JP3776142B2 - Magnesium alloy melting and casting method - Google Patents
Magnesium alloy melting and casting method Download PDFInfo
- Publication number
- JP3776142B2 JP3776142B2 JP02382395A JP2382395A JP3776142B2 JP 3776142 B2 JP3776142 B2 JP 3776142B2 JP 02382395 A JP02382395 A JP 02382395A JP 2382395 A JP2382395 A JP 2382395A JP 3776142 B2 JP3776142 B2 JP 3776142B2
- Authority
- JP
- Japan
- Prior art keywords
- electromagnetic pump
- magnesium alloy
- molten metal
- alloy
- crucible
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Crucibles And Fluidized-Bed Furnaces (AREA)
Description
【0001】
【産業上の利用分野】
本発明は溶融状態で活性なマグネシウム合金の溶解・鋳造方法に関し、より詳しくは、Mg−Li系合金、Mg−Y系合金及びMg−RE(Mm、La、Ce、Gd、Nd等)系合金からなる群から選ばれた軽量性、耐熱性に優れたマグネシウム合金の溶解・鋳造方法に関する。これらのマグネシウム合金は宇宙・航空・自動車・情報機器・スポーツ用品等の広範囲の分野でおいて部品の製作に用いることができる。
【0002】
【従来の技術】
従来、マグネシウム合金の溶解・鋳造においては、塩基性フラックスを溶湯の表面に浮かべるフラックス法や、SF6 ガスを混合したガス雰囲気下で溶解させるSF6 法が一般的に用いられている。
【0003】
【発明が解決しようとする課題】
上記したような従来の溶解・鋳造方法は、AZ合金(Mg−Al−Zn−Mn系合金)や、AM合金(Mg−Al−Mn系合金)においては広範囲に利用され確立された方法である。しかしながら、マグネシウム合金がLiを含有している場合には、フラックス法では、塩基性フラックスの多くが塩化物を含有しているのでその塩素とLiとが反応して塩化リチウムを形成し、結果としてマグネシウム合金中のLiが消耗され、また溶融マグネシウム合金とフラックスとの分離が悪くなり、生産性が低下する。また、SF6 法では、SF6 ガスがLiと反応してSとLiFとになり、この場合にもマグネシウム合金中のLiが消耗され、またSF6 ガス含有保護雰囲気ではLi含有マグネシウム合金に対しては保護能力不足であり、鋳造のために溶湯を取り出す際に発火の危険性がある。また、マグネシウム合金がYやREを比較的多量に含有している場合にも、程度の差こそあれ同様のことが発生する。
【0004】
また、上記のような溶融状態で活性なマグネシウム合金を鋳造する際に杓を用いると、杓の周囲にマグネシウム合金が付着し、この付着したマグネシウム合金が発火する危険がある。
上記のような溶融状態で活性なマグネシウム合金は優れた軽量性、耐熱性等の諸特性を有するにもかかわらず、上記のような課題を抱えているために、広範囲に活用されるには至っていない。
【0005】
本発明は、このような従来技術の有する課題に鑑みてなされたものであり、本発明の目的は、上記のような溶融状態で活性なマグネシウム合金を安全に且つ高い生産性で溶解・鋳造する方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者は、上記課題の解決について鋭意検討の結果、溶融状態で活性なマグネシウム合金の溶解に密閉型ルツボを用い、保護雰囲気下で溶解し、浸漬型電磁ポンプにより直接鋳型に注湯する(即ち、外気に触れることなしで直接鋳型に注湯する)ことにより上記目的が達成されることを見出し、本発明を完成した。
【0007】
即ち、本発明の溶融状態で活性なマグネシウム合金の溶解・鋳造方法は、浸漬型電磁ポンプを備えた密閉型ルツボ中、保護雰囲気下で、Mg−Li系合金、Mg−Y系合金及びMg−RE系合金からなる群から選ばれた溶融状態で活性なマグネシウム合金を溶解する際、該浸漬型電磁ポンプを引き上げる又は該密閉型ルツボを引き下げて該浸漬型電磁ポンプが該マグネシウム合金原料又は溶湯と接触しない状態に保持し、鋳造段階で該浸漬型電磁ポンプを引き下げる又は該密閉型ルツボを引き上げて該浸漬型電磁ポンプを該マグネシウム合金溶湯中に浸漬し、その溶湯を該浸漬型電磁ポンプにより直接鋳型に注湯することを特徴とする。
【0008】
本発明において使用する密閉型ルツボ、浸漬型電磁ポンプは従来公知のものであり、特に制限はない。本発明の実施においては、マグネシウム合金又はそれらの原料金属を溶解させる段階では、浸漬型電磁ポンプを引き上げるか又は密閉型ルツボを引き下げて浸漬型電磁ポンプがマグネシウム合金原料又は溶湯と接触しない状態に保持し、鋳造段階で浸漬型電磁ポンプを引き下げるか又は密閉型ルツボを引き上げて浸漬型電磁ポンプをマグネシウム合金溶湯中に浸漬し、溶湯を電磁ポンプで輸送し、鋳型に注湯する。
【0009】
本発明において保護雰囲気とは、溶融状態で活性なマグネシウム合金の溶湯に対する保護雰囲気であり、例えばアルゴンガス雰囲気、ネオン雰囲気、ヘリウム雰囲気があり、溶融合金がMg−Y系合金又はMg−RE系合金の場合にはこれらの雰囲気中にSF6 ガスを存在させることができる。
【0010】
本発明の溶解・鋳造方法を図面に基づいて説明する。図1は本発明の実施で用いる装置の概略説明図である。加熱炉1中に密閉型ルツボ2を設置する。密閉型ルツボ2の蓋3には浸漬型電磁ポンプ4が気密滑動可能なように貫通している。浸漬型電磁ポンプ4の上端部には溶湯輸送管5が連結されており、溶湯輸送管5の他端は鋳型6に連結している。図1には示されていないが、浸漬型電磁ポンプ4を引き上げる手段、又は加熱炉1と共に密閉型ルツボ2を引き下げる手段が設けられており、マグネシウム合金又はそれらの原料金属を溶解させる段階では、浸漬型電磁ポンプ4を引き上げるか又は密閉型ルツボ2を引き下げて浸漬型電磁ポンプ4がマグネシウム合金原料又は溶湯7と接触しない状態に保持し、鋳造段階で浸漬型電磁ポンプ4を引き下げるか又は密閉型ルツボ2を引き上げて浸漬型電磁ポンプ4をマグネシウム合金溶湯7中に浸漬し、溶湯7を電磁ポンプ4及び溶湯輸送管5で輸送し、鋳型6に注湯することができる。本発明の実施においては、密閉型ルツボ2中に原料7を装入し、原料の上部を保護雰囲気8として密封する。上記の手段を用いて浸漬型電磁ポンプ4を引き上げるか又は密閉型ルツボ2を引き下げて浸漬型電磁ポンプ4と原料7とが接触しない状態に保持し、加熱炉1により密閉型ルツボ2を加熱してその内容物を溶解させる。溶解が終了した後、上記の手段を用いて浸漬型電磁ポンプ4を引き下げるか又は密閉型ルツボ2を引き上げて浸漬型電磁ポンプ4をマグネシウム合金溶湯7中に浸漬し、溶湯7を電磁ポンプ4及び溶湯輸送管5で輸送し、鋳型6に注湯する。
【0011】
上記のような構成からなる本発明の溶解・鋳造方法は、上記のような溶融状態で活性なマグネシウム合金を溶解・鋳造する他の方法、例えば真空溶解炉を使用する方法と比較して、一般の鋳造工程に適合し易く、サイズの融通性やコスト面でも有利である。
また、上記のような構成からなる本発明の溶解・鋳造方法は、上記のような溶融状態で活性なマグネシウム合金を溶解・鋳造するのに特に適しているが、他のマグネシウム合金の溶解・鋳造にも適用できることは明らかである。
【0012】
【実施例】
実施例1〜3
図1に示す装置を用い、密閉型ルツボ中に表1に示すマグネシウム合金原料を装入し、原料の上部を表1に示す保護雰囲気として密封した。加熱炉と共に密閉型ルツボを引き下げて浸漬型電磁ポンプとマグネシウム合金原料とが接触しない状態に保持し、加熱炉により密閉型ルツボを加熱してその内容物を表1に示す温度で溶解させた。溶解が終了した後、加熱炉と共に密閉型ルツボを引き上げて浸漬型電磁ポンプをマグネシウム合金溶湯中に浸漬させ、溶湯を電磁ポンプ及び溶湯輸送管で輸送し、鋳型に注湯した。
【0013】
用いた浸漬型電磁ポンプは下記の性能のものであった:
浸漬型電磁ポンプ(坂井商事製)
外径114mm、高さ850mm、輸送管長さ500mm
電源 200V/17kVA
汲み出し能力 0〜10kg/s
【0014】
【表1】
実施例1〜3の何れにおいても、合金組成の変動は認められず、燃焼は認められず、安全に且つ高い生産性で溶解・鋳造することができた。
【0015】
【発明の効果】
以上に説明したように、本発明により、軽量性、耐熱性に優れているが溶融状態で活性なマグネシウム合金を安全に且つ高い生産性で溶解・鋳造することが容易になり、宇宙・航空・自動車・情報機器・スポーツ用品等の広範囲の分野での活用が可能になる。
【図面の簡単な説明】
【図1】本発明の実施で用いる装置の概略説明図である。
【符号の説明】
1 加熱炉
2 密閉型ルツボ
3 密閉型ルツボの蓋
4 浸漬型電磁ポンプ
5 溶湯輸送管
6 鋳型
7 マグネシウム合金溶湯
8 保護雰囲気[0001]
[Industrial application fields]
The present invention relates to a method for melting and casting a magnesium alloy active in a molten state, and more particularly, Mg-Li alloy, Mg-Y alloy, and Mg-RE (Mm, La, Ce, Gd, Nd, etc.) alloy. The present invention relates to a method for melting and casting a magnesium alloy excellent in light weight and heat resistance selected from the group consisting of: These magnesium alloys can be used for manufacturing parts in a wide range of fields such as space, aviation, automobiles, information equipment, and sports equipment.
[0002]
[Prior art]
Conventionally, in melting and casting of magnesium alloys, a flux method in which a basic flux is floated on the surface of a molten metal and an SF 6 method in which SF is dissolved in a gas atmosphere mixed with SF 6 gas are generally used.
[0003]
[Problems to be solved by the invention]
The conventional melting and casting methods as described above are widely used and established in AZ alloys (Mg—Al—Zn—Mn alloys) and AM alloys (Mg—Al—Mn alloys). . However, when the magnesium alloy contains Li, in the flux method, since most of the basic flux contains chloride, the chlorine and Li react to form lithium chloride, and as a result, Li in the magnesium alloy is consumed, and separation between the molten magnesium alloy and the flux is deteriorated, resulting in a decrease in productivity. In the SF 6 method, SF 6 gas reacts with Li to become S and LiF. In this case as well, Li in the magnesium alloy is consumed, and in the SF 6 gas-containing protective atmosphere, the Li-containing magnesium alloy In some cases, the protective ability is insufficient, and there is a risk of ignition when the molten metal is taken out for casting. In addition, when the magnesium alloy contains a relatively large amount of Y and RE, the same thing occurs to some extent.
[0004]
Further, when a soot is used when casting an active magnesium alloy in the molten state as described above, the magnesium alloy adheres around the soot and there is a risk that the attached magnesium alloy may ignite.
Although the magnesium alloy active in the molten state as described above has various characteristics such as excellent lightness and heat resistance, it has the above-mentioned problems, and thus has been widely used. Not in.
[0005]
The present invention has been made in view of such problems of the prior art, and an object of the present invention is to melt and cast a magnesium alloy that is active in the molten state as described above safely and with high productivity. To provide a method.
[0006]
[Means for Solving the Problems]
As a result of intensive investigations on the solution of the above problems, the present inventor used a sealed crucible for melting an active magnesium alloy in a molten state, melted in a protective atmosphere, and poured directly into the mold by an immersion type electromagnetic pump ( In other words, the present invention was completed by finding that the above-mentioned object was achieved by pouring directly into the mold without touching the outside air.
[0007]
That is, the molten and active magnesium alloy melting and casting method according to the present invention includes a Mg-Li alloy, a Mg-Y alloy, and a Mg-- in a sealed crucible equipped with an immersion type electromagnetic pump in a protective atmosphere. When melting an active magnesium alloy in a molten state selected from the group consisting of RE-based alloys , the immersion electromagnetic pump is pulled up or the sealed crucible is pulled down so that the immersion electromagnetic pump and the magnesium alloy raw material or molten metal Hold in a non-contact state, pull down the submersible electromagnetic pump at the casting stage or pull up the sealed crucible to immerse the submersible electromagnetic pump in the magnesium alloy molten metal, and directly melt the molten metal with the submersible electromagnetic pump. It is characterized by pouring hot water into the mold.
[0008]
The hermetic crucible and immersion type electromagnetic pump used in the present invention are known in the art and are not particularly limited. In the practice of the present invention, at the stage of melting the magnesium alloy or the raw metal thereof, the immersion electromagnetic pump is pulled up or the sealed crucible is pulled down so that the immersion electromagnetic pump is not in contact with the magnesium alloy raw material or the molten metal. Then, at the casting stage, the immersion type electromagnetic pump is pulled down or the sealed crucible is pulled up so that the immersion type electromagnetic pump is immersed in the magnesium alloy molten metal, and the molten metal is transported by the electromagnetic pump and poured into the mold.
[0009]
In the present invention, the protective atmosphere is a protective atmosphere against molten magnesium alloy that is active in a molten state, for example, an argon gas atmosphere, a neon atmosphere, or a helium atmosphere, and the molten alloy is an Mg—Y alloy or an Mg—RE alloy. In this case, SF 6 gas can be present in these atmospheres.
[0010]
The melting / casting method of the present invention will be described with reference to the drawings. FIG. 1 is a schematic explanatory diagram of an apparatus used in the practice of the present invention. A closed
[0011]
The melting / casting method of the present invention having the above-described configuration is generally compared with other methods for melting / casting an active magnesium alloy in the molten state as described above, for example, a method using a vacuum melting furnace. It is easy to adapt to the casting process, and is advantageous in terms of size flexibility and cost.
Further, the melting / casting method of the present invention having the above-described configuration is particularly suitable for melting / casting active magnesium alloys in the molten state as described above, but melting / casting of other magnesium alloys. It is clear that this can also be applied.
[0012]
【Example】
Examples 1-3
Using the apparatus shown in FIG. 1, the magnesium alloy raw material shown in Table 1 was charged into a closed crucible, and the upper part of the raw material was sealed as a protective atmosphere shown in Table 1. The hermetic crucible was pulled down together with the heating furnace so that the immersion electromagnetic pump and the magnesium alloy raw material were not in contact with each other, and the hermetic crucible was heated by the heating furnace to dissolve the contents at the temperature shown in Table 1. After the completion of melting, the sealed crucible was pulled up together with the heating furnace, the immersion type electromagnetic pump was immersed in the magnesium alloy molten metal, the molten metal was transported by the electromagnetic pump and the molten metal transport pipe, and poured into the mold.
[0013]
The immersion type electromagnetic pump used had the following performance:
Immersion type electromagnetic pump (manufactured by Sakai Corporation)
Outer diameter 114mm, height 850mm, transport pipe length 500mm
Power supply 200V / 17kVA
Pumping capacity 0-10kg / s
[0014]
[Table 1]
In any of Examples 1 to 3, no change in the alloy composition was observed, combustion was not observed, and melting and casting could be performed safely and with high productivity.
[0015]
【The invention's effect】
As described above, according to the present invention, it becomes easy to melt and cast a magnesium alloy that is excellent in light weight and heat resistance but is active in a molten state with high productivity, space, aviation, It can be used in a wide range of fields such as automobiles, information equipment, and sports equipment.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory diagram of an apparatus used in the practice of the present invention.
[Explanation of symbols]
DESCRIPTION OF
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02382395A JP3776142B2 (en) | 1995-02-13 | 1995-02-13 | Magnesium alloy melting and casting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02382395A JP3776142B2 (en) | 1995-02-13 | 1995-02-13 | Magnesium alloy melting and casting method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08215830A JPH08215830A (en) | 1996-08-27 |
JP3776142B2 true JP3776142B2 (en) | 2006-05-17 |
Family
ID=12121088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02382395A Expired - Fee Related JP3776142B2 (en) | 1995-02-13 | 1995-02-13 | Magnesium alloy melting and casting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3776142B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1323783C (en) * | 2002-12-16 | 2007-07-04 | 威海万丰镁业科技发展有限公司 | Magnesium alloy hub pressure casting apparatus and method thereof |
CN1314820C (en) * | 2005-08-18 | 2007-05-09 | 沈阳工业大学 | Magnesium alloy melt forced-circulation smelting method |
KR101451317B1 (en) * | 2013-07-03 | 2014-10-15 | (주)두인엔텍 | Magnesium Melting Crucible |
CN111187955A (en) * | 2020-02-17 | 2020-05-22 | 青海大学 | Rare earth yttrium-doped magnesium-lithium alloy and preparation method thereof |
CN115096081A (en) * | 2022-05-24 | 2022-09-23 | 西北工业大学 | Valve-controlled self-refluxing type magnesium liquid continuous quantity-control conveying device and method |
-
1995
- 1995-02-13 JP JP02382395A patent/JP3776142B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08215830A (en) | 1996-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2107582C1 (en) | Method for manufacturing intermetal castings (versions) and gear for its realization | |
US4738713A (en) | Method for induction melting reactive metals and alloys | |
US3957104A (en) | Method of making an apertured casting | |
US5913353A (en) | Process for casting light metals | |
CN107289782B (en) | A kind of more furnace association type smelting-casting equipments and technique producing high-cleanness, high magnesium or magnesium alloy | |
US3548915A (en) | New procedure for chill casting beryllium composite | |
CN101928845A (en) | Preparation method of lithium-contained alloy material | |
US20030106664A1 (en) | Method and apparatus for manufacturing copper and/or copper alloy ingot having no shrinkage cavity and having smooth surface without wrinkles | |
JP3776142B2 (en) | Magnesium alloy melting and casting method | |
GB2265805A (en) | A combined electro-slag remelting/cold induction crucible system | |
JP3571212B2 (en) | Metal and alloy melting method and melting casting method | |
US3470936A (en) | Method for producing high purity copper castings | |
JPH04224073A (en) | Adding vessel for light metal to molten aluminum alloy | |
CN110484742B (en) | Method for preparing Fe-W intermediate alloy by electron beam melting and high purification | |
US3723097A (en) | Method of preventing dross formation during remelting | |
JPS6352983B2 (en) | ||
EP0067634B1 (en) | Method of melting an alloy in an induction furnace | |
US3910341A (en) | Methods of adding reactive metals to form a remelting electrode | |
JPH04294857A (en) | Method and device for casting aluminum | |
US1171066A (en) | Process of uniting copper to ferrous metals. | |
JP2006061925A (en) | Closed type melting furnace | |
US3225399A (en) | Casting process using borax-silica slag | |
RU2061078C1 (en) | Process of production of alloys based on rare-earth metals, scandium and yttrium | |
JP2004351454A (en) | Manufacturing method for magnesium ingot | |
JP3149556B2 (en) | Method and apparatus for producing melting stock for precision casting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050208 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050411 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060217 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060222 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |