体の製造装置は、内型と、筒状の外型とを有し、内型と外型との間の輪状の間隙に複数本の長繊維束が導かれる樹脂原液含浸型と、前記樹脂原液含浸型の下流に配置されており、樹脂原液が付着されかつ合流された複数本の長繊維束の移動速度と略同一の速度で同方向に移動するように構成されており、かつ筒状の成形空間を有する可動成形型とを備え、前記樹脂原液含浸型の前記輪状の間隙の上流側部分に、内型の外周面及び/または外型の内周面に、周方向に延びる開繊用の環状突起が形成されており、前記環状突起が設けられている部分よりも下流側において、内型の外周面に発泡性樹脂原液を吐出するための複数の樹脂原液吐出口が形成されていることを特徴とする。
【0016】
本発明に係る製造装置のある特定の局面では、前記樹脂原液含浸型の内型及び/または外型を回転させるための回転駆動源がさらに備えられる。それによって、開繊工程において長繊維束がより確実に開繊され、かつ発泡性樹脂原液が長繊維束にさらに確実に含浸される。
【0017】
本発明に係る製造装置のさらに他の特定の局面では、前記樹脂原液含浸型の中心軸に対して内型の中心軸が傾けられた状態で回転されるように前記回転駆動源が内型に連結されていることを特徴とする。この場合には、輪状の間隙の大きさが周方向に沿って変化することになり、さらに効果的に長繊維束の開繊及び樹脂原液の含浸が行われる。
【0018】
【発明の実施の形態】
以下、図面を参照しつつ、本発明の具体的な実施形態につき説明する。
図1〜3を参照して、本発明の一実施形態に係る繊維補強樹脂成形品の製造装置及び製造方法を説明する。
【0019】
本実施形態の製造装置は、図3に略図的に示す樹脂原液含浸型1と、樹脂原液含浸型1の下流に配置された可動金型2とを有する。
樹脂原液含浸型1には、複数本の長繊維束3が供給され、樹脂原液含浸型1内において熱硬化性発泡性樹脂原液が含浸され、かつ樹脂原液が含浸された複数本の長繊維束が樹脂原液含浸型1内あるいは樹脂原液含浸型1から排出された領域において合流される。また、樹脂原液が含浸されかつ合流された複数本の長繊維束が、該複数本の長繊維束と同一速度で複数本の長繊維束と同じ方向に移動し得るように構成された可動金型2内に導かれる。可動金型2内において、樹脂原液が含浸されかつ合流された複数本の長繊維束が所定の断面形状を有するように成形されかつ発泡・硬化される。
【0020】
上記樹脂原液含浸型1を、図1及び図2を参照して説明する。図1に縦断面図で示すように、樹脂原液含浸型1は、筒状の外型4と、外型4内に配置された内型5とを有する。本実施形態では、外型4は下流に行くに連れて径が小さくなるような略円筒状の形状を有する。外型4と内型5との間に、輪状の間隙Aが構成されている。この輪状の間隙Aに複数本の長繊維束3が導かれる。すなわち、図1において、輪状の間隙Aの上端側から複数本の長繊維束3が挿入される。複数本の長繊維束3を間隙Aに導くについては、それに先立って、例えば図14に示したような配列板151が適宜用いられる。もっとも、配列板151を用いることなく、複数本の長繊維束3を間隙Aの周方向に沿って均一に分散配置しつつ間隙Aに挿入してもよい。
【0021】
間隙Aの上流側部分においては、内型5の外周面に、環状突起6が形成されている。環状突起6は、環状突起6が設けられている部分において、間隙Aの大きさを薄くするために設けられている。環状突起6が設けられている部分を通過する際に、長繊維束3には、長繊維束3の延びる方向と直交する方向に力が加えられ、それによって長繊維束3が開繊される。
【0022】
すなわち、環状突起6は開繊作用を果たすために設けられているために、環状突起6の突出量は挿入される長繊維束3の径よりも環状突起6が設けられている部分における間隙Aの大きさが小さくなるように選ばれる。もっとも、内型5の中心軸を傾けて内型5を回転させる場合には、間隙Aの大きさは、必ずしも長繊維束3の径より小さい必要はない。
【0023】
なお、本実施形態では、一つの環状突起6が内型5の外周面に設けられているが複数の環状突起が内型5の外周面に設けられてもよい。また、内型5の外周面ではなく、外型4の内周面に環状突起が設けられてもよく、内型5の外周面及び外型4の内周面の双方に環状突起が設けられてもよい。
【0024】
次に、環状突起6が設けられている部分よりも下流側においては、内型5の外周面に複数個の樹脂原液吐出口7が設けられている。樹脂原液吐出口7は、内型5の外周面において周方向に均一に分散配置されている。また、複数の樹脂原液吐出口7は、内型5内に形成された樹脂原液流路8に連ねられている。樹脂原液流路8は、内型5の上面に至るように形成されており、かつ内型5外に配置された樹脂原液注入装置に連結されている。すなわち、樹脂原液注入装置から発泡性熱硬化性樹脂原液Lが内型5の樹脂原液流路8に流入され、樹脂原液吐出口7から吐出される。
【0025】
樹脂原液流路8は、内型5の上面から下方に延びる垂直流路部分8aと、垂直流路部分8aの下端から水平方向に延び、かつ樹脂原液吐出口7に通じる水平流路部分8bとを有する。従って、樹脂原液Lは、樹脂原液吐出口7から、内型5の径方向外側に向かって吐出されることになる。
【0026】
よって、環状突起6が形成されている部分を通過することにより開繊された長繊維束3に、発泡性熱硬化性樹脂原液Lが吐出され、含浸される。この場合、内型5及び外型4のいずれにも、樹脂原液溜まり部が形成されていないので、発泡性熱硬化性樹脂原液Lは間隙Aに堆積し難い。
【0027】
樹脂原液吐出口7が設けられている部分よりも下流側においては、内型5の外径及び外型4の内径、すなわち輪状の間隙の径が徐々に下流に向かうに連れて小さくなるように構成されている。従って、発泡性熱硬化性樹脂原液Lが含浸された複数本の長繊維束3が下流に向かうに連れて近接される。本実施形態では、近接された複数本の長繊維束3が、樹脂原液含浸型1から吐出された後に、図1に示されているように合流され、長繊維結束束3Aが形成される。なお、樹脂原液含浸型内で複数本の長繊維束3が合流されてもよい。また、樹脂原液含浸型内で輪状の間隙の径は必ずしも下流側に向かうに連れて小さくされずともよく、円筒状であってもよい。その場合には、含浸型外で長繊維束を近接・合流させればよい。
【0028】
樹脂原液Lは、樹脂原液吐出口7から吐出されるので、内型5の外周面及び外型4の内周面に滞溜せず、長繊維束3に含浸されかつ長繊維束3と共に下流側に移動する。
【0029】
図4は、上記のようにして得られた長繊維結束束3Aを発泡成形するための可動金型2の詳細を示す。樹脂原液含浸型1の下流に、複数のエンドレスベルト11からなる可動金型2が配置されている。可動金型2においては、最終的に得られる成形体が矩形の断面を有するように、横断面が矩形の成形空間が複数のエンドレスベルト11により構成されている。このエンドレスベルト11は、上記成形空間を構成するために設けられているものであるが、可動金型2の下流に配置された引取機12により最終的に得られた繊維補強樹脂成形品13を引き取る速度と略同一の速度で移動される。
【0030】
また、可動金型2は図示しない加熱源により加熱され、従って、可動金型2内を長繊維結束束3Aが通過する際に、長繊維束に含浸された発泡性熱硬化性樹脂原液が発泡し、硬化されると共に、上記エンドレスベルト11により構成された成形空間の断面形状を有するように成形される。その結果、横断面が矩形の繊維補強樹脂成形品13が得られ、引取機12で引き取られる。
【0031】
上記のように、本実施形態の製造装置及び製造方法では、含浸型1において環状突起6が設けられていることにより、長繊維束が確実に開繊される。従って、樹脂原液吐出口7から発泡性熱硬化性樹脂原液Lを吐出した場合、長繊維束に樹脂原液が確実に含浸される。また、樹脂原液吐出口からは内型5の横断面の径方向外側に向かって樹脂原液Lが吐出されるので、内型5の外周面及び外型4の内周面に樹脂原液Lが滞溜し難い。従って、発泡性熱硬化性樹脂が堆積し難いため、長期間に渡り連続操業を行うことができる。
【0032】
図5及び図6は、本実施形態の要部を説明するための略図的部分切欠断面斜視図及び図5のB−B線に沿う、但し長繊維束3を略した略図的横断面図である。なお、理解を容易とするために、内型5は縦割りにされた状態で略図的に示されている。
【0033】
本実施形態の製造装置では、内型5の回転駆動源21が連結されている。回転駆動源21は、図示のように、含浸型1の中心軸に対して内型5の中心軸を傾けた状態でかつ内型5の下端に比べて、上端が大きな径で回転されるように構成されている。このように、内型5を回転させることにより、図6に略図的横断面図で示すように、間隙Aの大きさが薄くなる部分が周方向に移動することになる。そのため、より大きな開繊効果が発揮される。また、樹脂原液Lが含浸された長繊維束が揉み込まれることになるため、樹脂原液Lを長繊維束3Aに一層確実に含浸させることができる。
【0034】
なお、図5に示した装置では、内型5の中心軸が回転駆動源21により含浸型1の中心軸に対して傾けられた状態で内型5が回転されていたが、内型5は含浸型1の中心軸周りに回転されてもよく、その場合であっても、内型5の回転により、環状突起6による開繊効果及び樹脂原液が含浸された長繊維束を揉み込むことによる含浸効果は得られる。もっとも、好ましくは、上記のように内型5の中心軸を傾けた状態で内型5を回転させることが望ましい。
【0035】
また、上記実施形態では、内型5を回転させたが、内型5及び外型4のいずれをも回転させずともよく、その場合においても環状突起6の存在により長繊維束が開繊され、本発明による効果を得ることができる。
【0036】
また、上記実施形態では、内型5が回転駆動源21に連結されて回転されていたが、逆に外型4を回転駆動源に連結し、内型を固定し、外型4を回転させてもよく、内型5及び外型4の双方を周方向または逆方向に回転させてもよい。なお、内型5及び外型4を含浸型1の中心軸から傾けた状態で回転させる場合には、間隙Aの空間率がもっとも小さい所が10%以上、かつ空間率のもっとも高い部分が90%を超えないようにすることが望ましい。なお、空間率とは、間隙Aの堆積から挿入されている長繊維束の合計の堆積及び吐出された発泡性熱硬化性樹脂原液の堆積を除いた容積の、間隙Aの堆積に対する割り合いを言うものとする。
【0037】
また、内側5または外型4を含浸型1の中心軸から傾けて回転させる場合には、上記空間率は、長繊維束の延びる方向に直交する断面における平均の空間率を言うものとする。
【0038】
好ましくは、間隙Aの断面積は樹脂原液吐出口よりも下流においては、下流に向かうに連れて小さくなるように構成される。それによって、含浸型1の出口側に向かう樹脂原液の流れ出しを抑制することができる。従って、含浸型1の出口における間隙Aの断面積は、樹脂原液吐出口が設けられている部分の間隙Aの断面積の25〜95%となるように、樹脂原液吐出口が設けられている部分から下流に向かって間隙Aの断面図が徐々に小さくなるように構成されていることが望ましい。もっとも、含浸型1の出口においては、長繊維束3の繊維方向に垂直な断面の平均の空間率が0を下回ると、樹脂が上流に逆流する恐れがある。従って、含浸型1の出口においては、空間率は0を下回らないことが望ましい。
【0039】
環状突起6は、長繊維束を開繊させるために設けられている。従って、環状突起6においては、間隙Aにおける空間率が5%以下となるように構成されていることが望ましい。また、内型5または外型4を偏芯して回転させる場合には、間隙Aがもっとも薄くなる部分における空間率が5%以下となるように環状突起6を構成することが望ましい。
【0040】
もっとも、環状突起6が設けられている部分においては、空間率を求める場合、環状突起6の堆積は間隙Aの堆積には含めないものとする必要がある。
環状突起6を構成する材料は、特に限定されず、内型5または外型4と同一材料で構成されてもよい。もっとも、開繊効果をより効果的に発現させるには、天然ゴムやエラストマーなどの摩擦性に優れた材料により環状突起6を構成することが好ましい。また、環状突起6の形状についても、長繊維束の種類に応じて格子状などの様々な形状とすることができる。
【0041】
樹脂原液吐出口7が設けられている部分における間隙Aの空間率は0〜40%、上記のように内型5または外型4を含浸型1の中心軸から傾けて回転させる場合には、0〜80%が好ましい。
【0042】
内型5または外型4を回転させる場合の回転速度については、環状突起6の形状及び寸法、使用される長繊維束3及び発泡性樹脂原液の種類によっても異なるが、10rpm〜600rpm程度が好ましい。
【0043】
樹脂原液吐出口7からの樹脂原液の吐出速度については、長繊維束3に樹脂原液を確実に含浸され得る限り特に限定されないが、好ましくは吐出速度を高めて確実に含浸する方法、あるいは樹脂原液吐出口7が設けられている部分における間隙Aの厚みを薄くしかつ樹脂原液吐出口を多数設ける方法が好適に設けられる。前者の場合には、樹脂原液吐出速度は5〜200m/秒程度、後者の場合には、0.3〜200m/秒程度とすればよい。
【0044】
なお、可動金型2については、エンドレスベルト11を用いたものに限らず、スラットなどを用いたものであってもよい。また、可動金型2内に加熱装置は必ずとも設けられずともよい。すなわち、溶融された樹脂原液が保有する熱量により発泡・硬化を行ってもよい。
【0045】
また、本発明において用いられる発泡性熱硬化性樹脂原液としては、反応前に液状である熱硬化性樹脂と発泡剤とを含む適宜の発泡性熱硬化性樹脂原液を用いることができる。例えば、ウレタン系樹脂、不飽和ポリエステル系樹脂、エポキシ系樹脂、ジアリルフタレート系樹脂、フェノール系樹脂などの熱硬化性樹脂を用いることができ、発泡剤についても公知の熱分解型発泡剤を用いることができる。もっとも、発泡性熱硬化性樹脂原液の粘度が高すぎると長繊維束に含浸し難くなるので、発泡性熱硬化性樹脂原液の粘度は含浸時の温度において10000cps以下が好ましく、より好ましくは3000cps以下である。
【0046】
本発明において用いられる長繊維束については、特に限定されず、モノフィラメント、フィブリル(髭状に繊維が突き出たもの)化繊維素、織り糸などの様々な繊維が束ねられたものが用いられる。また、長繊維束を構成する長繊維束の材質についても、ガラス、炭素、有機繊維など適宜のものが用いられる。好ましくは、補強効果を高める上で、ガラスまたは炭素からなる繊維が好適である。
【0047】
次に、具体的な実施例を説明する。
【0048】
(実施例1)
長繊維束として、13800番手のEガラス繊維を撚り、弱く巻き取ったものを用いた(セントラルガラス社製、ガラスロービングERS13800−811)
また、発泡性樹脂原液として、以下の組式となるように以下の材料を用意した。
【0049】
(1)ポリオールプレミックス溶液
住化バイエルン社製、品番:スミフェン1703…100重量部
東レダウシリコーン社製、品番:SRX295…2重量部
三共有機合成社製、品番:SCAT−31A…0.175重量部
水…0.6重量部
【0050】
(2)MDI
住化バイエルン社製、品番:スミジュール44v20
【0051】
前述した図1に示した実施例の含浸型1と同様に構成されており、内型及び外型の寸法が図7及び図8に示す大きさとされている樹脂原液含浸型を用いた。この樹脂原液含浸型に、上記長繊維束300本を送り込み、上記MDIとプレミックス溶液とを重量比で1.1対1で混合してなる発泡性熱硬化性樹脂原液を注入器により注入した。内型5は300rpmでかつ、その中心軸を樹脂原液含浸型1の中心軸から傾けて回転させた。上記樹脂原液含浸型1内に長繊維束と樹脂原液が重量比で1対1となるようにこれらを供給し、3m/分の速度で引き取り、樹脂原液含浸型1の下流に配置された80℃の温度に設定された可動金型にて発泡・硬化成形し、断面形状が幅200mm×厚み56mmの矩形であり、比重が0.74の長繊維束補強樹脂成形品を得た。
【0052】
(実施例2)
樹脂原液含浸型の内型及び外型の寸法を図9及び図10に変更したこと、内型5を含浸型1の中心軸周りに回転させたことを除いては実施例1と同様にして成形を行った。
【0053】
(実施例3)
樹脂原液と長繊維束の供給比を重量比で8対2で変更したことを除いては実施例1と同様にして成形を行った。
【0054】
(比較例)
図11〜図12に示すように、内型に環状突起が設けられていない含浸型を用い、かつ内型を回転させなかったことを除いては、実施例1と同様にして成形を行った。
【0055】
実施例1〜3及び比較例で得られた各成形体から幅25mm×厚み28mm×長さ50mmの試験片を切断し、成形体の横断面方向における比重分布を測定した。結果を下記の表1に示す。
【0056】
【表1】

Figure 0003779192
表1から明らかなように、比較例で得られた成形品では、比重分布が0.74±0.18であるのに対し、実施例1〜3では、比重分布の幅がこれより狭く、特に、内型を含浸型1の中心軸から傾けて回転させた実施例1及び3では、比重分布範囲のむらがより一層小さくなっていることがわかる。また、実施例1〜3では、3日以上の連続操業を行った場合でも、熱硬化性樹脂の堆積による操業の停止を行う必要がなかった。
【0057】
【発明の効果】
本発明に係る製造方法では、樹脂原液含浸型内において、樹脂原液吐出口から径方向外側に向かって樹脂原液吐出されるので、また内型及び外型に樹脂原液溜まり部を設ける必要がないため、発泡性熱硬化性樹脂原液が樹脂原液含浸型内に滞溜し難い。従って、長期間に渡り連続操業を行うことができ、長繊維強化樹脂発泡体の生産性を高めることができる。加えて、樹脂原液吐出口よりも上流側において、内型の外周面及び外型の内周面の少なくとも一方に環状突起が形成されており、それによって長繊維束が環状突起を通過する際に開繊される。よって、樹脂原液が開繊された長繊維束に確実に含浸され、長繊維束が均一に分散された長繊維強化樹脂発泡体を確実に得ることが可能となる。
【0058】
また、本発明に係る繊維補強樹脂成形品の製造方法及び製造装置では、発泡性熱硬化性樹脂原液は、吐出口から径方向外側に吐出されるものであるため、樹脂原液含浸型は、縦方向に配置されてもよく、横方向に配置されてもよい。従って、長繊維強化樹脂発泡体の製造スペースの低減を図ることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る長繊維強化樹脂発泡体の製造装置の用具を示す縦断面図。
【図2】図1のX−X線に沿う略図的断面図。
【図3】本発明の一実施形態に係る長繊維強化樹脂発泡体の製造装置の概略構成図。
【図4】本発明の一実施形態で用いられる可動金型を説明するための略図的斜視図。
【図5】本発明の一実施形態に係る長繊維強化樹脂発泡体の樹脂原液含浸型内型の回転方法を説明するための略図的部分断面斜視図。
【図6】図5のB−B線に沿う部分の略図的断面図。
【図7】実施例1で用いられる内型を示す縦断面図。
【図8】実施例1で用いられる樹脂原液含浸型を示す縦断面図。
【図9】実施例2で用いられる内型を示す縦断面図。
【図10】実施例2で用いられる樹脂原液含浸型を説明するための縦断面図。
【図11】比較例で用いられる内型を示す縦断面図。
【図12】比較例で用いられる樹脂原液含浸型を説明するための縦断面図。
【図13】従来の繊維補強樹脂成形品の製造装置の要部を示す縦断面図。
【図14】従来の繊維補強樹脂成形品の製造装置で用いられる配列板を示す平面図。
【符号の説明】
1…樹脂原液含浸型
2…可動金型
3…長繊維束
3A…合流された長繊維束
4…外型
5…内型
6…環状突起
7…樹脂原液吐出口
8…樹脂原液流路
11…エンドレスベルト
12…引取機
13…繊維補強樹脂成形品
21…回転駆動源[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus for manufacturing a fiber-reinforced resin molded article in which a foamable thermosetting resin stock solution is attached to and merged with a plurality of long fiber bundles and then foamed and cured.
[0002]
[Prior art]
In order to increase the bending strength and the like of the thermosetting resin foam, molded products obtained by reinforcing the thermoplastic resin foam with long fiber bundles have been used for various purposes.
[0003]
An example of a method for producing such a reinforced resin molded product is disclosed in Japanese Patent Laid-Open No. 10-119141.
FIG. 13: is a longitudinal cross-sectional view which shows the principal part of the fiber reinforced resin molded product manufacturing apparatus currently disclosed by this prior art.
[0004]
A resin stock solution impregnation region A and a resin stock solution impregnated fiber convergence region B connected to the lower part of the resin stock solution impregnation region A are provided. These two regions A and B are constituted by a gap between a cylindrical portion, an inner die 91 having a conical portion below it, and an outer die 92 around the inner die 91.
[0005]
In the region A, a ring-shaped fiber introduction port 93 at the upper end of the gap between the molds, a cylindrical gap 94 for sending the fibers below the lower part, and a resin stock solution reservoir and a resin stock solution impregnation at the lower part of the cylindrical gap 94 An annular gap 95, an injection pipe 96 for sending the resin stock solution to the gap 95, and an annular resin stock solution reservoir outlet 97 for sending the resin stock solution-impregnated fiber from the gap 95 to the lower region B are provided. On the other hand, in the region B, a gap 98 is provided so that the thickness gradually increases in the direction of the tip 99 of the conical portion of the inner mold 91.
[0006]
Using this apparatus, a plurality of fibers F are fed into the fiber introduction port 93 in a ring shape. When the fiber F is guided into the annular gap 95 through the cylindrical gap 94, the fiber F is impregnated with the resin stock solution L stored in the annular gap 95. Next, the resin stock solution-impregnated fiber F / L is drawn out from the annular resin stock solution accumulation outlet 97 and converged, and the fiber bundle impregnated with the resin stock solution is drawn out. By curing the resin stock solution of the fiber bundle impregnated with this resin stock solution, a long fiber reinforced resin molded product is obtained.
[0007]
However, the apparatus described in the above prior art has the following problems. (1) A thermosetting resin composition is usually used as the resin stock solution L. However, when a manufacturing apparatus is used for a long period of time, the resin adhering to the gap 95 is cured and deposited, and the gap 95 is blocked. There was a thing. Therefore, the operation has to be stopped in a relatively short period of time and the inside of the gap 95 has to be cleaned. However, cleaning is difficult only by stopping the operation, and the inner mold 91, the outer mold 92, and the injection pipe must be disassembled each time, and the cleaning work is very complicated.
[0008]
Moreover, immediately before introducing a plurality of long fiber bundles into the apparatus, the plurality of long fiber bundles must be arranged in a ring shape. For this purpose, an array plate 151 as shown in FIG. 14 must be used. In the array plate 151, a plurality of holes 152 are dispersedly arranged along the circumferential direction. Long fiber bundles are introduced into the plurality of holes 152, respectively. However, when a long fiber bundle that is easy to open is used, there is a risk that the fibers fluff when arranged using the array plate 151, and the array plate 151 may be clogged or cut. Therefore, as the long fiber bundle to be used, it was necessary to use a bundle having a certain degree of convergence.
[0009]
However, when molding is performed using the fiber-reinforced resin molded product manufacturing apparatus described in the above-mentioned prior art using a strongly bundled long fiber bundle, the resin is not easily penetrated into the long fiber bundle due to insufficient opening. Therefore, the amount of the resin that can be held by the long fiber bundle is reduced, and there is a possibility that the resin drips in the foaming mold, the drooping resin abnormally foams, and flows back to the inlet side of the mold.
[0010]
Moreover, in the fiber reinforced resin molded product manufacturing apparatus described in the above prior art, the impregnation mold shown in FIG. 13 must be arranged and used in the vertical direction. That is, when the impregnation mold is disposed sideways, the resin moves downward due to its own weight, and the resin stock solution does not easily accumulate in the annular gap. Therefore, the dispersibility of the resin stock solution is lowered, and the long fiber bundle cannot be uniformly impregnated with the resin stock solution.
[0011]
[Problems to be solved by the invention]
The present invention eliminates the disadvantages of the prior art described above, and even when a strongly bundled long fiber bundle is used, the foamed resin stock solution is sufficiently and uniformly impregnated while the long fiber bundle is opened. Provided is a method and apparatus for producing a fiber-reinforced resin molded product that can be molded continuously over a long period of time, and further can be provided with a resin stock solution-impregnated mold in either a vertical orientation or a horizontal orientation. There is to do.
[0012]
[Means for Solving the Problems]
The method for producing a fiber-reinforced resin molded article according to the present invention includes impregnating a plurality of long fiber bundles with a thermosetting foamed resin stock solution, bundling the plurality of long fiber bundles, and foaming and curing the fiber reinforced resin molding. A plurality of long fiber bundles are introduced into a ring-shaped gap formed between a resin stock solution-impregnated inner mold and a cylindrical outer mold, and the plurality of long fiber bundles are formed into a ring shape. An annular protrusion extending in the circumferential direction on the outer peripheral surface of the inner mold and / or the inner peripheral surface of the outer mold, and opening the long fiber bundle by the annular protrusion; and the annular protrusion A step of discharging the resin stock solution from a plurality of resin stock solution discharge ports provided on the outer peripheral wall surface of the inner mold downstream, and attaching the resin stock solution to a plurality of long fiber bundles, and a plurality of the resin stock solutions attached A step of joining the long fiber bundles in the resin stock solution impregnation mold or outside, and the inner mold It is arranged downstream of the resin stock solution impregnation mold consisting of the outer mold, and is led to a cylindrical movable molding die that moves in the same direction as the plurality of joined long fiber bundles, and the resin stock solution is foamed and cured And forming a long fiber reinforced resin foam.
[0013]
In a specific aspect of the manufacturing method according to the present invention, the inner mold and / or the outer mold is rotated around the central axis of the outer mold and the inner mold, thereby more reliably opening the long fiber bundle in the fiber opening process. The long fiber bundle is more reliably impregnated with the fine fiber and the foamable resin stock solution.
[0014]
In still another specific aspect of the manufacturing method according to the present invention, the inner mold is rotated in a state where the central axis of the inner mold is inclined with respect to the central axis of the resin-impregnated mold. In this case, the size of the ring-shaped gap changes along the circumferential direction, and the fiber bundles are further opened and the resin stock solution is impregnated more effectively.
[0015]
An apparatus for producing a long fiber reinforced resin foam according to the present invention has an inner mold and a cylindrical outer mold, and a plurality of long fiber bundles are introduced into a ring-shaped gap between the inner mold and the outer mold. The resin stock solution impregnated mold and the resin stock solution impregnated mold are disposed downstream of the resin stock solution impregnated mold so as to move in the same direction at substantially the same speed as the movement speed of the plurality of long fiber bundles to which the resin stock solution is adhered and joined. And a movable molding die having a cylindrical molding space, and an outer peripheral surface of the inner die and / or an inner circumference of the outer die on the upstream portion of the annular gap of the resin stock solution-impregnated die A plurality of annular protrusions for opening in the circumferential direction are formed on the surface, and the foaming resin stock solution is discharged to the outer peripheral surface of the inner mold on the downstream side of the portion where the annular protrusions are provided. The resin stock solution discharge port is formed.
[0016]
On the specific situation with the manufacturing apparatus which concerns on this invention, the rotational drive source for rotating the inner mold | type and / or outer mold | type of the said resin stock solution impregnation type | mold is further provided. Thereby, the long fiber bundle is more reliably opened in the fiber opening process, and the foamable resin stock solution is more reliably impregnated into the long fiber bundle.
[0017]
In still another specific aspect of the manufacturing apparatus according to the present invention, the rotational drive source is turned into an inner mold so that the inner mold is rotated with the central axis of the inner mold tilted with respect to the central axis of the resin stock solution-impregnated mold. It is connected. In this case, the size of the ring-shaped gap changes along the circumferential direction, and the fiber bundles are further opened and the resin stock solution is impregnated more effectively.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
With reference to FIGS. 1-3, the manufacturing apparatus and manufacturing method of the fiber reinforced resin molded product which concern on one Embodiment of this invention are demonstrated.
[0019]
The manufacturing apparatus of this embodiment includes a resin stock solution impregnation mold 1 schematically shown in FIG. 3 and a movable mold 2 disposed downstream of the resin stock solution impregnation mold 1.
A plurality of long fiber bundles 3 are supplied to the resin stock solution impregnation mold 1, and a plurality of long fiber bundles impregnated with the thermosetting foamable resin stock solution and impregnated with the resin stock solution in the resin stock solution impregnation die 1. Are merged in the resin stock solution impregnation mold 1 or in the region discharged from the resin stock solution impregnation die 1. Further, a movable metal configured such that a plurality of long fiber bundles impregnated and joined with a resin stock solution can move in the same direction as the plurality of long fiber bundles at the same speed as the plurality of long fiber bundles. Guided into the mold 2. In the movable mold 2, a plurality of long fiber bundles impregnated and joined with the resin stock solution are molded and foamed / cured so as to have a predetermined cross-sectional shape.
[0020]
The resin stock solution impregnation mold 1 will be described with reference to FIGS. 1 and 2. As shown in a longitudinal sectional view in FIG. 1, the resin stock solution-impregnated mold 1 has a cylindrical outer mold 4 and an inner mold 5 disposed in the outer mold 4. In the present embodiment, the outer mold 4 has a substantially cylindrical shape whose diameter decreases as it goes downstream. An annular gap A is formed between the outer mold 4 and the inner mold 5. A plurality of long fiber bundles 3 are guided into the annular gap A. That is, in FIG. 1, a plurality of long fiber bundles 3 are inserted from the upper end side of the annular gap A. For guiding the plurality of long fiber bundles 3 to the gap A, for example, an array plate 151 as shown in FIG. However, a plurality of long fiber bundles 3 may be inserted into the gap A while being uniformly distributed along the circumferential direction of the gap A without using the array plate 151.
[0021]
In the upstream portion of the gap A, an annular protrusion 6 is formed on the outer peripheral surface of the inner mold 5. The annular protrusion 6 is provided in order to reduce the size of the gap A in the portion where the annular protrusion 6 is provided. When passing through the portion where the annular protrusion 6 is provided, a force is applied to the long fiber bundle 3 in a direction perpendicular to the direction in which the long fiber bundle 3 extends, whereby the long fiber bundle 3 is opened. .
[0022]
That is, since the annular protrusion 6 is provided to perform the opening action, the protrusion amount of the annular protrusion 6 is larger than the gap A in the portion where the annular protrusion 6 is provided rather than the diameter of the long fiber bundle 3 to be inserted. Is selected to be small. However, when the inner mold 5 is rotated while the central axis of the inner mold 5 is inclined, the size of the gap A is not necessarily smaller than the diameter of the long fiber bundle 3.
[0023]
In the present embodiment, one annular protrusion 6 is provided on the outer peripheral surface of the inner mold 5, but a plurality of annular protrusions may be provided on the outer peripheral surface of the inner mold 5. Further, an annular protrusion may be provided on the inner peripheral surface of the outer mold 4 instead of the outer peripheral surface of the inner mold 5, and the annular protrusion is provided on both the outer peripheral surface of the inner mold 5 and the inner peripheral surface of the outer mold 4. May be.
[0024]
Next, a plurality of resin stock solution discharge ports 7 are provided on the outer peripheral surface of the inner mold 5 on the downstream side of the portion where the annular protrusion 6 is provided. The resin stock solution discharge ports 7 are uniformly distributed on the outer peripheral surface of the inner mold 5 in the circumferential direction. Further, the plurality of resin stock solution discharge ports 7 are connected to a resin stock solution flow path 8 formed in the inner mold 5. The resin stock solution flow path 8 is formed so as to reach the upper surface of the inner mold 5 and is connected to a resin stock solution injection device disposed outside the inner mold 5. That is, the foamable thermosetting resin stock solution L flows from the resin stock solution injection device into the resin stock solution flow path 8 of the inner mold 5 and is discharged from the resin stock solution discharge port 7.
[0025]
The resin stock solution flow path 8 includes a vertical flow path portion 8a extending downward from the upper surface of the inner mold 5 and a horizontal flow path portion 8b extending horizontally from the lower end of the vertical flow path portion 8a and leading to the resin stock solution discharge port 7. Have Therefore, the resin stock solution L is discharged from the resin stock solution discharge port 7 toward the radially outer side of the inner mold 5.
[0026]
Therefore, the foamable thermosetting resin stock solution L is discharged and impregnated into the long fiber bundle 3 opened by passing through the portion where the annular protrusions 6 are formed. In this case, neither the inner mold 5 nor the outer mold 4 is formed with the resin stock solution reservoir, so that the foamable thermosetting resin stock solution L is hardly deposited in the gap A.
[0027]
On the downstream side of the portion where the resin stock solution discharge port 7 is provided, the outer diameter of the inner mold 5 and the inner diameter of the outer mold 4, that is, the diameter of the ring-shaped gap gradually decrease toward the downstream. It is configured. Accordingly, the plurality of long fiber bundles 3 impregnated with the foamable thermosetting resin stock solution L are brought closer to each other toward the downstream side. In the present embodiment, a plurality of adjacent long fiber bundles 3 are discharged from the resin stock solution impregnation mold 1 and then merged as shown in FIG. 1 to form a long fiber bundle 3A. A plurality of long fiber bundles 3 may be joined in the resin stock solution impregnation mold. Further, the diameter of the annular gap in the resin stock solution impregnation mold does not necessarily have to be reduced toward the downstream side, and may be cylindrical. In that case, what is necessary is just to make a long fiber bundle adjoin and merge outside an impregnation type | mold.
[0028]
Since the resin stock solution L is discharged from the resin stock solution discharge port 7, it does not stay on the outer peripheral surface of the inner mold 5 and the inner peripheral surface of the outer mold 4, but is impregnated into the long fiber bundle 3 and downstream with the long fiber bundle 3. Move to the side.
[0029]
FIG. 4 shows the details of the movable mold 2 for foam-molding the long fiber bundle 3A obtained as described above. A movable mold 2 including a plurality of endless belts 11 is disposed downstream of the resin stock solution impregnation mold 1. In the movable mold 2, a molding space having a rectangular cross section is constituted by a plurality of endless belts 11 so that a finally obtained molded body has a rectangular cross section. The endless belt 11 is provided to constitute the molding space, and the fiber reinforced resin molded product 13 finally obtained by the take-up machine 12 disposed downstream of the movable mold 2 is used as the endless belt 11. It is moved at approximately the same speed as the take-off speed.
[0030]
The movable mold 2 is heated by a heating source (not shown). Therefore, when the long fiber bundle 3A passes through the movable mold 2, the foamable thermosetting resin stock solution impregnated in the long fiber bundle is foamed. Then, it is cured and molded so as to have a cross-sectional shape of a molding space constituted by the endless belt 11. As a result, a fiber-reinforced resin molded product 13 having a rectangular cross section is obtained and taken up by the take-up machine 12.
[0031]
As described above, in the manufacturing apparatus and the manufacturing method of the present embodiment, the long fiber bundle is reliably opened by providing the annular protrusion 6 in the impregnation mold 1. Therefore, when the foamable thermosetting resin stock solution L is discharged from the resin stock solution discharge port 7, the long fiber bundle is reliably impregnated with the resin stock solution. Further, since the resin stock solution L is discharged from the resin stock solution discharge port toward the radially outer side of the cross section of the inner mold 5, the resin stock solution L is stagnated on the outer peripheral surface of the inner mold 5 and the inner peripheral surface of the outer mold 4. It is hard to collect. Therefore, since the foamable thermosetting resin is difficult to deposit, continuous operation can be performed for a long period of time.
[0032]
5 and 6 are schematic partially cutaway sectional perspective views for explaining the main part of the present embodiment and schematic sectional views taken along the line BB in FIG. 5 except that the long fiber bundle 3 is omitted. is there. For easy understanding, the inner mold 5 is schematically shown in a vertically divided state.
[0033]
In the manufacturing apparatus of this embodiment, the rotational drive source 21 of the inner mold 5 is connected. As shown in the figure, the rotational drive source 21 is rotated with a larger diameter at the upper end compared to the lower end of the inner mold 5 with the central axis of the inner mold 5 inclined with respect to the central axis of the impregnation mold 1. It is configured. In this way, by rotating the inner mold 5, as shown in a schematic cross-sectional view in FIG. 6, a portion where the size of the gap A becomes thinner moves in the circumferential direction. Therefore, a greater opening effect is exhibited. Further, since the long fiber bundle impregnated with the resin stock solution L is swallowed, the resin stock solution L can be more reliably impregnated into the long fiber bundle 3A.
[0034]
In the apparatus shown in FIG. 5, the inner mold 5 is rotated in a state where the central axis of the inner mold 5 is inclined with respect to the central axis of the impregnation mold 1 by the rotation drive source 21. It may be rotated around the central axis of the impregnation mold 1, and even in that case, by the rotation of the inner mold 5, the opening effect by the annular protrusion 6 and the long fiber bundle impregnated with the resin stock solution are swallowed. An impregnation effect is obtained. However, it is preferable to rotate the inner mold 5 with the central axis of the inner mold 5 tilted as described above.
[0035]
Moreover, in the said embodiment, although the inner mold | type 5 was rotated, it is not necessary to rotate either the inner mold | type 5 and the outer mold | type 4, and even in that case, a long fiber bundle is opened by presence of the annular protrusion 6. The effects of the present invention can be obtained.
[0036]
In the above embodiment, the inner mold 5 is connected to the rotation drive source 21 and rotated. Conversely, the outer mold 4 is connected to the rotation drive source, the inner mold is fixed, and the outer mold 4 is rotated. Alternatively, both the inner mold 5 and the outer mold 4 may be rotated in the circumferential direction or the reverse direction. When the inner mold 5 and the outer mold 4 are rotated while being inclined from the central axis of the impregnation mold 1, the portion where the space ratio of the gap A is the smallest is 10% or more, and the portion having the highest space ratio is 90%. % Should not be exceeded. The space ratio is a ratio of the volume excluding the total accumulation of the long fiber bundles inserted from the accumulation of the gap A and the accumulation of the discharged foamable thermosetting resin stock solution to the accumulation of the gap A. Say it.
[0037]
Further, when the inner side 5 or the outer die 4 is tilted from the central axis of the impregnation die 1 and rotated, the above-mentioned space factor means an average space factor in a cross section perpendicular to the extending direction of the long fiber bundle.
[0038]
Preferably, the cross-sectional area of the gap A is configured to become smaller toward the downstream side downstream of the resin stock solution discharge port. As a result, the flow of the resin stock solution toward the outlet side of the impregnation mold 1 can be suppressed. Therefore, the resin stock solution discharge port is provided so that the cross-sectional area of the gap A at the outlet of the impregnation mold 1 is 25 to 95% of the cross-sectional area of the gap A in the portion where the resin stock solution discharge port is provided. It is desirable that the sectional view of the gap A gradually decreases from the portion toward the downstream. However, at the outlet of the impregnation mold 1, if the average space ratio of the cross section perpendicular to the fiber direction of the long fiber bundle 3 is less than 0, the resin may flow back upstream. Therefore, at the outlet of the impregnation mold 1, it is desirable that the space ratio does not fall below zero.
[0039]
The annular protrusion 6 is provided to open the long fiber bundle. Accordingly, it is desirable that the annular protrusion 6 is configured such that the space ratio in the gap A is 5% or less. Further, when the inner mold 5 or the outer mold 4 is eccentrically rotated, it is desirable that the annular protrusion 6 is configured so that the space ratio in the portion where the gap A is the thinnest is 5% or less.
[0040]
However, in the portion where the annular protrusion 6 is provided, it is necessary that the accumulation of the annular protrusion 6 is not included in the accumulation of the gap A when determining the space ratio.
The material constituting the annular protrusion 6 is not particularly limited, and may be made of the same material as the inner mold 5 or the outer mold 4. However, in order to exhibit the fiber opening effect more effectively, it is preferable that the annular protrusion 6 is made of a material having excellent friction such as natural rubber or elastomer. Also, the shape of the annular protrusion 6 can be various shapes such as a lattice shape depending on the type of the long fiber bundle.
[0041]
The space ratio of the gap A in the portion where the resin stock solution discharge port 7 is provided is 0 to 40%. When the inner mold 5 or the outer mold 4 is inclined and rotated from the central axis of the impregnation mold 1 as described above, 0 to 80% is preferable.
[0042]
The rotational speed when rotating the inner mold 5 or the outer mold 4 varies depending on the shape and size of the annular protrusion 6, the type of the long fiber bundle 3 and the foamable resin stock solution, and is preferably about 10 to 600 rpm. .
[0043]
The discharge rate of the resin stock solution from the resin stock solution discharge port 7 is not particularly limited as long as the long-fiber bundle 3 can be reliably impregnated with the resin stock solution, but preferably a method of increasing the discharge rate and reliably impregnating, or the resin stock solution A method of reducing the thickness of the gap A in the portion where the discharge port 7 is provided and providing a large number of resin stock solution discharge ports is suitably provided. In the former case, the resin stock solution discharge speed may be about 5 to 200 m / second, and in the latter case, it may be about 0.3 to 200 m / second.
[0044]
The movable mold 2 is not limited to the one using the endless belt 11 but may be one using a slat. Further, the heating device is not necessarily provided in the movable mold 2. That is, foaming and curing may be performed by the amount of heat held by the molten resin stock solution.
[0045]
In addition, as the foamable thermosetting resin stock solution used in the present invention, an appropriate foamable thermosetting resin stock solution containing a thermosetting resin and a foaming agent that are liquid before the reaction can be used. For example, thermosetting resins such as urethane resins, unsaturated polyester resins, epoxy resins, diallyl phthalate resins, phenol resins, etc. can be used, and well-known thermal decomposition type foaming agents should be used as foaming agents. Can do. However, when the viscosity of the foamable thermosetting resin stock solution is too high, it is difficult to impregnate the long fiber bundle. Therefore, the viscosity of the foamable thermosetting resin stock solution is preferably 10,000 cps or less, more preferably 3000 cps or less at the temperature at the time of impregnation. It is.
[0046]
The long fiber bundle used in the present invention is not particularly limited, and a bundle of various fibers such as monofilaments, fibrils (fibers protruding in a hook shape), and woven yarns are used. Moreover, as for the material of the long fiber bundle constituting the long fiber bundle, appropriate materials such as glass, carbon, and organic fiber are used. Preferably, a fiber made of glass or carbon is suitable for enhancing the reinforcing effect.
[0047]
Next, specific examples will be described.
[0048]
Example 1
As a long fiber bundle, twisted and weakly wound E glass fiber of 13800 count was used (Central Glass Co., Ltd., glass roving ERS13800-811).
Moreover, the following materials were prepared as foaming resin stock solution so that it might become the following assembly formulas.
[0049]
(1) Polyol premix solution
Made by Sumika Bayern, product number: Sumifen 1703 ... 100 parts by weight
Made by Toray Dow Silicone Co., Ltd., product number: SRX295 ... 2 parts by weight
Sansha Co., Ltd., product number: SCAT-31A 0.175 parts by weight
Water: 0.6 parts by weight
[0050]
(2) MDI
Product number: Sumidur 44v20 manufactured by Sumika Bayern
[0051]
A resin stock solution-impregnated mold having the same configuration as that of the impregnation mold 1 of the embodiment shown in FIG. 1 and having the inner and outer molds as shown in FIGS. 7 and 8 was used. 300 long fiber bundles were fed into the resin stock solution impregnated mold, and a foamable thermosetting resin stock solution prepared by mixing the MDI and the premix solution at a weight ratio of 1.1 to 1 was injected by an injector. . The inner mold 5 was rotated at 300 rpm and its central axis was tilted from the central axis of the resin stock solution-impregnated mold 1. The long fiber bundle and the resin stock solution are supplied into the resin stock solution impregnation mold 1 so that the weight ratio is 1: 1, taken up at a speed of 3 m / min, and disposed downstream of the resin stock solution impregnation die 1. Foaming / curing molding was performed with a movable mold set at a temperature of 0 ° C., and a long fiber bundle reinforced resin molded product having a rectangular cross section of 200 mm width × 56 mm thickness and a specific gravity of 0.74 was obtained.
[0052]
(Example 2)
Except that the dimensions of the inner and outer molds of the resin stock solution impregnation mold were changed to FIGS. 9 and 10, and the inner mold 5 was rotated around the central axis of the impregnation mold 1. Molding was performed.
[0053]
Example 3
Molding was performed in the same manner as in Example 1 except that the supply ratio of the resin stock solution and the long fiber bundle was changed to 8 to 2 in terms of weight ratio.
[0054]
(Comparative example)
As shown in FIGS. 11 to 12, molding was performed in the same manner as in Example 1 except that an impregnation mold without an annular protrusion was used on the inner mold and the inner mold was not rotated. .
[0055]
A test piece having a width of 25 mm, a thickness of 28 mm, and a length of 50 mm was cut from each molded body obtained in Examples 1 to 3 and Comparative Example, and the specific gravity distribution in the cross-sectional direction of the molded body was measured. The results are shown in Table 1 below.
[0056]
[Table 1]
Figure 0003779192
As is clear from Table 1, in the molded product obtained in the comparative example, the specific gravity distribution is 0.74 ± 0.18, whereas in Examples 1 to 3, the specific gravity distribution is narrower than this, In particular, in Examples 1 and 3 in which the inner mold is rotated while being tilted from the central axis of the impregnation mold 1, it can be seen that the unevenness of the specific gravity distribution range is further reduced. In Examples 1 to 3, even when continuous operation was performed for 3 days or more, it was not necessary to stop the operation by depositing a thermosetting resin.
[0057]
【The invention's effect】
In the production method according to the present invention, since the resin stock solution is discharged from the resin stock solution discharge port toward the radially outer side in the resin stock solution impregnation mold, it is not necessary to provide a resin stock solution reservoir in the inner mold and the outer mold. The foamable thermosetting resin stock solution is less likely to stay in the resin stock solution-impregnated mold. Therefore, continuous operation can be performed over a long period of time, and the productivity of the long fiber reinforced resin foam can be increased. In addition, an annular protrusion is formed on at least one of the outer peripheral surface of the inner mold and the inner peripheral surface of the outer mold on the upstream side of the resin stock solution discharge port, whereby the long fiber bundle passes through the annular protrusion. Opened. Therefore, it is possible to surely obtain a long fiber reinforced resin foam in which the long fiber bundle with the resin stock solution spread is reliably impregnated and the long fiber bundle is uniformly dispersed.
[0058]
In the method and apparatus for producing a fiber-reinforced resin molded product according to the present invention, the foamable thermosetting resin stock solution is discharged radially outward from the discharge port. You may arrange | position in a direction and may arrange | position in a horizontal direction. Therefore, the manufacturing space of the long fiber reinforced resin foam can be reduced.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a tool of an apparatus for producing a long fiber reinforced resin foam according to an embodiment of the present invention.
2 is a schematic cross-sectional view taken along line XX of FIG.
FIG. 3 is a schematic configuration diagram of an apparatus for producing a long fiber reinforced resin foam according to an embodiment of the present invention.
FIG. 4 is a schematic perspective view for explaining a movable mold used in one embodiment of the present invention.
FIG. 5 is a schematic partial cross-sectional perspective view for explaining a method for rotating a resin stock solution-impregnated inner mold of a long fiber reinforced resin foam according to an embodiment of the present invention.
6 is a schematic cross-sectional view of a portion along line BB in FIG.
7 is a longitudinal sectional view showing an inner mold used in Example 1. FIG.
8 is a longitudinal sectional view showing a resin stock solution impregnation mold used in Example 1. FIG.
9 is a longitudinal sectional view showing an inner mold used in Example 2. FIG.
10 is a longitudinal sectional view for explaining a resin stock solution-impregnated mold used in Example 2. FIG.
FIG. 11 is a longitudinal sectional view showing an inner mold used in a comparative example.
FIG. 12 is a longitudinal sectional view for explaining a resin stock solution-impregnated mold used in a comparative example.
FIG. 13 is a longitudinal sectional view showing a main part of a conventional apparatus for producing a fiber-reinforced resin molded product.
FIG. 14 is a plan view showing an array plate used in a conventional apparatus for producing a fiber-reinforced resin molded product.
[Explanation of symbols]
1 ... Resin stock solution impregnation type
2 ... Moveable mold
3 ... Long fiber bundle
3A ... long fiber bundles joined together
4 ... Outer mold
5 ... Inner type
6 ... Annular projection
7. Resin stock solution outlet
8 ... Resin stock solution flow path
11 ... Endless belt
12 ... take-up machine
13 ... Fiber-reinforced resin molded product
21 ... Rotation drive source

Claims (6)

複数本の長繊維束に熱硬化性発泡樹脂原液を含浸させ、該複数本の長繊維束を束ね、発泡・硬化させて繊維補強樹脂成形品を製造する方法であって、
複数本の長繊維束を樹脂原液含浸型の内型と筒状の外型との間にできる輪状の間隙に導入し、複数本の長繊維束を輪状に配列する工程と、
前記内型の外周面及び/または外型の内周面に周方向に延びる環状突起が形成されており、該環状突起により長繊維束を開繊する工程と、
前記環状突起よりも下流において内型の外周壁面に設けられた複数の樹脂原液吐出口から樹脂原液を吐出し、複数本の長繊維束に樹脂原液を付着させる工程と、
前記樹脂原液が付着された複数本の長繊維束を樹脂原液含浸型内または外部で合流させる工程と、
前記内型と外型とからなる樹脂原液含浸型の下流に配置されており、合流された複数本の前記長繊維束と同じ方向に移動される筒状の可動成形型に導き、前記樹脂原液を発泡・硬化させ、長繊維強化樹脂発泡体を成形する工程とを備える、繊維補強樹脂成形品の製造方法。
A method for producing a fiber reinforced resin molded article by impregnating a plurality of long fiber bundles with a thermosetting foamed resin stock solution, bundling the plurality of long fiber bundles, and foaming and curing the bundle.
Introducing a plurality of long fiber bundles into a ring-shaped gap formed between a resin stock solution-impregnated inner mold and a cylindrical outer mold, and arranging the plurality of long fiber bundles in a ring shape;
An annular protrusion extending in the circumferential direction is formed on the outer peripheral surface of the inner mold and / or the inner peripheral surface of the outer mold, and the step of opening the long fiber bundle with the annular protrusion;
A step of discharging the resin stock solution from a plurality of resin stock solution discharge ports provided on the outer peripheral wall surface of the inner mold downstream of the annular protrusion, and attaching the resin stock solution to the plurality of long fiber bundles;
A step of merging a plurality of long fiber bundles to which the resin stock solution is adhered in or outside the resin stock solution impregnation mold; and
The resin stock solution is arranged downstream of the resin stock solution impregnated mold composed of the inner mold and the outer mold, and is guided to a cylindrical movable molding mold that is moved in the same direction as the plurality of joined long fiber bundles. And a step of molding a long fiber reinforced resin foam, and a method for producing a fiber reinforced resin molded article.
前記内型及び/または外型が前記樹脂原液含浸型の中心軸周りに回転される、請求項1に記載の繊維補強樹脂成形品の製造方法。The method for producing a fiber-reinforced resin molded article according to claim 1, wherein the inner mold and / or the outer mold is rotated around a central axis of the resin stock solution-impregnated mold. 前記内型の中心軸が、前記樹脂含浸型の中心軸に対して傾けられた状態で前記内型が回転されることを特徴とする、請求項2に記載の繊維補強樹脂成形品の製造方法The method for producing a fiber-reinforced resin molded article according to claim 2, wherein the inner mold is rotated in a state in which the central axis of the inner mold is inclined with respect to the central axis of the resin-impregnated mold. 複数本の長繊維束に熱硬化性発泡性樹脂原液を含浸させ、合流させ、次に熱硬化性発泡性樹脂原液を発泡・硬化させて繊維補強樹脂成形品を製造するための装置であって、
内型と、筒状の外型とを有し、内型と外型との間の輪状の間隙に複数本の長繊維束が導かれる樹脂原液含浸型と、
前記樹脂原液含浸型の下流に配置されており、樹脂原液が付着されかつ合流された複数本の長繊維束の移動速度と略同一の速度で同方向に移動するように構成されており、かつ筒状の成形空間を有する可動成形型とを備え、
前記樹脂原液含浸型の前記輪状の間隙の上流側部分に、内型の外周面及び/または外型の内周面に、周方向に延びる開繊用の環状突起が形成されており、
前記環状突起が設けられている部分よりも下流側において、内型の外周面に発泡性樹脂原液を吐出するための複数の樹脂原液吐出口が形成されていることを特徴とする、長繊維強化樹脂発泡体の製造装置。
An apparatus for manufacturing a fiber reinforced resin molded article by impregnating and joining a plurality of long fiber bundles with a thermosetting foamable resin stock solution, joining them, and then foaming and curing the thermosetting foamable resin stock solution. ,
A resin stock solution-impregnated mold having an inner mold and a cylindrical outer mold, in which a plurality of long fiber bundles are guided into a ring-shaped gap between the inner mold and the outer mold;
Arranged downstream of the resin stock solution impregnation mold, configured to move in the same direction at substantially the same speed as the movement speed of the plurality of long fiber bundles to which the resin stock solution is adhered and joined, and A movable mold having a cylindrical molding space;
An annular protrusion for opening in the circumferential direction is formed on the outer peripheral surface of the inner mold and / or the inner peripheral surface of the outer mold on the upstream portion of the annular gap of the resin stock solution-impregnated mold,
Long fiber reinforcement characterized in that a plurality of resin stock solution discharge ports for discharging a foamable resin stock solution are formed on the outer peripheral surface of the inner mold on the downstream side of the portion where the annular protrusion is provided. Production equipment for resin foam.
前記樹脂原液含浸型の内型及び/または外型を回転させるための回転駆動源をさらに備える、請求項4に記載の長繊維強化樹脂発泡体の製造装置。The apparatus for producing a long fiber reinforced resin foam according to claim 4, further comprising a rotation drive source for rotating the inner mold and / or the outer mold of the resin stock solution-impregnated mold. 前記樹脂原液含浸型の中心軸に対して内型の中心軸が傾けられた状態で回転されるように前記回転駆動源が内型に連結されていることを特徴とする、請求項5に記載の長繊維強化樹脂発泡体の製造装置。6. The rotary drive source is connected to the inner mold so that the inner mold is rotated with the central axis of the inner mold inclined with respect to the central axis of the resin stock solution-impregnated mold. Manufacturing equipment for long fiber reinforced resin foam.
JP2001327967A 2001-10-25 2001-10-25 Method and apparatus for producing long fiber reinforced resin foam Expired - Fee Related JP3779192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001327967A JP3779192B2 (en) 2001-10-25 2001-10-25 Method and apparatus for producing long fiber reinforced resin foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001327967A JP3779192B2 (en) 2001-10-25 2001-10-25 Method and apparatus for producing long fiber reinforced resin foam

Publications (2)

Publication Number Publication Date
JP2003127164A JP2003127164A (en) 2003-05-08
JP3779192B2 true JP3779192B2 (en) 2006-05-24

Family

ID=19144116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001327967A Expired - Fee Related JP3779192B2 (en) 2001-10-25 2001-10-25 Method and apparatus for producing long fiber reinforced resin foam

Country Status (1)

Country Link
JP (1) JP3779192B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5894508U (en) * 1981-12-19 1983-06-27 九州積水工業株式会社 Impregnation equipment with glass fiber drying equipment
JPH04173325A (en) * 1990-11-08 1992-06-22 Neste Oy Method and device for producing fiber reinforcing material
JPH06254856A (en) * 1993-03-02 1994-09-13 Kobe Steel Ltd Manufacture of filament reinforced synthetic resin strand
JPH06254857A (en) * 1993-03-04 1994-09-13 Showa Denko Kk Manufacture of fiber reinforced thermoplastic resin composition and apparatus for making the same
JP3492416B2 (en) * 1994-05-13 2004-02-03 住友化学工業株式会社 Resin impregnated die and method for producing long fiber reinforced thermoplastic resin using the same
US5540797A (en) * 1995-03-24 1996-07-30 Wilson; Maywood L. Pultrusion apparatus and process
JPH08267595A (en) * 1995-03-29 1996-10-15 Toray Ind Inc Method and apparatus for producing fiber reinforced resin pipe
JPH09309140A (en) * 1996-05-23 1997-12-02 Sekisui Chem Co Ltd Manufacture of tubular form
JPH10119141A (en) * 1996-10-17 1998-05-12 Sanyo Chem Ind Ltd Apparatus and method for producing fiber reinforced resin molded product

Also Published As

Publication number Publication date
JP2003127164A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
JP4876377B2 (en) Method for producing flat glass fiber-containing pellets
CN101466535B (en) Thermalplastic resin multi-layer reinforced sheet, production method thereof and forming method for thermalplastic resin composite material forming article
KR102373111B1 (en) Method and apparatus for manufacturing fiber composite material
US6763869B2 (en) Device for producing thermoplastic resin continuous length sections reinforced with long fibers
JP5919755B2 (en) Manufacturing method of fiber material
JP5069413B2 (en) Impregnation die for long fiber reinforced thermoplastic resin molding material and production method using the same
JP2008307692A (en) Fiber-reinforced plastic and its manufacturing method
JP6863581B2 (en) Method for manufacturing long fiber reinforced thermoplastic resin linear material
JP6083239B2 (en) Fiber-reinforced plastic and method for producing the same
JP3779192B2 (en) Method and apparatus for producing long fiber reinforced resin foam
JP3667294B2 (en) Manufacturing apparatus and manufacturing method of long fiber reinforced thermoplastic resin material
EP0630735A2 (en) Reinforcing composite items with composite thermoplastic staple fibers
JP3492416B2 (en) Resin impregnated die and method for producing long fiber reinforced thermoplastic resin using the same
JP2623282B2 (en) Molding material
JP2001219473A (en) Method for manufacturing fiber-reinforced resin molding
JP3724067B2 (en) Method for producing composite material and mat-like composite material
JP6677392B2 (en) Long fiber reinforced thermoplastic resin wire for vehicle seats
JP2002120297A (en) Method and apparatus for producing filament-reinforced resin molding
JPH06254852A (en) Manufacture of filament reinforced synthetic resin strand
JP4568449B2 (en) Manufacturing method and manufacturing apparatus for long fiber reinforced resin molding
JP2002120296A (en) Method and apparatus for producing filament-reinforced resin molding
JPH062344B2 (en) Manufacturing method and molding method of resin-coated long fiber bundle
JP4568450B2 (en) Long fiber reinforced resin composite and method for producing the long fiber reinforced resin composite
JP2662853B2 (en) Manufacturing method and manufacturing apparatus for long fiber reinforced thermoplastic resin molding material
JP2001088223A (en) Apparatus for producing thermoplastic resin long object reinforced by long fibers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060301

R151 Written notification of patent or utility model registration

Ref document number: 3779192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees