JP3778359B2 - Flow resistance setting nozzle - Google Patents

Flow resistance setting nozzle Download PDF

Info

Publication number
JP3778359B2
JP3778359B2 JP2003186470A JP2003186470A JP3778359B2 JP 3778359 B2 JP3778359 B2 JP 3778359B2 JP 2003186470 A JP2003186470 A JP 2003186470A JP 2003186470 A JP2003186470 A JP 2003186470A JP 3778359 B2 JP3778359 B2 JP 3778359B2
Authority
JP
Japan
Prior art keywords
screw
hole
pipe
adjustment screw
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003186470A
Other languages
Japanese (ja)
Other versions
JP2004084944A (en
Inventor
昭男 古瀬
厚 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Instruments Co Ltd
Original Assignee
Cosmo Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Instruments Co Ltd filed Critical Cosmo Instruments Co Ltd
Priority to JP2003186470A priority Critical patent/JP3778359B2/en
Publication of JP2004084944A publication Critical patent/JP2004084944A/en
Application granted granted Critical
Publication of JP3778359B2 publication Critical patent/JP3778359B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は例えば基準となる流量に設定し、流量測定器等の校正用等として利用することができる流量抵抗設定ノズルに関し、特に流量値の設定が容易で然も設定した流量値を長期に渡って安定に維持し、信頼性の高い基準流量を与えることができる流量抵抗設定ノズルを提供しようとするものである。
【0002】
【従来の技術】
従来より、本願発明者は各種の流量抵抗設定弁を提案している。図9にその一例を示す。図9は特許文献1で「微小リーク弁」として提案し、本願の譲受人と同一者に譲渡した流量抵抗設定弁を示す。この流量抵抗設定弁は、内に細管2を貫通させる細管貫通孔3とこの細管貫通孔3と直交する方向に形成したネジ孔5−1とを持った金属ブロック1と、この細管貫通孔3に貫通させた細管2の外周と細管貫通孔3の内壁との間をシールするシール材4A、4Bと、このネジ孔5−1に螺入したネジ5−2とによって構成され、ネジ5−2によって細管2を適当量押しつぶすことによって細管2の中空部分の断面積を適当値に設定できるようにし、この断面積の設定によって細管2を通過する気体の流量を制限し、所望の基準流量を得る構造としたものである。
【0003】
図10を用いてこの流量抵抗設定弁の実用状況の一例を説明する。図10において、6はコンプレッサのような気体圧縮源を示す。気体圧縮源6で加圧された気体圧が調圧弁7で調整され、調整された気体圧が圧力計8-1で管理され、一定の気体圧力(1次圧)に設定される。1次圧気体が図9で説明した流量抵抗設定弁9に与えられ、2次圧が圧力計8-2で計測される。2次圧と1次圧の圧力比がある値以下になると流量抵抗設定弁9の絞り部に流れる気体の流速は音速と等しくなり、一定流量に制限されて被校正流量計10に与えられる。被校正流量計10の流量測定値Aが流量抵抗設定弁9に設定した流量に一致するように校正すれば、被校正流量計10の流量測定値は校正されたことになる。
【0004】
【特許文献1】
実公平5−42283号公報
【0005】
【発明が解決しようとする課題】
上記従来提案した流量抵抗設定弁は流量設定にネジ5−2を用い、ネジ5−2のネジ込量を調整して細管2を押しつぶし、細管2の断面積を絞ることによってある決められた気体圧を与えた状態で流れる流量値を、所望の値に設定している。
ネジ5−2のネジ込量を増加させていくに従って流量値が絞られていくが、その流量値が目標値をわずかでも超えてしまうと、細管2の変形が元に戻らないため、細管2を新しいものに交換し、再び調整を行なわなくてはならない。この点で流量値の設定が面倒であるという欠点がある。
【0006】
また、特に、ネジ5−2はイモネジ或は止めネジと呼ばれているネジを用いてネジ孔5−1の内部で調整を行なう構造を採っている。その理由は流量抵抗設定状態が簡単に操作できないようにするために流量値の設定後にネジ孔5−1をシールすることができるようにするためである。このような理由からネジ5−2として止めネジを用いているが、止めネジはネジ部の端部に回転調整用のドライバ係合溝を具備しているため、ネジ部の直径を極端に細くすることはできない。つまり、一般的に止めネジは直径が太いことが普通である。
【0007】
ネジのピッチはネジ径が太い程粗くなることは知られているから、止めネジ構造のネジ5−2の調整で流量値を正確に目標値に設定することは困難な作業である。
この発明の目的は流量値の設定を安易に行なうことができる流量抵抗設定ノズルを提供しようとするものである。
【0008】
【課題を解決するための手段】
この発明の第1の観点では、パイプ貫通孔が形成された金属ブロックと;パイプ貫通孔に挿入された、流路を構成するための金属パイプと;上記パイプと直角に交叉して配置され、その中央部がパイプの周面の第1接触部と接触する角柱形状の圧接具と;金属ブロックに取付けられ、圧接具の中央部を金属パイプに向って粗調整圧力で以って圧接させる粗調整ネジと;上記粗調整ネジと同一軸芯上に位置する様に金属ブロックに取付けられ、先端部を持ちこの先端部が、金属パイプの周面であって、圧接具と接触する第1接触部と対向する第2接触部に接触し、圧接具との間に金属パイプを挟んで保持する台と;上記金属ブロックに取付けられ、圧接具の中央部の粗調整ネジが圧接する位置から、圧接具の長手方向にほぼ等距離だけ離れた対称位置で、圧接具に、粗調整ネジが金属パイプに向かって粗調整圧力を働かせる方向と平行で同方向にそれぞれ圧力を与える2本の微調整ネジと;上記金属パイプの外周面と上記金属ブロックのパイプ貫通孔の内周面との間をシールするシール部材と;から成り、粗調整ネジの粗調整圧力によって圧接具と台との間に金属パイプを挟んで所定量押し潰すとともに、微調整ネジの2つの圧力の組み合わせからなる微調整圧力によってパイプを更に押し潰すように構成した流量抵抗設定ノズルを提案する。
【0009】
この発明の第2の観点では、上記第1の観点に係る流量抵抗設定ノズルにおいて、上記金属ブロックは、上記パイプ貫通孔と直交して連通し、かつ金属ブロックを貫通する圧接具挿入孔を有し、上記圧接具を、パイプと直角に交叉して接するように上記圧接具挿入孔に挿入配置して構成した流量抵抗設定ノズルを提案する。
この発明の第3の観点では、上記第1または第2の観点に係る流量抵抗設定ノズルにおいて、上記微調整ネジは頭部とネジ部を有し、上記圧接具は、上記対称位置に、上記微調整ネジが遊嵌する2個の貫通孔を有し、上記金属ブロックは、圧接具がパイプと直交して接するように配置されたときに、上記2個の貫通孔に対向する位置に微調整ネジのネジ部が捩じ込まれるネジ孔を有し、微調整ネジのネジ部が圧接具の貫通孔に遊嵌し、頭部が圧接具に係止され、ネジ部先端が金属ブロックのネジ孔に捩じ込まれるにつれこの頭部により上記圧接具に圧力を与えるように構成した流量抵抗設定ノズルを提案する。
【0010】
この発明の第4の観点では、上記第3の観点に係る流量抵抗設定ノズルにおいて、微調整ネジのネジ部は粗調整ネジのネジ部の径より細い径を有する構成の流量抵抗設定ノズルを提案する。
この発明の第5の観点では、上記第1または第2の観点に係る流量抵抗設定ノズルにおいて、台の先端部はパイプの円筒面と直交する向きの円弧面を具備している構成の流量抵抗設定ノズルを提案する。
この発明の第6の観点では、上記第1乃至第5の観点に係る流量抵抗設定ノズルの何れかにおいて、上記金属ブロックは、上記粗調整ネジ用のネジ孔及び微調整ネジ用の駆動孔を有し、粗調整ネジ及び微調整ネジの頭部は金属ブロックに形成されたこれら粗調整ネジ用のネジ孔及び微調整ネジ用の駆動孔の内部に格納されている構成の流量抵抗設定ノズルを提案する。
【0011】
作用
この発明による流量抵抗設定ノズルによれば圧接力調整用手段として、粗調整ネジに加えて微調整ネジを設けた構造としたから、流量値の設定を安易に行なうことができる。
また、この発明による流量抵抗設定ノズルによれば台の先端部の形状をパイプの円筒面と直交する向の円弧面としたから、パイプの絞り部分の形状が円弧面に従ってパイプの軸方向に漸次絞られ、最狭窄部を持ち、これを過ぎると漸次に広げられる構造となる。このため、パイプの内部を気体は円滑に流れ、容易に音速流量値(1次側の圧力値が所定値以上に設定され、2次側の圧力値が所定値以下に設定されると、絞り部分では流体の流速が音速値に達し、一定流量値を維持する現象)を得ることができる。
【0012】
この結果、信頼性の高い基準流量値を再現することができる利点が得られる。
【0013】
【発明の実施の形態】
図1乃至図8にこの発明による流量抵抗設定ノズルの一実施例を示す。
図1、2は、この発明に係る流量抵抗設定ノズルの一実施例の断面図であって、図3においてX、Y軸を含む紙面に垂直な面で切開しB方向に見た図であり、ここで、図1は、圧接具による粗調整作業実施前の状態を示し、図4において軸Yを含む紙面に垂直な面で切開して1A方向に見た図でもある。また図2は、圧接具による粗調整作業実施後の状態を示し、図5において軸Yを含む紙面に垂直な面で切開して1B方向に見た図でもある。
【0014】
図3は、図1、2に示す一実施例の平面図を示す。
図4、5、6は、図3において軸Y、Zを含む紙面に垂直な面で切開してA方向に見た断面図であり、ここで図4は、粗調整ネジによる粗調整作業実施前の状態を示し、図1において軸Y、Zを含む紙面に垂直な面で切開して3A方向に見た断面図でもある。また、図5は、粗調整ネジによる粗調整作業実施後の状態を示し、図2において軸Y、Zを含む紙面に垂直な面で切開して3B方向に見た断面図でもある。かつ図6は、粗調整ネジによる粗調整作業実施後、さらに微調整ネジによる微調整作業を実施した後の状態を示す。
【0015】
図7は、この発明に用いる圧接具の構造を説明するための図であり、Aは平面図、Bは側面図を示す。
図9は、この発明の要部である圧接具を用いて行う微調整の動作原理を説明するための図を示す。
なお、各図において同一数字または文字を付したものは同じものを表す。
図中1は金属ブロックであり、この実施例では金属ブロック1を2個のブロック1Aと1Bで形成し、これらをネジ1Cによって結合して構成した場合を示す。
【0016】
この金属ブロック1には、パイプ貫通孔11が形成される。
12はこのパイプ貫通孔11に押入したパイプ、4はこのパイプ12の外周とパイプ貫通孔11の内壁面11BBとの間をシールするシール材(オーリング)を示す。
パイプ貫通孔11はこれら2分割した金属ブロック1Aと1Bの接合面1Dを垂直に貫通し、その軸芯X上にパイプ12が挿入される。
パイプ貫通孔11は、入口11AAを持った入口孔部11Aと、出口11BAを持った出口孔部11Bと、中孔部11Cと、入口孔部11Aと中孔部との間を結ぶ第1中間孔部11Dと、出口孔部11Bと中孔部11Cとの間を結ぶ第2中間孔部11Eとを有する。
【0017】
第1、第2中間孔部11D、11Eはその内径が狭められパイプ12の外径より僅かに大きく形成される。
入口孔部11Aと出口孔部11Bは、各々第1、第2中間孔部11D、11Eに連なり徐々に径を広げる傾斜部11AB、11BBとこの傾斜部から入口11AAまたは出口11BAとの間に内ネジ部11AC、11BCを有する。
各入口孔部11Aと出口孔部11Bにおいて、パイプ12にシール材(オーリング)4が嵌められ、ついで、その外周に、内ネジ部11AC、11BCと螺合する外ネジが形成されたアタッチメント19が嵌められ、このアタッチメント19を入口孔部11Aと出口孔部11B内に捩じ込みパイプ12の外周面とパイプ貫通孔11の傾斜部11AB、11BBの内壁面との間にシール材(オーリング)4を締付けることによりパイプ12とパイプ貫通孔11の内壁面との間をシールする。従って、外気と流通している中孔部11Cからパイプ12は完全にシールされ、パイプ貫通孔11の一方の入口11AAから供給された気体は全てパイプ12を通って他方側の出口11BAから排気され、パイプ12が流路を構成する。
【0018】
金属ブロック1には、更にパイプ貫通孔11(X軸方向)と直交する方向(Z軸方向)に、圧接具挿入孔13が金属ブロック1を貫通して形成される。
パイプ貫通孔11の中心X軸と、圧接具挿入孔13の中心Z軸とは図1に示すようにY軸方向に隔たりを持ち、図1-2、4-6に示すように、両孔の交点で連通して形成される。
圧接具挿入孔13には圧接具14が挿入される。圧接具14は図7のA及びBに示すように角柱形状の金属ブロックで構成され、長手方向の中心位置14Aから互いに反対方向に等距離の対称位置に貫通孔14B、14Cが形成される。
【0019】
金属ブロック1には、また更に、粗調整ネジ15が捩じ込まれるネジ孔20と、このネジ孔20から等距離の位置に2つの微調整ネジ駆動孔21がそれぞれ圧接具挿入孔13に直交する向き(Y軸方向)に、圧接具挿入孔13に連通するように形成される。
圧接具14は、図4に示すように、圧接具挿入孔13内に、パイプ12の上面と第1接触部12Aで接してパイプ12を横切るように挿入され、粗調整ネジ15の軸芯、及びこれが捩じ込まれるネジ孔20の軸Yが、圧接具14の中心部14Aにおいて直交し、かつパイプ12の軸線Xと直交して配置される。(図1参照)
ネジ孔20を挟んで金属ブロック1Bに形成された2つの微調整ネジ駆動孔21からネジ孔20までの距離は、圧接具14に形成された2つの貫通孔14B、14Cから圧接具14の中心位置14Aまでの距離と等しくされる。
【0020】
圧接具挿入孔13に挿入された圧接具14の貫通孔14B、14Cが微調整ネジ駆動孔21と対向する位置に配置される。
これにより、圧接具14の中心位置14Aに、ネジ孔20に捩じ込まれる粗調整ネジ15の先端の中心が圧接される。
金属ブロック1には、また更に、微調整ネジ駆動孔21と圧接具挿入孔13を挟んで対向する位置に同軸となるにように、微調整ネジが捩じ込まれるネジ孔17が形成される。
【0021】
微調整ネジ16は頭部16Aとネジ部16Bを具備し、圧接具14に形成した貫通孔14B、14Cの内径は、微調整ネジ16のネジ部16Bの径よりも大に形成されており、この圧接具の貫通孔14B、14Cには微調整ネジ駆動孔21を通って微調整ネジ16を貫通させ、圧接具挿入孔13を貫通して反対側に形成したネジ孔17(図4−6参照)にネジ部16Bを捩じ込み、微調整ネジ16の頭部16Aが圧接具14と係合して、圧接具14をパイプ12に向って圧接させ、微調整を達成する。
【0022】
粗調整ネジ15と微調整ネジ16の頭部16Aは図4−6に示すように金属ブロック1Bに形成された孔20及び21の内部に格納される。
金属ブロック1には、また更に、粗調整ネジ15と対向してパイプ12の反対側に台固定孔22が形成される。
この孔22に台18が配置される。台18は立上り部18Aと基部18Bとを有し、立上り部18Bがパイプ貫通孔11内に突出してパイプ12を挟んで粗調整ネジに対向する位置に位置するように、この基部18Bが金属ブロック1にネジ18Cで固定される。立上り部18Aは先端にパイプ12の円筒面と直交する向の円弧面18AA(パイプ12の軸線X方向に弯曲した面:1、2参照)を有する。
【0023】
この状態で先ず粗調整ネジ15をネジ20に捩じ込んで、圧接具の中心部をパイプに向けて押し付ける。この状態を図1及び図4に示す。この状態は圧接力無調整の状態である。すなわち、この時パイプ12は圧接具14と第1接触点12Aで接触し、その反対側の第2接触点12Bで台18の立ち上がり部18Aの先端に形成した円弧面18AAの頂上稜部18Rと接触している。
さらに粗調製ネジを捩じ込むことにより、圧接具14によってパイプ12が台18に向って圧接されると、パイプ12は、パイプ12と台18の第2接触部12Aが台の円弧面18AAとの接触面積を増やすように押し潰され、パイプ12の軸線方向に断面積が序々に狭くなり、最小断面部分(距離をMS:図2参照)を通過した後序々に断面積が広くなる形状の絞りを形成する。
【0024】
ここで、粗調製ネジの捩じ込み量を、パイプ12を押し潰して設定したい所望の流量値よりわずかに大きい流量値に設定する。この状態を図2、5に示す。これで、粗調整が完了である。
圧接具14に形成された貫通孔14B、14Cの内径は、微調整ネジ16のネジ部の径よりも大に形成されており、粗調整の間、圧接具14は粗調整ネジ15によってのみパイプ12に圧接される。
図2、5に示す粗調整が完了した状態で粗調整ネジの回転を止め、微調整ネジ16を回転させ、微調整を行なう。微調整ネジ16は頭部16Aを具備したネジを用いるから、ネジ部16Bのネジ径を粗調整ネジ15の径、例えば6mmよりもより細い直径、例えば3mmのネジを用いることができる。
【0025】
ネジ径が細いネジはネジピッチが小さいから、微調整ネジ16の回転量に対するパイプ12の変形量を小さくすることができる。因みに細目ネジでは粗調整ネジ15の直径が6mmである場合に、そのネジピッチは0.75mmである。これに対し、直径が3mmのネジのネジピッチは0.35mmとなる。従って回転角に対するネジの移動量はネジの直径が細いほど小さくなり、十分に微調整を行なうことができる。
然も、微調整ネジ16は圧接具14の中心位置14Aから等距離の位置に配置したから、一方の微調整ネジ16を捩じ込む際には、圧接具14は他方の微調整ネジ16の位置を回動支点としてテコの動作でパイプ12を押し潰す。
【0026】
従って、図8で示すように、例えば貫通孔14Bに挿入された微調整ネジ16を固定支点側とし、他方の貫通孔14Cに挿入された微調整ネジ16のみを回転させ、その押し込み移動量をMとした場合、この移動量Mによってパイプ12を押しつぶす量δは微調整ネジ16の中心(14Bと14Cで表す)担互を結ぶ線の距離をLとした場合、パイプ12の位置はその約1/2であるから、押しつぶされる量(絞り量)δもMの約1/2となる。この結果、微調整ネジ16の移動量Mは更に縮小されてパイプ12に与えられるから、微調整ネジに依る調整は、粗調整ネジに依る調整に比べて、その調整量を微小にかつ容易に変化できる。
【0027】
このように、粗調整に依って、所望の絞り部の絞り量よりも若干大きい値まで絞り込み、これを図2、5に示す絞り部の距離MSとすると、次いで微調整に依って絞り量をδだけ追加して、最終の所望絞り量(距離をMS)となるように調整する(図6参照)ことにより、パイプを所望値よりも余分に押し潰してしまうという失敗を容易に回避できる。
なお、図8において、実線で表示した圧接具14は、微調整圧接の実施前の状態を示し、点線で表示した圧接具14は、微調整圧接の実施後の状態を示す。
【0028】
圧接具14によってパイプ12が台18に圧接されると、パイプ12は台18の形状に従ってその軸線方向に漸次断面積が小さくなり、断面積の極小点を形成して再び断面積が序々に広くなる形状の絞りを形成するから、断面積が極小となる位置で所定の条件(1次側の圧力が所定値以上で、2次側の圧力が所定値以下の場合)を満す場合に音速流量を得ることができる。この音速流量は1次側の圧力が所定値を超えていれば2次側の圧力が多少変動しても流量は一定値に保たれる。この結果、目標流量値を音速流量に設定すれば信頼性の高い一定流量値を得ることができる。
【0029】
【発明の効果】
以上説明したように、この発明によれば粗調整ネジのほかに微調整ネジを用意したから、流量値の設定を容易に行なうことができる。更に、この発明によれば、粗調整ネジ15及び微調整ネジ16はそれぞれ頭部を金属ブロック1に形成したネジ孔20、及びネジ駆動孔21の中に格納した状態としたから、流量値を設定した後はこれらネジを収納した孔をシールで塞ぐ等すれば、設定値を変更操作してしまう事故が起きるおそれはない。従って、長期にわたって設定値を維持することができるから、信頼性の高い基準流量値を提供することができる。
【0030】
なお、台18はメタルブロック1に対し着脱交換可能にし、台立上り部18Aの先端表面18AAのパイプ軸方向の断面形状を、円弧面に形成した例を挙げたが、この断面形状を他の異なる形状にすることで、絞り部の形状を任意に設定できる等の効果も得られる。
【図面の簡単な説明】
【図1】この発明の一実施例を説明するための断面図であって、図3においてX、Y軸を含む紙面に垂直な切断面からB方向に見た断面図。
【図2】図1と同様の断面図であり、微調整作業を実施後の状態を示す図。
【図3】この発明の一実施例を説明するための平面図。
【図4】図3のY、Z軸を含む切断面からA方向に見た断面図
【図5】図4と同様の断面図であり、粗調整作業を実施後の状態を示す図
【図6】図4と同様の断面図であり、微調整作業を実施後の状態を示す図
【図7】この発明に用いる圧接具の構造を説明するための図であり、Aは平面図、Bは側面図。
【図8】この発明の要部の動作を説明するための図。
【図9】従来の技術を説明するための断面図。
【図10】従来技術の流量抵抗設定弁の実用状況を説明するためのブロック図。
【符号の説明】
1 金属ブロック
4 シール材
11 パイプ貫通孔
12 パイプ
13 圧接具貫通孔
14 圧接具
15 粗調整ネジ
16 微調整ネジ
16A 頭部
16B ネジ部
17 ネジ孔
18 台
18AA 円弧面
18R 頂上稜部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flow rate resistance setting nozzle that can be set to a reference flow rate and used for calibration of a flow rate measuring device, etc., and in particular, the flow rate value can be easily set and the set flow rate value can be set over a long period of time. Therefore, it is an object of the present invention to provide a flow resistance setting nozzle capable of maintaining a stable and stable reference flow rate.
[0002]
[Prior art]
Conventionally, the present inventor has proposed various flow resistance setting valves. An example is shown in FIG. FIG. 9 shows a flow resistance setting valve which was proposed as a “micro leak valve” in Patent Document 1 and was assigned to the same person as the assignee of the present application. The flow resistance setting valve includes a metal block 1 having a thin tube through hole 3 through which the thin tube 2 passes and a screw hole 5-1 formed in a direction orthogonal to the thin tube through hole 3, and the thin tube through hole 3 The seal material 4A, 4B for sealing between the outer periphery of the narrow tube 2 and the inner wall of the narrow tube through hole 3, and the screw 5-2 screwed into the screw hole 5-1, 2, the cross-sectional area of the hollow portion of the thin tube 2 can be set to an appropriate value by crushing the appropriate amount of the thin tube 2, and by setting the cross-sectional area, the flow rate of the gas passing through the thin tube 2 is limited. It is a structure to obtain.
[0003]
An example of a practical situation of this flow resistance setting valve will be described with reference to FIG. In FIG. 10, 6 indicates a gas compression source such as a compressor. The gas pressure pressurized by the gas compression source 6 is adjusted by the pressure regulating valve 7, and the adjusted gas pressure is managed by the pressure gauge 8-1 and set to a constant gas pressure (primary pressure). The primary pressure gas is applied to the flow resistance setting valve 9 described with reference to FIG. 9, and the secondary pressure is measured by the pressure gauge 8-1. When the pressure ratio between the secondary pressure and the primary pressure becomes a certain value or less, the flow velocity of the gas flowing through the throttle portion of the flow rate resistance setting valve 9 becomes equal to the sound velocity, and is limited to a constant flow rate and given to the flow meter 10 to be calibrated. If the flow rate measurement value A of the flow meter 10 to be calibrated is calibrated so as to coincide with the flow rate set in the flow resistance setting valve 9, the flow rate measurement value of the flow meter 10 to be calibrated is calibrated.
[0004]
[Patent Document 1]
Japanese Utility Model Publication No. 5-42283
[Problems to be solved by the invention]
The previously proposed flow resistance setting valve uses a screw 5-2 for flow setting, adjusts the screwing amount of the screw 5-2, crushes the thin tube 2, and restricts the cross-sectional area of the thin tube 2 to a predetermined gas. The flow rate value flowing in a state where pressure is applied is set to a desired value.
As the screwing amount of the screw 5-2 is increased, the flow rate value is reduced. However, if the flow rate value slightly exceeds the target value, the deformation of the narrow tube 2 does not return to the original value, so that the narrow tube 2 Must be replaced with a new one and adjusted again. In this respect, there is a drawback that the setting of the flow value is troublesome.
[0006]
In particular, the screw 5-2 has a structure in which adjustment is performed inside the screw hole 5-1 by using a screw called a set screw or a set screw. The reason is that the screw hole 5-1 can be sealed after setting the flow rate value so that the flow resistance setting state cannot be easily operated. For this reason, a set screw is used as the screw 5-2. However, since the set screw has a driver engagement groove for rotation adjustment at the end of the screw part, the diameter of the screw part is extremely thin. I can't do it. That is, the set screw is generally thick in diameter.
[0007]
Since it is known that the screw pitch becomes coarser as the screw diameter increases, it is difficult to accurately set the flow rate value to the target value by adjusting the screw 5-2 of the set screw structure.
An object of the present invention is to provide a flow resistance setting nozzle capable of easily setting a flow value.
[0008]
[Means for Solving the Problems]
In a first aspect of the present invention, a metal block in which a pipe through-hole is formed; a metal pipe that is inserted into the pipe through-hole and that constitutes a flow path; A prismatic pressure contact tool whose central part is in contact with the first contact part of the peripheral surface of the pipe; and a rough fitting which is attached to the metal block and presses the central part of the pressure contact tool toward the metal pipe with a rough adjustment pressure. An adjustment screw; a first contact which is attached to the metal block so as to be positioned on the same axis as the coarse adjustment screw, has a tip, and this tip is a peripheral surface of the metal pipe and contacts the pressure contact tool A base that is in contact with the second contact portion that faces the portion and holds the metal pipe between the pressure contact tool; and a position that is attached to the metal block and in which the coarse adjustment screw in the center portion of the pressure contact tool is in pressure contact, Pairs separated by approximately equal distance in the longitudinal direction of the pressure fitting In position, two fine adjustment screws that apply pressure in the same direction in parallel to the direction in which the coarse adjustment screw applies the coarse adjustment pressure toward the metal pipe, and the outer peripheral surface of the metal pipe and the metal block A seal member that seals between the inner peripheral surface of the pipe through-hole of the metal, and by a coarse adjustment pressure of the coarse adjustment screw, a metal pipe is sandwiched between the pressure contactor and the base and crushed by a predetermined amount, and fine adjustment A flow resistance setting nozzle is proposed in which a pipe is further crushed by a fine adjustment pressure consisting of a combination of two pressures of a screw.
[0009]
According to a second aspect of the present invention, in the flow resistance setting nozzle according to the first aspect, the metal block has a press fitting insertion hole that communicates perpendicularly to the pipe through hole and penetrates the metal block. Then, a flow resistance setting nozzle is proposed in which the press contact tool is inserted and arranged in the press contact tool insertion hole so as to cross and contact the pipe at a right angle.
According to a third aspect of the present invention, in the flow resistance setting nozzle according to the first or second aspect, the fine adjustment screw has a head portion and a screw portion, and the press contact is located at the symmetrical position, The metal block has two through holes into which the fine adjustment screws are loosely fitted, and the metal block is finely positioned at a position facing the two through holes when the press contact is arranged so as to be in contact with the pipe at right angles. There is a screw hole into which the screw part of the adjustment screw is screwed in. The screw part of the fine adjustment screw is loosely fitted in the through hole of the press contact tool, the head is locked to the press contact tool, and the tip of the screw part is the metal block. The present invention proposes a flow resistance setting nozzle configured to apply pressure to the pressure contact member by the head as it is screwed into the screw hole.
[0010]
According to a fourth aspect of the present invention, there is proposed a flow resistance setting nozzle having a configuration in which the screw portion of the fine adjustment screw has a diameter smaller than the diameter of the screw portion of the coarse adjustment screw in the flow resistance setting nozzle according to the third aspect. To do.
According to a fifth aspect of the present invention, in the flow resistance setting nozzle according to the first or second aspect, the flow resistance having a configuration in which the tip of the base is provided with an arc surface in a direction perpendicular to the cylindrical surface of the pipe. Propose a setting nozzle.
In a sixth aspect of the present invention, in any one of the flow resistance setting nozzles according to the first to fifth aspects, the metal block includes a screw hole for the coarse adjustment screw and a drive hole for the fine adjustment screw. The head of the coarse adjustment screw and the fine adjustment screw has a flow resistance setting nozzle configured to be stored in the screw hole for the coarse adjustment screw and the drive hole for the fine adjustment screw formed in the metal block. suggest.
[0011]
Action According to the flow resistance setting nozzle of the present invention, since the fine adjustment screw is provided in addition to the coarse adjustment screw as the pressure contact force adjusting means, the flow value can be set easily. .
Further, according to the flow resistance setting nozzle according to the present invention, since the shape of the tip of the base is an arc surface in a direction perpendicular to the cylindrical surface of the pipe, the shape of the narrowed portion of the pipe gradually increases in the axial direction of the pipe according to the arc surface. It is narrowed down and has the narrowest part, and after this, it becomes a structure that is gradually expanded. For this reason, the gas flows smoothly through the pipe, and the sonic flow rate value (when the primary pressure value is set to a predetermined value or more and the secondary pressure value is set to a predetermined value or less, In the portion, a phenomenon can be obtained in which the fluid flow velocity reaches the sonic velocity value and maintains a constant flow rate value).
[0012]
As a result, an advantage that a highly reliable reference flow rate value can be reproduced is obtained.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
1 to 8 show an embodiment of a flow resistance setting nozzle according to the present invention.
1 and 2 are sectional views of an embodiment of a flow resistance setting nozzle according to the present invention, which are cut in a plane perpendicular to the paper surface including the X and Y axes in FIG. 3 and viewed in the B direction. Here, FIG. 1 shows a state before the rough adjustment operation by the press contact tool, and is also a view cut in a plane perpendicular to the paper surface including the axis Y in FIG. FIG. 2 shows a state after the rough adjustment operation by the press contact tool, and is a view cut in a plane perpendicular to the paper surface including the axis Y in FIG.
[0014]
FIG. 3 shows a plan view of the embodiment shown in FIGS.
4, 5, and 6 are cross-sectional views taken in the direction A and cut in a plane perpendicular to the paper surface including the axes Y and Z in FIG. 3. Here, FIG. 4 is a rough adjustment operation using a rough adjustment screw. FIG. 3 is a cross-sectional view showing the previous state and cut in a plane perpendicular to the paper surface including the axes Y and Z in FIG. FIG. 5 shows a state after the rough adjustment operation using the rough adjustment screw, and is a cross-sectional view taken in the direction of 3B incised in a plane perpendicular to the paper surface including the axes Y and Z in FIG. FIG. 6 shows a state after the coarse adjustment operation using the coarse adjustment screw and after the fine adjustment operation using the fine adjustment screw.
[0015]
7A and 7B are diagrams for explaining the structure of the pressure contact tool used in the present invention, in which A is a plan view and B is a side view.
FIG. 9 is a view for explaining the operation principle of fine adjustment performed by using the pressure contact tool which is a main part of the present invention.
In addition, what attached | subjected the same number or character in each figure represents the same thing.
In the figure, reference numeral 1 denotes a metal block. In this embodiment, the metal block 1 is composed of two blocks 1A and 1B, and these are connected by screws 1C.
[0016]
A pipe through hole 11 is formed in the metal block 1.
Reference numeral 12 denotes a pipe pushed into the pipe through-hole 11, and 4 denotes a sealing material (O-ring) that seals between the outer periphery of the pipe 12 and the inner wall surface 11 BB of the pipe through-hole 11.
The pipe through-hole 11 vertically penetrates the joint surface 1D of these two divided metal blocks 1A and 1B, and the pipe 12 is inserted on the axis X thereof.
The pipe through-hole 11 includes an inlet hole 11A having an inlet 11AA, an outlet hole 11B having an outlet 11BA, an intermediate hole 11C, and a first intermediate connecting the inlet hole 11A and the intermediate hole. It has a hole portion 11D and a second intermediate hole portion 11E connecting the outlet hole portion 11B and the intermediate hole portion 11C.
[0017]
The first and second intermediate hole portions 11 </ b> D and 11 </ b> E are formed so that the inner diameter is narrowed and slightly larger than the outer diameter of the pipe 12.
The inlet hole portion 11A and the outlet hole portion 11B are connected to the first and second intermediate hole portions 11D and 11E, respectively, and between the inclined portions 11AB and 11BB that gradually increase in diameter and the inlet 11AA or the outlet 11BA from the inclined portion. Screw portions 11AC and 11BC are provided.
At each inlet hole portion 11A and outlet hole portion 11B, an attachment 19 in which a sealing material (O-ring) 4 is fitted to the pipe 12 and then outer threads are formed on the outer periphery thereof to be screwed with the inner screw portions 11AC and 11BC. The attachment 19 is screwed into the inlet hole portion 11A and the outlet hole portion 11B, and a sealing material (O-ring) is provided between the outer peripheral surface of the pipe 12 and the inner wall surfaces of the inclined portions 11AB and 11BB of the pipe through-hole 11. ) By sealing 4, the space between the pipe 12 and the inner wall surface of the pipe through-hole 11 is sealed. Accordingly, the pipe 12 is completely sealed from the middle hole portion 11C that is in circulation with the outside air, and all the gas supplied from one inlet 11AA of the pipe through-hole 11 passes through the pipe 12 and is exhausted from the other outlet 11BA. The pipe 12 constitutes a flow path.
[0018]
In the metal block 1, a pressure contact tool insertion hole 13 is formed through the metal block 1 in a direction (Z-axis direction) orthogonal to the pipe through-hole 11 (X-axis direction).
The center X-axis of the pipe through-hole 11 and the center Z-axis of the press-connector insertion hole 13 are separated from each other in the Y-axis direction as shown in FIG. 1, and both holes as shown in FIGS. 1-2 and 4-6. It is formed to communicate with each other at the intersection.
A pressure contact tool 14 is inserted into the pressure contact tool insertion hole 13. As shown in FIGS. 7A and 7B, the pressure contact tool 14 is formed of a prismatic metal block, and through holes 14B and 14C are formed at symmetrical positions equidistant in the opposite direction from the center position 14A in the longitudinal direction.
[0019]
The metal block 1 is further provided with a screw hole 20 into which the coarse adjustment screw 15 is screwed, and two fine adjustment screw drive holes 21 at an equal distance from the screw hole 20, respectively, orthogonal to the press contact tool insertion hole 13. It is formed so as to communicate with the press contact tool insertion hole 13 in the direction (Y-axis direction).
As shown in FIG. 4, the press contact tool 14 is inserted into the press contact tool insertion hole 13 so as to contact the upper surface of the pipe 12 at the first contact portion 12 </ b> A and cross the pipe 12. The axis Y of the screw hole 20 into which the screw hole 20 is screwed is orthogonal to the central portion 14 </ b> A of the press contact 14 and is orthogonal to the axis X of the pipe 12. (See Figure 1)
The distance from the two fine adjustment screw drive holes 21 formed in the metal block 1B to the screw hole 20 with the screw hole 20 interposed therebetween is the center of the press contact tool 14 from the two through holes 14B and 14C formed in the press contact tool 14. It is made equal to the distance to the position 14A.
[0020]
The through holes 14 </ b> B and 14 </ b> C of the press contact tool 14 inserted into the press contact tool insertion hole 13 are disposed at positions facing the fine adjustment screw drive hole 21.
As a result, the center of the tip of the coarse adjustment screw 15 screwed into the screw hole 20 is pressed against the center position 14A of the press contact tool 14.
The metal block 1 is further formed with a screw hole 17 into which the fine adjustment screw is screwed so as to be coaxial with the fine adjustment screw drive hole 21 and the pressure contact tool insertion hole 13 so as to face each other. .
[0021]
The fine adjustment screw 16 includes a head portion 16A and a screw portion 16B, and the inner diameters of the through holes 14B and 14C formed in the pressure contact tool 14 are formed larger than the diameter of the screw portion 16B of the fine adjustment screw 16, The fine adjustment screw 16 is passed through the through holes 14B and 14C of the press contact tool through the fine adjustment screw driving hole 21, and the screw hole 17 formed on the opposite side through the press contact tool insertion hole 13 (FIG. 4-6). The screw portion 16B is screwed into the reference), and the head portion 16A of the fine adjustment screw 16 is engaged with the pressure contact tool 14 so that the pressure contact tool 14 is pressed toward the pipe 12 to achieve fine adjustment.
[0022]
The coarse adjustment screw 15 and the head 16A of the fine adjustment screw 16 are stored in holes 20 and 21 formed in the metal block 1B as shown in FIG. 4-6.
In the metal block 1, a base fixing hole 22 is formed on the opposite side of the pipe 12 so as to face the coarse adjustment screw 15.
A base 18 is disposed in the hole 22. The base 18 has a rising portion 18A and a base portion 18B, and the base portion 18B is located at a position facing the coarse adjustment screw with the pipe 12 sandwiched between the rising portion 18B and the pipe 12 therebetween. 1 is fixed with a screw 18C. The rising portion 18 </ b> A has an arc surface 18 </ b> AA (a surface curved in the axis X direction of the pipe 12: 1 and 2) in a direction perpendicular to the cylindrical surface of the pipe 12 at the tip.
[0023]
In this state, first, the coarse adjustment screw 15 is screwed into the screw 20 and the center portion of the press contact tool is pressed against the pipe. This state is shown in FIGS. This state is a state in which the pressure contact force is not adjusted. That is, at this time, the pipe 12 contacts the press contact tool 14 at the first contact point 12A, and the top ridge portion 18R of the circular arc surface 18AA formed at the tip of the rising portion 18A of the base 18 at the second contact point 12B on the opposite side. In contact.
Further, when the pipe 12 is pressed against the base 18 by the pressure contact tool 14 by screwing the coarse adjustment screw, the pipe 12 is connected to the second contact portion 12A of the base 12 and the arc surface 18AA of the base. The cross-sectional area gradually decreases in the axial direction of the pipe 12, and the cross-sectional area gradually increases after passing through the minimum cross-section portion (distance MS: see FIG. 2). Form an aperture.
[0024]
Here, the screwing amount of the coarse adjustment screw is set to a flow rate value slightly larger than a desired flow rate value to be set by crushing the pipe 12. This state is shown in FIGS. This completes the rough adjustment.
The inner diameters of the through holes 14B and 14C formed in the pressure contact tool 14 are formed larger than the diameter of the screw portion of the fine adjustment screw 16, and during the coarse adjustment, the pressure contact tool 14 is piped only by the coarse adjustment screw 15. 12 is pressed.
2 and 5, the coarse adjustment screw is stopped and the fine adjustment screw 16 is rotated to perform fine adjustment. Since the fine adjustment screw 16 is a screw having a head 16A, the screw diameter of the screw portion 16B can be a diameter of the coarse adjustment screw 15, for example, a diameter smaller than 6 mm, for example, 3 mm.
[0025]
Since the screw with a small screw diameter has a small screw pitch, the deformation amount of the pipe 12 with respect to the rotation amount of the fine adjustment screw 16 can be reduced. Incidentally, when the diameter of the coarse adjustment screw 15 is 6 mm in the fine screw, the screw pitch is 0.75 mm. On the other hand, the screw pitch of a screw having a diameter of 3 mm is 0.35 mm. Accordingly, the amount of movement of the screw with respect to the rotation angle becomes smaller as the screw diameter becomes thinner, and sufficient fine adjustment can be performed.
However, since the fine adjustment screw 16 is arranged at a position equidistant from the center position 14A of the pressure contact tool 14, when the one fine adjustment screw 16 is screwed in, the pressure contact tool 14 is connected to the other fine adjustment screw 16. The pipe 12 is crushed by the lever operation using the position as a pivot point.
[0026]
Therefore, as shown in FIG. 8, for example, the fine adjustment screw 16 inserted into the through hole 14B is set as the fixed fulcrum side, and only the fine adjustment screw 16 inserted into the other through hole 14C is rotated, and the amount of pushing movement is changed. Assuming that M is the amount δ of crushing the pipe 12 by this moving amount M, the distance of the line connecting the centers of the fine adjustment screws 16 (represented by 14B and 14C) is L, and the position of the pipe 12 is approximately Since it is ½, the amount of crushing (aperture amount) δ is also about ½ of M. As a result, since the moving amount M of the fine adjustment screw 16 is further reduced and applied to the pipe 12, the adjustment amount by the fine adjustment screw is finer and easier than the adjustment by the coarse adjustment screw. Can change.
[0027]
In this way, the aperture is narrowed down to a value slightly larger than the desired aperture amount by rough adjustment, and this is the aperture distance MS shown in FIGS. 2 and 5, and then the aperture amount is adjusted by fine adjustment. By adding δ and adjusting it to the final desired aperture amount (distance is MS F ) (see FIG. 6), it is possible to easily avoid the failure of crushing the pipe more than the desired value. .
In FIG. 8, the pressing tool 14 indicated by a solid line indicates a state before the fine adjustment pressing, and the pressing tool 14 indicated by a dotted line indicates a state after the fine adjustment pressing.
[0028]
When the pipe 12 is pressed against the table 18 by the pressure fitting 14, the pipe 12 gradually decreases in cross-sectional area in the axial direction according to the shape of the table 18, forming a minimum point of the cross-sectional area, and the cross-sectional area gradually increases again. Since the diaphragm of the shape is formed, the speed of sound is obtained when a predetermined condition (when the pressure on the primary side is equal to or higher than the predetermined value and the pressure on the secondary side is equal to or lower than the predetermined value) is satisfied at the position where the cross-sectional area is minimum. A flow rate can be obtained. If the primary pressure exceeds a predetermined value, the sonic flow rate is maintained at a constant value even if the secondary pressure fluctuates somewhat. As a result, if the target flow rate value is set to the sonic flow rate, a highly reliable constant flow value can be obtained.
[0029]
【The invention's effect】
As described above, according to the present invention, since the fine adjustment screw is prepared in addition to the coarse adjustment screw, the flow rate value can be easily set. Furthermore, according to the present invention, the coarse adjustment screw 15 and the fine adjustment screw 16 are stored in the screw hole 20 formed in the metal block 1 and the screw drive hole 21, respectively. After the setting, if the holes containing these screws are closed with a seal or the like, there is no possibility that an accident of changing the set value will occur. Therefore, since the set value can be maintained over a long period of time, a highly reliable reference flow rate value can be provided.
[0030]
In addition, although the stand 18 was made detachable and replaceable with respect to the metal block 1 and the cross-sectional shape in the pipe axial direction of the tip surface 18AA of the stand rising portion 18A was formed on an arc surface, this cross-sectional shape is different from that of the other. By making the shape, it is possible to obtain an effect that the shape of the aperture portion can be arbitrarily set.
[Brief description of the drawings]
1 is a cross-sectional view for explaining an embodiment of the present invention, and is a cross-sectional view seen in a B direction from a cut surface perpendicular to the paper surface including the X and Y axes in FIG. 3;
FIG. 2 is a cross-sectional view similar to FIG. 1 and shows a state after performing fine adjustment work.
FIG. 3 is a plan view for explaining one embodiment of the present invention.
4 is a cross-sectional view as viewed in the A direction from the cut surface including the Y and Z axes in FIG. 3. FIG. 5 is a cross-sectional view similar to FIG. 4 and shows a state after performing rough adjustment work. 6 is a cross-sectional view similar to FIG. 4, and shows a state after performing fine adjustment work. FIG. 7 is a view for explaining the structure of a pressure contact tool used in the present invention, where A is a plan view and B Is a side view.
FIG. 8 is a diagram for explaining the operation of the main part of the present invention.
FIG. 9 is a cross-sectional view for explaining a conventional technique.
FIG. 10 is a block diagram for explaining a practical situation of a conventional flow resistance setting valve.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Metal block 4 Sealing material 11 Pipe through-hole 12 Pipe 13 Pressure contact tool through-hole 14 Pressure contact tool 15 Coarse adjustment screw 16 Fine adjustment screw 16A Head 16B Screw part 17 Screw hole 18 Stand 18AA Arc surface 18R Top ridge part

Claims (7)

パイプ貫通孔が形成された金属ブロックと;
上記金属ブロックのパイプ貫通孔に挿入された、流路を構成するための金属パイプと;
上記パイプと直角に交叉して配置され、その中央部がパイプの周面の第1接触部と接触する角柱形状の圧接具と;
金属ブロックに取付けられ、圧接具の中央部を金属パイプに向って粗調整圧力で以って圧接させる粗調整ネジと;
上記粗調整ネジと同一軸芯上に位置する様に金属ブロックに取付けられ、先端部を持ちこの先端部が、金属パイプの周面であって、圧接具と接触する第1接触部と対向する第2接触部に接触し、圧接具との間に金属パイプを挟んで保持する台と;
上記金属ブロックに取付けられ、圧接具の中央部の粗調整ネジが圧接する位置から、圧接具の長手方向にほぼ等距離だけ離れた対称位置で、圧接具に、粗調整ネジが金属パイプに向かって粗調整圧力を働かせる方向と平行で同方向にそれぞれ圧力を与える、2本の微調整ネジと;
上記金属パイプの外周面と上記金属ブロックに形成したパイプ貫通孔の内周面との間をシールするシール部材と;
から成り、粗調整ネジの粗調整圧力によって圧接具と台との間に挟まれた金属パイプを所定量押し潰すとともに、微調整ネジの2つの圧力の組み合わせからなる微調整圧力によってパイプを更に押し潰すように構成したことを特徴とする流量抵抗設定ノズル。
A metal block in which a pipe through-hole is formed;
A metal pipe for forming a flow path, inserted into the pipe through hole of the metal block;
A prismatic pressure contact tool which is arranged so as to intersect with the pipe at a right angle, and whose central portion contacts the first contact portion of the peripheral surface of the pipe;
A coarse adjustment screw attached to the metal block and press-contacting the central part of the pressure fitting toward the metal pipe with coarse adjustment pressure;
It is attached to the metal block so as to be positioned on the same axis as the coarse adjustment screw, and has a tip portion, which is the peripheral surface of the metal pipe and faces the first contact portion that contacts the pressure contact tool. A stand that contacts the second contact portion and holds the metal pipe between the press contact tool;
The coarse adjustment screw faces the metal pipe at the symmetrical position that is attached to the metal block and is approximately equidistant from the position where the coarse adjustment screw in the center of the pressure fitting is pressed. Two fine adjustment screws that apply pressure in the same direction in parallel with the direction in which the coarse adjustment pressure is applied;
A seal member that seals between an outer peripheral surface of the metal pipe and an inner peripheral surface of a pipe through hole formed in the metal block;
The metal pipe sandwiched between the pressure fitting and the base is crushed by a predetermined amount by the coarse adjustment pressure of the coarse adjustment screw, and the pipe is further pushed by the fine adjustment pressure consisting of two pressures of the fine adjustment screw. A flow resistance setting nozzle characterized by being configured to be crushed.
請求項1に記載の流量抵抗設定ノズルにおいて、
上記金属ブロックは、上記パイプ貫通孔と直交して連通し、かつ金属ブロックを貫通する圧接具挿入孔を有し、
上記圧接具を、パイプと直角に交叉して接するように、上記圧接具挿入孔に挿入配置することを特徴とする流量抵抗設定ノズル。
In the flow resistance setting nozzle according to claim 1,
The metal block communicates orthogonally with the pipe through-hole, and has a press contact tool insertion hole penetrating the metal block,
A flow resistance setting nozzle, wherein the pressure contact tool is inserted and disposed in the pressure contact tool insertion hole so as to intersect with the pipe at a right angle.
請求項1又は2に記載の流量抵抗設定ノズルにおいて、
上記微調整ネジは頭部とネジ部を有し、
上記圧接具は、上記対称位置に、上記微調整ネジが遊嵌する2個の貫通孔を有し、
上記金属ブロックは、圧接具がパイプと直交して接するように配置されたときに、上記2個の貫通孔に対向する位置に微調整ネジのネジ部が捩じ込まれるネジ孔を有し、
微調整ネジのネジ部が圧接具の貫通孔に遊嵌して、頭部が圧接具に係止され、そのネジ部先端が金属ブロックのネジ孔に捩じ込まれるにつれこの頭部により上記圧接具に圧接力を与えることを特徴とする流量抵抗設定ノズル。
In the flow resistance setting nozzle according to claim 1 or 2,
The fine adjustment screw has a head portion and a screw portion,
The press contact tool has two through holes into which the fine adjustment screw is loosely fitted at the symmetrical position,
The metal block has a screw hole into which the screw portion of the fine adjustment screw is screwed at a position facing the two through holes when the pressure contact member is arranged so as to be in contact with the pipe at right angles.
The screw part of the fine adjustment screw is loosely fitted into the through hole of the press contact tool, the head part is locked to the press contact tool, and the head part is screwed into the screw hole of the metal block. A flow resistance setting nozzle characterized by applying a pressure contact force to the tool.
請求項3に記載の流量抵抗設定ノズルにおいて、
上記微調整ネジのネジ部は、上記粗調整ネジのネジ部の径より細い径を有することを特徴とする流量抵抗設定ノズル。
In the flow resistance setting nozzle according to claim 3,
The flow resistance setting nozzle, wherein the screw portion of the fine adjustment screw has a diameter smaller than the diameter of the screw portion of the coarse adjustment screw.
請求項1又は2に記載の流量抵抗設定ノズルにおいて、
上記台の先端部は上記パイプの円筒面と直交する向きの円弧面を具備していることを特徴とする流量抵抗設定ノズル。
In the flow resistance setting nozzle according to claim 1 or 2,
The flow resistance setting nozzle, wherein the tip of the base has an arcuate surface in a direction orthogonal to the cylindrical surface of the pipe.
請求項1乃至5の何れかに記載の流量抵抗設定ノズルにおいて、
上記金属ブロックは、上記粗調整ネジ用のネジ孔及び微調整ネジ用の駆動孔を有し、
上記粗調整ネジ及び微調整ネジの頭部は上記金属ブロックに形成されたこれら粗調整ネジ用のネジ孔及び微調整ネジ用の駆動孔の内部に格納されていることを特徴とする流量抵抗設定ノズル。
In the flow resistance setting nozzle according to any one of claims 1 to 5,
The metal block has a screw hole for the coarse adjustment screw and a drive hole for the fine adjustment screw,
The flow resistance setting is characterized in that the heads of the coarse adjustment screw and the fine adjustment screw are stored in the screw hole for the coarse adjustment screw and the drive hole for the fine adjustment screw formed in the metal block. nozzle.
パイプ貫通孔と、圧接具挿入用孔と、粗調整ネジ用ネジ孔と、2個の微調整ネジ駆動孔と、2個の微調整ネジ用ネジ孔と、台固定孔と、を有する金属ブロックと;
上記金属ブロックのパイプ貫通孔に挿入された流路を構成するための金属パイプと;
上記金属パイプに圧接し、所望の絞り部を形成するように押し潰す圧接具と;
上記圧接具による金属パイプへの圧接時に金属パイプを支える台と;
上記圧接具に作用して金属パイプに加える圧接力を粗調整する粗調整ネジと;
上記圧接具に作用して金属パイプに加える圧接力を微調整する2個の微調整ネジと;
上記金属パイプの外周面と上記金属ブロックに形成したパイプ貫通孔の内周面との間をシールするシール部材と;
からなる流量抵抗設定ノズルであって、
上記圧接具挿入孔は、パイプ貫通孔の延伸方向と直角方向に延伸形成され、かつ上記パイプ貫通孔と交叉部で連通するように形成され、
上記粗調整ネジ用ネジ孔は、パイプ貫通孔と圧接具挿入孔との上記交叉部でこれらの孔にそれぞれ直交して、かつ連通するように形成され、
上記2個の微調整ネジ駆動孔は、粗調整ネジ用ネジ孔と平行して、かつこの粗調整ネジ用ネジ孔を挟んでこの粗調整ネジ用ネジ孔から上記圧接具挿入孔の延伸方向にほぼ等距離だけ離れた2つの対称位置に、上記圧接具挿入孔に直交して、かつ連通するように形成され、
上記2個の微調整ネジ用ネジ孔は、圧接具挿入孔を挟んで上記微調整ネジ駆動孔に対向する位置に同軸に形成され、
上記台固定孔は、パイプ貫通孔と圧接具挿入孔を挟んで上記粗調整ネジ用ネジ孔に対向する位置に形成され、
上記圧接具は角柱形状を持ち、2個の微調整ネジ貫通孔を有し、圧接具挿入用孔に挿入された時に、これら微調整ネジ貫通孔は微調整ネジ駆動孔に対向する位置に配置され
上記粗調整ネジは、粗調整ネジ用ネジ孔に捩じ込まれて、上記圧接具を金属パイプに向かって、直角に交叉する位置で粗調整圧力でもって押圧し、金属パイプを所定量押し潰し、
上記台は基部と立上り部を持ち、立上り部が台固定孔に挿入され、その立上り部の先端が上記金属パイプの周面に接触し、上記粗調整ネジによって発生された粗調整圧力で以って上記圧接具から上記金属パイプに与えられる圧接力を受け止めるように固定され、
上記2本の微調整ネジは頭部とネジ部を持ち、圧接具の上記微調整ネジ貫通孔に遊嵌し、ネジ部先端が上記圧接具挿入用孔を貫通し、上記金属ブロックに形成された2個の微調整ネジ用ネジ孔に捩じ込まれて、上記対称位置で圧接具に2つの圧力を与え、それらが組み合わさって上記圧接具に更なる微調整圧力を与えて上記パイプを押し潰すように構成したことを特徴とする流量抵抗設定ノズル。
A metal block having a pipe through hole, a pressure fitting insertion hole, a coarse adjustment screw screw hole, two fine adjustment screw drive holes, two fine adjustment screw screw holes, and a base fixing hole. When;
A metal pipe for forming a flow path inserted into the pipe through hole of the metal block;
A pressure contact tool that is pressed against the metal pipe and crushed to form a desired throttle portion;
A stand for supporting the metal pipe during the pressure contact with the metal pipe by the above-mentioned pressure welding tool;
A coarse adjustment screw for coarsely adjusting the pressure contact force applied to the metal pipe by acting on the pressure contact tool;
Two fine adjustment screws that act on the pressure fitting and finely adjust the pressure force applied to the metal pipe;
A seal member that seals between an outer peripheral surface of the metal pipe and an inner peripheral surface of a pipe through hole formed in the metal block;
A flow resistance setting nozzle comprising:
The pressurizing tool insertion hole is formed to extend in a direction perpendicular to the extending direction of the pipe through-hole, and to be communicated with the pipe through-hole at the crossing portion,
The coarse adjustment screw screw hole is formed so as to be orthogonal to and communicate with each of the holes at the intersection of the pipe through hole and the pressure tool insertion hole,
The two fine adjustment screw drive holes are parallel to the coarse adjustment screw screw hole and sandwich the coarse adjustment screw screw hole from the coarse adjustment screw screw hole in the extending direction of the press contact tool insertion hole. It is formed so as to be orthogonal to and communicate with the two press-fit tool insertion holes at two symmetrical positions separated by an approximately equal distance,
The two screw holes for fine adjustment screws are formed coaxially at positions facing the fine adjustment screw driving holes with the pressure tool insertion hole interposed therebetween,
The base fixing hole is formed at a position facing the screw hole for the coarse adjustment screw across the pipe through hole and the pressure contact tool insertion hole,
The pressure contactor has a prismatic shape and has two fine adjustment screw through holes. When inserted into the pressure contact insertion hole, these fine adjustment screw through holes are arranged at positions facing the fine adjustment screw drive holes. The coarse adjustment screw is screwed into the screw hole for the coarse adjustment screw, presses the pressure contact member with the coarse adjustment pressure at a position crossing at right angles toward the metal pipe, and pushes the metal pipe by a predetermined amount. Crush,
The base has a base and a rising part, the rising part is inserted into the base fixing hole, the tip of the rising part is in contact with the peripheral surface of the metal pipe, and the rough adjustment pressure generated by the rough adjustment screw is used. And fixed so as to receive the pressure contact force applied to the metal pipe from the pressure contact tool,
The two fine adjustment screws have a head portion and a screw portion, and are loosely fitted into the fine adjustment screw through hole of the press contact tool, and the tip of the screw portion penetrates the press contact tool insertion hole, and is formed in the metal block. Are screwed into two screw holes for fine adjustment screws to give two pressures to the pressure contactor at the symmetrical position, and they combine to give further fine adjustment pressure to the pressure contactor to A flow resistance setting nozzle characterized by being configured to be crushed.
JP2003186470A 2002-07-02 2003-06-30 Flow resistance setting nozzle Expired - Lifetime JP3778359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003186470A JP3778359B2 (en) 2002-07-02 2003-06-30 Flow resistance setting nozzle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002193356 2002-07-02
JP2003186470A JP3778359B2 (en) 2002-07-02 2003-06-30 Flow resistance setting nozzle

Publications (2)

Publication Number Publication Date
JP2004084944A JP2004084944A (en) 2004-03-18
JP3778359B2 true JP3778359B2 (en) 2006-05-24

Family

ID=32071923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003186470A Expired - Lifetime JP3778359B2 (en) 2002-07-02 2003-06-30 Flow resistance setting nozzle

Country Status (1)

Country Link
JP (1) JP3778359B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052795A (en) * 2004-08-12 2006-02-23 Tlv Co Ltd Thermally-actuated steam trap
JP5049199B2 (en) * 2008-05-23 2012-10-17 株式会社コスモ計器 External pressure detection type leak inspection device and leak inspection method using the same
JP5113894B2 (en) * 2010-09-27 2013-01-09 株式会社コスモ計器 Flow rate measuring method and flow rate measuring apparatus using the same
JP5346389B2 (en) * 2012-02-22 2013-11-20 株式会社コスモ計器 Master nozzle
JP5991834B2 (en) * 2012-03-26 2016-09-14 アズビルTaco株式会社 Ultra-fine aperture mechanism and method for forming ultra-fine aperture part
JP6579067B2 (en) * 2016-09-09 2019-09-25 株式会社ダイフク Flow measuring device and flow measuring system
JP7239426B2 (en) * 2019-08-21 2023-03-14 株式会社コスモ計器 Flow resistor, flow control device, flow control method

Also Published As

Publication number Publication date
JP2004084944A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
JP3778359B2 (en) Flow resistance setting nozzle
US20130186499A1 (en) Fluid resistance device
US3791412A (en) Reducing valve for high pressure fluids and connecting means therefor
US4385639A (en) Self-cycling valve
EP0410289A1 (en) Micro-leakage regulating valve
KR20070030180A (en) Valve body and valve having the same
JP3815978B2 (en) Thermal expansion valve
US6827327B2 (en) Flow resistance setting nozzle
WO2019167711A1 (en) Valve device and fluid control apparatus
US1762260A (en) Cutting and welding apparatus
JP2007038179A (en) Gas mixer
US2597478A (en) Regulator valve
US1069067A (en) Adjustable fluid-tight packingless valve.
JP3971840B2 (en) Pressure flow control device
JP2000141166A (en) Position detecting device
JP4283180B2 (en) Expansion valve
WO2018221398A1 (en) Valve device and fluid control device
JP4335713B2 (en) Thermal expansion valve
JP6253295B2 (en) Pressure regulator
JP3388220B2 (en) Micro leak valve
TW201842287A (en) Controller
CN213104874U (en) Cross-groove-type flat blasting piece die
JP3522389B2 (en) Gas supply device
JP2004045026A (en) Thermal expansion valve
JP2575057Y2 (en) Pressure regulator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060222

R150 Certificate of patent or registration of utility model

Ref document number: 3778359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term