JP3776333B2 - Twin turbo - Google Patents

Twin turbo Download PDF

Info

Publication number
JP3776333B2
JP3776333B2 JP2001175590A JP2001175590A JP3776333B2 JP 3776333 B2 JP3776333 B2 JP 3776333B2 JP 2001175590 A JP2001175590 A JP 2001175590A JP 2001175590 A JP2001175590 A JP 2001175590A JP 3776333 B2 JP3776333 B2 JP 3776333B2
Authority
JP
Japan
Prior art keywords
bellows tube
twin turbo
elastic deformation
turbine
bellows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001175590A
Other languages
Japanese (ja)
Other versions
JP2002364373A (en
Inventor
伸樹 男澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2001175590A priority Critical patent/JP3776333B2/en
Publication of JP2002364373A publication Critical patent/JP2002364373A/en
Application granted granted Critical
Publication of JP3776333B2 publication Critical patent/JP3776333B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ツインターボに関するものである。
【0002】
【従来の技術】
図7は釣船や漁船等に用いられる小型船舶用エンジンの上部構造の一例を示すもので、ここに図示しているエンジンは、コンプレッサ2aとタービン2bとから成るターボチャージャ2を相互のタービン2bが中央の排気集合管3を挟んで対向するよう直列に連装したツインターボ1を搭載しており、該ツインターボ1の両端部に装備されている各エアクリーナ4から取り込んだ吸気5を各ターボチャージャ2のコンプレッサ2aへ送り、該各コンプレッサ2aで加圧された吸気5を吸気管6を通しインタークーラ7へと送って海水との熱交換により冷却し、該インタークーラ7から図示しない吸気マニホールドへと吸気5を導いてエンジンの各気筒に分配するようにしてある。
【0003】
また、このエンジンの各気筒から排出された排気ガス8を図示しない排気マニホールドを介して前記ツインターボ1の各ターボチャージャ2のタービン2bへと送り、該各タービン2bを駆動した排気ガス8を排気集合管3に集めて排気口9から図示しない排気管へと排出するようにしてある。
【0004】
通常、この種のツインターボ1においては、タービン2bのハウジングに水冷ジャケットが設けられ、該水冷ジャケットに冷却水を給排して前記タービン2bのハウジングを水冷し得るようになっているので、排気集合管3と両側の各タービン2bとの間を熱膨張を考慮しないで固定連結するようにしているが、前記各タービン2bを空冷方式に替えて冷却水系を省略することにより大幅なコストの削減を図ることが検討されている。
【0005】
ただし、各タービン2bを空冷方式に変更した場合には、排気集合管3と両側の各タービン2bとの間の連結部分に排気熱による熱変位が生じるので、この熱変位を吸収し得るよう蛇腹管等を介装して連結部分を構成する必要がある。
【0006】
【発明が解決しようとする課題】
しかしながら、この種の蛇腹管の一般的な使用形態においては、その軸心方向の熱変位に対し蛇腹管が良好に弾性変形して高い吸収能力が得られる一方、軸心方向と直角な向きの剪断変位に対しては僅かな吸収能力しか発揮できない(実質的に円管の剪断ストレスの場合と同様で弾性変位量が少ない)という性質があり、軸心方向の長さ寸法を大きくとることでしか前記剪断変位を吸収させることができなかった。
【0007】
より具体的には、蛇腹管の長さ寸法が該蛇腹管の外径の約1.5〜2.0倍の大きさになるようにして、蛇腹管における弾性変形能力が、その軸心方向及び剪断方向の両方の熱変位を許容できるような寸法設定を採用していた。
【0008】
この為、小型船舶等のようにエンジン搭載スペースが小さく制限されているものでは、ツインターボ1の各タービン2bを空冷方式として該各タービン2bを排気集合管3に対し蛇腹管で接続した場合に、該蛇腹管の長さ寸法が大きくなってツインターボ1が大型化する結果、該ツインターボ1のレイアウトが難しくなって搭載性の大幅な悪化を招いてしまうという問題があった。
【0009】
本発明は上述の実情に鑑みてなしたもので、ツインターボの大型化を招くことなく各タービンに空冷方式を採用し得るようにすることを目的としている。
【0010】
【課題を解決するための手段】
本発明は、一対のターボチャージャを相互のタービンが中央の排気集合管を挟んで対向するよう直列に連装したツインターボにおいて、前記排気集合管と両側のタービンとの間を、その外径寸法が軸心方向の長さ寸法より大きく設定された蛇腹管により連結し、該各蛇腹管の初回熱時の剪断変位が塑性変形及び弾性変形により分担吸収され且つその塑性変形が生じた後の再冷時に弾性変形により当初冷時の姿勢に復帰して次回熱時以降の剪断変位が前記再冷時の弾性変形を減じることにより吸収されるように構成したことを特徴とするものである。
【0011】
而して、このようにすれば、新品のツインターボをエンジンに組付けた後における最初の駆動時にツインターボの各タービンが排気熱により初めて熱膨張し、この時の各蛇腹管の軸心方向の熱変位が、該各蛇腹管の軸心方向へ向けた余裕のある弾性変形により全て吸収される一方、各蛇腹管の剪断変位が塑性変形及び弾性変形により分担吸収されるので、各蛇腹管には前記弾性変形により分担吸収された分の応力だけが負荷として作用することになる。
【0012】
即ち、各蛇腹管は初回熱時の剪断変位に対し弾性域を超えて変形することになり、然る後にエンジンを停止してツインターボの各タービンが再冷された際には、先の初回熱時に生じてしまった塑性変形を残して弾性変形により当初冷時の姿勢に復帰することになるので、再冷時の各蛇腹管には復帰時の弾性変形による応力が残留した状態となる。
【0013】
そして、これ以降にツインターボを駆動して各タービンが排気熱により熱膨張しても、その軸心方向の熱変位が初回熱時と同様に各蛇腹管の軸心方向への弾性変形により吸収される一方、その剪断変位についても、前述した再冷時の各蛇腹管に潜在している弾性変形を減じることにより吸収されるので、各蛇腹管に残留している応力を減少させるようなマイナスの応力が作用することになる。
【0014】
つまり、新品のツインターボをエンジンに組付けた後の二回目以降の駆動時における各タービンの熱変位は、その軸心方向の熱変位及び剪断変位の何れについても各蛇腹管の弾性変形で対応させることが可能となるので、外径寸法を軸心方向の長さ寸法より大きく設定するような従来の設計思想にない短尺の蛇腹管を採用しても、前述した弾性変形及び塑性変形の発生条件を満たすように考慮しさえすれば、各蛇腹管に繰り返し熱サイクルをかけた場合の応力負担を軽微に抑えて従来と変わらない部品耐久性を実現し、各タービンを空冷方式としたツインターボのコンパクト化を図ることが可能となる。
【0015】
また、本発明においては、蛇腹管が多重管構造を成していることが好ましく、このようにした場合に、蛇腹管の毎山全動きによる応力(N/mm2)がケロッグ式に基づき蛇腹の膜厚に比例して増加することになるので、同じ膜厚を多重管構造により形成すれば、一層当たりの厚さが薄くなることにより各層に作用する応力が著しく軽減され、同じ量の熱変位に対し蛇腹管に作用する応力が緩和されることになる。
【0016】
【発明の実施の形態】
以下本発明の実施の形態を図面を参照しつつ説明する。
【0017】
図1〜図6は本発明を実施する形態の一例を示すもので、図7と同一の符号を付した部分は同一物を表わしている。
【0018】
図1及び図2に示す如く、本形態例においては、前述した図7と略同様に一対のターボチャージャ2を相互のタービン2bが中央の排気集合管3を挟んで対向するよう直列に連装したツインターボ1に関し、前記排気集合管3と両側のタービン2bとの間を、その外径寸法D(図2参照)が軸心方向の長さ寸法L(図2参照)より大きく設定された蛇腹管10により連結し、該各蛇腹管10の初回熱時の剪断変位が塑性変形及び弾性変形により分担吸収され且つその塑性変形が生じた後の再冷時に弾性変形により当初冷時の姿勢に復帰して次回熱時以降の剪断変位が前記再冷時の弾性変形を減じることにより吸収されるように構成してある。
【0019】
また、図3に示す如く、本形態例における各蛇腹管10は、ニッケル系合金等の膜体10a,10b,10cによる多重管構造を成すようにしてあり、同じ熱変位に対し蛇腹管10に作用する応力が緩和されるようにしてある(その詳細な説明については後述する)。
【0020】
而して、新品のツインターボ1をエンジンに組付けた後における最初の駆動時にツインターボ1の各タービン2bが排気熱により初めて熱膨張し、図4に示す冷時の状態から図5に示す熱時の状態へと変位することになり、この時の各蛇腹管10の軸心方向の熱変位が、該各蛇腹管10の軸心方向へ向けた余裕のある弾性変形により全て吸収される一方、各蛇腹管10の剪断変位が塑性変形及び弾性変形により分担吸収される。
【0021】
即ち、説明の便宜上から剪断変位に関する応力についてだけ論じると、冷時の状態でδだけ剪断変位した時の蛇腹管10への応力がAであるとした場合、図4の新品組付け直後の冷時における応力が「0」であるのに対し、図5の初回熱時に蛇腹管10に生じたδ分の剪断変位のうちの約半分が塑性変形により吸収された場合の蛇腹管10への応力は、前記弾性変形により分担吸収された分の応力「A/2」だけとなる。
【0022】
即ち、各蛇腹管10は初回熱時の剪断変位に対し弾性域を超えて変形することになり、然る後にエンジンを停止してツインターボ1の各タービン2bが再冷された際には、図6に示す如く、先の初回熱時に生じてしまった塑性変形を残して弾性変形により当初冷時の姿勢(図4参照)に復帰することになるので、再冷時の各蛇腹管10には復帰時の弾性変形による応力「A/2」が残留した状態となる。
【0023】
そして、これ以降にツインターボ1を駆動して各タービン2bが排気熱により熱膨張しても、その軸心方向の熱変位が初回熱時と同様に各蛇腹管10の軸心方向への弾性変形により吸収される一方、その剪断変位についても、前述した再冷時の各蛇腹管10に潜在している弾性変形を減じることにより吸収されるので、各蛇腹管10に残留している応力「A/2」を減少させるような応力「−A/2」が作用することになる。
【0024】
つまり、新品のツインターボ1をエンジンに組付けた後の二回目以降の駆動時における各タービン2bの熱変位は、その軸心方向の熱変位及び剪断変位の何れについても各蛇腹管10の弾性変形で対応させることが可能となるので、外径寸法Dを軸心方向の長さ寸法Lより大きく設定するような従来の設計思想にない短尺の蛇腹管10を採用しても、前述した弾性変形及び塑性変形の発生条件を満たすように考慮しさえすれば、各蛇腹管10に繰り返し熱サイクルをかけた場合の応力負担を軽微に抑えて従来と変わらない部品耐久性を実現し、各タービン2bを空冷方式としたツインターボ1のコンパクト化を図ることが可能となる。
【0025】
従って、上記形態例によれば、ツインターボ1の大型化を招くことなく各タービン2bに空冷方式を採用することができ、小型船舶等のようにエンジン搭載スペースが小さく制限されているものについても、各タービン2bに対する冷却水系を省略し得て大幅なコストの削減を図ることができる。
【0026】
また、特に本形態例においては、蛇腹管10をニッケル系合金等の膜体10a,10b,10cによる多重管構造を成すようにしてあるので、同じ熱変位に対し蛇腹管10に作用する応力を大幅に緩和することができ、各蛇腹管10の耐久性を更に向上することができる。
【0027】
即ち、蛇腹管10を膜体10a,10b,10cによる多重管構造を成すようにした場合、蛇腹管10の毎山全動きによる応力Sd(N/mm2)は、下記のケロッグ式
【数1】
Sd=(0.75・Eb・t・e)/〔(0.5・q)0.5・W1.5
Eb:蛇腹管の設計温度における縦弾性係数[N/mm2
t:蛇腹管の一層(膜体の一枚)当たりの)厚さ(膜厚)[mm]
e:蛇腹管の毎山全動き量(変位量)[mm]
q:蛇腹管の山のピッチ[mm]
W:蛇腹管の山の高さ[mm]
に基づき蛇腹管10の膜厚に比例して増加することになるので、同じ膜厚を多重管構造により形成すれば、一層当たりの厚さが薄くなることにより各層に作用する応力が著しく軽減され、同じ量の熱変位に対し蛇腹管10に作用する応力が緩和されることになる。
【0028】
尚、本発明のツインターボは、上述の形態例にのみ限定されるものではなく、小型船舶用エンジン以外のエンジンに搭載したツインターボにも同様に適用し得ること、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【0029】
【発明の効果】
上記した本発明のツインターボによれば、下記の如き種々の優れた効果を奏し得る。
【0030】
(I)本発明の請求項1に記載の発明によれば、ツインターボの大型化を招くことなく各タービンに空冷方式を採用することができ、小型船舶等のようにエンジン搭載スペースが小さく制限されているものについても、各タービンに対する冷却水系を省略し得て大幅なコストの削減を図ることができる。
【0031】
(II)本発明の請求項2に記載の発明によれば、蛇腹管を多重管構造としたことにより、同じ熱変位に対し蛇腹管に作用する応力を大幅に緩和することができ、各蛇腹管の耐久性を更に向上することができる。
【図面の簡単な説明】
【図1】本発明を実施する形態の一例を示す正面図である。
【図2】図1の蛇腹管の詳細を示す拡大図である。
【図3】図2の蛇腹管の多重管構造について概略的に示す断面図である。
【図4】新品の蛇腹管をエンジンに組付けた直後の冷時の状態を示す模式図である。
【図5】組付け後の最初の駆動時における熱変位状態を示す模式図である。
【図6】当初冷時の姿勢に復帰した再冷時の状態を示す模式図である。
【図7】小型船舶用エンジンの上部構造の一例を示す概略図である。
【符号の説明】
1 ツインターボ
2 ターボチャージャ
2a コンプレッサ
2b タービン
3 排気集合管
8 排気ガス
10 蛇腹管
10a,10b,10c 膜体
D 外径寸法
L 長さ寸法
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a twin turbo.
[0002]
[Prior art]
FIG. 7 shows an example of the upper structure of a small marine engine used for fishing boats, fishing boats and the like. In the engine shown here, a turbocharger 2 comprising a compressor 2a and a turbine 2b is connected to each other by a turbine 2b. A twin turbo 1 connected in series so as to face each other across the central exhaust collecting pipe 3 is mounted, and intake air 5 taken in from each air cleaner 4 provided at both ends of the twin turbo 1 is supplied to each turbocharger 2. The intake air 5 pressurized by each compressor 2a is sent to the intercooler 7 through the intake pipe 6 to be cooled by heat exchange with seawater, and from the intercooler 7 to an intake manifold (not shown). The intake air 5 is guided and distributed to each cylinder of the engine.
[0003]
Further, the exhaust gas 8 discharged from each cylinder of the engine is sent to the turbine 2b of each turbocharger 2 of the twin turbo 1 via an exhaust manifold (not shown), and the exhaust gas 8 driving each turbine 2b is exhausted. The gas is collected in the collecting pipe 3 and discharged from the exhaust port 9 to an exhaust pipe (not shown).
[0004]
Normally, in this type of twin turbo 1, a water cooling jacket is provided in the housing of the turbine 2b, and cooling water can be supplied to and discharged from the water cooling jacket to cool the housing of the turbine 2b. The collecting pipe 3 and the turbines 2b on both sides are fixedly connected without considering thermal expansion. However, the cost is greatly reduced by replacing the turbines 2b with the air cooling system and omitting the cooling water system. It is being considered to plan.
[0005]
However, when each turbine 2b is changed to the air cooling system, a thermal displacement due to the exhaust heat is generated in the connecting portion between the exhaust collecting pipe 3 and each turbine 2b on both sides, so that the bellows can be absorbed. It is necessary to configure the connecting portion by interposing a pipe or the like.
[0006]
[Problems to be solved by the invention]
However, in a general usage form of this type of bellows tube, the bellows tube can be elastically deformed satisfactorily with respect to the thermal displacement in the axial direction to obtain a high absorption capacity, while being oriented in a direction perpendicular to the axial direction. It has the property that it can exhibit only a small absorption capacity against the shear displacement (substantially the same as in the case of the shear stress of a circular tube and has a small amount of elastic displacement), and by taking a large length in the axial direction. However, the shear displacement could be absorbed.
[0007]
More specifically, the length of the bellows tube is about 1.5 to 2.0 times the outer diameter of the bellows tube, so that the elastic deformation capacity of the bellows tube is in the axial direction. And dimensional settings that allow for thermal displacement in both shear and shear directions.
[0008]
For this reason, in the case where the engine mounting space is limited to a small size, such as a small ship, when each turbine 2b of the twin turbo 1 is air-cooled and each turbine 2b is connected to the exhaust collecting pipe 3 by a bellows pipe. As a result of an increase in the length of the bellows tube and an increase in the size of the twin turbo 1, the layout of the twin turbo 1 becomes difficult and there is a problem that the mountability is greatly deteriorated.
[0009]
The present invention has been made in view of the above circumstances, and an object of the present invention is to make it possible to adopt an air cooling system for each turbine without causing an increase in the size of a twin turbo.
[0010]
[Means for Solving the Problems]
The present invention relates to a twin turbo in which a pair of turbochargers are connected in series so that mutual turbines face each other with a central exhaust collecting pipe interposed therebetween, and the outer diameter dimension between the exhaust collecting pipe and the turbines on both sides is Connected by bellows tubes set larger than the length in the axial direction, the shear displacement at the first heating of each bellows tube is shared and absorbed by plastic deformation and elastic deformation, and recooling after the plastic deformation occurs It is characterized in that it is configured to be restored to its initial cold posture by elastic deformation and to absorb the shear displacement after the next heat by reducing the elastic deformation at the time of recooling.
[0011]
Thus, in this way, each turbine of the twin turbo is first thermally expanded by exhaust heat during the first drive after assembling a new twin turbo to the engine, and the axial direction of each bellows tube at this time The thermal displacement of each bellows tube is all absorbed by elastic deformation with a margin toward the axial center of each bellows tube, while the shear displacement of each bellows tube is absorbed and absorbed by plastic deformation and elastic deformation. In this case, only the stress that is shared and absorbed by the elastic deformation acts as a load.
[0012]
That is, each bellows tube is deformed beyond the elastic range with respect to the shear displacement at the time of the first heating, and after that, when the engine is stopped and each turbine of the twin turbo is re-cooled, Since the plastic deformation which has occurred at the time of heating is left and the posture is initially returned to the cold state by the elastic deformation, the stress caused by the elastic deformation at the time of return remains in each bellows tube at the time of recooling.
[0013]
After that, even if the twin turbo is driven and each turbine thermally expands due to exhaust heat, the thermal displacement in the axial direction is absorbed by the elastic deformation in the axial direction of each bellows tube as in the case of the initial heat. On the other hand, the shear displacement is also absorbed by reducing the elastic deformation existing in each bellows tube at the time of re-cooling, so that the negative stress that reduces the stress remaining in each bellows tube is reduced. This stress will act.
[0014]
In other words, the thermal displacement of each turbine during the second and subsequent drive after a new twin turbo is assembled to the engine is supported by the elastic deformation of each bellows tube for both thermal displacement and shear displacement in the axial direction. Therefore, even if a short bellows tube that does not have a conventional design concept in which the outer diameter dimension is set to be larger than the axial length is used, the above-described elastic deformation and plastic deformation occur. As long as the conditions are met, twin turbos with each turbine being air-cooled to achieve the same durability as conventional parts by minimizing the stress burden when repeated heat cycles are applied to each bellows tube It becomes possible to achieve downsizing.
[0015]
In the present invention, it is preferable that the bellows tube has a multi-tube structure. In such a case, the stress (N / mm 2 ) due to the entire movement of the bellows tube every mountain is based on the Kellogg's formula. Therefore, if the same film thickness is formed by a multi-tube structure, the stress per layer is significantly reduced by reducing the thickness per layer, and the same amount of heat is applied. The stress acting on the bellows tube with respect to the displacement is relieved.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0017]
FIGS. 1-6 shows an example of the form which implements this invention, and the part which attached | subjected the code | symbol same as FIG. 7 represents the same thing.
[0018]
As shown in FIGS. 1 and 2, in this embodiment, a pair of turbochargers 2 are connected in series so that the turbines 2b face each other with the central exhaust collecting pipe 3 therebetween, as in FIG. With respect to the twin turbo 1, the bellows having an outer diameter D (see FIG. 2) set larger than a length L (see FIG. 2) in the axial direction between the exhaust collecting pipe 3 and the turbines 2 b on both sides. The tubes 10 are connected to each other, the shear displacement of each bellows tube 10 at the time of initial heating is shared and absorbed by plastic deformation and elastic deformation, and the plastic deformation returns to the original cold posture by re-cooling after the plastic deformation occurs. Thus, the shear displacement after the next heating is absorbed by reducing the elastic deformation during the recooling.
[0019]
Further, as shown in FIG. 3, each bellows tube 10 in the present embodiment has a multiple tube structure made of film bodies 10a, 10b, 10c made of nickel alloy or the like, and the bellows tube 10 is subjected to the same thermal displacement. The acting stress is alleviated (detailed description thereof will be described later).
[0020]
Thus, during the first drive after the new twin turbo 1 is assembled to the engine, each turbine 2b of the twin turbo 1 is first thermally expanded by the exhaust heat, and is shown in FIG. 5 from the cold state shown in FIG. It will be displaced to the state at the time of heat, and the thermal displacement in the axial direction of each bellows tube 10 at this time is all absorbed by elastic deformation with a margin toward the axial center direction of each bellows tube 10. On the other hand, the shear displacement of each bellows tube 10 is shared and absorbed by plastic deformation and elastic deformation.
[0021]
That is, for convenience of explanation, only the stress related to shear displacement will be discussed. If the stress on the bellows tube 10 when the shear displacement is δ in the cold state is A, the cooling immediately after the new assembly shown in FIG. Whereas the stress at the time is “0”, the stress on the bellows tube 10 when about half of the δ-minute shear displacement generated in the bellows tube 10 during the initial heating in FIG. 5 is absorbed by plastic deformation. Is only the stress “A / 2” of the part absorbed by the elastic deformation.
[0022]
That is, each bellows tube 10 is deformed beyond the elastic region with respect to the shear displacement at the time of the first heating, and when the engine is stopped and each turbine 2b of the twin turbo 1 is re-cooled after that, As shown in FIG. 6, since the plastic deformation that has occurred at the time of the first heating is left and the original cold posture (see FIG. 4) is restored by elastic deformation, each bellows tube 10 at the time of recooling is restored. Is a state in which the stress “A / 2” due to elastic deformation at the time of return remains.
[0023]
After that, even if the twin turbo 1 is driven and each turbine 2b is thermally expanded due to the exhaust heat, the thermal displacement in the axial direction is elastic in the axial direction of each bellows tube 10 as in the first heating. While absorbed by deformation, the shear displacement is also absorbed by reducing the elastic deformation existing in each bellows tube 10 at the time of re-cooling, so that the residual stress “ A stress “−A / 2” that reduces “A / 2” acts.
[0024]
That is, the thermal displacement of each turbine 2b during the second and subsequent driving after assembling the new twin turbo 1 to the engine is the elasticity of each bellows tube 10 with respect to both the thermal displacement and the shear displacement in the axial direction. Even if a short bellows tube 10 that does not have a conventional design concept in which the outer diameter dimension D is set to be larger than the axial length dimension L is employed, the above-described elasticity can be obtained. As long as consideration is given so as to satisfy the conditions for the occurrence of deformation and plastic deformation, the stress burden when repeated thermal cycling is applied to each bellows tube 10 is minimized, and the durability of parts that is the same as the conventional one is realized. It is possible to reduce the size of the twin turbo 1 using the air cooling system 2b.
[0025]
Therefore, according to the above-described embodiment, the air cooling system can be adopted for each turbine 2b without causing an increase in the size of the twin turbo 1, and the engine mounting space is limited to a small size such as a small ship. The cooling water system for each turbine 2b can be omitted, and a significant cost reduction can be achieved.
[0026]
In particular, in this embodiment, since the bellows tube 10 has a multiple tube structure made of film bodies 10a, 10b, and 10c made of nickel alloy or the like, stress acting on the bellows tube 10 with respect to the same thermal displacement is applied. It can relieve significantly, and the durability of each bellows tube 10 can be further improved.
[0027]
That is, when the bellows tube 10 has a multi-tube structure composed of the film bodies 10a, 10b, and 10c, the stress Sd (N / mm 2 ) due to the total movement of the bellows tube 10 is expressed by the following Kellogg equation: ]
Sd = (0.75 · Eb · t · e) / [(0.5 · q) 0.5 · W 1.5 ]
Eb: Longitudinal elastic modulus [N / mm 2 ] at the design temperature of the bellows tube
t: Thickness (film thickness) [mm] per layer (one piece of membrane) of the bellows tube
e: Total amount of movement of the bellows tube (displacement) [mm]
q: Pitch of the bellows tube [mm]
W: Height of the bellows tube [mm]
Therefore, if the same film thickness is formed by the multiple tube structure, the stress per layer is remarkably reduced by reducing the thickness per layer. The stress acting on the bellows tube 10 is relieved for the same amount of thermal displacement.
[0028]
The twin turbo of the present invention is not limited to the above-described embodiment, but can be similarly applied to a twin turbo mounted on an engine other than a small marine engine. Of course, various changes can be made without departing from the scope.
[0029]
【The invention's effect】
According to the above-described twin turbo of the present invention, various excellent effects as described below can be obtained.
[0030]
(I) According to the invention described in claim 1 of the present invention, an air cooling system can be adopted for each turbine without causing an increase in the size of the twin turbo, and the engine mounting space is limited to a small size as in a small ship. As for the existing ones, the cooling water system for each turbine can be omitted, and the cost can be greatly reduced.
[0031]
(II) According to the invention described in claim 2 of the present invention, since the bellows tube has a multi-tube structure, the stress acting on the bellows tube with respect to the same thermal displacement can be greatly relieved. The durability of the tube can be further improved.
[Brief description of the drawings]
FIG. 1 is a front view showing an example of an embodiment for carrying out the present invention.
FIG. 2 is an enlarged view showing details of the bellows tube of FIG. 1;
3 is a cross-sectional view schematically showing a multi-tube structure of the bellows tube of FIG. 2;
FIG. 4 is a schematic view showing a cold state immediately after a new bellows tube is assembled to an engine.
FIG. 5 is a schematic diagram showing a thermal displacement state during the first drive after assembly.
FIG. 6 is a schematic diagram showing a state at the time of re-cooling after returning to the initial cold posture.
FIG. 7 is a schematic view showing an example of an upper structure of a small marine engine.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Twin turbo 2 Turbocharger 2a Compressor 2b Turbine 3 Exhaust collecting pipe 8 Exhaust gas 10 Bellows pipe 10a, 10b, 10c Film body D Outer diameter dimension L Length dimension

Claims (2)

一対のターボチャージャを相互のタービンが中央の排気集合管を挟んで対向するよう直列に連装したツインターボにおいて、前記排気集合管と両側のタービンとの間を、その外径寸法が軸心方向の長さ寸法より大きく設定された蛇腹管により連結し、該各蛇腹管の初回熱時の剪断変位が塑性変形及び弾性変形により分担吸収され且つその塑性変形が生じた後の再冷時に弾性変形により当初冷時の姿勢に復帰して次回熱時以降の剪断変位が前記再冷時の弾性変形を減じることにより吸収されるように構成したことを特徴とするツインターボ。In a twin turbo in which a pair of turbochargers are connected in series so that the mutual turbines face each other across the central exhaust collecting pipe, the outer diameter dimension between the exhaust collecting pipe and the turbines on both sides is axial. Connected by bellows tubes set larger than the length dimension, the shear displacement at the first heating of each bellows tube is shared and absorbed by plastic deformation and elastic deformation, and by elastic deformation at the time of re-cooling after the plastic deformation has occurred A twin turbo that is configured to be absorbed by reducing the elastic deformation at the time of recooling after returning to the initial cold state and reducing the shear displacement after the next heat. 蛇腹管が多重管構造を成していることを特徴とする請求項1に記載のツインターボ。2. The twin turbo according to claim 1, wherein the bellows tube has a multi-tube structure.
JP2001175590A 2001-06-11 2001-06-11 Twin turbo Expired - Fee Related JP3776333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001175590A JP3776333B2 (en) 2001-06-11 2001-06-11 Twin turbo

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001175590A JP3776333B2 (en) 2001-06-11 2001-06-11 Twin turbo

Publications (2)

Publication Number Publication Date
JP2002364373A JP2002364373A (en) 2002-12-18
JP3776333B2 true JP3776333B2 (en) 2006-05-17

Family

ID=19016694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001175590A Expired - Fee Related JP3776333B2 (en) 2001-06-11 2001-06-11 Twin turbo

Country Status (1)

Country Link
JP (1) JP3776333B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006032585A1 (en) * 2006-07-13 2008-01-17 Bayerische Motoren Werke Ag Turbocharger arrangement
AT507825B1 (en) * 2009-02-03 2011-02-15 Ge Jenbacher Gmbh & Co Ohg STATIONARY COMBUSTION ENGINE
JP6322038B2 (en) * 2014-04-16 2018-05-09 カルソニックカンセイ株式会社 Turbocharger
CN112282923B (en) * 2020-11-12 2021-11-16 湖南路捷道夫涡轮增压系统有限公司 Variable cross section turbo charger

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61187511A (en) * 1985-02-14 1986-08-21 Mazda Motor Corp Construction of gasket for exhaust system of engine
JPH05156956A (en) * 1991-12-06 1993-06-22 Toyota Motor Corp Exhauster of supercharged engine
JP3306845B2 (en) * 1996-06-10 2002-07-24 ヤンマーディーゼル株式会社 Exhaust system structure of internal combustion engine

Also Published As

Publication number Publication date
JP2002364373A (en) 2002-12-18

Similar Documents

Publication Publication Date Title
JP6315020B2 (en) Internal combustion engine
JP4512873B2 (en) Intercooler
JP2002115550A (en) Air supply structure of multi-cylinder engine
JP2010127143A (en) Charge air cooler
JP3776333B2 (en) Twin turbo
US5398504A (en) Layout structure of catalytic converters
JP2002188526A (en) Egr device
JP2000352313A (en) Exhaust heat power generation system for automobile
JP6514727B2 (en) Silencer
JP4334703B2 (en) Construction machine intercooler piping structure
JP2002130060A (en) Egr gas cooling device
JP4616707B2 (en) Exhaust gas recirculation structure for turbocharged engines
US6907726B2 (en) Exhaust system for a V-type engine
JP5648221B2 (en) Engine turbocharge system
JPH0345891A (en) Heat exchanger
JP5029547B2 (en) Intake air cooling system
JP2005214029A (en) Exhaust pipe heat exchange structure of engine
JPH0455225Y2 (en)
JP2007177651A (en) Egr device for internal combustion engine
JP6088788B2 (en) engine
JP5671907B2 (en) EGR gas cooling device
JP2005214586A (en) Heat exchanger for cooling exhaust gas
JP2012197735A (en) Internal combustion engine with supercharger
JP3305884B2 (en) Exhaust manifold
JP3405661B2 (en) Water-cooled aftercooler core structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees