JP3776159B2 - Superconductor and manufacturing method thereof - Google Patents

Superconductor and manufacturing method thereof Download PDF

Info

Publication number
JP3776159B2
JP3776159B2 JP08736996A JP8736996A JP3776159B2 JP 3776159 B2 JP3776159 B2 JP 3776159B2 JP 08736996 A JP08736996 A JP 08736996A JP 8736996 A JP8736996 A JP 8736996A JP 3776159 B2 JP3776159 B2 JP 3776159B2
Authority
JP
Japan
Prior art keywords
superconductor
nah
fullerene
sample
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08736996A
Other languages
Japanese (ja)
Other versions
JPH09255319A (en
Inventor
健一 今枝
クレーバー ジョナス
洋夫 井口
由華子 米原
憲司 市村
Original Assignee
財団法人豊田理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人豊田理化学研究所 filed Critical 財団法人豊田理化学研究所
Priority to JP08736996A priority Critical patent/JP3776159B2/en
Publication of JPH09255319A publication Critical patent/JPH09255319A/en
Application granted granted Critical
Publication of JP3776159B2 publication Critical patent/JP3776159B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【0001】
【技術分野】
本発明は,C60フラーレンを基本材料とする超伝導体及びその製造方法に関する。
【0002】
【従来技術】
フラーレンとは内部に空洞を持つC分子であり,炭素原子60個でできたサッカーボール状のC60は,1970年に日本人により存在が理論的に指摘され,1985年,米国ライス大学の研究グループのH.W.クロトー教授(現在,英国サセックス大学)と米国ライス大学のR.E.スモーリー教授らによって実験室的に合成された。
【0003】
フラーレンは微量の添加物,少しの操作でその性質が変わり,直接的には,電子素子,光学素子,触媒,医薬などへ,また高分子中へ添加して新しい機能を有するプラスチックの合成を行うなど幅広い応用が期待されている。とりわけ期待されるのが,電子素子や伝導特性を利用した分野である。C60の単結晶は半導体であるが,ある種のアルカリ金属をドープすると,金属的になったり,超伝導を示すことが知られている。また,関連して有機物との混合物では強磁性を示すものも知られている。
【0004】
フラーレンC60にアルカリ金属をドープした系で,M3 60(M:アルカリ金属)の組成のものの中に,高い臨界温度Tcをもった超伝導性を示す物質があることが見出され,報告されて以来,多くの研究がなされている。
【0005】
超伝導体としては,まずK3 60が発見され,続いて,Rb3 60が発見された。さらにセシウムについても報告がある。ナトリウム,リチウムについては,M3 60(M:アルカリ金属)の形での超伝導の報告は,現在のところない。ナトリウム,リチウム系については,MIx MIIy C60(MI,MII:アルカリ金属;x+y=3)の形で超伝導を示す物質の報告がある。
【0006】
本発明は,ナトリウム−C60系の超伝導物質に関するものである。ナトリウム系については,従来,次に示したような超伝導物質が報告されている。
Na2 RbC60・・・・・・・・・・Tc= 3.5(K)
Na2 CsC60・・・・・・・・・・Tc=12(K)
Na2 Cs(NH3 4 60・・・・Tc=29.6(K)
Na2 2 (NH3 x 60・・・・Tc=11(K)
Na2 Rb2 (NH3 x 60・・・Tc=13(K)
Nax y 60・・・・・・・・・・Tc=13(K)
【0007】
上記中,Nax y 60以外は,MIx MIIy 60(MI,MII:アルカリ金属;x+y=3)の形を基本にした超伝導物質である。即ち,二種のアルカリ金属を含んでいる。この点でみれば,Nax y 60を除けば,純粋のナトリウム系超伝導物質とは言いがたい。
【0008】
Nax y 60は,ナトリウム−窒素−C60の三成分系化合物であり,本発明者らが,1993年にすでに報告(Solid State Communication,87(5)375−378(1993).)したものである。
【0009】
ところで,ある種の物質を各々固有の臨界温度TC 以下に冷却することにより,直流電気抵抗が0となる超伝導現象が観測されることが従来より知られている。
このような物質,即ち超伝導体を,送電,配電,発電等に用いられる装置に素材として使用することにより,電力の損失が低い装置を得ることができる。また,上記超伝導体より作製した電磁石等を高磁界の発生を必要とする磁気浮上列車,加速器等に使用することもできる。
【0010】
更に,超伝導体は完全反磁性という性質を有し,この性質を利用することにより効率的な磁気シールドを得ることができる。また,超伝導体は,常に磁気に対する反発力を有することから,アクチュエータ,ベアリング等のメカニカル物品の素材として使用することもできる。
【0011】
また,超伝導体はジョセフソン効果を有する,これを応用して,高速,高感度のコンピュータ素子,微量磁気を検出可能なSQUID(超伝導量子干渉計)等の素子の素材として使用することがができる。
【0012】
本発明は,上記技術背景において,C60フラーレンを利用した超伝導体を開発すべく鋭意研究した結果なされたもので,資源的に豊富な物質を用い,簡単に製造することができる超伝導体及びその製造方法を提供しようとするものである。
【0013】
【課題の解決手段】
請求項1の発明は,Na−H−Cの三元素よりなり,xが3.7〜4.0の範囲内にある(NaH)60の組成を有し,上記Na及びHはC60フラーレンに対しドープされた状態にあることを特徴とする超伝導体にある。
【0014】
本発明の作用につき,以下に説明する。
本発明の超伝導体は,C60フラーレンに対し,Na(ナトリウム)及びH(水素)をドープすることにより構成されており,優れた超伝導現象を発揮する。
また,本発明は資源的に豊富に存在する物質である,Na,Hを原材料としているため,コスト的にも安価に得ることができる。
【0015】
次に,上記(NaH)60におけるxの値は3.7〜4.0の範囲内にある。
xがこの範囲内の値をとることにより,(NaH)60は,特に強い超伝導現象を発揮することができる。
【0016】
次に,請求項の発明は,NaHとC60フラーレンとを(NaH) 60 におけるxの値が3.7〜4.0の範囲内となるように,混合し混合物となし,
該混合物を減圧下に加熱することにより,C60フラーレンに対してNaとHとをドープすることを特徴とするxの値が3.7〜4.0の範囲にある(NaH) 60 よりなる超伝導体の製造方法にある。
これにより,特別な装置等を必要とせず,容易に超伝導体を製造することができる。
また,上記のごとき,優れた超伝導現象を発揮することができる。
【0017】
【発明の実施の形態】
実施形態例
本発明の実施形態例にかかる超伝導体及びその製造方法,特性等につき,図1,図2を用いて説明する。
本例の超伝導体は,Na−H−Cの三元素よりなる(NaH)x 60の組成を有し,上記Na及びHはC60フラーレンに対しドープされた状態にある。
【0018】
次に,上記超伝導体の製造方法につき説明する。
まず,C60及びNaHの所定の化学量を秤量し,混合する。次いで,上記混合物をESR石英管に封入し,コックを閉じて外に取出し真空排気し封じきった。上記一連の作業はグローブボックス中において行った。
次に,上記ESR石英管を電気マッフル炉にセットし,ゆっくりと280℃まで昇温し,その後280℃に1時間保持した後,ゆっくり室温まで冷却した。
以上により,本例にかかる超伝導体である(NaH)x 60を得た。
【0019】
次に,本例にかかる超伝導体の特性につき説明する。
まず,以下の測定に供する試料を上述の製造方法に基づき作成した。この時,上記試料の(NaH)x 60におけるxの値が4.0となるよう作製した。
このようにして得られた試料の磁化率を,SQUID(超伝導量子干渉計)を用いて測定し,その結果を図1に示した。
【0020】
同図において,FCと付された測定値は,2G(ガウス)の定磁場の下で超伝導体を冷却した場合(field cooling)の測定結果である。一方,ZFCと付された測定値は,磁場がない状態で超伝導体を冷却した場合(zero−field cooling)の測定結果である。
なお,図1において,縦軸は磁化率,横軸は温度(K)である。
【0021】
同図によれば,FCにおける磁化率は15Kを境として,それ以外の温度において,負の値に転じ,徐々に一定値となっていることが分かる。また,ZFCにおける磁化率は15Kを境として階段状に変化したことが分る。
以上により,上記試料は,常伝導から超伝導への臨界温度TC が15Kである,超伝導体であることが分かった。
【0022】
また,2K,ZFCにおける磁化率の絶対値より,上記試料はその体積分率において,全体の65%を超伝導体が占めていることが分かった。即ち,上記試料においては,かなり良質の単一超伝導体相が形成されていることが分かる。
【0023】
次に,上記試料について,粉末X線回折パターンを測定し,その結果を図2に示した。同図より知れるごとく,すべての反射ピークは格子定数14.356(3)Åのf.c.c(面心立方格子)相に帰属できる。
以上より,上記試料は単一相より形成されていることが分かる。
なお,図2において,星印を付したピークは,試料を載置したBe板に由来するピークである。
【0024】
また,別の実験により,(NaH)x 60におけるxを種々に変化させた試料についても,上記と同様の測定を行った。その結果,x=3.7〜4.0の場合に優れた超伝導現象を発揮することが分かった。
また,更に,他の実験により,上記超伝導相中にHが含まれていることを確認した。
【0025】
【発明の効果】
上記のごとく,本発明によれば,C60フラーレンを利用した超伝導体を開発すべく鋭意研究した結果なされたもので,資源的に豊富な物質を用い,簡単に製造することができる超伝導体及びその製造方法を提供することができる。
【図面の簡単な説明】
【図1】実施形態例における,本例にかかる試料(NaH)x 60の温度と磁化率の関係を示す線図。
【図2】実施形態例における,本例にかかる試料(NaH)x 60粉末X線回折パターンを示す線図。
[0001]
【Technical field】
The present invention relates to a superconductor based on C 60 fullerene and a method for producing the same.
[0002]
[Prior art]
Fullerene is a C molecule with a cavity inside, and a soccer ball-like C 60 made of 60 carbon atoms was theoretically pointed out by the Japanese in 1970. H. of the group. W. Professor Klotho (currently University of Sussex, UK) and R. E. It was synthesized in the laboratory by Professor Smalley.
[0003]
Fullerene is a small amount of additive, and its properties change with a few operations. Directly, it is added to electronic elements, optical elements, catalysts, pharmaceuticals, etc., and into polymers to synthesize plastics with new functions. A wide range of applications are expected. Particularly expected are fields that utilize electronic devices and conduction characteristics. A single crystal of C 60 is a semiconductor, but it is known that when a certain kind of alkali metal is doped, it becomes metallic or exhibits superconductivity. In addition, a mixture with an organic substance is known to exhibit ferromagnetism.
[0004]
It has been found that there is a superconducting substance having a high critical temperature Tc in the composition of M 3 C 60 (M: alkali metal) in a system in which fullerene C 60 is doped with an alkali metal, A lot of research has been done since it was reported.
[0005]
As a superconductor, K 3 C 60 was first discovered, and then Rb 3 C 60 was discovered. There are also reports on cesium. As for sodium and lithium, there is no report of superconductivity in the form of M 3 C 60 (M: alkali metal) at present. Regarding sodium and lithium systems, there are reports of substances exhibiting superconductivity in the form of MI x MII y C60 (MI, MII: alkali metal; x + y = 3).
[0006]
The present invention relates to superconducting material of sodium -C 60 system. The following superconducting materials have been reported for sodium-based materials.
Na 2 RbC 60・ ・ ・ ・ ・ Tc = 3.5 (K)
Na 2 CsC 60 ... Tc = 12 (K)
Na 2 Cs (NH 3 ) 4 C 60 ... Tc = 29.6 (K)
Na 2 K 2 (NH 3 ) x C 60 ... Tc = 11 (K)
Na 2 Rb 2 (NH 3 ) x C 60 ... Tc = 13 (K)
Na x N y C 60・ ・ ・ ・ ・ Tc = 13 (K)
[0007]
Among the above, materials other than Na x N y C 60 are superconducting materials based on the form of MI x MII y C 60 (MI, MII: alkali metal; x + y = 3). That is, it contains two kinds of alkali metals. From this point of view, it is hard to say that it is a pure sodium-based superconducting material except for Na x N y C 60 .
[0008]
Na x N y C 60 is a ternary compound of sodium-nitrogen-C 60 , and the present inventors have already reported in 1993 (Solid State Communication, 87 (5) 375-378 (1993)). It is a thing.
[0009]
By the way, it is conventionally known that a superconducting phenomenon in which the DC electric resistance is zero is observed by cooling a certain kind of substance to a specific critical temperature T C or lower.
By using such a material, that is, a superconductor, as a material for a device used for power transmission, distribution, power generation, etc., a device with low power loss can be obtained. In addition, an electromagnet or the like made from the superconductor can be used for a magnetic levitation train, an accelerator, or the like that requires generation of a high magnetic field.
[0010]
Furthermore, a superconductor has the property of complete diamagnetism, and an efficient magnetic shield can be obtained by utilizing this property. In addition, since a superconductor always has a repulsive force against magnetism, it can be used as a material for mechanical articles such as actuators and bearings.
[0011]
In addition, superconductors have the Josephson effect, and can be used as materials for devices such as high-speed, high-sensitivity computer devices and SQUIDs (superconducting quantum interferometers) that can detect trace magnetism. Can do.
[0012]
The present invention was made as a result of earnest research to develop a superconductor using C 60 fullerene in the above technical background, and can be easily manufactured using abundant materials. And a method of manufacturing the same.
[0013]
[Means for solving problems]
The invention of claim 1, Ri na of the three-element NaH-C, x has a composition of a (NaH) x C 60 in the range of 3.7 to 4.0, the Na and H in superconductors, characterized in that the C 60 fullerene to in doped state.
[0014]
The operation of the present invention will be described below.
The superconductor of the present invention is constituted by doping C 60 fullerene with Na (sodium) and H (hydrogen), and exhibits an excellent superconducting phenomenon.
In addition, since the present invention uses Na and H, which are abundant resources, as raw materials, it can be obtained at low cost.
[0015]
Then, the value of x in the above SL (NaH) x C 60 is Ru near the range of 3.7 to 4.0.
When x takes a value within this range, (NaH) x C 60 can exhibit a particularly strong superconducting phenomenon.
[0016]
Next, the invention of claim 2 mixes NaH and C 60 fullerene so that the value of x in (NaH) x C 60 is in the range of 3.7 to 4.0 to form a mixture,
The value of x is in the range of 3.7 to 4.0, characterized in that the mixture is heated under reduced pressure to dope Na and H to C 60 fullerene (NaH) x C 60 A method of manufacturing a superconductor.
Thereby, a superconductor can be easily manufactured without requiring a special apparatus or the like.
In addition, as described above, an excellent superconducting phenomenon can be exhibited.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Exemplary Embodiment A superconductor according to an exemplary embodiment of the present invention, a manufacturing method thereof, characteristics, and the like will be described with reference to FIGS.
The superconductor of this example has a composition of (NaH) x C 60 composed of three elements of Na—H—C, and the Na and H are in a doped state with respect to C 60 fullerene.
[0018]
Next, a method for manufacturing the superconductor will be described.
First, the predetermined stoichiometric amounts of C 60 and NaH are weighed and mixed. Next, the mixture was sealed in an ESR quartz tube, the cock was closed, the outside was taken out, and it was evacuated and sealed. The above series of operations was performed in a glove box.
Next, the ESR quartz tube was set in an electric muffle furnace, the temperature was slowly raised to 280 ° C., held at 280 ° C. for 1 hour, and then slowly cooled to room temperature.
As described above, (NaH) x C 60 which is the superconductor according to this example was obtained.
[0019]
Next, the characteristics of the superconductor according to this example will be described.
First, a sample to be subjected to the following measurement was prepared based on the above manufacturing method. At this time, the sample was prepared so that the value of x in (NaH) x C 60 was 4.0.
The magnetic susceptibility of the sample thus obtained was measured using a SQUID (superconducting quantum interferometer), and the result is shown in FIG.
[0020]
In the figure, the measurement value attached with FC is the measurement result when the superconductor is cooled under a constant magnetic field of 2 G (Gauss). On the other hand, the measurement value attached with ZFC is a measurement result when the superconductor is cooled in the absence of a magnetic field (zero-field cooling).
In FIG. 1, the vertical axis represents magnetic susceptibility and the horizontal axis represents temperature (K).
[0021]
According to the figure, it can be seen that the magnetic susceptibility in FC changes to a negative value at a temperature other than 15K and gradually becomes a constant value. It can also be seen that the magnetic susceptibility in ZFC changes in a stepped manner with 15K as a boundary.
From the above, it was found that the sample was a superconductor having a critical temperature T C from normal to superconductivity of 15K.
[0022]
The absolute value of magnetic susceptibility in 2K and ZFC showed that the above sample accounted for 65% of the total volume of the superconductor. That is, it can be seen that a fairly good single superconductor phase is formed in the sample.
[0023]
Next, a powder X-ray diffraction pattern was measured for the sample, and the result is shown in FIG. As can be seen from the figure, all reflection peaks have a lattice constant of 14.356 (3) Å. c. It can be attributed to the c (face centered cubic lattice) phase.
From the above, it can be seen that the sample is formed of a single phase.
In FIG. 2, the peak marked with an asterisk is a peak derived from the Be plate on which the sample is placed.
[0024]
In addition, the same measurement as described above was performed on samples in which x in (NaH) x C 60 was variously changed by another experiment. As a result, it was found that an excellent superconducting phenomenon is exhibited when x = 3.7 to 4.0.
Furthermore, it was confirmed by other experiments that H was contained in the superconducting phase.
[0025]
【The invention's effect】
As indicated above, according to the present invention, it has been made extensive research with a result to develop a superconductor using a C 60 fullerene, using resources enriched material, superconductivity can be easily manufactured The body and the manufacturing method thereof can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the temperature and magnetic susceptibility of a sample (NaH) x C 60 according to this example in an embodiment.
FIG. 2 is a diagram showing a sample (NaH) x C 60 powder X-ray diffraction pattern according to this example in the embodiment.

Claims (2)

Na−H−Cの三元素よりなり,xが3.7〜4.0の範囲内にある(NaH)60の組成を有し,上記Na及びHはC60フラーレンに対しドープされた状態にあることを特徴とする超伝導体。 Ri Na of the three-element NaH-C, x has a composition is of (NaH) x C 60 in the range of 3.7 to 4.0, the Na and H is doped to C 60 fullerene A superconductor characterized by being in a state of contact. NaHとC60フラーレンとを(NaH) 60 におけるxの値が3.7〜4.0の範囲内となるように,混合し混合物となし,
該混合物を減圧下に加熱することにより,C60フラーレンに対してNaとHとをドープすることを特徴とするxの値が3.7〜4.0の範囲にある(NaH) 60 よりなる超伝導体の製造方法。
NaH and C 60 fullerene are mixed to form a mixture so that the value of x in (NaH) x C 60 is in the range of 3.7 to 4.0 ,
The value of x is in the range of 3.7 to 4.0, characterized in that the mixture is heated under reduced pressure to dope Na and H to C 60 fullerene (NaH) x C 60 A method for producing a superconductor.
JP08736996A 1996-03-15 1996-03-15 Superconductor and manufacturing method thereof Expired - Fee Related JP3776159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08736996A JP3776159B2 (en) 1996-03-15 1996-03-15 Superconductor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08736996A JP3776159B2 (en) 1996-03-15 1996-03-15 Superconductor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH09255319A JPH09255319A (en) 1997-09-30
JP3776159B2 true JP3776159B2 (en) 2006-05-17

Family

ID=13912990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08736996A Expired - Fee Related JP3776159B2 (en) 1996-03-15 1996-03-15 Superconductor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3776159B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002193606A (en) 2000-12-22 2002-07-10 Nec Corp Superconducting material and method of manufacturing it
CN115784203B (en) * 2022-12-12 2024-02-23 中国科学技术大学 Long-range ordered porous carbon crystal material based on fullerene molecular crystal and large-scale preparation method thereof

Also Published As

Publication number Publication date
JPH09255319A (en) 1997-09-30

Similar Documents

Publication Publication Date Title
Krabbes et al. High temperature superconductor bulk materials: fundamentals, processing, properties control, application aspects
Wang et al. Single-crystal growth and extremely high H C2 of 12442-type Fe-based superconductor KCa2Fe4As4F2
Cortes-Gil et al. Indifference of Superconductivity and Magnetism to Size-Mismatched Cations in the Layered Iron Arsenides Ba1− x Na x Fe2As2
Miyazaki et al. Preparation and low-temperature thermoelectric properties of the composite crystal [Ca2 (Co0. 65Cu0. 35) 2O4] 0.624 CoO2
Bringley et al. Structure and properties of the LaCuO 3− δ perovskites
Li et al. Controllable phase transition for layered β-FeSe superconductor synthesized by solution chemistry
Iyo et al. Superconductivity in uncollapsed tetragonal LaFe2As2
Kawashima et al. Superconductivity in a new 1144-type family of (La, Na) AFe4As4 (A= Rb or Cs)
Ito et al. Two-dimensional nature of superconductivity in the intercalated layered systems Li x HfNCl and Li x ZrNCl: Muon spin relaxation and magnetization measurements
Zong et al. Superconductivity in nonstoichiometric rubidium-doped C60
Zhou et al. A new superconductor parent compound NaMn6Bi5 with quasi-one-dimensional structure and lower antiferromagnetic-like transition temperatures
Kashima et al. Low temperature neutron diffraction studies of Sr 2 FeMO 6 (M= Nb, Sb)
JP3776159B2 (en) Superconductor and manufacturing method thereof
Prassides Fullerenes
Awana et al. Possible ordering of Ru and Cu in the charge-reservoir of magneto-superconductor RuSr 2 GdCu 2 O 8 (Ru-1212): Magnetic, transport, and TEM microstructural studies
Takagi et al. Similarity and dissimilarity in transport properties of electron-and hole-doped high-Tc cuprates
Albert et al. New boron-rich materials: Cubic carbaborides of sodium and potassium
Lefevre et al. Polar Transition-Metal Chalcogenide: Structure and Properties of the New Pseudo-Hollandite Ba0. 5Cr5Se8
Ahmed et al. Theoretical study of doping effect on electronic and magnetic properties of BaZrO3
JP3776164B2 (en) Superconductor manufacturing method and superconducting performance control method
Schorr et al. Magnetic properties investigations of Mn substituted ABX2 chalcopyrites
Politis et al. Magnetization Studies of Rb 3 C 60 in Superconducting State
Ghosh et al. Formation of Magnetic Glass By Kinetic Arrest of First Order Magnetic Phase Transition In CaFeO3
Felner et al. Magnetic properties and specific-heat studies of the metal-insulator transition in BaCo 0.9 Ni 0.1 S 2− y
Ji et al. A method to obtain superconducting Y1Ba2Cu3O7− y bulk material with strong c-axis orientation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees