JP2004045026A - Thermal expansion valve - Google Patents

Thermal expansion valve Download PDF

Info

Publication number
JP2004045026A
JP2004045026A JP2003312379A JP2003312379A JP2004045026A JP 2004045026 A JP2004045026 A JP 2004045026A JP 2003312379 A JP2003312379 A JP 2003312379A JP 2003312379 A JP2003312379 A JP 2003312379A JP 2004045026 A JP2004045026 A JP 2004045026A
Authority
JP
Japan
Prior art keywords
valve
passage
refrigerant
valve body
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003312379A
Other languages
Japanese (ja)
Other versions
JP3903029B2 (en
Inventor
Kazuto Kobayashi
小林 和人
Kazuhiko Watanabe
渡辺 和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2003312379A priority Critical patent/JP3903029B2/en
Publication of JP2004045026A publication Critical patent/JP2004045026A/en
Application granted granted Critical
Publication of JP3903029B2 publication Critical patent/JP3903029B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas

Landscapes

  • Temperature-Responsive Valves (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the number of part items by simplifying a structure of a thermal expansion valve of a refrigerant equipped in an air conditioner. <P>SOLUTION: This thermal expansion valve 100 has a square columnar valve body 110. The valve body 110 forms a bottomed first passage 120 for introducing the refrigerant, a valve chest 122 formed in the vicinity of a bottom part of the passage, a second passage 126 of the refrigerant turning to an evaporator and a third passage 128 of the refrigerant returning from the evaporator. A valve element 130 is arranged in the valve chest, and is fixed to an operation bar 132, and is operated by a power element 160. The operation bar 132 has a thin diameter part 135. The valve element 130 is fixed by welding work W<SB>1</SB>in a state of preinstalling a valve seat member 200. The valve seat member 200 is pressed in and fixed to a hole 116 of the valve body by the operation bar 132. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、カーエアコン等の空調装置に装備されて、冷媒の温度に応じて蒸発器(エバポレータ)へ供給される冷媒の流量を制御する温度式膨張弁に関する。 The present invention relates to a thermal expansion valve that is provided in an air conditioner such as a car air conditioner and controls the flow rate of a refrigerant supplied to an evaporator (evaporator) according to the temperature of the refrigerant.

 図3は、従来周知の温度式膨張弁の縦断面の構造を示す説明図である。
 全体を符号1で示す膨張弁は、アルミ合金等で製造される角柱形状の弁本体10を有する。弁本体10には空調装置の圧縮機側から送られてくる高圧の冷媒を導入する通路20を有し、通路20に連通する弁室22が弁本体10の下部内部に形成される。
FIG. 3 is an explanatory view showing the structure of a longitudinal section of a conventionally known thermal expansion valve.
The expansion valve generally denoted by reference numeral 1 has a prismatic valve body 10 made of an aluminum alloy or the like. The valve body 10 has a passage 20 for introducing a high-pressure refrigerant sent from the compressor side of the air conditioner, and a valve chamber 22 communicating with the passage 20 is formed inside a lower portion of the valve body 10.

 弁室22は、弁座24を介して通路20から通路26に連通し、通路26からは蒸発器側へ冷媒を送出する。
 弁室22内には、弁座24に対向して球形の弁体30が装備され、弁体30は弁体受け部材32により支持される。弁体受け部材32は、スプリング34を介して調節ネジとなるナット部材36により支持される。ナット部材36は、弁本体10に対してねじ部37により螺合され、六角穴38を利用してレンチ等の工具によりねじ込まれる。
The valve chamber 22 communicates with the passage 26 from the passage 20 via the valve seat 24, and sends the refrigerant from the passage 26 to the evaporator side.
A spherical valve element 30 is provided in the valve chamber 22 so as to face the valve seat 24, and the valve element 30 is supported by a valve element receiving member 32. The valve body receiving member 32 is supported by a nut member 36 serving as an adjustment screw via a spring 34. The nut member 36 is screwed to the valve body 10 by a screw portion 37, and is screwed by a tool such as a wrench using a hexagonal hole 38.

 このナット部材36のねじ込み量により弁体30を支持するスプリング34のばね力を調整することにより弁体30を閉弁方向に付勢することができる。ナット部材36には、シール部材39が取付けられ、弁室22内から冷媒が漏出するのを防止する。 弁 By adjusting the spring force of the spring 34 supporting the valve element 30 by the screwing amount of the nut member 36, the valve element 30 can be urged in the valve closing direction. A seal member 39 is attached to the nut member 36 to prevent the refrigerant from leaking from inside the valve chamber 22.

 弁本体10には、蒸発器側から圧縮機側へ戻る冷媒の戻り通路28が通路26と平行に形成される。
 弁体30は、弁本体10の中心部を貫通する作動棒40により操作される。作動棒40は、ステンレス等でつくられる細径のシャフトで、その上端はストッパ部材50に挿入され、その下端は弁体30に当接する。
A return passage 28 for the refrigerant returning from the evaporator side to the compressor side is formed in the valve body 10 in parallel with the passage 26.
The valve body 30 is operated by an operating rod 40 penetrating through the center of the valve body 10. The operating rod 40 is a small-diameter shaft made of stainless steel or the like. The upper end of the operating rod 40 is inserted into the stopper member 50, and the lower end thereof contacts the valve body 30.

 作動棒40と弁本体10の間には、シール部材42が装備され、冷媒が送り出される通路26と冷媒が戻る通路28との間のシールが形成される。
 ストッパ部材50は、全体を符号60で示すパワーエレメントと称する駆動装置内に装備される。
 パワーエレメント60は、上蓋621と下蓋622とからなる円盤形状のキャン体62を有し、キャン体62は下蓋622のねじ部64により弁本体10の上部に螺合されると共にストッパ部材50は、その周辺部が下蓋622に支持される。
A seal member 42 is provided between the operating rod 40 and the valve body 10 to form a seal between the passage 26 through which the refrigerant is sent out and the passage 28 through which the refrigerant returns.
The stopper member 50 is provided in a drive device generally called a power element indicated by reference numeral 60.
The power element 60 has a disc-shaped can body 62 composed of an upper lid 621 and a lower lid 622. The can body 62 is screwed to the upper portion of the valve body 10 by the screw portion 64 of the lower lid 622, and the stopper member 50 Is supported by the lower lid 622 at the periphery thereof.

 キャン体62内には、ダイアフラム66が設けられ、その周辺部が上蓋621と下蓋622とによって挟み込まれて溶接により固着されており、上部圧力室68と下部圧力室69が形成される。上部圧力室68内には作動流体が充填され、栓体70により封止される。
 冷媒の戻り通路28内を通過する冷媒の圧力は、ストッパ部材50の下面に作用し、冷媒の温度は作動棒40を介してストッパ部材50へ伝達され、ダイアフラム66を介して上部圧力室68内の作動流体に伝達される。
A diaphragm 66 is provided in the can body 62, and its peripheral portion is sandwiched between the upper lid 621 and the lower lid 622 and fixed by welding to form an upper pressure chamber 68 and a lower pressure chamber 69. The working fluid is filled in the upper pressure chamber 68, and is sealed by the stopper 70.
The pressure of the refrigerant passing through the refrigerant return passage 28 acts on the lower surface of the stopper member 50, and the temperature of the refrigerant is transmitted to the stopper member 50 via the operating rod 40, and is transmitted to the upper pressure chamber 68 via the diaphragm 66. To the working fluid.

 上部圧力室68内の圧力により、ダイアフラム66は変位し、その変位量は作動棒40を介して弁体30を作動させ、通路20を流れる冷媒を減圧膨張させ、弁座24を形成する絞り通路の開口面積を調整させて、蒸発器側へ流入する冷媒の流量を制御する。 The diaphragm 66 is displaced by the pressure in the upper pressure chamber 68, and the amount of the displacement activates the valve body 30 via the operation rod 40, decompresses and expands the refrigerant flowing through the passage 20, and forms a throttle passage which forms the valve seat 24. The flow area of the refrigerant flowing into the evaporator side is controlled by adjusting the opening area of the evaporator.

 かかる従来の温度式膨張弁においては、弁受け部材、スプリング及び調節ネジ等を有し、部品点数を要しており、しいては温度式膨張弁の小型化及び軽量化の達成を困難にしていた。
 さらには、弁室より調節ネジ部分を通して冷媒の漏れる不具合の生ずるおそれがあった。
 かかる点に鑑み、本発明はカーエアコンの小型化、軽量化の要請に応じ、構造を簡素化し、部品点数を削減した温度式膨張弁を提供することを目的とする。
Such a conventional thermal expansion valve has a valve receiving member, a spring, an adjusting screw, and the like, and requires a number of parts, which makes it difficult to achieve a reduction in size and weight of the thermal expansion valve. Was.
Further, there is a possibility that refrigerant leaks from the valve chamber through the adjusting screw portion.
In view of the above, it is an object of the present invention to provide a temperature-type expansion valve having a simplified structure and a reduced number of parts in response to a demand for downsizing and weight reduction of a car air conditioner.

 上記目的を達成するために、本発明は、弁本体と、弁本体内に形成される高圧冷媒の通過する第1の通路と、上記第1の通路内に形成される弁室と、上記第1の通路と平行に上記弁本体内に形成される蒸発器側に送出される冷媒の通過する第2の通路と、上記弁室と上記第2の通路を連通する弁座部材が圧入される絞り通路と、上記絞り通路に対向配置された弁体と、上記蒸発器側から送出される冷媒の通過する第3の通路と、上記第3の通路を通過する冷媒の温度を感知して上記弁体を駆動する感温棒とを有し、上記弁座部材は予め上記作動棒と上記弁体との間に装備された状態で上記絞り通路に固着され、上記弁体の変位により上記絞り通路の開口面積を調整することを特徴とする。
 さらに本発明は、上記作動棒は、上記弁座部材に挿入される細径部を有し、上記細径部の先端に球形の弁体が固着される構造を備えることを特徴とする。
To achieve the above object, the present invention provides a valve body, a first passage formed in the valve body, through which a high-pressure refrigerant passes, a valve chamber formed in the first passage, A second passage formed in the valve body in parallel with the first passage and through which the refrigerant delivered to the evaporator side passes, and a valve seat member communicating the valve chamber and the second passage are press-fitted. A throttle passage, a valve body opposed to the throttle passage, a third passage through which the refrigerant delivered from the evaporator passes, and a temperature of the refrigerant passing through the third passage to sense the temperature. A temperature sensing rod for driving the valve body, wherein the valve seat member is fixed to the throttle passage in a state in which the valve seat member is previously mounted between the operating rod and the valve body, and the throttle is moved by displacement of the valve body. The opening area of the passage is adjusted.
Further, the present invention is characterized in that the operating rod has a small-diameter portion inserted into the valve seat member, and has a structure in which a spherical valve body is fixed to a tip of the small-diameter portion.

 そして、作動棒は、弁座部材に挿入される細径部を有し、細径部の先端に球形の弁体が固着される構造を備える。
 また、作動棒をダイアフラム側へ向けて付勢するスプリングを備えるものである。
The operating rod has a small-diameter portion inserted into the valve seat member, and has a structure in which a spherical valve body is fixed to the tip of the small-diameter portion.
Further, a spring for biasing the operation rod toward the diaphragm is provided.

 また、本発明の温度式膨張弁は、本発明の温度式膨張弁は、ツール構造を有しない弁室に配設された弁体により、冷媒の流量を制御して蒸発器へ送出することを特徴とする。 Further, the temperature-type expansion valve of the present invention is characterized in that the temperature-type expansion valve of the present invention controls the flow rate of the refrigerant and sends it to the evaporator by controlling the flow rate of the refrigerant by a valve element disposed in a valve chamber having no tool structure. Features.

 さらにまた、本発明の温度式膨張弁は、弁本体に形成された弁室内の弁体により、絞り通路の開口面積を調整して蒸発器側へ送出される冷媒の流量を制御する温度式膨張弁において、上記弁室は有底の穴内に形成され、シール構造を有しないことを特徴とする。 Still further, the thermal expansion valve of the present invention is a thermal expansion valve that controls the flow rate of the refrigerant delivered to the evaporator side by adjusting the opening area of the throttle passage by the valve element in the valve chamber formed in the valve body. In the valve, the valve chamber is formed in a hole with a bottom and does not have a sealing structure.

 本発明の温度式膨張弁は以上のように、部品点数を削減し、簡単な構造を有するので、製造コストが低減できる。
 また、弁室は有底の穴内に形成され、シール構造を有しないので冷媒の洩れも発生しない。
As described above, the temperature type expansion valve of the present invention can reduce the number of parts and has a simple structure, so that the manufacturing cost can be reduced.
Further, the valve chamber is formed in a hole having a bottom and does not have a sealing structure, so that leakage of refrigerant does not occur.

 図1は本発明の実施形態に係る温度式膨張弁の縦断面を示す説明図である。
 全体を符号100で示す温度式膨張弁は、弁本体110を有し、弁本体110は、例えばアルミ合金にてつくられる角柱形状の部材である。
FIG. 1 is an explanatory view showing a vertical cross section of a thermal expansion valve according to an embodiment of the present invention.
The temperature type expansion valve generally denoted by reference numeral 100 has a valve body 110, and the valve body 110 is a prismatic member made of, for example, an aluminum alloy.

 弁本体110の下部側には、空調装置の圧縮機側から送られてくる高圧の冷媒を受け入れる第1の通路120が形成される。この第1の通路120は、有底の穴であって、その底部近傍は弁室122を形成する。弁室122は、弁本体110内に第1の通路120と垂直に形成された絞り通路を形成する穴116に圧入される弁座部材200を介して第1の通路120と平行に弁本体110内に形成された第2の通路126に連通し、第2の通路126は蒸発器側へ冷媒を送出する。
 弁本体110の上部側には、第2の通路126に平行して設けられる第3の通路128が形成される。
 第3の通路128は、弁本体110を貫通し、蒸発器側から圧縮機側へ戻る冷媒が通過する。
A first passage 120 is formed at a lower side of the valve body 110 to receive a high-pressure refrigerant sent from a compressor side of the air conditioner. The first passage 120 is a hole with a bottom, and a valve chamber 122 is formed near the bottom. The valve chamber 122 is parallel to the first passage 120 through a valve seat member 200 that is press-fitted into a hole 116 that forms a throttle passage formed perpendicular to the first passage 120 in the valve body 110. The second passage 126 communicates with a second passage 126 formed therein, and the second passage 126 sends the refrigerant to the evaporator side.
On the upper side of the valve body 110, a third passage 128 provided in parallel with the second passage 126 is formed.
The third passage 128 penetrates through the valve body 110 and allows the refrigerant returning from the evaporator side to the compressor side to pass.

 弁室122内には、球形の弁体130が第1の通路120の上流側から絞り通路に対向配設され、弁体130は作動棒132の下端と溶接により固着されている。
 作動棒132は、弁本体110の縦穴114内を摺動し、作動棒132に設けられるシール部材134が第2の通路126と第3の通路128の間のシールを形成する。
 作動棒132は、弁本体110の穴112を貫通し、その上端136はストッパ部材140に当接される。
In the valve chamber 122, a spherical valve body 130 is disposed opposite to the throttle passage from the upstream side of the first passage 120, and the valve body 130 is fixed to the lower end of the operating rod 132 by welding.
The operating rod 132 slides in the vertical hole 114 of the valve body 110, and a seal member 134 provided on the operating rod 132 forms a seal between the second passage 126 and the third passage 128.
The operating rod 132 penetrates the hole 112 of the valve main body 110, and its upper end 136 is in contact with the stopper member 140.

 全体を符号160で示すパワーエレメントと称する駆動装置は、ステンレス製の上蓋163と下蓋163′とからなるキャン体162を有し、キャン体162は下蓋163′のねじ部164により本体110の上端に螺合されると共にストッパ部材140はその周辺部が下蓋163′により支持される。キャン体162には、ダイアフラム166が設けられ、その周辺部は上蓋163と下蓋163′とによって挟み込まれており、溶接により共に固着され、上部圧力室168と下部圧力室169が形成される。
 上部圧力室168内には作動流体例えば冷媒が充填され、栓体170により封止される。
The driving device, which is generally referred to as a power element denoted by reference numeral 160, has a can body 162 composed of an upper lid 163 and a lower lid 163 'made of stainless steel, and the can body 162 is fixed to the main body 110 by a screw portion 164 of the lower lid 163'. The stopper member 140 is screwed to the upper end and the periphery of the stopper member 140 is supported by the lower lid 163 '. A diaphragm 166 is provided on the can body 162, and its periphery is sandwiched between an upper lid 163 and a lower lid 163 ′, and is fixed together by welding to form an upper pressure chamber 168 and a lower pressure chamber 169.
The upper pressure chamber 168 is filled with a working fluid, for example, a refrigerant, and sealed with a plug 170.

 ストッパ部材140の上面はダイアフラム166に当接し、ストッパ部材140の下面に当接する作動棒132の上端136の段部と穴112を形成する弁本体110の突起部113との間には、コイルスプリング142が配設され、そのばね力は作動棒130を介してストッパ部材140を上部圧力室168側に向けて付勢する。なお、ストッパ部材140の下面は凹部141が形成され、凹部141の底面と作動棒130の上端136が当接する。 The upper surface of the stopper member 140 contacts the diaphragm 166, and a coil spring is provided between the stepped portion of the upper end 136 of the operating rod 132 that contacts the lower surface of the stopper member 140 and the projection 113 of the valve body 110 that forms the hole 112. A spring 142 biases the stopper member 140 toward the upper pressure chamber 168 via the operating rod 130. A concave portion 141 is formed on the lower surface of the stopper member 140, and the bottom surface of the concave portion 141 and the upper end 136 of the operating rod 130 abut.

 第3の通路128を通過する蒸発器側から圧縮機側へ戻る冷媒は、弁本体110の穴112を通ってストッパ部材140の下面に圧力を伝達する。
 作動棒132は、感温部材として機能して、第3の通路128を通過する冷媒の温度をストッパ部材140、ダイアフラム166を介して上部圧力室168内の作動流体に伝達する。
 圧力室内の圧力とストッパ部材の下面に作用する圧力とつり合う位置に作動棒132は変位して、弁体130により絞り通路の開口面積を調整して、第1の通路120を通過し、第2の通路126から蒸発器側へ送出される冷媒の流量を制御する。
The refrigerant returning from the evaporator side to the compressor side passing through the third passage 128 transmits pressure to the lower surface of the stopper member 140 through the hole 112 of the valve body 110.
The operating rod 132 functions as a temperature sensing member, and transmits the temperature of the refrigerant passing through the third passage 128 to the working fluid in the upper pressure chamber 168 via the stopper member 140 and the diaphragm 166.
The operating rod 132 is displaced to a position where the pressure in the pressure chamber and the pressure acting on the lower surface of the stopper member are balanced, the opening area of the throttle passage is adjusted by the valve element 130, the passage is passed through the first passage 120, and the second The flow rate of the refrigerant delivered from the passage 126 to the evaporator side is controlled.

 図2は、図1の実施形態の弁座部材近傍の構造の拡大図である。
 第1の通路120及び弁室122は、弁本体110に矢印T方向から機械加工を施すことにより形成される。
 第2の通路126も同様に、弁本体110に矢印T方向から機械加工を施すことにより形成される。
FIG. 2 is an enlarged view of the structure near the valve seat member of the embodiment of FIG.
First passage 120 and valve chamber 122 is formed by machining from an arrow T 1 direction to the valve body 110.
Similarly, second passage 126 is formed by machining from the arrow T 2 direction on the valve body 110.

 弁座部材200は、弁本体に矢印T方向から加工される絞り通路を形成する穴116に圧入されることにより、取付けられる。
 弁座部材は、例えばステンレス等でつくられ、フランジ204を有するパイプ状の部材である。
 この弁座部材200は、予め作動棒132の細径部135を貫通させ、細径部135の先端に球形の弁体130を溶接Wにより固着した状態で用意される。
The valve seat member 200, by being pressed into the holes 116 to form the throttle passage which is machined from an arrow T 3 the direction to the valve body, is mounted.
The valve seat member is a pipe-shaped member made of, for example, stainless steel and having a flange 204.
The valve seat member 200, passed through the small-diameter portion 135 of the pre-actuation rod 132, is prepared in a state of fixing a valve body 130 of the spherical welded W 1 to the tip of the small-diameter portion 135.

 そして、弁本体110の穴114を通って作動棒132と弁座部材200と弁体130の部材は挿入され、弁座部材200は、弁本体110の穴116に圧入される。
 作動棒132は、その段付部133が弁座部材200を圧入するための圧入工具として機能する。
Then, the members of the operating rod 132, the valve seat member 200, and the valve body 130 are inserted through the hole 114 of the valve body 110, and the valve seat member 200 is pressed into the hole 116 of the valve body 110.
The operation rod 132 functions as a press-fitting tool for the stepped portion 133 to press-fit the valve seat member 200.

 上述した構造により、弁本体の一方側から機械加工を施し、弁座部材を圧入することにより、弁機構を完成することができる。
 なお、上記弁座部材の穴116への固着には、圧入に限らず、接着若しくは穴116との螺合によってもよいのは勿論である。
With the above-described structure, the valve mechanism can be completed by performing machining from one side of the valve body and press-fitting the valve seat member.
The fixing of the valve seat member to the hole 116 is not limited to press-fitting, but may be performed by bonding or screwing with the hole 116.

本発明の温度式膨張弁の断面図。FIG. 2 is a cross-sectional view of the thermal expansion valve of the present invention. 本発明の温度式膨張弁の要部の断面図。FIG. 2 is a cross-sectional view of a main part of the thermal expansion valve of the present invention. 従来の温度式膨張弁の断面図。Sectional drawing of the conventional temperature type expansion valve.

符号の説明Explanation of reference numerals

 100 温度式膨張弁
 110 弁本体
 120 圧縮機側からの冷媒の通路
 122 弁室
 126 蒸発器へ向かう冷媒の通路
 128 蒸発器から戻る冷媒の通路
 130 弁体
 132 作動棒
 140 ストッパ部材
 160 パワーエレメント
 166 ダイアフラム
REFERENCE SIGNS LIST 100 Temperature expansion valve 110 Valve body 120 Refrigerant passage from compressor side 122 Valve chamber 126 Refrigerant passage toward evaporator 128 Refrigerant passage returning from evaporator 130 Valve body 132 Operating rod 140 Stopper member 160 Power element 166 Diaphragm

Claims (2)

 ツール構造を有しない弁室に配設された弁体により、冷媒の流量を制御して蒸発器へ送出することを特徴とする温度式膨張弁。 (4) A temperature-type expansion valve characterized in that a flow rate of a refrigerant is controlled and sent to an evaporator by a valve element disposed in a valve chamber having no tool structure.  弁本体に形成された弁室内の弁体により、絞り通路の開口面積を調整して蒸発器側へ送出される冷媒の流量を制御する温度式膨張弁において、
 上記弁室は有底の穴内に形成され、シール構造を有しないことを特徴とする温度式膨張弁。
In a temperature-type expansion valve for controlling a flow rate of a refrigerant sent to an evaporator side by adjusting an opening area of a throttle passage by a valve body in a valve chamber formed in a valve body,
The said valve chamber is formed in the hole with a bottom, and does not have a sealing structure, The temperature type expansion valve characterized by the above-mentioned.
JP2003312379A 2003-09-04 2003-09-04 Thermal expansion valve Expired - Fee Related JP3903029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003312379A JP3903029B2 (en) 2003-09-04 2003-09-04 Thermal expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003312379A JP3903029B2 (en) 2003-09-04 2003-09-04 Thermal expansion valve

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001115785A Division JP3815978B2 (en) 2001-04-13 2001-04-13 Thermal expansion valve

Publications (2)

Publication Number Publication Date
JP2004045026A true JP2004045026A (en) 2004-02-12
JP3903029B2 JP3903029B2 (en) 2007-04-11

Family

ID=31712668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003312379A Expired - Fee Related JP3903029B2 (en) 2003-09-04 2003-09-04 Thermal expansion valve

Country Status (1)

Country Link
JP (1) JP3903029B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275329A (en) * 2005-03-28 2006-10-12 Fuji Koki Corp Pressure opening/closing valve integrated with check valve
JP2006322689A (en) * 2005-05-20 2006-11-30 Tgk Co Ltd Thermal expansion valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275329A (en) * 2005-03-28 2006-10-12 Fuji Koki Corp Pressure opening/closing valve integrated with check valve
JP2006322689A (en) * 2005-05-20 2006-11-30 Tgk Co Ltd Thermal expansion valve

Also Published As

Publication number Publication date
JP3903029B2 (en) 2007-04-11

Similar Documents

Publication Publication Date Title
JP3815978B2 (en) Thermal expansion valve
US20050178152A1 (en) Expansion valve
JP2008014628A (en) Temperature expansion valve
US20020008150A1 (en) Expansion valve and refrigerating system
JP2001027355A (en) Pilot action flow regulating valve
JP2002054861A (en) Thermostatic expansion valve
JP2001201212A (en) Temperature expansion valve
JP2006300508A (en) Solenoid valve-integrated expansion valve
JP4156212B2 (en) Expansion valve
JP4136597B2 (en) Expansion valve
JP2004045026A (en) Thermal expansion valve
KR20040038803A (en) Expansion valve integrated with solenoid valve
KR101137976B1 (en) Expansion valve
JP2012197989A (en) Expansion valve
JP2004003868A (en) Thermostatic expansion valve
JP4335713B2 (en) Thermal expansion valve
JP2007178066A (en) Expansion valve
JP2004100965A (en) Expansion valve
JP7051091B2 (en) Expansion valve
JP5948096B2 (en) Expansion valve
JP2013029241A (en) Expansion valve
JP4146255B2 (en) Expansion valve
JP2005226941A (en) Expansion valve
JP2005331166A (en) Expansion valve
JP2021181842A (en) Expansion valve

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061114

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070105

R150 Certificate of patent or registration of utility model

Ref document number: 3903029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees