JP3775304B2 - Magnesium diboride superconducting wire manufacturing method - Google Patents
Magnesium diboride superconducting wire manufacturing method Download PDFInfo
- Publication number
- JP3775304B2 JP3775304B2 JP2002017256A JP2002017256A JP3775304B2 JP 3775304 B2 JP3775304 B2 JP 3775304B2 JP 2002017256 A JP2002017256 A JP 2002017256A JP 2002017256 A JP2002017256 A JP 2002017256A JP 3775304 B2 JP3775304 B2 JP 3775304B2
- Authority
- JP
- Japan
- Prior art keywords
- wire
- superconducting wire
- mgb
- superconducting
- magnesium diboride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、高磁界を発生するための超電導マグネットや伝導冷却用マグネットに用いられる二ホウ化マグネシウム超電導線材に関する。
【0002】
【従来の技術】
MgB2(二ホウ化マグネシウム)は、Mg(マグネシウム)とB(ホウ素)の原子が交互に層状に積み重なった結晶構造を持ち、超伝導特性を有するものであることが知られている。このMgB2は、金属として電線などに加工して使いやすいものの中において優れた超伝導転移温度を有している。
【0003】
従来、MgB2を利用したMgB2多芯構造超電導線の作製方法として、例えば、次に記述する▲1▼と▲2▼の製法が試みられている。
【0004】
▲1▼MgB2超伝導粉末を出発原料とする方法では、反応済みのMgB2超電導粉末をTa、Ni、Fe等の金属パイプに充填し、その外側にCuパイプを被覆したのち線引き加工してシングル六角線とし、それを複数本パイプ内に組み込んで多芯構造としたのち伸線する。最後に、その多芯線を600〜900℃の範囲で熱処理し、固相反応によってMgB2粉末同士を結合させて超電導線とする。
【0005】
▲2▼MgとBの混合粉末を出発原料とする方法では、MgとBの微粒粉末をモル比が約Mg:B=1:2となるように混合した後、金属パイプに充填し、押出し加工した後、線引き加工してシングル六角線とし、それを複数本パイプ内に組み込んで多芯構造とする。この多芯構造のビレットを再度、押出し加工して伸線し、最後に熱処理してMgB2多芯構造超電導線を生成する。
【0006】
【発明が解決しようとする課題】
しかし、従来の方法においては、次に記述するような問題があった。上記▲1▼の方法では、出発原料であるMgB2粉末の硬度が高く(硬く)、延性が無いために加工性に難があり、加工できたとしても均一な断面の多芯線とすることが困難であった。また、MgB2の表面に酸化膜やMgB4等の異層(絶縁層あるいは常電導層)が存在していると最終熱処理しても粒界部分に異相が析出するため、個々の粒子は超電導状態を示しても、粒界部で電流が妨げられ、臨界電流が向上しない。
【0007】
上記の理由から、MgB2超電導体はバルク体の報告は多いが、多芯構造線材の場合、すでに実用化されているNb−TiやNb3Sn線材級の8T以上の磁界で高い臨界電流を示す性能は得られていない。
【0008】
上記▲2▼の方法では、Mgの結晶構造が六方晶で、室温で伸線や圧延等の塑性加工した際に結晶が変形し易い方位が限定されてしまう。また、CuやAlのように400℃以上でアニール(焼鈍)したのち、室温に戻しても軟化することはなく、室温で塑性加工することが困難である。その結果、ダイスを用いた引き抜き伸線加工中に断線が多発し、長尺線材の加工が非常に難しい。スウェージャー等を用いた加工により伸線は可能だが、断面が不均一になり易く、均一加工に難点があった。伸線加工を可能にするためには、粉末を充填する金属パイプの肉厚を厚くして、延性のある金属マトリックス部分の線材断面における占積率を高くして線材の引っ張り強度を高めることで室温における伸線加工が可能になるが、超電導部分の占積率が低下して最終的な多芯線のオーバーオール電流密度が低下してしまう。加えて、押出し比や伸線時の減面加工率を高くできないため、低加工度となり、伸線回数が増加して工程が増えてしまう。
【0009】
本発明は、かかる点に鑑みてなされたものであり、臨界電流密度の高い多芯構造の超電導線を作製することができる二ホウ化マグネシウム超電導線材の製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記課題を解決するために、本発明の二ホウ化マグネシウム超電導線材の製造方法は、MgとBの混合粉末、またはMg、Bおよび、その他の添加元素または化合物粉末を混合した混合粉末を、金属パイプ内に充填した構造のビレットを、250℃以上、450℃以下の温度に加熱した状態で静水圧押出し加工することを特徴としている。
【0011】
また、前記静水圧押出し加工により得られた線材を、250℃以上、450℃以下の温度に加熱した状態で伸線加工することを特徴としている。
【0012】
ここで、上記の静水圧押出し加工、または伸線加工時の予備加熱温度を250℃以上とする根拠を説明する。Mgのせん断応力は約250℃付近から急激に低下し、六方晶の全ての結晶方位のせん断応力が低下して加工性が向上する。そのため、250℃以上に加熱した状態で、押出しや引き抜き伸線加工することで加工性が格段に向上し、長尺線材の作製が可能になる。よって、250℃以上の状態で押出し、あるいはダイス引きによる伸線加工することが良好である。
【0013】
さらに、静水圧押出し加工、または伸線加工時の予備加熱温度を450℃以下とする根拠を説明する。上記の根拠に記述したように、250℃以上に加熱することで線材の加工性は向上するが、450℃以上に加熱した状態で押出し、または伸線加工すると、塑性変形に伴う加工熱に予備加熱の温度が加わり、加工時には600℃以上に線材温度が上昇してしまう。Mgの融点が650℃であることと、600℃付近からMgB2の生成が始まることを考えると、450℃以上で加工した場合、Mgの溶融により極端に軟化して被覆した金属との硬さに大きな差が発生して不均一変形や断線の可能性がある。また、加工するにつれて硬くて延性の無いMgB2が生成して行き、長尺加工性が急激に低下してしまう。これゆえ、加工時の予備加熱温度を450℃以下とするのが良い。
【0014】
また、本発明の二ホウ化マグネシウム超電導線材の製造方法においては、MgB2を生成する熱処理として、600℃以上、900℃以下の熱処理を施したことを特徴としている。
【0015】
このMgB2生成熱処理として、600℃以上、900℃以下の熱処理を行う根拠を説明する。600℃以下の熱処理温度ではMgB2の生成反応が進まず、臨界電流が向上しない。一方、900℃以上の熱処理を行うとMgB2結晶粒の粗大化促進され、粒界部分に超電導電流を阻害する非超電導物質(MgB4、MgやBの酸化物)の析出が顕著となり、粒界部分で臨界電流が極端に低下するため、マクロ的に見た線全体の臨界電流が低下してしまうからである。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
【0017】
(実施の形態)
図1は、本発明の実施の形態に係るMgB2超電導線材の構成を示す断面図である。
【0018】
この図1に示すMgB2超電導線材10は、MgとBの粉末を1:2のモル比で混合した混合粉末11を、Taパイプ12に充填してプレスし、この外側をCuパイプ13で被覆することによって形成したものである。
【0019】
このMgB2超電導線材10を、さらに、パイプの前端と後端に栓をして単芯ビレットとし、押出し加工後に引き抜き伸線加工して細線化し、最後に六角ダイスで六角断面のシングル線(単芯線)とする。この単芯線である六角線を複数束ねてCuパイプに粗み込んでパイプの前端と後端に栓をして多芯ビレットとし、押出し加工後に過熱状態で伸線加工して細線化し、最終熱処理をしてMgとBを反応させることによって、MgB2多芯超電導線を形成することができる。
【0020】
このようなMgB2超電導線材10および、MgB2超電導線材10を用いたMgB2多芯超電導線の実際の作製方法を、図2の作製工程の説明図を参照して説明する。
【0021】
まず、工程201において、平均粒子径0.1μmの非晶質(アモルファス)B粉末と、平均粒径20μmのMg粉末をモル比でMg:B=1:2となるように混合することによって、MgとBの混合粉末11を得た。
【0022】
工程202において、混合粉末11を内径21mm、外径24mmで、肉厚が1.5mmのTaパイプ13に充填し、これを工程203において、プレスして粉末充填率を62%とした。また、粉末を充填したTaパイプ13の外側に、内径24.1mm、外径28mmで、肉厚が約2mmのCuパイプ13を被覆した。これによって、MgB2超電導線材10を得た。このCuパイプ13の後端にFeプラグ、前端にCuプラグをセットして、外径28mmの単芯ビレットとした。
【0023】
工程204において、その単芯ビレットを320℃に予備過熱した状態で熱間静水圧押出し加工することにより外径10mmに押出しした。
【0024】
工程205において、その押出し材を円筒形のヒーター内にセットし、伸線直前まで300℃に加熱し、ダイスも250℃に予備加熱した状態で伸線加工した。
【0025】
工程206において、六角ダイスで伸線して対辺距離が2.65mmの六角線とした。工程207において、その六角線を矯正して直線状にしたのち、長さ150mmに切り分けした。この切り分けられた六角線の概略斜視図を符号21で示す。
【0026】
工程208において、六角線21を61本選択し、工程209において、その61本の六角線21を、内径25.5mm、外径28mmのCuパイプ22に組み込み(概略斜視図参照)、さらに工程210において、その組み込み後のパイプの後端にFeプラグ、前端にCuプラグをセットして、外径28mmの多芯ビレットを320℃で予備加熱して静水圧押出し加工により外径10mmの線材とし、その線材を、さらに工程211において、300℃に予備加熱して伸線加工した後、工程212において、その押出し材を線径1mmまで伸線加工したのち、最後に、工程213において、Ar雰囲気中で700℃×50時間のMgB2生成熱処理を行った。これによって、MgB2多芯超電導線を得た。これを以降、本実施の形態超電導線という。
【0027】
次に、この本実施の形態超電導線の特性の向上を検証するため、図3に示す従来のMgB2超電導線材30を用いてMgB2多芯超電導線を作製した。この作製方法は、上記本実施の形態超電導線作製方法と同じ混合粉末11を、図2に示した工程202で、内径16mm、外径22mmで、肉厚が3mmのTaパイプ12aに充填し、これを工程203で、プレスして粉末充填率を62%とした。さらに、粉末を充填したTaパイプ12aの外側に、内径22.1mm、外径28mmで、肉厚が約3mmのCuパイプ13aを被覆した。これによって、従来のMgB2超電導線材30を得た。このCuパイプ13aの後端にFeプラグ、前端にCuプラグをセットして、外径28mmの単芯ビレットとした。
【0028】
工程204aにおいて、その単芯ビレットを室温の状態で静水圧押出し加工することにより外径15mmに押出しした。
【0029】
工程205aにおいて、その押出し材を室温で引き抜き伸線加工し、工程206において、六角ダイスで伸線して対辺距離が2.65mmの六角線とし、工程207において、その六角線を矯正して直線状にしたのち、長さ150mmに切り分けした。工程208において、その切り分けられた六角線21を61本選択し、工程209において、その61本の六角線21を、内径25.5mm、外径28mmのCuパイプ22に組み込み、さらに工程210aにおいて、その組み込み後のパイプの後端にFeプラグ、前端にCuプラグをセットして、外径28mmの多芯ビレットを静水圧押出し加工により外径15mmの線材とし、その線材を、さらに工程211aにおいて、室温で伸線加工したのち、工程212において、その押出し材を線径1mmまで伸線加工したのち、最後に、工程213において、Ar雰囲気中で700℃×50時間のMgB2生成熱処理を行った。これによって、MgB2多芯超電導線を得た。これを以降、従来超電導線という。
【0030】
このような本実施の形態超電導線と従来超電導線の各々の液体ヘリウム中における線材全断面積あたりの臨界電流密度Jc(A/mm2)と外部磁界B(T)との特性(Jc−B特性)を、図4に示す。
【0031】
5TにおけるJcは、従来超電導線42の570A/mm2に対して、本実施の形態超電導線41が約2倍の1220A/mm2となった。本実施の形態超電導線41のJcが向上した理由は、線材断面におけるMgB2超電導フィラメントの占有率が従来超電導線の約1.7倍に向上したこと、および、加熱伸線により加工性が良好となり、フィラメントの不均一変形が減少して線材長さ方向に均一な超電導フィラメントが形成されたためである。本実施の形態超電導線41は、従来超電導線42に比較して全ての磁界領域で約2倍以上のJcを示した。
【0032】
従って、本実施の形態超電導線によれば、高い臨界電流密度を得ることができる。
【0033】
このような本実施の形態超電導線は、従来のNb−Ti線材やNb3Sn線材と同様の加工設備で、長尺線材の作製が可能である。
【0034】
また、本実施の形態超電導線を巻線することにより超電導マグネットを形成すれば、この超電導マグネットは高磁界を安定して発生可能となる。また、本実施の形態超電導線は、臨界温度が39Kと高いため、従来の金属系超電導マグネットを用いた伝導冷却式マグネット(約5Kまで冷却)に比較して、冷却温度を10K程度まで高くすることが可能となり、その結果、上記超電導マグネットを用いた冷凍機においては、その負荷を大幅に低減することが可能となる。
【0035】
つまり、本実施の形態超電導線を用いてマグネットを作製することで、高い臨界温度と極細多芯構造によりクエンチなしに安定に運転できる超電導マグネットを提供することができる。
【0036】
【発明の効果】
以上説明したように、本発明によれば、二ホウ化マグネシウム超電導線材を製造するに当たって、MgとBの混合粉末、またはMg、Bおよび、その他の添加元素または化合物粉末を混合した混合粉末を、金属パイプ内に充填した構造のビレットを、250℃以上、450℃以下の温度に加熱した状態で静水圧押出し加工する。また、前記静水圧押出し加工により得られた線材を、250℃以上、450℃以下の温度に加熱した状態で伸線加工する。これら加工では、長尺加工性が良いので、線材断面におけるMgB2超電導フィラメントの占有率が向上し、フィラメントの不均一変形が減少して線材長さ方向に均一な超電導フィラメントが形成され、これによって、高い臨界電流密度を得ることができる。従って、臨界電流密度の高い多芯構造の超電導線を作製することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係るMgB2超電導線材の構成を示す断面図である。
【図2】上記実施の形態に係るMgB2超電導線材および、MgB2超電導線材を用いたMgB2多芯超電導線の作製工程の説明図である。
【図3】従来のMgB2超電導線材の構成を示す断面図である。
【図4】本実施の形態および従来例双方のMgB2超電導線材を用いたMgB2多芯超電導線超電導線の液体ヘリウム中における臨界電流密度Jc(A/mm2)と外部磁界B(T)との特性(Jc−B特性)を示す図である。
【符号の説明】
10 本実施の形態のMgB2超電導線材
11 MgとBの混合粉末
12,12a Taパイプ
13,13a Cuパイプ
21 六角線
30 従来のMgB2超電導線材
41 本実施の形態の多芯構造超電導線のJc−B特性曲線
42 従来の多芯構造超電導線のJc−B特性曲線[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnesium diboride superconducting wire used for a superconducting magnet for generating a high magnetic field or a conductive cooling magnet.
[0002]
[Prior art]
MgB 2 (magnesium diboride) is known to have a superconducting property, having a crystal structure in which Mg (magnesium) and B (boron) atoms are alternately stacked in layers. This MgB 2 has an excellent superconducting transition temperature among those that are easy to use after being processed into metal or the like as a metal.
[0003]
Conventionally, as a method for manufacturing a MgB 2 multi-core structure superconducting wire using MgB 2, for example, now described ▲ 1 ▼ and ▲ 2 ▼ production methods have been attempted.
[0004]
(1) In the method using MgB 2 superconducting powder as a starting material, the reacted MgB 2 superconducting powder is filled in a metal pipe made of Ta, Ni, Fe, etc., and the outer side is coated with a Cu pipe and then drawn. A single hexagonal wire is assembled into a multi-core structure by drawing it into multiple pipes and then drawn. Finally, the multi-core wire is heat-treated in a range of 600 to 900 ° C., and MgB 2 powders are bonded to each other by a solid phase reaction to obtain a superconducting wire.
[0005]
(2) In the method using a mixed powder of Mg and B as a starting material, the fine powder of Mg and B is mixed so that the molar ratio is about Mg: B = 1: 2, and then filled into a metal pipe and extruded. After processing, a single hexagonal wire is drawn to form a multi-core structure by incorporating it into a plurality of pipes. This multi-core billet is again extruded and drawn, and finally heat treated to produce a MgB 2 multi-core superconducting wire.
[0006]
[Problems to be solved by the invention]
However, the conventional method has the following problems. In the method (1), the starting material MgB 2 powder has a high hardness (hard) and has no ductility, so that the workability is difficult. Even if it can be processed, a multi-core wire with a uniform cross section can be obtained. It was difficult. In addition, if a different layer (insulating layer or normal conductive layer) such as an oxide film or MgB 4 is present on the surface of MgB 2 , a different phase precipitates at the grain boundary even after the final heat treatment. Even if the state is shown, the current is hindered at the grain boundary part, and the critical current is not improved.
[0007]
For the above reasons, there are many reports of bulk bodies of MgB 2 superconductors, but in the case of multi-core structure wires, a high critical current is obtained with a magnetic field of 8 T or more of Nb—Ti and Nb 3 Sn wire grades already in practical use. The performance shown is not obtained.
[0008]
In the method (2), the crystal structure of Mg is hexagonal, and the orientation in which the crystal is easily deformed is limited when plastic processing such as wire drawing or rolling is performed at room temperature. Further, after annealing (annealing) at 400 ° C. or higher like Cu or Al, it does not soften even when returned to room temperature, and it is difficult to perform plastic working at room temperature. As a result, breakage frequently occurs during drawing and drawing using a die, and it is very difficult to process a long wire. Although wire drawing is possible by processing using a swager or the like, the cross section tends to be non-uniform, and there is a difficulty in uniform processing. In order to enable wire drawing, the thickness of the metal pipe filled with powder is increased, the space factor in the wire cross section of the ductile metal matrix is increased, and the tensile strength of the wire is increased. Although drawing at room temperature becomes possible, the space factor of the superconducting portion is lowered, and the overall current density of the final multi-core wire is lowered. In addition, since the extrusion ratio and the area reduction processing rate at the time of wire drawing cannot be increased, the degree of processing becomes low, the number of wire drawing increases, and the number of processes increases.
[0009]
This invention is made | formed in view of this point, and it aims at providing the manufacturing method of the magnesium diboride superconducting wire which can produce the superconducting wire of a multi-core structure with a high critical current density.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, a method for manufacturing a magnesium diboride superconducting wire according to the present invention comprises a mixed powder of Mg and B, or a mixed powder obtained by mixing Mg, B, and other additive elements or compound powder, The billet having a structure filled in the pipe is hydrostatically extruded while being heated to a temperature of 250 ° C. or higher and 450 ° C. or lower.
[0011]
In addition, the wire rod obtained by the hydrostatic extrusion is drawn at a temperature of 250 ° C. or higher and 450 ° C. or lower.
[0012]
Here, the grounds for setting the preheating temperature during the hydrostatic extrusion or wire drawing to 250 ° C. or higher will be described. The shear stress of Mg sharply decreases from about 250 ° C., and the shear stress of all crystal orientations of hexagonal crystals is reduced to improve workability. Therefore, workability is remarkably improved by extruding or drawing and drawing in a state heated to 250 ° C. or higher, and a long wire can be produced. Therefore, it is good to extrude in the state of 250 degreeC or more, or to perform the wire drawing process by die drawing.
[0013]
Furthermore, the grounds for setting the preheating temperature during isostatic pressing or wire drawing to 450 ° C. or less will be described. As described in the above-mentioned basis, the workability of the wire is improved by heating to 250 ° C. or higher. However, if extrusion or wire drawing is performed in a state of being heated to 450 ° C. or higher, the work heat accompanying plastic deformation is spared. The heating temperature is added, and the wire temperature rises to 600 ° C. or higher during processing. Considering that the melting point of Mg is 650 ° C. and that the formation of MgB 2 starts from around 600 ° C., when processed at 450 ° C. or higher, the hardness of the coated metal is extremely softened by melting Mg. There is a possibility that non-uniform deformation and disconnection occur due to a large difference between the two. In addition, hard and non-ductile MgB 2 is generated as it is processed, and the long workability is drastically reduced. Therefore, the preheating temperature during processing is preferably set to 450 ° C. or less.
[0014]
In the magnesium diboride method of manufacturing a superconducting wire of the present invention, as the heat treatment for generating the MgB 2, 600 ° C. or higher, and characterized in that subjected to the following heat treatment 900 ° C..
[0015]
The grounds for performing heat treatment at 600 ° C. or higher and 900 ° C. or lower as the MgB 2 generation heat treatment will be described. At a heat treatment temperature of 600 ° C. or lower, the MgB 2 production reaction does not proceed and the critical current does not improve. On the other hand, when heat treatment at 900 ° C. or higher is performed, the coarsening of the MgB 2 crystal grains is promoted, and the precipitation of non-superconducting substances (MgB 4 , Mg and B oxides) that obstruct the superconducting current becomes prominent at the grain boundaries. This is because the critical current is extremely reduced at the boundary portion, and the critical current of the entire line as viewed macroscopically is reduced.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0017]
(Embodiment)
FIG. 1 is a cross-sectional view showing a configuration of an MgB 2 superconducting wire according to an embodiment of the present invention.
[0018]
In the MgB 2 superconducting wire 10 shown in FIG. 1, a
[0019]
The MgB 2 superconducting wire 10 is further plugged at the front end and the rear end of the pipe to form a single-core billet, and after extrusion, drawn and drawn to form a thin wire, and finally a hexagonal cross-section single wire (single wire) Core wire). A bundle of a plurality of hexagonal wires, which are single core wires, are roughened into a Cu pipe and plugged at the front and rear ends of the pipe to form a multi-core billet. By reacting Mg and B, the MgB 2 multicore superconducting wire can be formed.
[0020]
Such MgB 2 superconducting wire 10 and the actual manufacturing method of MgB 2 multi-core superconducting wire using MgB 2 superconducting wire 10 will be described with reference to the explanatory diagram of a manufacturing process of FIG.
[0021]
First, in
[0022]
In
[0023]
In
[0024]
In
[0025]
In
[0026]
In
[0027]
Next, in order to verify the improvement of the characteristics of the superconducting wire of this embodiment, an MgB 2 multi-core superconducting wire was produced using the conventional MgB 2 superconducting wire 30 shown in FIG. In this production method, the same
[0028]
In Step 204a, the single-core billet was extruded to an outer diameter of 15 mm by performing an isostatic extrusion process at room temperature.
[0029]
In step 205a, the extruded material is drawn and drawn at room temperature. In
[0030]
The characteristics (Jc-B) of the critical current density Jc (A / mm 2 ) and the external magnetic field B (T) per total cross-sectional area of the wire in the liquid helium of each of the superconducting wire and the conventional superconducting wire in this embodiment. The characteristics are shown in FIG.
[0031]
The Jc at 5T was 1220 A / mm 2 , which was approximately twice that of the superconducting wire 41 of the present embodiment compared to 570 A / mm 2 of the
[0032]
Therefore, according to the present superconducting wire, a high critical current density can be obtained.
[0033]
Such a superconducting wire of the present embodiment can produce a long wire with the same processing equipment as a conventional Nb—Ti wire or Nb 3 Sn wire.
[0034]
In addition, if a superconducting magnet is formed by winding the superconducting wire of the present embodiment, this superconducting magnet can stably generate a high magnetic field. Further, since the superconducting wire of the present embodiment has a high critical temperature of 39K, the cooling temperature is increased to about 10K as compared with a conductive cooling magnet (cooling to about 5K) using a conventional metal superconducting magnet. As a result, in the refrigerator using the superconducting magnet, the load can be significantly reduced.
[0035]
That is, by producing a magnet using the superconducting wire of the present embodiment, it is possible to provide a superconducting magnet that can be stably operated without quenching due to a high critical temperature and an ultrafine multi-core structure.
[0036]
【The invention's effect】
As described above, according to the present invention, in manufacturing a magnesium diboride superconducting wire, a mixed powder of Mg and B, or a mixed powder obtained by mixing Mg, B and other additive element or compound powder, A billet having a structure filled in a metal pipe is subjected to isostatic extrusion while being heated to a temperature of 250 ° C. or higher and 450 ° C. or lower. The wire obtained by the hydrostatic extrusion is drawn at a temperature of 250 ° C. or higher and 450 ° C. or lower. In these processes, since the long workability is good, the occupation ratio of the MgB 2 superconducting filament in the cross section of the wire is improved, the non-uniform deformation of the filament is reduced, and a uniform superconducting filament is formed in the length direction of the wire. High critical current density can be obtained. Therefore, a multiconductor superconducting wire having a high critical current density can be produced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a configuration of an MgB 2 superconducting wire according to an embodiment of the present invention.
[Figure 2] MgB 2 superconducting wire according to the above embodiment and is an explanatory view of a manufacturing process of MgB 2 multi-core superconducting wire using MgB 2 superconducting wire.
FIG. 3 is a cross-sectional view showing a configuration of a conventional MgB 2 superconducting wire.
FIG. 4 shows a critical current density Jc (A / mm 2 ) and an external magnetic field B (T) in liquid helium of a MgB 2 multicore superconducting wire using both the present embodiment and the conventional MgB 2 superconducting wire. It is a figure which shows the characteristic (Jc-B characteristic).
[Explanation of symbols]
10 MgB 2 superconducting wire 11 of this embodiment Mg and B
Claims (4)
ことを特徴とする二ホウ化マグネシウム超電導線材の製造方法。A billet having a structure in which a mixed powder of mixed powder of Mg (magnesium) and B (boron) or mixed powder of Mg, B and other additive element or compound is filled in a metal pipe is 250 ° C or higher and 450 ° C. A method for producing a magnesium diboride superconducting wire, which is subjected to an isostatic extrusion while being heated to the following temperature.
ことを特徴とする請求項1記載の二ホウ化マグネシウム超電導線材の製造方法。The method for producing a magnesium diboride superconducting wire according to claim 1, wherein the wire obtained by the hydrostatic extrusion is drawn while being heated to a temperature of 250 ° C or higher and 450 ° C or lower.
ことを特徴とする請求項1、2または3記載の二ホウ化マグネシウム超電導線材の製造方法。4. The method for producing a magnesium diboride superconducting wire according to claim 1, wherein a heat treatment for generating MgB 2 (magnesium diboride) is performed at a temperature of 600 ° C. to 900 ° C. 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002017256A JP3775304B2 (en) | 2002-01-25 | 2002-01-25 | Magnesium diboride superconducting wire manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002017256A JP3775304B2 (en) | 2002-01-25 | 2002-01-25 | Magnesium diboride superconducting wire manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003217369A JP2003217369A (en) | 2003-07-31 |
JP3775304B2 true JP3775304B2 (en) | 2006-05-17 |
Family
ID=27653012
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002017256A Expired - Fee Related JP3775304B2 (en) | 2002-01-25 | 2002-01-25 | Magnesium diboride superconducting wire manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3775304B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4500901B2 (en) * | 2004-10-01 | 2010-07-14 | 独立行政法人物質・材料研究機構 | Composite sheathed magnesium diboride superconducting wire and its manufacturing method |
JP4456016B2 (en) * | 2005-02-04 | 2010-04-28 | 株式会社日立製作所 | Metal sheath magnesium diboride superconducting wire and method for manufacturing the same |
KR101044890B1 (en) * | 2009-02-18 | 2011-06-28 | 한국원자력연구원 | FABRICATION METHOD OF MgB2 SUPERCONDUCTING WIRE |
KR101006957B1 (en) | 2009-03-25 | 2011-01-12 | 한국기계연구원 | METHOD OF MgB2 FORMING COATING AND FABRICATING SUPERCONDUCTING WIRES USING THE SAME |
JP5889116B2 (en) * | 2012-06-11 | 2016-03-22 | 株式会社日立製作所 | MgB2 superconducting wire and method for producing the same |
CN103021562A (en) * | 2012-11-30 | 2013-04-03 | 江苏威纳德照明科技有限公司 | Preparation method of high-performance superconducting line |
CN104091651B (en) * | 2014-07-28 | 2016-05-11 | 西北有色金属研究院 | A kind of extrusion process is prepared multicore MgB2The method of superconducting wire |
WO2017179349A1 (en) * | 2016-04-14 | 2017-10-19 | 株式会社日立製作所 | Method for manufacturing mgb2 superconducting wire material, superconducting coil, and mri |
CN106784292A (en) * | 2016-12-29 | 2017-05-31 | 西部超导材料科技股份有限公司 | A kind of multicore MgB2The preparation method of superconducting wire |
CN108597675B (en) * | 2018-04-29 | 2019-06-11 | 西北有色金属研究院 | MgB is used in a kind of extruding2The preparation method of single compound bar |
-
2002
- 2002-01-25 JP JP2002017256A patent/JP3775304B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003217369A (en) | 2003-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3658844B2 (en) | Oxide superconducting wire, manufacturing method thereof, and oxide superconducting stranded wire and conductor using the same | |
JP3775304B2 (en) | Magnesium diboride superconducting wire manufacturing method | |
JP4058951B2 (en) | Magnesium diboride superconducting wire precursor and magnesium diboride superconducting wire | |
JP5045396B2 (en) | Manufacturing method of MgB2 superconducting wire | |
JP2685147B2 (en) | Superconducting wire and its manufacturing method | |
JPH07508849A (en) | High critical temperature superconductor and its manufacturing method | |
CN115312258A (en) | Improved preparation method of iron-based superconducting long wire | |
JP3534428B2 (en) | Manufacturing method of oxide high temperature superconducting wire | |
JPH06325634A (en) | Multi-core oxide superconducting wire | |
JP3724128B2 (en) | Oxide superconducting wire, manufacturing method thereof, and oxide superconducting stranded wire and conductor using the same | |
JPH0765646A (en) | Oxide superconducting cable and manufacture of strand | |
JP3520699B2 (en) | Oxide superconducting wire and manufacturing method thereof | |
JP5207304B2 (en) | Nb3Al superconducting wire manufacturing method | |
JPH09204828A (en) | Manufacture of nb3al superconducting wire | |
JP3428271B2 (en) | Nb3Al-based superconducting wire and method for producing the same | |
JP3736425B2 (en) | Manufacturing method of oxide superconducting multi-core wire | |
JP3884222B2 (en) | Manufacturing method of oxide superconducting composite multi-core wire | |
JP4699200B2 (en) | Precursor for producing Nb3Sn superconducting wire and method for producing the same | |
JP2562435B2 (en) | Superfine superconducting wire | |
JP2516642B2 (en) | Method for producing multi-core oxide superconducting wire | |
JPH09204829A (en) | Manufacture of nb3al superconducting wire | |
JP2808874B2 (en) | Nb (3) Manufacturing method of Al multi-core superconducting wire | |
JP2569413B2 (en) | Method for producing Bi-based oxide superconducting wire | |
JP5100459B2 (en) | NbTi superconducting wire and method for manufacturing the same | |
JPH0668729A (en) | Manufacture of multilayer ceramic superconducting conductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040220 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050909 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060131 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060213 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090303 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100303 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100303 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110303 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |