JP3778613B2 - Method and apparatus for improving hydrogen purity - Google Patents

Method and apparatus for improving hydrogen purity Download PDF

Info

Publication number
JP3778613B2
JP3778613B2 JP12785596A JP12785596A JP3778613B2 JP 3778613 B2 JP3778613 B2 JP 3778613B2 JP 12785596 A JP12785596 A JP 12785596A JP 12785596 A JP12785596 A JP 12785596A JP 3778613 B2 JP3778613 B2 JP 3778613B2
Authority
JP
Japan
Prior art keywords
hydrogen
gas
recovery container
pressure
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12785596A
Other languages
Japanese (ja)
Other versions
JPH09286601A (en
Inventor
晴信 竹田
幸雄 佐藤
将一 佐藤
裕一 脇坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP12785596A priority Critical patent/JP3778613B2/en
Publication of JPH09286601A publication Critical patent/JPH09286601A/en
Application granted granted Critical
Publication of JP3778613B2 publication Critical patent/JP3778613B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水素純度向上方法及びその装置に関するものである。
【0002】
【従来の技術及びその課題】
従来の水素純度向上装置を使用して、フロー式として水素回収容器からのパージガスを外部に放出させるものとして、特開平3−271101号公報に記載されるものが知られている。特開平3−271101号公報に記載される水素純度向上装置は、水素利用装置と、水素吸蔵合金を内蔵して加熱装置及び冷却装置を付属する水素回収容器とを第1圧力制御バルブを有する吸収用配管にて接続すると共に、バルブを有する放出用ガスラインを該水素回収容器に接続することを特徴とする。
【0003】
そして、この水素純度向上装置によれば、水素利用装置に接続した水素回収容器に吸収時パージガスラインを付設すると共に、吸収時パージガスラインに圧力調節バルブを備えさせ、圧力調節バルブの設定圧を調節することにより、1個の水素回収容器を備える1台の装置によつてフロー式として水素回収容器からのパージガスを外部に放出させながら、純度を向上させた水素ガスを回収することができる。
【0004】
しかしながら、低純度水素ガスから水素純度を向上させて高純度水素ガスを回収するために、フロー式として水素回収容器からのパージガスを外部に放出させる場合、不純ガスを多く含む水素ガスのパージは、水素吸蔵合金が十分に水素を吸蔵して水素回収容器内の圧力が吸蔵されなくなつた水素の影響で急激に上昇し、或いは吸収時パージガスラインの流量の急激な増加を検出するまでの間、行われる。
【0005】
このため、水素吸蔵合金の劣化や吸蔵温度の変化等により、吸蔵量又は吸蔵速度等の能力に変動を生じ、この能力の変動に起因して水素回収容器内の圧力やパージの流量に変化を生じた際、パージが終了することになる。その結果、水素吸蔵合金の劣化や吸蔵温度の変化等により、総パージ量にバラツキを生じることになる。また、一般的に用いられているタイマーによつて水素吸蔵合金による吸蔵時間等を設定するものにあつても、同様に総パージ量にバラツキを生じることを免れ得ない。更に、圧力調節バルブの設定圧力の増減調節により、総パージ量を一定に設定するのでは、圧力調節バルブの調節が煩雑かつ困難である。
【0006】
図3に基づいて不純ガスのパージ量について詳述する。図3において縦軸は圧力及びパージ量を示し、横軸は時間を示す。水素利用装置からの水素ガスを水素回収容器内に導けば、時間0において、水素回収容器内の圧力が水素利用装置内の圧力P3 にまでほぼ上昇するが、すぐに水素回収容器内の水素吸蔵合金に水素が吸蔵され始め、次第に水素回収容器内の圧力は低下する。図3において破線Hは水素吸蔵合金の吸蔵能力が低い場合の特性を示し、実線Iは水素吸蔵合金の吸蔵能力が高い場合の特性を示し、一点鎖線Jは水素吸蔵合金の吸蔵能力が中間の場合の特性を示す。
【0007】
続いて、水素回収容器内に不純ガスを多く含む水素ガスが次第に溜まるため、水素回収容器内の圧力が次第に上昇し、水素回収容器内の圧力が圧力調節バルブの設定圧力P2 に達する。時間T11は、水素吸蔵合金の吸蔵能力が低い場合に水素回収容器内の圧力が圧力調節バルブの設定圧力P2 に達するまでに要する時間を示し、T12は、水素吸蔵合金の吸蔵能力が中間の場合の同様の時間を示し、T13は、水素吸蔵合金の吸蔵能力が高い場合の同様の時間を示す。それ以後、水素回収容器内の水素吸蔵合金に水素吸蔵がなされながら、不純ガスを多く含む水素ガスが圧力調節バルブを通過してパージされる。水素回収容器内の水素吸蔵合金に水素吸蔵されるのが終了する時間、及び、不純ガスを多く含む水素ガスのパージが終了する時間は、いずれも時間T14である。
【0008】
この時間T14は、前述したように水素回収容器内の圧力が急激に上昇し、或いは吸収時パージガスラインの流量の急激な増加を検出したときである。曲線Kは水素吸蔵合金の吸蔵能力が低い場合のパージ量を示し、曲線Lは水素吸蔵合金の吸蔵能力が高い場合のパージ量を示し、曲線Mは水素吸蔵合金の吸蔵能力が中間の場合のパージ量を示す。かくして、急激なパージ流量の増大は防ぐことができるが、水素吸蔵合金の劣化により、総パージ量にバラツキ(図3に矢印Xによつて示す)を生じることになる。なお、水素回収容器内の水素吸蔵合金から放出される高純度の水素ガスを水素利用装置に向けて還流させる工程は、時間T14から時間T16まで継続される。
【0009】
【課題を解決するための手段】
本発明は、このような従来の技術的課題に鑑みてなされたものであり、その構成は次の通りである。
請求項1の発明の構成は、水素利用装置1に接続され、水素を水素化物として吸蔵する水素吸蔵合金を収容する水素回収容器20と、圧力調節バルブ18を備えるタンク用配管29によつて水素回収容器20に接続され、水素ガスを内部空間に貯めておくガスタンク2とを使用し、水素利用装置1からの水素ガスを水素回収容器20内の水素吸蔵合金に吸蔵させる工程で、水素吸蔵合金の飽和状態に近づくにつれて水素回収容器20内のガス圧力が増大して圧力調節バルブ18の設定圧を超えた際、圧力調節バルブ18が開かれ、水素回収容器20内の不純ガスを多く含む水素ガスが、ガスタンク2内が所定圧力に達するまで流入して貯蔵され、その後、水素回収容器20の水素吸蔵合金から放出される高純度の水素ガスを水素利用装置1に還流させる際、ガスタンク2に貯蔵した不純ガスを多く含む水素ガスを外部にパージすることを特徴とする水素純度向上方法である。
請求項2の発明の構成は、水素利用装置1と、水素利用装置1に吸収用配管10によつて接続され、水素を水素化物として吸蔵する水素吸蔵合金を収容する水素回収容器20と、吸収用配管10に備えられ、開閉機能を有する第1バルブ11と、水素回収容器20と水素利用装置1との間を接続する製品ガスライン28と、製品ガスライン28に備えられ、開閉機能を有する第2バルブ12と、水素回収容器20にタンク用配管29によつて接続され、水素ガスを内部空間に貯めておくガスタンク2と、タンク用配管29に直列に備えられる開閉機能を有する第4バルブ14及び圧力調節バルブ18と、ガスタンク2に接続され、開閉機能を有する第6バルブ16を備えるパージガスライン33とを備えることを特徴とする水素純度向上装置である。
【0010】
【発明の実施の形態】
以下、本発明の1実施の形態について図1,図2を参照して説明する。
図中において符号1は水素利用装置であり、具体的には使用後の不純ガスを含む水素ガスを排出する水素冷却式発電機である。20は水素回収容器(MH容器)であり、水素を水素化物として吸蔵する水素吸蔵合金(金属水素化物)を収容し、水素吸蔵合金の全体を加熱する加熱装置7及び冷却する冷却装置8をそれぞれ付属する。
【0011】
冷却装置8は、水素を吸収させるように水素吸蔵合金を冷却する機能を有し、例えば冷水を供給する冷水供給装置である。加熱装置7は、水素を放出させるように水素吸蔵合金を加熱する機能を有し、例えば温水を供給する温水供給装置、電熱器等である。水素吸蔵合金は、水素ガスと反応し、可逆的に水素ガスを吸蔵又は放出するが、この反応はプラトー領域における水素平衡圧力−温度特性(P−T特性)に基づいて行われ、水素平衡圧力における温度条件から、低温度に冷却すれば水素ガスを吸蔵し、高温度に加熱すれば水素ガスを放出する。しかして、水素回収容器20における通常の加熱装置7は、水素吸蔵合金を80〜98℃程度に加熱して水素ガスの放出を図るものである。但し、スチームを供給し、110〜170℃程度に加熱して水素ガスの放出を図ることもできる。
【0012】
水素利用装置1の水素流出部に一端部が接続する吸収用配管10は、開閉機能を有する第1バルブ11を備え、水素回収容器20に他端部が接続している。また、水素回収容器20に一端部が接続し、開閉機能を有する第2バルブ12を備える製品ガスライン28の他端部が、水素利用装置1の水素流入部に接続している。
【0013】
更に、水素回収容器20、具体的には水素回収容器20と第2バルブ12との間の製品ガスライン28に、タンク用配管29の一端部が接続され、タンク用配管29の他端部には不純ガスを多く含む水素ガスを内部空間に貯めておくガスタンク2が接続されている。タンク用配管29の中間部には、第4バルブ14及び第4バルブ14と直列の圧力調節バルブ18が備えられている。なお、ガスタンク2は、通常のタンクによつて構成できる他、アキュムレータによつて構成することも可能である。勿論、ガスタンク2内には、水素吸蔵合金は収容されていない。
【0014】
次に、上記水素純度向上装置の作用について説明する。
このような水素純度向上装置をフロー式として使用することが可能である。この場合には、水素利用装置1から低純度水素ガスが放出される場合に好適である。
【0015】
先ず、圧力調節バルブ18の設定圧力を水素利用装置1内の水素圧力よりも低い所定値に設定する。この状態で、冷却装置8によつて水素吸蔵合金を冷却すると共に、第1,第4バルブ11,14を開いて第2,第3バルブ12,13を閉じ、水素利用装置1からの水素ガスを水素回収容器20内に吸蔵させる。水素回収容器20内の水素吸蔵合金は純水素のみを吸収するため、水素回収容器20内の水素吸蔵合金の回りに不純ガスを多く含む水素ガスが次第に溜まる。水素吸蔵合金への水素吸蔵が進み飽和状態に近づくにつれて水素回収容器20内のガス圧力が次第に高まるので、このガス圧力が圧力調節バルブ18の設定圧力を超えたときから、圧力調節バルブ18が開かれる。
【0016】
これにより、水素回収容器20内の水素吸蔵合金の回りに溜まつた不純ガスを多く含む水素ガスが、タンク用配管29を通つてパージガスタンクとして機能するガスタンク2に流入する。このガスタンク2への流入状態は、ガスタンク2が設定した所定圧力に達するまで継続する。ここでのガスタンク2の設定圧力は、水素利用装置1内の圧力自体であり、所定容積のガスタンク2内の圧力が水素利用装置1内の圧力と均衡することにより、ガスタンク2への流入が終了する。また、第1バルブ11に圧力調節機能を付与し、ガスタンク2内の圧力が第1バルブ11の設定圧力と均衡することにより、ガスタンク2内が設定圧力に達したことを知ることもできる。このようにしてガスタンク2内に所定量の不純ガスを多く含む水素ガスが溜まつたなら、冷却装置8を停止すると共に、第1,第4バルブ11,14を閉じる。
【0017】
その後、加熱装置7によつて水素吸蔵合金を加熱すると共に、第2バルブ12を開き、水素回収容器20内に吸蔵されている水素ガスを、水素利用装置1に向けて還流させる。ほぼ同時に第3バルブ13を開き、ガスタンク2に貯留されている不純ガスを多く含む水素ガスを、外部にパージさせる。これらの工程を繰り返すことによつて水素ガスの純度を維持・向上させることができる。
【0018】
図2に基づいて不純ガスのパージ量について詳述する。図2において縦軸は圧力及びパージ量を示し、横軸は時間を示す。当初、時間0において第1,第4バルブ11,14を開いて第2,第3バルブ12,13を閉じる。水素回収容器20内の圧力は、水素利用装置1内の圧力P3 にまでほぼ上昇するが、すぐに水素回収容器20内の水素吸蔵合金に水素が吸蔵され始め、次第に水素回収容器20内の圧力は低下する。図2において破線Aは水素吸蔵合金の吸蔵能力が低い場合の特性を示し、実線Bは水素吸蔵合金の吸蔵能力が高い場合の特性を示し、一点鎖線Cは水素吸蔵合金の吸蔵能力が中間の場合の特性を示す。
【0019】
このようにして、水素回収容器20内に不純ガスを多く含む水素ガスが次第に溜まるため、水素回収容器20内の圧力が次第に上昇し、水素回収容器20内の圧力が圧力調節バルブ18の設定圧力P2 に達する。時間T1 は、水素吸蔵合金の吸蔵能力が低い場合に水素回収容器20内の圧力が圧力調節バルブ18の設定圧力P2 に達する時間を示し、T2 は、水素吸蔵合金の吸蔵能力が中間の場合の同様の時間を示し、T3 は、水素吸蔵合金の吸蔵能力が高い場合の同様の時間を示す。
【0020】
それ以後、水素回収容器20内の水素吸蔵合金に水素吸蔵がなされながら、不純ガスを多く含む水素ガスが圧力調節バルブ18を通過してガスタンク2に流入する。このガスタンク2への流入は、ガスタンク2が所定の設定圧力になるまで継続される。従つて、水素回収容器20内の水素吸蔵合金の水素吸蔵能力は十分に設定され、ガスタンク2への所定の流入が終了した後も、水素吸蔵が可能な状態にある。水素回収容器20内の水素吸蔵合金に水素吸蔵がなされると共に、不純ガスを多く含む水素ガスがガスタンク2に流入し終わる時間は、時間T4 であり、第1,第4バルブ11,14を閉じる。
【0021】
次に、第2バルブ12を開くと同時に、第3バルブ13を開き、ガスタンク2に貯留されている不純ガスを多く含む水素ガスを、外部にパージさせる。これにより、時間T5 までパージが継続され、曲線Dに示すようにガスタンク2内が大気圧P1 にまで低下する。また、パージによる流量は、曲線Eに示すように時間T5 まで次第に低下し、ほぼゼロになる。一方、水素回収容器20内の水素吸蔵合金から放出される高純度の水素ガスを水素利用装置1に向けて還流させる工程は、時間T6 まで継続する。このようにして、ガスタンク2内が設定圧力になるまで不純ガスを多く含む水素ガスを流入させ、このガスタンク2内に貯めた不純ガスを多く含む水素ガスのみをパージさせることにより、総パージガス量がほぼ一定になる。
【0022】
かくして、従来の方法では、水素回収容器内の水素吸蔵合金の水素吸蔵能力の変動によつてバラツキを生じていた総パージ量が、ガスタンク2の容量と水素利用装置1内の水素圧力(第1バルブ11に圧力調節機能を付与した場合には、第1バルブ11の設定圧力)によつてのみ決まるため、安定する。更に、圧力調節バルブ18の設定圧力は、水素利用装置1内の圧力よりも低い値の範囲で、水素吸蔵合金の水素吸蔵能力の変化による調整を目的として増減調節し、総パージ量を一定に維持できる。
【0023】
なお、ガスタンク2内が設定圧力になるまで不純ガスを多く含む水素ガスを流入させることに代えて、設定時間に達するまで、水素回収容器20内の水素吸蔵合金の回りに溜まつた不純ガスを多く含む水素ガスをガスタンク2に流入させることもできる。この設定時間は、図外のタイマーによつて計測する。更に、ガスタンク2に付属させた圧力検出手段22により、ガスタンク2内が設定圧力になつたことを検出し、第1,第4バルブ11,14を閉じ、総パージ量を一定に維持することも可能である。
【0024】
このようにして、1個の水素回収容器20、ガスタンク2及び圧力調節バルブ18を使用し、水素純度向上装置をフロー式として、水素純度の向上・維持を図ることができる。
【0025】
【発明の効果】
以上の説明によつて理解されるように、本発明に係る水素純度向上方法及びその装置によれば、次の効果を奏することができる。
すなわち、不純ガスを多く含む水素ガスのパージは、ガスタンクに貯蔵させた分だけ行われる。このため、総パージ量を設定するための圧力調節バルブの困難な調節作業を伴うことなく、水素吸蔵合金の劣化や吸蔵温度の変化等による吸蔵量又は吸蔵速度等の能力変動に起因して水素回収容器内の圧力やパージの流量に変化を生じた場合であつても、水素回収容器内の圧力やパージの流量の変化に影響されることなく、ほぼ一定の総パージ量を得ることができる。その結果、総パージ量に見合つた高純度の水素を安定的に補給することが可能になり、水素利用装置内の水素量の維持が容易になる。
【図面の簡単な説明】
【図1】 本発明の1実施の形態に係る水素純度向上装置を示す概略図。
【図2】 同じく時間−圧力及び流量特性を示す線図。
【図3】 従来の水素純度向上装置における時間−圧力及びパージ量特性を示す線図。
【符号の説明】
1:水素利用装置、2:ガスタンク、7:加熱装置、8:冷却装置、10:吸収用配管、11:第1バルブ、12:第2バルブ、13:第3バルブ、14:第4バルブ、18:圧力調節バルブ、20:水素回収容器、28:製品ガスライン、29:タンク用配管、33:パージガスライン。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrogen purity improving method and an apparatus therefor.
[0002]
[Prior art and problems]
Japanese Patent Application Laid-Open No. 3-271101 discloses a conventional method for discharging a purge gas from a hydrogen recovery container as a flow type using a conventional hydrogen purity improving apparatus. The hydrogen purity improving apparatus described in Japanese Patent Laid-Open No. 3-271101 is an absorption having a hydrogen utilization apparatus and a hydrogen recovery container with a built-in hydrogen storage alloy and attached with a heating apparatus and a cooling apparatus having a first pressure control valve. In addition to being connected by a pipe for discharge, a discharge gas line having a valve is connected to the hydrogen recovery container.
[0003]
And according to this hydrogen purity improving apparatus, a purge gas line at the time of absorption is attached to the hydrogen recovery container connected to the hydrogen utilization apparatus, and a pressure control valve is provided in the purge gas line at the time of absorption, and the set pressure of the pressure control valve is adjusted. By doing so, the hydrogen gas with improved purity can be recovered while discharging the purge gas from the hydrogen recovery container to the outside as a flow type by one apparatus having one hydrogen recovery container.
[0004]
However, in order to improve the hydrogen purity from the low-purity hydrogen gas and recover the high-purity hydrogen gas, when purging the purge gas from the hydrogen recovery container as a flow type to the outside, purging the hydrogen gas containing a large amount of impure gas, Until the hydrogen storage alloy sufficiently absorbs hydrogen and the pressure in the hydrogen recovery container suddenly rises due to the influence of hydrogen that has not been occluded, or until a rapid increase in the flow rate of the purge gas line during absorption is detected, Done.
[0005]
For this reason, due to deterioration of the hydrogen storage alloy, changes in storage temperature, etc., the capacity, such as the storage amount or the storage speed, fluctuates. When it occurs, the purge will end. As a result, the total purge amount varies due to deterioration of the hydrogen storage alloy, change in storage temperature, and the like. Further, even if the timer used for setting the storage time by the hydrogen storage alloy is set by a commonly used timer, it is inevitable that the total purge amount similarly varies. Furthermore, if the total purge amount is set to be constant by adjusting the increase / decrease of the set pressure of the pressure control valve, it is complicated and difficult to adjust the pressure control valve.
[0006]
The purge amount of the impure gas will be described in detail based on FIG. In FIG. 3, the vertical axis indicates pressure and purge amount, and the horizontal axis indicates time. If the hydrogen gas from the hydrogen utilization device is introduced into the hydrogen recovery container, at time 0, the pressure in the hydrogen recovery container almost rises to the pressure P 3 in the hydrogen utilization device, but immediately the hydrogen in the hydrogen recovery container Hydrogen begins to be occluded in the occlusion alloy, and the pressure in the hydrogen recovery container gradually decreases. In FIG. 3, the broken line H indicates characteristics when the storage capacity of the hydrogen storage alloy is low, the solid line I indicates characteristics when the storage capacity of the hydrogen storage alloy is high, and the alternate long and short dash line J indicates that the storage capacity of the hydrogen storage alloy is intermediate. The characteristics of the case are shown.
[0007]
Subsequently, since hydrogen gas containing a large amount of impure gas gradually accumulates in the hydrogen recovery container, the pressure in the hydrogen recovery container gradually increases, and the pressure in the hydrogen recovery container reaches the set pressure P 2 of the pressure control valve. Time T 11 indicates the time required for the pressure in the hydrogen recovery container to reach the set pressure P 2 of the pressure control valve when the storage capacity of the hydrogen storage alloy is low, and T 12 indicates the storage capacity of the hydrogen storage alloy. The same time in the middle case is shown, and T 13 shows the same time in the case where the storage capacity of the hydrogen storage alloy is high. Thereafter, while the hydrogen storage alloy in the hydrogen recovery container is stored with hydrogen, the hydrogen gas containing a large amount of impure gas is purged through the pressure control valve. Time that is hydrogen occluded in the hydrogen storage alloy of the hydrogen recovery container ends, and the time purging of the hydrogen gas containing a large amount of impure gas is completed is both time T 14.
[0008]
The time T 14 is when the pressure of the hydrogen recovery container as described above is rapidly increased, or to detect a sudden increase in the flow rate of the absorption when the purge gas line. Curve K indicates the purge amount when the storage capacity of the hydrogen storage alloy is low, curve L indicates the purge amount when the storage capacity of the hydrogen storage alloy is high, and curve M indicates the storage capacity when the storage capacity of the hydrogen storage alloy is intermediate. Indicates the purge amount. Thus, a rapid increase in the purge flow rate can be prevented, but the total amount of purge varies (indicated by arrow X in FIG. 3) due to the deterioration of the hydrogen storage alloy. Incidentally, the step of refluxing toward the high-purity hydrogen gas released from the hydrogen storage alloy in the hydrogen recovery container into the hydrogen utilization device is continued from the time T 14 to time T 16.
[0009]
[Means for Solving the Problems]
The present invention has been made in view of such a conventional technical problem, and its configuration is as follows.
The configuration of the invention of claim 1 is that hydrogen is connected by a hydrogen recovery container 20 that is connected to the hydrogen utilization device 1 and stores a hydrogen storage alloy that stores hydrogen as a hydride, and a tank pipe 29 that includes a pressure control valve 18. In the process of using the gas tank 2 connected to the recovery container 20 and storing hydrogen gas in the internal space to store the hydrogen gas from the hydrogen utilization device 1 in the hydrogen storage alloy in the hydrogen recovery container 20, the hydrogen storage alloy When the gas pressure in the hydrogen recovery container 20 increases and exceeds the set pressure of the pressure control valve 18 as it approaches the saturation state, the pressure control valve 18 is opened, and hydrogen containing a large amount of impure gas in the hydrogen recovery container 20 The gas flows in and is stored until the gas tank 2 reaches a predetermined pressure, and then the high-purity hydrogen gas released from the hydrogen storage alloy in the hydrogen recovery container 20 is supplied to the hydrogen utilization device 1. Time of flow, is hydrogen purity improvement wherein the purging hydrogen gas containing a large amount of impure gas stored in the gas tank 2 to the outside.
The configuration of the invention of claim 2 includes a hydrogen utilization device 1, a hydrogen recovery container 20 connected to the hydrogen utilization device 1 by an absorption pipe 10, and containing a hydrogen storage alloy that stores hydrogen as a hydride, and an absorption A first valve 11 having an opening / closing function, a product gas line 28 connecting the hydrogen recovery container 20 and the hydrogen utilization device 1, and a product gas line 28 having an opening / closing function. A second valve 12, a gas tank 2 connected to the hydrogen recovery container 20 by a tank pipe 29 and storing hydrogen gas in the internal space, and a fourth valve having an opening / closing function provided in series with the tank pipe 29. 14 and a pressure control valve 18, and a purge gas line 33 provided with a sixth valve 16 connected to the gas tank 2 and having an opening / closing function. A.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
In the figure, reference numeral 1 denotes a hydrogen utilization device, specifically a hydrogen-cooled generator that discharges hydrogen gas including impure gas after use. Reference numeral 20 denotes a hydrogen recovery container (MH container) that contains a hydrogen storage alloy (metal hydride) that stores hydrogen as a hydride, and includes a heating device 7 that heats the entire hydrogen storage alloy and a cooling device 8 that cools the hydrogen storage alloy. Accompanying.
[0011]
The cooling device 8 has a function of cooling the hydrogen storage alloy so as to absorb hydrogen, and is, for example, a cold water supply device that supplies cold water. The heating device 7 has a function of heating the hydrogen storage alloy so as to release hydrogen, and is, for example, a hot water supply device that supplies hot water, an electric heater, or the like. The hydrogen storage alloy reacts with hydrogen gas and reversibly absorbs or releases hydrogen gas. This reaction is performed based on the hydrogen equilibrium pressure-temperature characteristics (PT characteristics) in the plateau region. From the temperature conditions in FIG. 1, hydrogen gas is occluded when cooled to a low temperature, and released when heated to a high temperature. Therefore, the normal heating device 7 in the hydrogen recovery container 20 is intended to release hydrogen gas by heating the hydrogen storage alloy to about 80 to 98 ° C. However, steam can be supplied and heated to about 110 to 170 ° C. to release hydrogen gas.
[0012]
The absorption pipe 10 having one end connected to the hydrogen outflow part of the hydrogen utilization apparatus 1 includes a first valve 11 having an opening / closing function, and the other end is connected to the hydrogen recovery container 20. Further, one end of the hydrogen recovery container 20 is connected, and the other end of the product gas line 28 including the second valve 12 having an opening / closing function is connected to the hydrogen inflow portion of the hydrogen utilization apparatus 1.
[0013]
Further, one end of a tank pipe 29 is connected to the hydrogen recovery container 20, specifically, the product gas line 28 between the hydrogen recovery container 20 and the second valve 12, and the other end of the tank pipe 29 is connected to the other end of the tank pipe 29. Is connected to a gas tank 2 for storing hydrogen gas containing a large amount of impure gas in the internal space. A fourth valve 14 and a pressure control valve 18 in series with the fourth valve 14 are provided in an intermediate portion of the tank pipe 29. The gas tank 2 can be constituted by an accumulator as well as a normal tank. Of course, the hydrogen storage alloy is not accommodated in the gas tank 2.
[0014]
Next, the operation of the hydrogen purity improving apparatus will be described.
Such a hydrogen purity improving apparatus can be used as a flow type. This case is suitable when low-purity hydrogen gas is released from the hydrogen utilization device 1.
[0015]
First, the set pressure of the pressure control valve 18 is set to a predetermined value lower than the hydrogen pressure in the hydrogen utilization device 1. In this state, the hydrogen storage alloy is cooled by the cooling device 8, the first and fourth valves 11 and 14 are opened, the second and third valves 12 and 13 are closed, and the hydrogen gas from the hydrogen utilization device 1 is Is stored in the hydrogen recovery container 20. Since the hydrogen storage alloy in the hydrogen recovery container 20 absorbs only pure hydrogen, hydrogen gas containing a large amount of impure gas gradually accumulates around the hydrogen storage alloy in the hydrogen recovery container 20. As the hydrogen occlusion in the hydrogen occlusion alloy progresses and approaches the saturated state, the gas pressure in the hydrogen recovery container 20 gradually increases. Therefore, when the gas pressure exceeds the set pressure of the pressure adjustment valve 18, the pressure adjustment valve 18 is opened. It is.
[0016]
As a result, hydrogen gas containing a large amount of impure gas collected around the hydrogen storage alloy in the hydrogen recovery container 20 flows into the gas tank 2 that functions as a purge gas tank through the tank piping 29. This inflow state to the gas tank 2 continues until the gas tank 2 reaches a predetermined pressure set. The set pressure of the gas tank 2 here is the pressure itself in the hydrogen utilization device 1, and when the pressure in the gas tank 2 having a predetermined volume is balanced with the pressure in the hydrogen utilization device 1, the flow into the gas tank 2 is completed. To do. It is also possible to know that the gas tank 2 has reached the set pressure by providing a pressure adjusting function to the first valve 11 and balancing the pressure in the gas tank 2 with the set pressure of the first valve 11. When hydrogen gas containing a large amount of a predetermined amount of impure gas is accumulated in the gas tank 2 in this way, the cooling device 8 is stopped and the first and fourth valves 11 and 14 are closed.
[0017]
Then, while heating a hydrogen storage alloy with the heating apparatus 7, the 2nd valve | bulb 12 is opened and the hydrogen gas occluded in the hydrogen collection | recovery container 20 is recirculated toward the hydrogen utilization apparatus 1. FIG. The third valve 13 is opened almost at the same time, and hydrogen gas containing a large amount of impure gas stored in the gas tank 2 is purged to the outside. By repeating these steps, the purity of the hydrogen gas can be maintained and improved.
[0018]
The purge amount of the impure gas will be described in detail based on FIG. In FIG. 2, the vertical axis indicates pressure and purge amount, and the horizontal axis indicates time. Initially, at time 0, the first and fourth valves 11 and 14 are opened and the second and third valves 12 and 13 are closed. The pressure in the hydrogen recovery container 20 almost rises up to the pressure P 3 in the hydrogen utilization apparatus 1, but hydrogen immediately begins to be stored in the hydrogen storage alloy in the hydrogen recovery container 20, and gradually in the hydrogen recovery container 20. The pressure drops. In FIG. 2, the broken line A indicates the characteristics when the storage capacity of the hydrogen storage alloy is low, the solid line B indicates the characteristics when the storage capacity of the hydrogen storage alloy is high, and the alternate long and short dash line C indicates that the storage capacity of the hydrogen storage alloy is intermediate. The characteristics of the case are shown.
[0019]
In this way, since hydrogen gas containing a large amount of impure gas gradually accumulates in the hydrogen recovery container 20, the pressure in the hydrogen recovery container 20 gradually increases, and the pressure in the hydrogen recovery container 20 becomes the set pressure of the pressure control valve 18. P 2 is reached. The time T 1 indicates the time for the pressure in the hydrogen recovery container 20 to reach the set pressure P 2 of the pressure control valve 18 when the storage capacity of the hydrogen storage alloy is low, and T 2 is the intermediate storage capacity of the hydrogen storage alloy. In this case, the same time is shown, and T 3 shows the same time when the storage capacity of the hydrogen storage alloy is high.
[0020]
Thereafter, while hydrogen is occluded in the hydrogen occlusion alloy in the hydrogen recovery container 20, hydrogen gas containing a large amount of impure gas passes through the pressure control valve 18 and flows into the gas tank 2. This inflow to the gas tank 2 is continued until the gas tank 2 reaches a predetermined set pressure. Accordingly, the hydrogen storage capacity of the hydrogen storage alloy in the hydrogen recovery container 20 is sufficiently set, and the hydrogen storage is possible even after the predetermined inflow to the gas tank 2 is completed. The time when the hydrogen storage alloy in the hydrogen recovery container 20 stores hydrogen and the hydrogen gas containing a large amount of impure gas finishes flowing into the gas tank 2 is time T 4 , and the first and fourth valves 11 and 14 are turned on. close.
[0021]
Next, simultaneously with opening the second valve 12, the third valve 13 is opened, and hydrogen gas containing a large amount of impure gas stored in the gas tank 2 is purged to the outside. Accordingly, the purge is continued until time T 5, and the inside of the gas tank 2 is reduced to the atmospheric pressure P 1 as indicated by the curve D. Further, the flow rate due to the purge gradually decreases until time T 5 as shown by the curve E and becomes almost zero. On the other hand, the step of refluxing the high-purity hydrogen gas released from the hydrogen storage alloy in the hydrogen recovery container 20 toward the hydrogen utilization device 1 continues until time T 6 . In this way, hydrogen gas containing a large amount of impure gas is introduced until the gas tank 2 reaches a set pressure, and only the hydrogen gas containing a large amount of the impure gas stored in the gas tank 2 is purged. It becomes almost constant.
[0022]
Thus, according to the conventional method, the total purge amount, which has been varied due to fluctuations in the hydrogen storage capacity of the hydrogen storage alloy in the hydrogen recovery container, is determined by the capacity of the gas tank 2 and the hydrogen pressure (the first pressure in the hydrogen utilization device 1). When the pressure adjustment function is given to the valve 11, it is determined only by the set pressure of the first valve 11), so that it is stable. Furthermore, the set pressure of the pressure control valve 18 is adjusted to increase or decrease for the purpose of adjustment due to the change in the hydrogen storage capacity of the hydrogen storage alloy within a range of values lower than the pressure in the hydrogen utilization device 1, and the total purge amount is made constant. Can be maintained.
[0023]
Instead of flowing hydrogen gas containing a large amount of impure gas until the gas tank 2 reaches a set pressure, the impure gas accumulated around the hydrogen storage alloy in the hydrogen recovery container 20 until the set time is reached. Hydrogen gas containing a large amount can also flow into the gas tank 2. This set time is measured by a timer not shown. Further, the pressure detection means 22 attached to the gas tank 2 detects that the gas tank 2 has reached the set pressure, and the first and fourth valves 11 and 14 are closed to keep the total purge amount constant. Is possible.
[0024]
In this manner, the hydrogen purity can be improved and maintained by using the single hydrogen recovery container 20, the gas tank 2, and the pressure control valve 18 and using the hydrogen purity improving apparatus as a flow type.
[0025]
【The invention's effect】
As understood from the above description, the hydrogen purity improving method and apparatus according to the present invention can provide the following effects.
That is, the purging of the hydrogen gas containing a large amount of impure gas is performed for the amount stored in the gas tank. For this reason, hydrogen does not accompany the difficult adjustment work of the pressure control valve for setting the total purge amount, and is caused by fluctuations in capacity such as storage amount or storage speed due to deterioration of the hydrogen storage alloy or change in storage temperature. Even when there is a change in the pressure in the recovery container or the flow rate of the purge, a substantially constant total purge amount can be obtained without being affected by changes in the pressure in the hydrogen recovery container or the flow rate of the purge. . As a result, it becomes possible to stably replenish high-purity hydrogen commensurate with the total purge amount, and it becomes easy to maintain the hydrogen amount in the hydrogen utilization device.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a hydrogen purity improving apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram similarly showing time-pressure and flow rate characteristics.
FIG. 3 is a diagram showing time-pressure and purge amount characteristics in a conventional hydrogen purity improving apparatus.
[Explanation of symbols]
1: hydrogen utilization device, 2: gas tank, 7: heating device, 8: cooling device, 10: absorption pipe, 11: first valve, 12: second valve, 13: third valve, 14: fourth valve, 18: Pressure regulating valve, 20: Hydrogen recovery container, 28: Product gas line, 29: Tank piping, 33: Purge gas line.

Claims (2)

水素利用装置(1)に接続され、水素を水素化物として吸蔵する水素吸蔵合金を収容する水素回収容器(20)と、圧力調節バルブ(18)を備えるタンク用配管(29)によつて水素回収容器(20)に接続され、水素ガスを内部空間に貯めておくガスタンク(2)とを使用し、水素利用装置(1)からの水素ガスを水素回収容器(20)内の水素吸蔵合金に吸蔵させる工程で、水素吸蔵合金の飽和状態に近づくにつれて水素回収容器(20)内のガス圧力が増大して圧力調節バルブ(18)の設定圧を超えた際、圧力調節バルブ(18)が開かれ、水素回収容器(20)内の不純ガスを多く含む水素ガスが、ガスタンク(2)内が所定圧力に達するまで流入して貯蔵され、その後、水素回収容器(20)の水素吸蔵合金から放出される高純度の水素ガスを水素利用装置(1)に還流させる際、ガスタンク(2)に貯蔵した不純ガスを多く含む水素ガスを外部にパージすることを特徴とする水素純度向上方法。Hydrogen recovery is performed by a hydrogen recovery container (20) that contains a hydrogen storage alloy that stores hydrogen as a hydride and is connected to the hydrogen utilization device (1), and a tank pipe (29) that includes a pressure control valve (18). The gas tank (2) connected to the container (20) and storing hydrogen gas in the internal space is used, and the hydrogen gas from the hydrogen utilization device (1) is stored in the hydrogen storage alloy in the hydrogen recovery container (20). In this step, when the gas pressure in the hydrogen recovery container (20) increases as the hydrogen storage alloy approaches the saturation state and exceeds the set pressure of the pressure control valve (18), the pressure control valve (18) is opened. The hydrogen gas containing a large amount of impure gas in the hydrogen recovery container (20) flows into the gas tank (2) until it reaches a predetermined pressure and is stored, and then released from the hydrogen storage alloy in the hydrogen recovery container (20). High When recirculating every hydrogen gas to the hydrogen utilization device (1), the hydrogen purity improvement wherein the purging hydrogen gas containing a large amount of impure gas stored in the gas tank (2) to the outside. 水素利用装置(1)と、水素利用装置(1)に吸収用配管(10)によつて接続され、水素を水素化物として吸蔵する水素吸蔵合金を収容する水素回収容器(20)と、吸収用配管(10)に備えられ、開閉機能を有する第1バルブ(11)と、水素回収容器(20)と水素利用装置(1)との間を接続する製品ガスライン(28)と、製品ガスライン(28)に備えられ、開閉機能を有する第2バルブ(12)と、水素回収容器(20)にタンク用配管(29)によつて接続され、水素ガスを内部空間に貯めておくガスタンク(2)と、タンク用配管(29)に直列に備えられる開閉機能を有する第4バルブ(14)及び圧力調節バルブ(18)と、ガスタンク(2)に接続され、開閉機能を有する第3バルブ(13)を備えるパージガスライン(33)とを備えることを特徴とする水素純度向上装置。A hydrogen utilization device (1), a hydrogen recovery container (20) connected to the hydrogen utilization device (1) by an absorption pipe (10), and containing a hydrogen storage alloy for storing hydrogen as a hydride, and for absorption A first valve (11) provided in the pipe (10) having an opening and closing function; a product gas line (28) connecting the hydrogen recovery container (20) and the hydrogen utilization device (1); and a product gas line (28), a second valve (12) having an opening / closing function, and a gas tank (2) connected to the hydrogen recovery container (20) by a tank pipe (29) and storing hydrogen gas in the internal space. ), A fourth valve (14) having an opening / closing function and a pressure regulating valve (18) provided in series with the tank pipe (29), and a third valve (13) connected to the gas tank (2) and having an opening / closing function. Purge gas with Hydrogen purity improving device characterized by comprising an in (33).
JP12785596A 1996-04-24 1996-04-24 Method and apparatus for improving hydrogen purity Expired - Fee Related JP3778613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12785596A JP3778613B2 (en) 1996-04-24 1996-04-24 Method and apparatus for improving hydrogen purity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12785596A JP3778613B2 (en) 1996-04-24 1996-04-24 Method and apparatus for improving hydrogen purity

Publications (2)

Publication Number Publication Date
JPH09286601A JPH09286601A (en) 1997-11-04
JP3778613B2 true JP3778613B2 (en) 2006-05-24

Family

ID=14970342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12785596A Expired - Fee Related JP3778613B2 (en) 1996-04-24 1996-04-24 Method and apparatus for improving hydrogen purity

Country Status (1)

Country Link
JP (1) JP3778613B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3403892B2 (en) * 1996-06-04 2003-05-06 関西電力株式会社 Method and apparatus for improving hydrogen purity

Also Published As

Publication number Publication date
JPH09286601A (en) 1997-11-04

Similar Documents

Publication Publication Date Title
US5354040A (en) Apparatus for closed cycle hydrogenation recovery and rehydrogenation
JP2000012062A (en) Hydrogen gas supply device and hydrogen gas supply method therefor
TW201519501A (en) Gas filling apparatus and method
JP3778613B2 (en) Method and apparatus for improving hydrogen purity
JP4844233B2 (en) Hydrogen storage device and hydrogen storage method
JP3403892B2 (en) Method and apparatus for improving hydrogen purity
JP3113554B2 (en) Method and apparatus for improving hydrogen purity
JP2001042950A (en) Hydrogen gas pressure buffer device and hydrogen gas pressure buffering method
JP2802958B2 (en) Hydrogen purity improving apparatus and operating method thereof
JP3897854B2 (en) Hydrogen gas purification method
JP3403768B2 (en) Method and apparatus for detecting impurity gas in hydrogen gas
JP2813830B2 (en) Hydrogen concentration adjusting device and hydrogen concentration adjusting method
JP3323322B2 (en) Method and apparatus for improving hydrogen purity
US11440796B2 (en) Metal hydride compressor control device and method
JPH0826702A (en) Hydrogen purity maintaining method and device therefor
JP3181686B2 (en) Hydrogen recovery and purification equipment
JP2021133285A (en) Carbon dioxide recovery device, hydrocarbon production device, and carbon dioxide recover method
JP6803813B2 (en) Hydrogen storage method
JP3181687B2 (en) Hydrogen recovery / purification apparatus and operation method thereof
JPH085646B2 (en) Hydrogen gas purification method
JPH06111843A (en) Fuel supply system for fuel cell generator set
JPS5899102A (en) Activating method for alloy for occluding hydrogen
JPH02279501A (en) Device for maintaining hydrogen purity in generator by metal hydride
JPS5819955B2 (en) Air conditioning equipment
JPS6350301A (en) Method for occluding and discharging hydrogen

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees