JP3775379B2 - High frequency heating device - Google Patents

High frequency heating device Download PDF

Info

Publication number
JP3775379B2
JP3775379B2 JP2002340600A JP2002340600A JP3775379B2 JP 3775379 B2 JP3775379 B2 JP 3775379B2 JP 2002340600 A JP2002340600 A JP 2002340600A JP 2002340600 A JP2002340600 A JP 2002340600A JP 3775379 B2 JP3775379 B2 JP 3775379B2
Authority
JP
Japan
Prior art keywords
water
temperature
steam
water supply
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002340600A
Other languages
Japanese (ja)
Other versions
JP2004176943A (en
Inventor
伸宏 小川
浩二 神崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002340600A priority Critical patent/JP3775379B2/en
Publication of JP2004176943A publication Critical patent/JP2004176943A/en
Application granted granted Critical
Publication of JP3775379B2 publication Critical patent/JP3775379B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Electric Ovens (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高周波加熱と蒸気加熱とを組み合わせて被加熱物を加熱処理する蒸気発生機能付き高周波加熱装置に関するものである。
【0002】
【従来の技術】
従来、この種の加熱調理器は、発熱体を有し水を気化しさらに過加熱する蒸気発生手段と蒸気発生手段に水を供給する水供給手段と発生する蒸気の温度を検出する温度検知手段を備え、発生する蒸気の温度が所定温度となるように給水量と発熱量を制御し、適度な蒸気温度ならびに蒸気量を供給できるため、温度、量ともに信頼性の高い蒸気を供給することができるので、安心して調理条件を設定できる。また、蒸気温度を直接検出しているため異常加熱などが防げるものである(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開平10−339401号公報(第3頁、第1図)
【0004】
【発明が解決しようとする課題】
ところが、特開平10−339401号公報の構成によれば、加熱蒸気の温度を測定しているが、蒸気発生部の温度を測定しているわけではなく、雰囲気温度の測定のため、空焚きによる蒸気発生部の急激な温度上昇の検出が遅くなってしまい、蒸気発生部の熱損傷をまねく恐れがあるという問題があった。
【0005】
本発明は、上記事情を考慮してなされたもので、蒸気発生部の温度と水の供給を制御することで食品に最適な蒸気量を発生させ、空焚きなどの異常を未然に防ぐ安全性を高めた蒸気発生機能付き高周波加熱装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的達成のため、本発明の蒸気発生機能付き高周波加熱装置は、被加熱物を収容する加熱室と、前記加熱室内で蒸気を発生する蒸気発生部と、前記蒸気発生部の温度を検出する温度検出手段と、前記蒸気発生部の加熱ヒータの加熱を制御するヒータ加熱制御手段と、前記蒸気発生部に水を供給するための給水手段と、前記給水手段からの水の供給を制御する給水制御手段とを備え、前記温度検出手段の温度情報をもとに前記加熱ヒータの加熱制御あるいは水の供給を制御することを特徴とする。
【0007】
これによって、蒸発皿近傍に配設された温度検出手段の温度情報をもとに給水手段より必要な水を給水し、仮に新しい水が供給されない場合は加熱ヒータの動作を止め、空焚きを防ぐとともに、調理中においては加熱ヒータを制御して発生蒸気量を調整し、食品に最適な蒸気量で調理を行うことができる。
【0008】
【発明の実施の形態】
請求項1記載の発明は、被加熱物を収容する加熱室と、前記加熱室内で蒸気を発生する蒸気発生部と、前記蒸気発生部の温度を検出する温度検出手段と、制御部と、前記蒸気発生部の加熱ヒータの加熱制御をするヒータ加熱制御手段と、前記蒸気発生部に水を供給するための給水手段と、水の供給を制御する給水制御手段とを備え、制御部は前記温度検出手段の温度情報をもとにヒータ加熱制御給水制御の少なくとも一方の制御を行う高周波加熱装置において、前記給水制御手段は、以前の調理で給水した時点からの温度検出手段の温度および経過時間の情報により、今回の調理開始時に給水を行うか否かを判定することを特徴とする。
【0009】
この蒸気発生機能付き高周波加熱装置では、蒸発皿を加熱する加熱ヒータを制御する手段を有し、蒸発皿近傍に配設された温度検出部の温度情報をもとに水を蒸発皿に給水し、給水部の送水ポンプで水の送水量を調節し、仮に新しい水が供給されない場合は加熱ヒータの動作を止め、蒸発皿の空焚きを防ぐとともに、調理中においては加熱ヒータならびに水の供給を制御して発生蒸気量を調整し、食品に最適な蒸気量で調理を行うことができる。
【0010】
また、蒸発皿を加熱する加熱ヒータを制御する手段を有し、蒸発皿近傍に配設された温度検出部の温度情報をもとに水を蒸発皿に給水し、給水部の送水ポンプで水の送水量を調節することができる。あるいは温度検出部の温度情報をもとに加熱ヒータの制御をおこなうことにより蒸発皿の空焚きを防ぐことができる。このように調理中においては加熱ヒータあるいは水の供給を制御して発生蒸気量を調整し、食品に最適な蒸気量で調理を行うことができる。
【0011】
また、蒸発皿を加熱する加熱ヒータを制御する手段を有し、蒸発皿近傍に配設された温度検出部の温度情報をもとに水を蒸発皿に給水し、給水部の送水ポンプで水の送水量を調節することができる。あるいは温度検出部の温度情報をもとに加熱ヒータの制御をおこなうことにより蒸発皿の空焚きを防ぐことができる。このように調理中においては加熱ヒータあるいは水の供給を制御して発生蒸気量を調整し、食品に最適な蒸気量で調理を行うことができる。
【0012】
また、前記蒸気発生部の温度が所定の温度になると、蒸気発生部内の水が少なくなっているとして、給水を行なう。蒸気発生部の温度は給水を行なった際に低下するのだが、給水してからすぐには温度低下せず、いったん温度上昇してから、温度低下が始まる。この現象を一般的にオーバーシュートと称する。温度低下がある場合、水が確実に供給されたということを判断できる。このときのオーバーシュートを考慮し、次回の給水を行なうか否かの判定を所定時間経過するまで、実施しない。このことにより、蒸気発生部の温度が高いからと、連続的に給水され、蒸発皿から水が溢れ出し、庫内に水が流出するような事態を避けることができる。つまりは水の供給過多による蒸気発生部からの水のあふれを防ぎ安全性を高めることができる。
【0013】
また、前記蒸気発生部の温度が所定の温度になると、蒸気発生部内の水が少なくなっているとして、給水を行なう。蒸気発生部の温度は給水を行なった際に低下するのだが、給水してからすぐには温度低下せず、いったん温度上昇してから、温度低下が始まる。この現象を一般的にオーバーシュートと称する。温度低下がある場合、水が確実に供給されたということを判断できる。この温度低下が発生している状態で、蒸気発生部の温度が所定温度以上であるとして給水されると、水の供給過多となる恐れがあることを考慮し、次回の給水を行なうか否かの判定を蒸気発生部の温度が上昇していないと実施しないようにする。このことにより、蒸気発生部の温度が高いからと、連続的に給水され、蒸発皿から水が溢れ出し、庫内に水が流出するような事態を避けることができる。つまりは水の供給過多による蒸気発生部からの水のあふれを防ぎ安全性を高めることができる。
【0014】
また、蒸気を発生させる調理においては加熱ヒータならびに給水ポンプにより水の供給を制御して発生蒸気量を調整し、食品に最適な蒸気量で蒸気加熱を行なっている。加熱室内にある蒸気発生部から蒸気を発生するため、調理終了時まで水を給水していると調理終了後に蒸気発生部の蒸発皿に水が残ってしまうので、次回の調理時に無条件に水が給水するようにしてしまうか、あるいは蒸気を使用する調理を開始し、すぐに調理の取り消し操作をし、即座に蒸気を使用する調理を開始するようなことを繰り返すと蒸発皿への水の供給過多による蒸気発生部からの水のあふれをおこす恐れがある。そのため、蒸気を使用する調理を開始した際、以前の調理中に給水動作してからの経過時間が所定時間以上経過しており、なおかつその経過時間内に蒸気発生部内の温度が所定温度に達していたことがなければ、水が残っていると見なして、調理開始時に給水を行わないようにすることとした。これにより水の供給過多による蒸気発生部からの水のあふれをおこす恐れを回避することができ、安全性を高めることができる。
【0015】
請求項記載の蒸気発生機能付き高周波加熱装置は、被加熱物を収容する加熱室と、前記加熱室内で蒸気を発生する蒸気発生部と、前記蒸気発生部の温度を検出する温度検出手段と、前記蒸気発生部へ水を供給する給水手段と、前記給水部の水の供給を制御する給水制御手段とを備え、蒸気の供給を止めた時から、所定時間のうちに前記蒸気発生部の温度が上昇し、所定の温度以上になっている場合に給水をおこなうことを特徴とする。
【0016】
蒸気を使用する加熱状態では前記蒸気発生部の温度を検出する温度検出部の温度情報をもとに前記加熱ヒータの加熱制御ならびに前記給水部の水の供給を制御している。
【0017】
蒸気を停止した場合、その時点において蒸気発生部内の蒸発皿の残水量が少ない場合、すぐに加熱ヒータの残熱により、蒸気発生部内の蒸発皿の残水が蒸発し、前記蒸気発生部の温度が上昇し、かつ所定の温度以上になっている場合に給水をおこなうために、蒸発皿が空焚きになる危険を防ぐことができる。
【0018】
請求項記載の蒸気発生機能付き高周波加熱装置は、蒸気を発生する調理が行なわれ、前記加熱ヒータの加熱制御がおこなわれていも給水が所定時間のうちに一切給水が行われない場合に故障があることを検出することを特徴とする。
【0019】
この蒸気発生機能付き高周波加熱装置では、蒸気を発生する調理が行なわれ、前記加熱ヒータの加熱制御ならびに前記蒸気発生部への水供給がおこなわれる。加熱ヒータの断線があるいは蒸気発生部が故障した場合は、前記蒸気発生部の温度が上昇せず、蒸発皿への給水が一切なされず、調理が失敗してしまう危険が生じる。仮に加熱ヒータが断線あるいは蒸気発生部が故障し、蒸発皿への給水動作が所定時間の間に一切なされない場合は、故障と見なし、調理を打ち切ることで、使用者に異常を報知し、速やかな修理等の対応につなげることができる。
【0020】
請求項記載の蒸気発生機能付き高周波加熱装置は、被加熱物を収容する加熱室と、前記加熱室内で蒸気を発生する蒸気発生部と、前記蒸気発生部の温度を検出する温度検出手段と、制御部と、前記蒸気発生部の加熱ヒータの加熱制御をするヒータ加熱制御手段と、前記蒸気発生部に水を供給するための給水手段と、水の供給を制御する給水制御手段とを備え、制御部は前記温度検出手段の温度情報をもとに、ヒータ加熱制御と給水制御の少なくとも一方の制御を行う高周波加熱装置において、着脱可能な水貯留タンクと、前記水貯留タンクの着脱情報を検出するためのタンク着脱検出手段と、前記蒸気発生部に対して水を供給するための給水手段を有し、蒸気を使用する調理が行なわれ、水が供給された後に、前記水貯留タンクが使用者により抜かれたことを検出し、給水制御手段は給水動作をおこなうことにより、前記水貯留タンクから前記蒸気発生部までを接続する管路内に滞留する水を前記蒸気発生部に水を強制排出することを特徴とする。
【0021】
この蒸気発生機能付き高周波加熱装置では、加熱室内にある蒸気発生部から蒸気を発生するため、水貯留タンクから前記蒸気発生部までを接続する管路内に水が残ってしまい、そのまま放置されると次回の調理のときに古い残った水を使うことになるばかりか、長期にわたり放置された場合は水自体が腐敗する可能性がある。水貯留タンクが使用者により抜かれると、給水動作を行うことにより、水貯留タンクから前記蒸気発生部までを接続する管路内に滞留する水を前記蒸気発生部に排出することで、管路内に水が残ることを防ぎ、管路内を衛生的に保つことができる。
【0022】
【実施例】
以下、本発明の蒸気発生機能付き高周波加熱装置の好適な実施の形態について図面を参照して詳細に説明する。
【0023】
図1は第1実施形態の蒸気発生機能付き高周波加熱装置の開閉扉を開けた状態を示す正面図、図2はこの装置に用いられる蒸気発生部の蒸発皿を示す斜視図、図3は蒸気発生部の蒸発皿加熱ヒータと反射板を示す斜視図、図4は蒸気発生部の断面図である。
【0024】
この蒸気発生機能付き高周波加熱装置100は、被加熱物を収容する加熱室11に、高周波(マイクロ波)と蒸気との少なくともいずれかを供給して被加熱物を加熱処理する加熱調理器であって、高周波を発生する高周波発生部としてのマグネトロン13と、加熱室11内で蒸気を発生する蒸気発生部15と、加熱室11内の空気を撹拌・循環させる循環ファン17と、加熱室11内を循環する空気を加熱する室内気加熱ヒータとしてのコンベクションヒータ19とを備えている。
【0025】
加熱室11は、前面開放の箱形の本体ケース10内部に形成されており、本体ケース10の前面に、加熱室11の被加熱物取出口を開閉する透光窓21a付きの開閉扉21が設けられている。開閉扉21は、下端が本体ケース10の下縁にヒンジ結合されることで、上下方向に開閉可能となっている。加熱室11と本体ケース10との壁面間には所定の断熱空間が確保されており、必要に応じてその空間には断熱材が装填されている。特に加熱室11の背後の空間は、循環ファン17及びその駆動モータ23(図9参照)を収容した循環ファン室25となっており、加熱室11の後面の壁が、加熱室11と循環ファン室25とを画成する仕切板27となっている。仕切板27には、加熱室11側から循環ファン室25側への吸気を行う吸気用通風孔29と、循環ファン室25側から加熱室11側への送風を行う送風用通風孔31とが形成エリアを区別して設けられている。各通風孔29,31は、多数のパンチ孔として形成されている。
【0026】
循環ファン17は、矩形の仕切板27の中央部に回転中心を位置させて配置されており、循環ファン室25内には、この循環ファン17を取り囲むようにして矩形環状のコンベクションヒータ19が設けられている。そして、仕切板27に形成された吸気用通風孔29は循環ファン17の前面に配置され、送風用通風孔31は矩形環状のコンベクションヒータ19に沿って配置されている。循環ファン17を回すと、風は循環ファン17の前面側から駆動モータのある後面側に流れるように設定されているので、加熱室11内の空気が、吸気用通風孔29を通して循環ファン17の中心部に吸い込まれ、循環ファン室25内のコンベクションヒータ19を通過して、送風用通風孔31から加熱室11内に送り出される。従って、この流れにより、加熱室11内の空気が、撹拌されつつ循環ファン室25を経由して循環されるようになっている。
【0027】
マグネトロン13は、例えば加熱室11の下側の空間に配置されており、マグネトロンより発生した高周波を受ける位置にはスタラー羽根33が設けられている。そして、マグネトロン13からの高周波を、回転するスタラー羽根33に照射することにより、該スタラー羽根33によって高周波を加熱室11内に撹拌しながら供給するようになっている。なお、マグネトロン13やスタラー羽根33は、加熱室11の底部に限らず、加熱室11の上面や側面側に設けることもできる。
【0028】
蒸気発生部15は、図2に示すように加熱により蒸気を発生する水溜凹所35aと突起面36を有した蒸発皿35と、蒸発皿35の下側に配設され、図3及び図4に示すように蒸発皿35を加熱する蒸発皿加熱ヒータ37と、該ヒータの輻射熱を蒸発皿35に向けて反射する断面略U字形の反射板39とから構成されている。温度検出部20は蒸発皿35の下方でかつ反射板39の外側に配設されている。蒸発皿35は、金属製の細長板状のもので、加熱室11の被加熱物取出口とは反対側の奥側底面に長手方向を加熱室11と循環ファン室25とを画成する仕切板27に沿わせた向きで配設されている。なお、蒸発皿加熱ヒータ37としては、ガラス管ヒータ、シーズヒータ、プレートヒータ等が利用できる。
【0029】
また、図5、図6に示すように給水部51は、水貯留タンク53と、水貯留タンク53から蒸発皿35に対して所定量の水を供給する送水ポンプ55と、水貯留タンク53から蒸発皿35までを接続する管路57とを有している。
【0030】
この構成によれば、蒸発皿35に対し水を連続供給することができるので、長時間の連続蒸気加熱処理が可能となる。なお、水貯留タンク53は、図6に本装置の側面側の一部斜視図を示すように、取り扱い性を高めるためカートリッジ式としており、装置に組み込んだときに装置自体が大型化しないように、本体ケース10の比較的高温になりにくい側壁部にコンパクトに埋設してある。この他にも、断熱処理を施して装置の上面側に配設してもよく、下面側に配設してもよい。カートリッジ式の水貯留タンク53は、装置外部から取り出せて簡単に交換できることが好ましく、これにより取扱性を向上することができ、タンクの清掃も容易となる。例えば図示のように、装置側面から蓋59を開閉して出し入れ可能にしてもよく、装置前面から出し入れ可能にしてもよい。また、カートリッジ式の水貯留タンク53は、樹脂やガラス等の透明材料で形成し、タンク収納部分の本体ケース側の壁も透明材料で作ることにより、水貯留タンク53内の水残量を外側から目視確認可能に構成することが好ましい。
【0031】
図7は蒸気発生機能付き高周波加熱装置100を制御するための制御系のブロック図である。この制御系は、例えばマイクロプロセッサを備えてなる制御部501を中心に構成されている。制御部501は、主に、電源部503、記憶部505、入力操作部507、表示パネル509、温度検出部20、加熱部511、冷却用ファン61等との間で信号の授受を行っている。
【0032】
入力操作部507には、加熱の開始を指示するスタートスイッチ519、高周波加熱や蒸気加熱等の加熱方法を切り替える切替スイッチ521、予め用意されているプログラムをスタートさせる自動調理スイッチ523等の種々の操作スイッチが接続されている。
【0033】
加熱部511には、高周波発生部13、蒸気発生部15、循環ファン17等が接続されている。また、高周波発生部13は、電波撹拌部(スタラー羽根の駆動部)33と協働して動作し、蒸気発生部15には、蒸発皿加熱ヒータ37、室内気加熱ヒータ19(コンベクションヒータ)等が接続されている。
【0034】
次に、上述した蒸気発生機能付き高周波加熱装置100の基本的な動作について、図8のフローチャートを参照しながら説明する。
【0035】
操作の手順としては、まず、加熱しようとする食品を皿等に載せて加熱室11内に入れ、開閉扉21を閉める。そして、加熱方法、加熱温度又は時間を入力操作部507により設定して(ステップ10、以降はS10と略記する)、スタートスイッチをONにする(S11)。すると、制御部501の動作によって自動的に加熱処理が行われる(S12)。
【0036】
即ち、制御部501は、設定された加熱温度・時間を読み取り、それに基づいて最適な調理方法を選択・実行し、設定された加熱温度・時間に達したか否かを判断して(S13)、設定値に達したときに、各加熱源を停止して加熱処理を終了する(S14)。なお、S12では、蒸気発生、室内気加熱ヒータ、循環ファン回転、高周波加熱を、それぞれ個別或いは同時に行う。
【0037】
上記した動作の際に、例えば「蒸気発生+循環ファンON」のモードが選択・実行された場合の作用を説明する。このモードが選択されると、図9に本高周波加熱装置100の動作説明図を示すように、蒸発皿加熱ヒータ37がONされることで、蒸発皿35の水が加熱され蒸気Sが発生する。蒸発皿35から上昇する蒸気Sは、仕切板27の略中央部に設けた吸気用通風孔29から循環ファン17の中心部に吸引され、循環ファン室25を経由して、仕切板27の周部に設けた送風用通風孔31から、加熱室11内へ向けて吹き出される。吹き出された蒸気は、加熱室11内において撹拌されて、再度、仕切板27の略中央部の吸気用通風孔29から循環ファン室25側に吸引される。これにより加熱室11内と循環ファン室25に循環経路が形成される。なお、仕切板27の循環ファン17の配置位置下方には送風用通風孔31を設けずに、発生した蒸気を吸気用通風孔29に導かれるようにしている。そして、図中白抜き矢印で示すように、蒸気が加熱室11を循環することによって、被加熱物Mに蒸気が吹き付けられる。
【0038】
次に上述した構成の蒸気発生機能付き高周波加熱装置の制御方法について詳しく説明する。
【0039】
図10は、蒸発皿35の温度に応じて蒸発皿加熱ヒータ37ならびに送水ポンプ55を制御する場合の基本的な手順を示すフローチャートである。このフローチャートでは、最初に蒸気皿加熱ヒータ37を通電する。通電は基本的に連続通電とするが、他のヒーターなどの負荷が通電され、許容電力量を越える場合は非通電とする。なお、メニューによっては許容電力量を越えない場合でも断続通電としてもよいし、スタート時は連続通電し、その後ある所定時間が経過するか、蒸気発生部の温度検出部20の温度が所定温度になる等の諸条件により断続通電としてもよい。次にスタート時給水判定を行い(S21)、スタート時に給水すべきか否かを判定する。判定方式については図11を用いて後に説明する。スタート時のS21の処理において給水OKと判定された場合(S22)、送水ポンプ55を駆動して蒸発皿35に水を供給する(S23)。給水量は送水ポンプ55の駆動時間により決定され、その駆動時間は選択された調理メニューにより任意に設定できるものとし、調理メニューに応じた蒸気量を制御することができる。なお、蒸発皿35の温度が高ければ、水を大量に供給し、一度に大量の蒸気を発生ることや、蒸発皿35の温度が低ければ、少量の水を供給し、蒸発皿加熱ヒータ37を通電し、蒸発皿35を熱し、素早く蒸気を発生させるようにもできる。給水を行うと、給水判定マスク時間を設定し(S24)、この給水判定マスク時間が経過するまでは、次回の給水をさせないようにする。詳しくは図13の給水判定方式を示すフローチャートにて後に説明する。
【0040】
次に蒸気発生部の温度検出部20の温度の上昇値あるいは、絶対温度による空焚き判定を行う(S25)。この空焚き判定方式は、詳しくは図12の空焚き判定方式のフローチャートにて後に説明する。空焚きでないと判定された場合(S26)、蒸気発生部の温度検出部20の温度による給水判定(S27)を行う。この給水判定方式については、詳しくは図13の給水判定のフローチャートにて後述する。給水OKと判定された場合(S28)、送水ポンプ55を駆動して蒸発皿35に水を供給する(S29)。給水量は送水ポンプ55の駆動時間により決定され、その駆動時間は選択された調理メニューにより任意に設定できるものとし、調理メニューに応じた蒸気量を制御することができる。給水を行うと、給水判定マスク時間を設定し(S24)、この給水判定マスク時間が経過するまでは、次回の給水をさせないようにする。詳しくは図12の給水判定のフローチャートにて後に説明する。その後、(S25)の状態に戻るものである。
【0041】
また(S26)の判定により空焚き状態となった場合は、蒸発皿加熱ヒータ37をOFFし(S31)、空焚き状態からの復帰判定を行う(S32)。詳細は図14により後に説明する。空焚き状態から復帰OKであると判定されれば(S33)、蒸発皿加熱ヒータ37通電を再開し(S34)、通常の状態に復帰し、S25の判定に戻るものである。
【0042】
次に図11を用いて、図10におけるS21のスタート時に給水すべきか否かを判定する方式について説明する。まず、以前に蒸気発生を行う調理が行われたことがあり、その調理中に給水がなされていた場合、給水された時点からの経過時間を計測しておく。また、蒸気発生部の温度も合わせて計測を行っておく。調理開始時に、前記経過時間が所定時間以上であり(S35)、なおかつ前記経過時間の間に蒸気発生部の温度検出部20の温度が所定温度以上であったことが一度でもあれば(S36)、調理開始時の給水判定はOKと判定する(S37)。その他の条件ではNGとし(S38)、調理開始時の給水はおこないものとする。なおここで説明した所定時間ならびに所定温度は固定の値としてもよく、以前に行われた蒸気発生させた時点のメニューにより任意の時間ならびに温度を設定できるものであってもよいとする。また、電源投入されてから最初の蒸気を用いる調理が行われる際には、開始時の給水を無条件で行う。なお開始時の給水を無条件で行わないとしても構わない。
【0043】
次に図12を用いて、図10におけるS25の空焚き判定方式について説明する。蒸気発生部の温度検出部20の温度が所定温度であった場合(S39)、あるいは所定時間のうちに温度上昇比較値以上の温度上昇があった場合(S40)に空焚きと判定する(S41)。その他の条件では空焼きでないと判定する(S42)。なおここで説明した所定温度ならびに所定時間、温度上昇比較値は固定の値であっても、蒸気発生させるメニューにより任意の時間、比較値ならびに温度を設定できるものであってもよいとする。
【0044】
次に図13を用いて、図10におけるS27の給水判定方式について説明する。給水判定マスク時間がない場合、あるいは以前に給水がなされ給水判定マスク時間が経過した場合(S43)、かつ蒸気発生部の温度検出部20の温度が所定温度以上であり(S44)、かつ蒸気発生部の温度検出部20が上昇中であった場合に(S45)、給水OKと判定する(S46)。また、給水がなされない条件の時、給水を行っていない時間が所定時間以上となった場合(S47)、蒸発皿加熱ヒータ37が断線あるいは蒸気発生部15が故障したとみなし、強制的に加熱を止めるようにしている(S49)。その他の条件の場合、給水NGと判定する(S48)。
【0045】
次に図14を用いて、図10におけるS32の空焚き状態からの復帰判定方式について説明する。空焚きと判定された場合、まず送水ポンプ55を駆動して蒸発皿35に水を供給する(S50)。給水量は送水ポンプ55の駆動時間により決定され、その駆動時間は固定の値でも、選択された調理メニューにより任意に設定できるものでもよい。次に空焚きと判定した時点の蒸気発生部の温度検出部20の温度をピーク温度として記憶し、その後温度が上昇すると、ピーク温度を更新する(S51)。そして、蒸気発生部の温度検出部20の温度が前記ピーク温度に対して所定温度低下したかの判定を行い(S52)、低下していれば水が確実に供給されたための温度低下とし、空焚き状態を脱する。ただし、蒸気発生部の温度検出部20の温度が空焚き判定に用いた所定温度未満まで低下するまで、空焚き状態からの復帰を猶予する(S53)。これにより、空焚き状態からの復帰後に蒸気発生部の温度検出部20の温度が空焚き判定に用いた所定温度以上であるとすぐに空焚き状態に戻ってしまうことを防ぐものである。その後蒸気発生部の温度検出部20の温度が空焚き判定に用いた所定温度未満まで低下すると、空焚き状態からの復帰OKとする(S54)。S52の判定により、空焚き状態が継続した場合、空焚き復帰検出時間が経過すれば(S55)、空焚き復帰検出時間をクリアし(S56)、空焚き復帰判定回数をカウントする(S57)。空焚き復帰判定回数が所定値つまり空焚きからの復帰判定のやり直し回数の上限に達したかの判定を行い(S58)、上限に達していないうちは再度給水を行い(S59)、S51に戻る。上限に達した場合は、強制的に加熱を止め、調理をうち切り、初期モードあるいは異常内容を表示するモードとする(S60)。
【0046】
次に、蒸気発生を行っている状態から、蒸気を止めた場合の給水動作について説明する。蒸気を止め、蒸発皿加熱ヒータ37をOFFしても、蒸発皿加熱ヒータ37の残熱により、蒸発皿35内の水の量が少ないと蒸発皿35の温度が急激に上昇し、空焚き状態となる恐れが生じる。それを防ぐため、所定時間内に蒸発皿35の温度が急激に上昇した場合は、給水を行うようにする。これにより、空焚き状態を回避することできる。また所定時間が経過した場合はいかに蒸発皿35の温度があがっても、給水は行わない。これは蒸気を使用しないメニューを行い、ヒーター等の加熱手段により加熱室内が高温になる際に誤って蒸発皿35に給水がなされるのを防止するためである。この所定時間は固定の値でも、選択された調理メニューにより任意に設定できるものでもよい。
【0047】
給水部には着脱可能な水貯留タンク53と、前記水貯留タンク53の着脱状態を検出するためのタンク着脱スイッチ54を有す。蒸気を使用する調理が行なわれ、送水ポンプ55が駆動し、水が供給された後に、水貯留タンク53が使用者により抜かれると、タンク着脱スイッチ54により水貯留タンク53が抜かれたことを検出し、送水ポンプ55を所定時間駆動することにより、水貯留タンク53から蒸発皿35までを接続する管路57内に滞留する水を蒸発皿に水を排出するようにしている。これにより管路57内に水が残ることを防ぎ、管路57内を衛生的に保つことができる。
【0048】
このように、本実施形態の蒸気発生機能付き高周波加熱装置によれば、加熱室11の外部ではなく内部で蒸気を発生する構成にしているので、加熱室11内を清掃する場合と同様に、蒸気を発生する部分、つまり蒸発皿35の清掃を簡単に行うことができる。例えば、蒸気発生の過程では、水分中のカルシウムやマグネシウム、塩素化合物等が濃縮されて蒸発皿35の底部に沈殿固着することがあるが、蒸発皿35の表面に付着したものを布等で拭き取るだけできれいに払拭することができる。また、蒸発皿35に水を供給する送水ポンプは調理終了前に動作を終了させるので、調理終了後に水が残ることが無く、また、仮に調理終了後に水が残っていた場合は、蒸発皿加熱ヒータの残熱により蒸発皿の残水が蒸発することで、拭き取りも簡単で加熱室11の内部を常に衛生的な環境に保つことが容易となる。
【0049】
さらに、この高周波加熱装置では、蒸発皿加熱ヒータ37で蒸発皿35を加熱することにより蒸気を発生させているので、簡単な構造で効率良く蒸気を供給することができる。更に、加熱によりある程度高い温度の蒸気が発生するので、単に加湿するだけの調理、あるいは高周波加熱と併用して乾燥を防止しつつ加熱する調理も可能である。
【0050】
また、温度検出部の温度情報をもとに給水部の送水ポンプで水の送水量を調節し、食品に応じた最適な蒸気量を発生制御することができると共に、水の供給不足による蒸気発生部の空焚きや、水の供給過多による蒸気発生部からの水のあふれを防ぎ安全性を高めることができる。
【0051】
また、蒸気を用いた加熱を停止した後の所定時間の間に、温度検出部の温度の上昇があり、所定の温度に到達してしまった場合に給水を行うことにより蒸気発生部の空焚きを防ぎ安全性を高めることができる。
【0052】
また、加熱方法としては、高周波加熱と蒸気加熱の双方を同時に行ったり、いずれかを個別に行ったり、双方を所定の順番で行ったりすることが自由にできるため、食品の種類や冷凍品か冷蔵品かの区別等に応じて、適切な加熱方法を任意に選択することができる。特に、高周波加熱と蒸気加熱を併用した場合には、被加熱物の温度上昇速度を速めることができるので、効率の良い調理が可能となる。
【0053】
【発明の効果】
以下のように、発明によれば、蒸気発生部の温度と水の供給を制御することで食品に最適な蒸気量を発生させ、空焚きなどの異常を未然に防ぐ安全性を高めることができる。
【図面の簡単な説明】
【図1】 本発明の実施形態における蒸気発生機能付き高周波加熱装置の扉を開けた状態を示す正面図
【図2】 図1の蒸気発生機能付き高周波加熱装置に用いられる蒸気発生部の蒸発皿を示す斜視図
【図3】 蒸気発生部の蒸発皿加熱ヒータと反射板を示す斜視図
【図4】 同装置の蒸気発生部の断面図
【図5】 本発明の蒸気発生機能付き高周波加熱装置の要部を示す側面図
【図6】 取り外し可能な水貯留タンクを示す説明図
【図7】 蒸気発生機能付き高周波加熱装置を制御するための制御系のブロック図
【図8】 蒸気発生機能付き高周波加熱装置の基本的な動作を説明するフローチャート
【図9】 蒸気発生機能付き高周波加熱装置の動作説明図
【図10】 蒸発皿の温度に応じて蒸発皿加熱ヒータならびに給水部を制御する場合の基本的な手順を示すフローチャート
【図11】 蒸気加熱開始時における蒸発皿に水を供給するか否かの判定を行う基本的な手順を示すフローチャート
【図12】 蒸発皿の温度に応じて蒸発皿が空焚き状態であるか否かの判定を行う基本的な手順を示すフローチャート
【図13】 蒸発皿の温度に応じて蒸発皿に水を供給するか否かの判定を行う基本的な手順を示すフローチャート
【図14】 空焚き状態から復帰するための条件判定を行う基本的な手順を示すフローチャート
【符号の説明】
11 加熱室
13 マグネトロン(高周波発生部)
15 蒸気発生部
20 温度検出部(温度検出手段)
35 蒸発皿
37 蒸発皿加熱ヒータ
39 反射板
51 給水部
55 送水ポンプ
501 制御部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-frequency heating apparatus with a steam generation function that heat-treats an object to be heated by combining high-frequency heating and steam heating.
[0002]
[Prior art]
Conventionally, this type of cooking device has a heat generating element that vaporizes water and further heats it, a water supply means that supplies water to the steam generating means, and a temperature detecting means that detects the temperature of the generated steam. The amount of water supply and heat generation are controlled so that the temperature of the generated steam becomes the predetermined temperature, and an appropriate steam temperature and amount of steam can be supplied. You can set the cooking conditions with confidence. Moreover, since the steam temperature is directly detected, abnormal heating or the like can be prevented (see, for example, Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-339401 (page 3, FIG. 1)
[0004]
[Problems to be solved by the invention]
However, according to the configuration of Japanese Patent Laid-Open No. 10-339401, the temperature of the heating steam is measured, but the temperature of the steam generating part is not measured, and the air temperature is measured for measuring the ambient temperature. There is a problem that detection of a rapid temperature rise in the steam generation unit is delayed, which may cause thermal damage to the steam generation unit.
[0005]
The present invention has been made in consideration of the above circumstances, and by controlling the temperature of the steam generating section and the supply of water, the optimal amount of steam is generated in food, and safety such as preventing airing is prevented in advance. An object of the present invention is to provide a high-frequency heating device with a steam generation function that has improved the temperature.
[0006]
[Means for Solving the Problems]
To achieve the above object, a high-frequency heating apparatus with a steam generation function according to the present invention detects a temperature of a heating chamber that accommodates an object to be heated, a steam generation unit that generates steam in the heating chamber, and the steam generation unit. Temperature detection means, heater heating control means for controlling heating of the heater of the steam generation section, water supply means for supplying water to the steam generation section, and water supply for controlling water supply from the water supply means Control means, and controls heating control of the heater or water supply based on temperature information of the temperature detection means.
[0007]
As a result, necessary water is supplied from the water supply means based on the temperature information of the temperature detection means disposed in the vicinity of the evaporating dish. If new water is not supplied, the operation of the heater is stopped to prevent emptying. At the same time, during cooking, the heater can be controlled to adjust the amount of generated steam, and cooking can be performed with the optimum amount of steam for food.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 is a heating chamber that accommodates an object to be heated, a steam generation unit that generates steam in the heating chamber, a temperature detection unit that detects a temperature of the steam generation unit, a control unit, A heater heating control means for controlling the heating of the heater of the steam generation section, a water supply means for supplying water to the steam generation section, and a water supply control means for controlling the supply of water, wherein the control section includes the temperature based on the temperature information of the detecting means, in the row cormorants high-frequency heating device at least one control of the water supply control and heater control, the water supply control means, the temperature of the temperature detection means from the time of water in the previous cooking And it is characterized by determining whether water supply is performed at the time of the start of this cooking from the information of elapsed time .
[0009]
This high-frequency heating apparatus with a steam generating function has means for controlling a heater for heating the evaporating dish, and supplies water to the evaporating dish based on the temperature information of the temperature detecting unit disposed in the vicinity of the evaporating dish. Adjust the water supply amount with the water supply pump of the water supply unit.If new water is not supplied, stop the operation of the heater, prevent emptying of the evaporating dish, and supply the heater and water during cooking. The amount of generated steam can be controlled and cooking can be performed with the optimum amount of steam for food.
[0010]
In addition, it has means for controlling a heater for heating the evaporating dish, water is supplied to the evaporating dish based on the temperature information of the temperature detecting unit disposed in the vicinity of the evaporating dish, and water is supplied by the water supply pump of the water supplying unit. The amount of water can be adjusted. Alternatively, it is possible to prevent emptying of the evaporating dish by controlling the heater based on the temperature information of the temperature detector. In this way, during cooking, the amount of generated steam can be adjusted by controlling the heater or the supply of water, and cooking can be performed with the optimum amount of steam for food.
[0011]
Also it has a means for controlling the heater for heating the vapor Hatsusara, the temperature information of the temperature detecting portion disposed to the evaporating dish near to the water supply of water based on the evaporating dish, with the water pump of the water supply unit The amount of water delivered can be adjusted. Alternatively, it is possible to prevent emptying of the evaporating dish by controlling the heater based on the temperature information of the temperature detector. In this way, during cooking, the amount of generated steam can be adjusted by controlling the heater or the supply of water, and cooking can be performed with the optimum amount of steam for food.
[0012]
Further, when the temperature of the steam generating unit reaches a predetermined temperature, water is supplied on the assumption that the water in the steam generating unit is low. Although the temperature of the steam generating unit decreases when water is supplied, the temperature does not decrease immediately after the water is supplied, and the temperature starts decreasing after the temperature has once increased. This phenomenon is generally referred to as overshoot. If there is a temperature drop, it can be determined that water has been reliably supplied. In consideration of the overshoot at this time, the determination whether or not to perform the next water supply is not performed until a predetermined time elapses. As a result, it is possible to avoid a situation in which the water is continuously supplied from the evaporating dish due to the high temperature of the steam generating section, the water overflows from the evaporating dish, and the water flows out into the cabinet. In other words, it is possible to prevent the overflow of water from the steam generation part due to excessive supply of water and to improve safety.
[0013]
Further, when the temperature of the steam generating unit reaches a predetermined temperature, water is supplied on the assumption that the water in the steam generating unit is low. Although the temperature of the steam generating unit decreases when water is supplied, the temperature does not decrease immediately after the water is supplied, and the temperature starts decreasing after the temperature has once increased. This phenomenon is generally referred to as overshoot. If there is a temperature drop, it can be determined that water has been reliably supplied. Whether or not to perform the next water supply, considering that there is a risk of excessive supply of water if the temperature of the steam generating unit is higher than the predetermined temperature and water is supplied with this temperature drop. This determination is not performed unless the temperature of the steam generating part has increased. As a result, it is possible to avoid a situation in which the water is continuously supplied from the evaporating dish due to the high temperature of the steam generating section, the water overflows from the evaporating dish, and the water flows out into the cabinet. In other words, it is possible to prevent the overflow of water from the steam generation part due to excessive supply of water and to improve safety.
[0014]
Further, in cooking for generating a gas steam adjusts the control to generate steam amount supplied of water by the heater and the water supply pump, and subjected to steam heating at optimum amount of steam to the food. Since steam is generated from the steam generation unit in the heating chamber, if water is supplied until the end of cooking, water remains in the evaporating dish of the steam generation unit after cooking is completed. If you start to cook using steam, immediately cancel the cooking operation, and immediately start cooking using steam, the water in the evaporating dish There is a risk of overflow of water from the steam generator due to excessive supply. Therefore, when cooking using steam is started, the elapsed time since the water supply operation during the previous cooking has passed for a predetermined time or more, and the temperature in the steam generating unit has reached the predetermined temperature within the elapsed time. If not, it was assumed that water remained, and water supply was not performed at the start of cooking. As a result, it is possible to avoid the risk of overflow of water from the steam generation part due to excessive supply of water, and safety can be improved.
[0015]
The high-frequency heating device with a steam generation function according to claim 2, a heating chamber that accommodates an object to be heated, a steam generation unit that generates steam in the heating chamber, and a temperature detection unit that detects a temperature of the steam generation unit A water supply means for supplying water to the steam generation section; and a water supply control means for controlling the supply of water in the water supply section, and the supply of the steam generation section within a predetermined time from when the supply of steam is stopped. Water is supplied when the temperature rises and exceeds a predetermined temperature.
[0016]
In the heating state in which steam is used, the heating control of the heater and the water supply of the water supply unit are controlled based on the temperature information of the temperature detection unit that detects the temperature of the steam generation unit.
[0017]
When the steam is stopped, if the amount of residual water in the evaporating dish in the steam generating part is small at that time, the residual water in the evaporating dish in the steam generating part immediately evaporates due to the residual heat of the heater, and the temperature of the steam generating part Since the water is supplied when the temperature rises and the temperature is higher than a predetermined temperature, it is possible to prevent a risk that the evaporating dish becomes empty.
[0018]
The high-frequency heating device with a steam generation function according to claim 3 is a failure when water is not supplied at all within a predetermined time even when cooking for generating steam is performed and heating control of the heater is performed. It is detected that there exists.
[0019]
In this high-frequency heating apparatus with a steam generating function, cooking is performed to generate steam, and heating control of the heater and water supply to the steam generating section are performed. When the heater breaks or the steam generating unit fails, the temperature of the steam generating unit does not rise, and water is not supplied to the evaporating dish at all, resulting in a risk of cooking failure. If the heater breaks or the steam generation unit fails and no water is supplied to the evaporating dish during the specified time, it is considered a failure and the cooking is discontinued to inform the user of the abnormality and promptly It can be connected to a response such as a repair.
[0020]
The high-frequency heating apparatus with a steam generation function according to claim 4 is a heating chamber that accommodates an object to be heated, a steam generation unit that generates steam in the heating chamber, and a temperature detection unit that detects a temperature of the steam generation unit. A control unit, heater heating control means for controlling the heating of the heater of the steam generation unit, water supply means for supplying water to the steam generation unit, and water supply control means for controlling the supply of water The control unit, in the high-frequency heating apparatus that performs at least one of the heater heating control and the water supply control based on the temperature information of the temperature detection means, the removable water storage tank and the attachment / detachment information of the water storage tank. A tank attachment / detachment detection means for detecting, and a water supply means for supplying water to the steam generating section; after the cooking using steam is performed and the water is supplied, the water storage tank To the user By detecting that the water has been pulled out, the water supply control means performs a water supply operation to forcibly discharge the water staying in the pipe connecting the water storage tank to the steam generation unit to the steam generation unit. It is characterized by that.
[0021]
In this high-frequency heating device with a steam generating function, steam is generated from the steam generating section in the heating chamber, so that water remains in the pipe connecting the water storage tank to the steam generating section and is left as it is. In the next cooking, not only will the old remaining water be used, but the water itself may rot if left untreated for a long time. When the water storage tank is pulled out by the user, the water supply operation is performed to discharge the water staying in the pipe connecting the water storage tank to the steam generation section to the steam generation section. It is possible to prevent water from remaining in the inside and keep the inside of the pipe line hygienic.
[0022]
【Example】
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of a high-frequency heating device with a steam generation function of the invention will be described in detail with reference to the drawings.
[0023]
FIG. 1 is a front view showing a state in which the open / close door of the high-frequency heating apparatus with a steam generating function of the first embodiment is opened, FIG. 2 is a perspective view showing an evaporating dish of a steam generating section used in this apparatus, and FIG. The perspective view which shows the evaporating dish heater of a generation | occurrence | production part and a reflecting plate, FIG. 4 is sectional drawing of a steam generation part.
[0024]
The high-frequency heating device 100 with a steam generating function is a heating cooker that supplies a high-frequency (microwave) and steam to the heating chamber 11 that houses the object to be heated to heat the object to be heated. A magnetron 13 as a high-frequency generator for generating a high frequency, a steam generator 15 for generating steam in the heating chamber 11, a circulation fan 17 for stirring and circulating the air in the heating chamber 11, and the heating chamber 11 And a convection heater 19 as a room air heater for heating the air circulating in the air.
[0025]
The heating chamber 11 is formed inside a box-shaped main body case 10 that is open to the front, and an open / close door 21 with a translucent window 21 a that opens and closes a heated object outlet of the heating chamber 11 is formed on the front surface of the main body case 10. Is provided. The open / close door 21 can be opened and closed in the vertical direction by the lower end being hinged to the lower edge of the main body case 10. A predetermined heat insulating space is secured between the wall surfaces of the heating chamber 11 and the main body case 10, and a heat insulating material is loaded in the space as necessary. In particular, the space behind the heating chamber 11 is a circulation fan chamber 25 that accommodates the circulation fan 17 and its drive motor 23 (see FIG. 9), and the rear wall of the heating chamber 11 is the heating chamber 11 and the circulation fan. A partition plate 27 that defines the chamber 25 is formed. The partition plate 27 has an intake vent hole 29 for sucking air from the heating chamber 11 side to the circulation fan chamber 25 side, and an air vent hole 31 for blowing air from the circulation fan chamber 25 side to the heating chamber 11 side. Different formation areas are provided. Each ventilation hole 29 and 31 is formed as many punch holes.
[0026]
The circulation fan 17 is arranged with the center of rotation positioned at the center of the rectangular partition plate 27, and a rectangular annular convection heater 19 is provided in the circulation fan chamber 25 so as to surround the circulation fan 17. It has been. The intake vent holes 29 formed in the partition plate 27 are disposed in front of the circulation fan 17, and the blower vent holes 31 are disposed along the rectangular annular convection heater 19. When the circulation fan 17 is turned, the air is set so as to flow from the front surface side of the circulation fan 17 to the rear surface side where the drive motor is located, so that the air in the heating chamber 11 passes through the intake vent holes 29 and The air is sucked into the central portion, passes through the convection heater 19 in the circulation fan chamber 25, and is sent out into the heating chamber 11 from the ventilation hole 31 for blowing air. Therefore, by this flow, the air in the heating chamber 11 is circulated through the circulation fan chamber 25 while being stirred.
[0027]
The magnetron 13 is disposed, for example, in a space below the heating chamber 11, and a stirrer blade 33 is provided at a position for receiving a high frequency generated from the magnetron. Then, by irradiating the rotating stirrer blade 33 with the high frequency from the magnetron 13, the high frequency is supplied into the heating chamber 11 while being stirred by the stirrer blade 33. Note that the magnetron 13 and the stirrer blade 33 are not limited to the bottom of the heating chamber 11, but can be provided on the upper surface or the side of the heating chamber 11.
[0028]
As shown in FIG. 2, the steam generating unit 15 is disposed below the evaporating dish 35 having a water reservoir 35 a that generates steam by heating and a protruding surface 36, and FIGS. 3 and 4. As shown in FIG. 2, the evaporating dish heating heater 37 for heating the evaporating dish 35 and a reflecting plate 39 having a substantially U-shaped cross section for reflecting the radiant heat of the heater toward the evaporating dish 35 are configured. The temperature detector 20 is disposed below the evaporating dish 35 and outside the reflector plate 39. The evaporating dish 35 is in the form of a metal elongated plate, and is a partition that defines the heating chamber 11 and the circulation fan chamber 25 in the longitudinal direction on the back bottom surface of the heating chamber 11 opposite to the heated object outlet. It is arranged in a direction along the plate 27. As the evaporating dish heater 37, a glass tube heater, a sheathed heater, a plate heater, or the like can be used.
[0029]
As shown in FIGS. 5 and 6, the water supply unit 51 includes a water storage tank 53, a water supply pump 55 that supplies a predetermined amount of water from the water storage tank 53 to the evaporating dish 35, and the water storage tank 53. And a conduit 57 connecting up to the evaporating dish 35.
[0030]
According to this structure, since water can be continuously supplied to the evaporating dish 35, a long-time continuous steam heating process can be performed. Note that the water storage tank 53 is a cartridge type as shown in FIG. 6 which is a partial perspective view of the side of the apparatus, so as to improve handling, so that the apparatus itself does not increase in size when incorporated in the apparatus. The body case 10 is compactly embedded in a side wall portion that is unlikely to be relatively hot. In addition, the heat treatment may be performed and disposed on the upper surface side of the apparatus, or may be disposed on the lower surface side. It is preferable that the cartridge-type water storage tank 53 can be taken out from the outside of the apparatus and can be easily replaced. This makes it possible to improve handling and facilitate cleaning of the tank. For example, as shown in the figure, the lid 59 may be opened / closed from the side surface of the apparatus and may be inserted / removed from / to the front side of the apparatus. The cartridge-type water storage tank 53 is formed of a transparent material such as resin or glass, and the wall on the main body case side of the tank storage portion is also formed of a transparent material, so that the remaining amount of water in the water storage tank 53 is outside. It is preferable to configure so that it can be visually confirmed.
[0031]
FIG. 7 is a block diagram of a control system for controlling the high-frequency heating device 100 with a steam generation function. This control system is configured around a control unit 501 including a microprocessor, for example. The control unit 501 mainly exchanges signals with the power supply unit 503, the storage unit 505, the input operation unit 507, the display panel 509, the temperature detection unit 20, the heating unit 511, the cooling fan 61, and the like. .
[0032]
The input operation unit 507 includes various operations such as a start switch 519 for instructing the start of heating, a changeover switch 521 for switching a heating method such as high-frequency heating and steam heating, and an automatic cooking switch 523 for starting a program prepared in advance. The switch is connected.
[0033]
The heating unit 511 is connected to a high frequency generator 13, a steam generator 15, a circulation fan 17, and the like. The high frequency generator 13 operates in cooperation with a radio wave agitator (stirler blade drive unit) 33. The steam generator 15 includes an evaporating dish heater 37, an indoor air heater 19 (convection heater), and the like. Is connected.
[0034]
Next, the basic operation of the above-described high-frequency heating apparatus 100 with a steam generation function will be described with reference to the flowchart of FIG.
[0035]
As an operation procedure, first, food to be heated is placed on a dish or the like and placed in the heating chamber 11, and the open / close door 21 is closed. Then, the heating method, the heating temperature, or the time is set by the input operation unit 507 (step 10; hereinafter abbreviated as S10), and the start switch is turned on (S11). Then, a heating process is automatically performed by the operation of the control unit 501 (S12).
[0036]
That is, the control unit 501 reads the set heating temperature / time, selects and executes the optimum cooking method based on the read temperature / time, and determines whether the set heating temperature / time has been reached (S13). When the set value is reached, each heating source is stopped and the heating process is terminated (S14). In S12, steam generation, room air heater, circulation fan rotation, and high frequency heating are performed individually or simultaneously.
[0037]
In the above operation, for example, an operation when the mode of “steam generation + circulation fan ON” is selected and executed will be described. When this mode is selected, as shown in the operation explanatory diagram of the high-frequency heating device 100 in FIG. 9, when the evaporating dish heater 37 is turned on, water in the evaporating dish 35 is heated and steam S is generated. . The steam S rising from the evaporating dish 35 is sucked into the central portion of the circulation fan 17 from the intake vent hole 29 provided in the substantially central portion of the partition plate 27, and passes through the circulation fan chamber 25 to surround the partition plate 27. It blows out toward the inside of the heating chamber 11 from the ventilation hole 31 for ventilation provided in the part. The blown-out steam is stirred in the heating chamber 11 and again sucked into the circulation fan chamber 25 side from the intake vent hole 29 at the substantially central portion of the partition plate 27. Thereby, a circulation path is formed in the heating chamber 11 and the circulation fan chamber 25. The generated steam is guided to the intake vent hole 29 without providing the ventilation vent hole 31 below the position where the circulation fan 17 is disposed on the partition plate 27. Then, as shown by the white arrow in the figure, the steam circulates through the heating chamber 11, so that the steam is blown onto the article to be heated M.
[0038]
Next, the control method of the high frequency heating apparatus with a steam generation function having the above-described configuration will be described in detail.
[0039]
FIG. 10 is a flowchart showing a basic procedure for controlling the evaporating dish heater 37 and the water feed pump 55 in accordance with the temperature of the evaporating dish 35. In this flowchart, the steam dish heater 37 is first energized. The energization is basically continuous energization, but when a load such as another heater is energized and exceeds the allowable power amount, it is de-energized. Depending on the menu, even if the allowable power amount is not exceeded, intermittent energization may be performed, continuous energization may be performed at the start, and a predetermined time may elapse thereafter, or the temperature of the temperature detection unit 20 of the steam generation unit may reach a predetermined temperature. Intermittent energization may be performed under various conditions such as Next, a water supply determination at start is performed (S21), and it is determined whether or not to supply water at start. The determination method will be described later with reference to FIG. When it is determined that the water supply is OK in the process of S21 at the start (S22), the water supply pump 55 is driven to supply water to the evaporating dish 35 (S23). The amount of water supply is determined by the driving time of the water supply pump 55, and the driving time can be arbitrarily set according to the selected cooking menu, and the amount of steam corresponding to the cooking menu can be controlled. If the temperature of the evaporating dish 35 is high, a large amount of water is supplied, and a large amount of steam is generated at one time. If the temperature of the evaporating dish 35 is low, a small amount of water is supplied, and the evaporating dish heater 37 Can be energized to heat the evaporating dish 35 and quickly generate steam. When water supply is performed, a water supply determination mask time is set (S24), and the next water supply is not performed until the water supply determination mask time elapses. Details will be described later with reference to the flowchart of FIG.
[0040]
Next, the temperature rise value of the temperature detection unit 20 of the steam generation unit or the air scoring determination based on the absolute temperature is performed (S25). This airing determination method will be described later in detail with reference to the flowchart of the airing determination method in FIG. When it is determined that it is not air-fired (S26), water supply determination based on the temperature of the temperature detection unit 20 of the steam generation unit is performed (S27). This water supply determination method will be described later in detail in the water supply determination flowchart of FIG. When it determines with water supply OK (S28), the water pump 55 is driven and water is supplied to the evaporating dish 35 (S29). The amount of water supply is determined by the driving time of the water supply pump 55, and the driving time can be arbitrarily set according to the selected cooking menu, and the amount of steam corresponding to the cooking menu can be controlled. When water supply is performed, a water supply determination mask time is set (S24), and the next water supply is not performed until the water supply determination mask time elapses. Details will be described later with reference to the water supply determination flowchart of FIG. Thereafter, the process returns to the state of (S25).
[0041]
If the determination in (S26) results in an emptying state, the evaporating dish heater 37 is turned off (S31), and a return determination from the emptying state is performed (S32). Details will be described later with reference to FIG. If it is determined that the return from the empty state is OK (S33), energization of the evaporating dish heater 37 is resumed (S34), the normal state is restored, and the determination returns to S25.
[0042]
Next, a method for determining whether or not to supply water at the start of S21 in FIG. 10 will be described with reference to FIG. First, when cooking that generates steam has been performed before and water has been supplied during the cooking, the elapsed time from the time when the water was supplied is measured. In addition, the temperature of the steam generator is also measured. At the start of cooking, if the elapsed time is equal to or longer than the predetermined time (S35), and the temperature of the temperature detection unit 20 of the steam generation unit is equal to or higher than the predetermined temperature during the elapsed time (S36). The water supply determination at the start of cooking is determined to be OK (S37). In other conditions, NG is assumed (S38), and water supply at the start of cooking is performed. It should be noted that the predetermined time and the predetermined temperature described here may be fixed values, and arbitrary time and temperature may be set by a menu at the time when steam is generated previously. In addition, when cooking using the first steam after the power is turned on, water supply at the start is performed unconditionally. The water supply at the start may not be unconditionally performed.
[0043]
Next, with reference to FIG. 12, a description will be given of the flying determination method in S25 in FIG. When the temperature of the temperature detection unit 20 of the steam generation unit is a predetermined temperature (S39), or when there is a temperature increase equal to or higher than the temperature increase comparison value within a predetermined time (S40), it is determined that the air is burned (S41). ). In other conditions, it is determined that the image is not burned (S42). Note that the predetermined temperature and predetermined time and temperature rise comparison value described here may be fixed values, or arbitrary time, comparative value, and temperature may be set by a menu for generating steam.
[0044]
Next, the water supply determination method of S27 in FIG. 10 will be described using FIG. When there is no water supply determination mask time, or when water has been supplied before and the water supply determination mask time has elapsed (S43), the temperature of the temperature detection unit 20 of the steam generation unit is equal to or higher than a predetermined temperature (S44), and steam is generated. When the temperature detection unit 20 of the part is rising (S45), it is determined that the water supply is OK (S46). Further, when the water supply is not performed for a predetermined period of time or longer (S47), it is considered that the evaporating dish heater 37 is disconnected or the steam generating unit 15 is broken, and the heating is forcibly performed. Is stopped (S49). In the case of other conditions, it determines with water supply NG (S48).
[0045]
Next, with reference to FIG. 14, the return determination method from the idle state in S32 in FIG. 10 will be described. When it is determined that the watering is performed, first, the water supply pump 55 is driven to supply water to the evaporating dish 35 (S50). The amount of water supply is determined by the driving time of the water supply pump 55, and the driving time may be a fixed value or can be arbitrarily set by the selected cooking menu. Next, the temperature of the temperature detection unit 20 of the steam generation unit at the time when it is determined that the air is burned is stored as a peak temperature, and then the peak temperature is updated when the temperature increases (S51). Then, it is determined whether or not the temperature of the temperature detection unit 20 of the steam generation unit has decreased by a predetermined temperature with respect to the peak temperature (S52). Remove the whisper. However, the recovery from the empty heating state is delayed until the temperature of the temperature detection unit 20 of the steam generation unit falls below the predetermined temperature used for the empty heating determination (S53). As a result, when the temperature of the temperature detection unit 20 of the steam generation unit is equal to or higher than the predetermined temperature used for the determination of airing after returning from the airing state, it is prevented from returning to the airing state immediately. After that, when the temperature of the temperature detection unit 20 of the steam generation unit falls below the predetermined temperature used for the airing determination, the recovery from the airing state is OK (S54). As a result of the determination in S52, if the airing state continues, when the airing return detection time has elapsed (S55), the airing return detection time is cleared (S56), and the number of airing return determinations is counted (S57). It is determined whether or not the number of determinations for returning to air reaches a predetermined value, that is, the upper limit of the number of redo determinations for returning from empty air (S58). If the upper limit is not reached, water is supplied again (S59), and the process returns to S51. When the upper limit is reached, heating is forcibly stopped, cooking is stopped, and an initial mode or a mode for displaying abnormal contents is set (S60).
[0046]
Next, the water supply operation when the steam is stopped from the state where the steam is generated will be described. Even if the steam is stopped and the evaporating dish heater 37 is turned off, if the amount of water in the evaporating dish 35 is small due to the residual heat of the evaporating dish heater 37, the temperature of the evaporating dish 35 rises rapidly, and the empty cooking state There is a fear of becoming. In order to prevent this, water supply is performed when the temperature of the evaporating dish 35 suddenly rises within a predetermined time. As a result, it is possible to avoid an empty state. Further, when a predetermined time has passed, no water is supplied no matter how the temperature of the evaporating dish 35 rises. This is because a menu that does not use steam is used to prevent water from being accidentally supplied to the evaporating dish 35 when a heating chamber such as a heater becomes hot. The predetermined time may be a fixed value or may be arbitrarily set by a selected cooking menu.
[0047]
The water supply section has a detachable water storage tank 53 and a tank attachment / detachment switch 54 for detecting the attachment / detachment state of the water storage tank 53. After cooking using steam, the water pump 55 is driven, and water is supplied, when the water storage tank 53 is removed by the user, the tank attachment / detachment switch 54 detects that the water storage tank 53 has been removed. Then, by driving the water pump 55 for a predetermined time, water staying in the pipe 57 connecting the water storage tank 53 to the evaporating dish 35 is discharged to the evaporating dish. Thereby, it is possible to prevent water from remaining in the pipe line 57 and to keep the inside of the pipe line 57 hygienic.
[0048]
Thus, according to the high frequency heating apparatus with a steam generation function of the present embodiment, since the steam is generated not inside the heating chamber 11 but inside, similarly to the case where the inside of the heating chamber 11 is cleaned, The portion that generates steam, that is, the evaporating dish 35 can be easily cleaned. For example, in the process of generating steam, calcium, magnesium, chlorine compounds, etc. in the water may be concentrated and settled and fixed to the bottom of the evaporating dish 35. However, the material adhering to the surface of the evaporating dish 35 is wiped off with a cloth or the like. Just wipe clean. Moreover, since the water supply pump which supplies water to the evaporating dish 35 finishes the operation before the cooking is finished, the water does not remain after the cooking is finished, and if the water remains after the cooking is finished, the evaporating dish is heated. Since the residual water of the evaporating dish evaporates due to the residual heat of the heater, wiping is easy and it becomes easy to always keep the inside of the heating chamber 11 in a sanitary environment.
[0049]
Furthermore, in this high-frequency heating device, steam is generated by heating the evaporating dish 35 with the evaporating dish heater 37, so that the steam can be efficiently supplied with a simple structure. Furthermore, since steam having a certain high temperature is generated by heating, cooking by simply humidifying or cooking by heating while preventing drying in combination with high-frequency heating is also possible.
[0050]
In addition, the water supply amount of the water supply unit can be adjusted based on the temperature information of the temperature detection unit to control the generation of the optimum amount of steam according to food, and steam generation due to insufficient water supply Water can be prevented from overflowing from the steam generation part due to excessive air supply and excessive supply of water, and safety can be improved.
[0051]
In addition, the temperature of the temperature detection unit rises during a predetermined time after heating using the steam is stopped, and when the predetermined temperature is reached, water supply is performed to empty the steam generation unit. Can be prevented and safety can be improved.
[0052]
In addition, as a heating method, both high-frequency heating and steam heating can be performed simultaneously, either one can be performed individually, or both can be performed in a predetermined order. An appropriate heating method can be arbitrarily selected depending on whether it is a refrigerated product or the like. In particular, when high-frequency heating and steam heating are used in combination, the temperature increase rate of the object to be heated can be increased, so that efficient cooking is possible.
[0053]
【The invention's effect】
As described below, according to the present invention, by controlling the temperature of the steam generation unit and the supply of water, it is possible to generate an optimal amount of steam for food and to improve safety to prevent abnormalities such as airing in advance. it can.
[Brief description of the drawings]
FIG. 1 is a front view showing a state where a door of a high-frequency heating apparatus with a steam generation function is opened in an embodiment of the present invention. FIG. 2 is an evaporating dish of a steam generation unit used in the high-frequency heating apparatus with a steam generation function of FIG. FIG. 3 is a perspective view showing an evaporating dish heater and a reflecting plate in a steam generating section. FIG. 4 is a sectional view of the steam generating section of the apparatus. FIG. 5 is a high-frequency heating apparatus with a steam generating function of the present invention. FIG. 6 is an explanatory view showing a removable water storage tank. FIG. 7 is a block diagram of a control system for controlling a high-frequency heating apparatus with a steam generation function. FIG. 8 is with a steam generation function. Flowchart explaining basic operation of high-frequency heating device [FIG. 9] Operation explanatory diagram of high-frequency heating device with steam generation function [FIG. 10] When controlling evaporating dish heater and water supply unit according to the temperature of evaporating dish Basic hands Flow chart showing the order [FIG. 11] Flow chart showing the basic procedure for determining whether or not to supply water to the evaporating dish at the start of steam heating. [FIG. 12] Empty evaporating dish according to the temperature of the evaporating dish. FIG. 13 is a flowchart showing a basic procedure for determining whether or not to supply water to the evaporating dish according to the temperature of the evaporating dish. FIG. 14 is a flowchart showing a basic procedure for determining a condition for returning from an empty state.
11 Heating chamber 13 Magnetron (High frequency generator)
15 Steam generation part 20 Temperature detection part (temperature detection means)
35 Evaporating dish 37 Evaporating dish heater 39 Reflector 51 Water supply unit 55 Water supply pump 501 Control unit

Claims (4)

被加熱物を収容する加熱室と、前記加熱室内で蒸気を発生する蒸気発生部と、前記蒸気発生部の温度を検出する温度検出手段と、制御部と、前記蒸気発生部の加熱ヒータの加熱制御をするヒータ加熱制御手段と、前記蒸気発生部に水を供給するための給水手段と、水の供給を制御する給水制御手段とを備え、制御部は前記温度検出手段の温度情報をもとにヒータ加熱制御給水制御の少なくとも一方の制御を行う高周波加熱装置において、前記給水制御手段は、以前の調理で給水した時点からの温度検出手段の温度および経過時間の情報により、今回の調理開始時に給水を行うか否かを判定することを特徴とした高周波加熱装置。 A heating chamber that accommodates an object to be heated, a steam generation unit that generates steam in the heating chamber, temperature detection means that detects the temperature of the steam generation unit, a control unit, and heating of the heater of the steam generation unit Heater heating control means for controlling, water supply means for supplying water to the steam generating section, and water supply control means for controlling the supply of water, the control section based on temperature information of the temperature detecting means to, in the row cormorants high-frequency heating device at least one control of the water supply control and heater control, the water supply control means, the temperature and the elapsed time information of the temperature detecting means from the time of water in the previous cooking time A high frequency heating apparatus characterized by determining whether or not to supply water at the start of cooking. 被加熱物を収容する加熱室と、前記加熱室内で蒸気を発生する蒸気発生部と、前記蒸気発生部の温度を検出する温度検出手段と、前記蒸気発生部へ水を供給するための給水手段と、水の供給を制御する給水制御手段とを備え、給水制御手段は蒸気発生を停止させた後、所定時間のうちに前記蒸気発生部の温度が上昇し、所定の温度以上になっている場合に給水をおこなうことを特徴とする高周波加熱装置。  A heating chamber that accommodates an object to be heated, a steam generation unit that generates steam in the heating chamber, a temperature detection unit that detects the temperature of the steam generation unit, and a water supply unit that supplies water to the steam generation unit And a water supply control means for controlling the supply of water. The water supply control means stops the steam generation, and then the temperature of the steam generating section rises within a predetermined time, and is equal to or higher than the predetermined temperature. A high-frequency heating device characterized by supplying water in some cases. 蒸気を発生する調理中において、ヒータ加熱制御手段と給水手段の制御状態をもとに所定時間一切給水が行われない場合に故障を検出することを特徴とする請求項1または2に記載の高周波加熱装置。  3. The high frequency according to claim 1, wherein a failure is detected when water is not supplied at all for a predetermined time based on the control state of the heater heating control means and the water supply means during cooking that generates steam. Heating device. 被加熱物を収容する加熱室と、前記加熱室内で蒸気を発生する蒸気発生部と、前記蒸気発生部の温度を検出する温度検出手段と、制御部と、前記蒸気発生部の加熱ヒータの加熱制御をするヒータ加熱制御手段と、前記蒸気発生部に水を供給するための給水手段と、水の供給を制御する給水制御手段とを備え、制御部は前記温度検出手段の温度情報をもとに、ヒータ加熱制御と給水制御の少なくとも一方の制御を行う高周波加熱装置において、着脱可能な水貯留タンクと、前記水貯留タンクの着脱情報を検出するためのタンク着脱検出手段とを備え、前記水貯留タンクが使用者により抜かれたことを前記タンク着脱手段からの検出信号により検出し、給水手段は給水動作をおこなうことで、給水手段から蒸気発生部までの経路に残った水を強制的に排出することを特徴とする高周波加熱装置。 A heating chamber that accommodates an object to be heated, a steam generation unit that generates steam in the heating chamber, temperature detection means that detects the temperature of the steam generation unit, a control unit, and heating of the heater of the steam generation unit Heater heating control means for controlling, water supply means for supplying water to the steam generating section, and water supply control means for controlling the supply of water, the control section based on temperature information of the temperature detecting means In addition, in the high-frequency heating apparatus that performs at least one of heater heating control and water supply control, a detachable water storage tank, and tank attachment / detachment detection means for detecting attachment / detachment information of the water storage tank, It is detected by the detection signal from the tank attaching / detaching means that the storage tank has been removed by the user, and the water supply means performs the water supply operation, thereby forcing the water remaining in the path from the water supply means to the steam generator. High-frequency heating apparatus characterized in that for discharging the.
JP2002340600A 2002-11-25 2002-11-25 High frequency heating device Expired - Fee Related JP3775379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002340600A JP3775379B2 (en) 2002-11-25 2002-11-25 High frequency heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002340600A JP3775379B2 (en) 2002-11-25 2002-11-25 High frequency heating device

Publications (2)

Publication Number Publication Date
JP2004176943A JP2004176943A (en) 2004-06-24
JP3775379B2 true JP3775379B2 (en) 2006-05-17

Family

ID=32703175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002340600A Expired - Fee Related JP3775379B2 (en) 2002-11-25 2002-11-25 High frequency heating device

Country Status (1)

Country Link
JP (1) JP3775379B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103557509A (en) * 2013-09-17 2014-02-05 邵道德 Intelligent steam generator

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4589825B2 (en) * 2005-06-23 2010-12-01 株式会社東芝 Cooking equipment
JP4633013B2 (en) * 2006-07-05 2011-02-16 シャープ株式会社 Cooker
KR101041078B1 (en) * 2006-09-27 2011-06-13 삼성전자주식회사 Cooking device and control method thereof
JP2010175133A (en) * 2009-01-29 2010-08-12 Sharp Corp Steam generator and heating cooker
JP5537485B2 (en) * 2011-04-06 2014-07-02 株式会社コロナ Mist generator
CN102721088A (en) * 2012-04-19 2012-10-10 美的集团有限公司 Magnetron for microwave oven
WO2016035592A1 (en) 2014-09-05 2016-03-10 シャープ株式会社 Steam generation device and heating cooker
CN105716063B (en) * 2016-04-15 2017-10-03 董道法 Electromagnetism steam boiler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103557509A (en) * 2013-09-17 2014-02-05 邵道德 Intelligent steam generator
CN103557509B (en) * 2013-09-17 2015-04-22 邵道德 Intelligent steam generator

Also Published As

Publication number Publication date
JP2004176943A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
JP3775352B2 (en) High frequency heating device
JP3827303B2 (en) High-frequency heating device with steam generation function
JP3731816B2 (en) High-frequency heating apparatus water supply control method and high-frequency heating apparatus
EP1825715B1 (en) Impingement/ convection/ microwave oven and method
US9516704B2 (en) Impingement microwave oven with steam assist
JP3775379B2 (en) High frequency heating device
EP1388713B1 (en) High frequency heating apparatus
JP3817186B2 (en) Control method of high-frequency heating device with steam generation function
JP3761176B2 (en) High-frequency heating device with steam generation function
JP2006275505A (en) High frequency heating device with steam generating function
JP2005061669A (en) Heating device and driving method thereof
JP3687856B2 (en) Heating device
JP2005055142A (en) High frequency heating device with steam generating function
JP2007155331A (en) Heating cooker
JP4146441B2 (en) Cooker
JP4059166B2 (en) High-frequency heating device with steam generation function
JP2006105592A (en) High-frequency heater with steam generation function, and control method therefor
EP4279816A1 (en) Cooker
JP2004044994A (en) High-frequency heating device with steam generating function
WO2006126421A1 (en) High frequency heating apparatus
JP3923025B2 (en) High-frequency heating device with steam generation function
JP2004044995A (en) High-frequency heating device with steam generating function
JP4790671B2 (en) Cooker
JP2002071140A (en) Cooking heater
JP2012127516A (en) Heating cooker

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees