JP3774619B2 - Manufacturing method of thick steel plate with excellent secondary workability - Google Patents

Manufacturing method of thick steel plate with excellent secondary workability Download PDF

Info

Publication number
JP3774619B2
JP3774619B2 JP2000246876A JP2000246876A JP3774619B2 JP 3774619 B2 JP3774619 B2 JP 3774619B2 JP 2000246876 A JP2000246876 A JP 2000246876A JP 2000246876 A JP2000246876 A JP 2000246876A JP 3774619 B2 JP3774619 B2 JP 3774619B2
Authority
JP
Japan
Prior art keywords
steel plate
less
thick steel
rolling
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000246876A
Other languages
Japanese (ja)
Other versions
JP2002066603A (en
Inventor
利幸 白石
茂 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000246876A priority Critical patent/JP3774619B2/en
Publication of JP2002066603A publication Critical patent/JP2002066603A/en
Application granted granted Critical
Publication of JP3774619B2 publication Critical patent/JP3774619B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Control Of Metal Rolling (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、板厚5mm以上かつ板幅2.5m以上の曲げ加工やプレス加工や剪断加工などの二次加工性に優れた厚鋼板の製造方法に関する。
【0002】
【従来の技術】
近年、板厚5mm以上かつ板幅2.5m以上の厚鋼板と呼ばれる鋼材の品質要求は厳格化されつつ有り、この要求に応えるために様々な圧延および矯正技術が開発されている。一般に、上述した厚鋼板は、厚鋼板圧延設備すなわち厚板圧延工場において、仕上圧延を終了した圧延板が、冷却装置および/または冷却床を経て、せん断、熱処理、形状矯正、塗装等の精整工程に搬送され、ここで製品となって出荷されている。加工メーカではこの製品を用いて、所望の寸法に切断した後、曲げ加工やプレス加工等の二次加工を行い、溶接等を行って最終製品を製造している。
メーカで二次加工する際、同じ材料でもプレスや曲げ等の加工力が小さくかつ局部的に変形が集中せず均一に変形が進行する加工性の優れた製品や、所定の寸法に製品を切断した際のうねりや曲がりの無い製品が望まれている。
【0003】
これらの要求に対し、二次加工性に関しては厚鋼板の合金成分を変更することによって対応してきたが、合金成分添加や製造条件の変更によるコストアップを招くという問題があった。また、所定の寸法に製品を切断した際のうねりや曲がりに際しては、対応手段が無く、製品出荷時の平坦度を保証するために、レベラーやプレスによる矯正行うことによって対処してきた。
【0004】
【発明が解決しようとする課題】
本発明は、上述した従来技術の問題点に鑑みなされたもので、二次加工性に優れ、切断した際のうねりや曲がりのない厚鋼板の製造方法の提供を目的としている。
【0005】
【課題を解決するための手段】
上述のような課題を解決するため、
本発明の請求項1は、少なくとも仕上圧延機で圧延された圧延板の冷却装置を有し、該冷却装置の下流側に、少なくとも1台の軽圧下圧延機を配備した厚鋼板圧延設備により、板厚5mm以上かつ板幅2.5m以上の厚鋼板を製造するに際し、
軽圧下圧延を施す圧延機として、上下少なくともどちらか一方のロールアセンブリーが、軸方向に3分割以上に分割された分割バックアップロールによってワークロールを支持する機構を有し、各分割バックアップロールには独立した荷重検出装置と圧下装置とが配置された板圧延機を用い、
下記(3)式、(4)式及び(5)式により求められたq に基づいてバックアップロール変位を制御しながら、
前記軽圧下圧延機で圧延材を伸び率0.2%以上1.2%以下で冷間軽圧下圧延することによって製造することを特徴とする厚鋼板の製造方法であり、ここで、
=[K +K −1 ij (K jk −C −C ) (3)
=p (H、h、k、μ、σ 、σ 、Δε) (4)
Δσ =Δε・E (5)
:第i分割バックアップロールに作用する荷重
:その位置に対応する圧延材〜ワークロール間荷重
ij :ワークロール軸心たわみの変形マトリクス
ij :バックアップロール系の変形マトリクス
:ロールクラウンの型式で表現したワークロールプロフィル
:分割バックアップロールプロフィル
[K +K −1 ij :K ij +K ij の逆マトリクス
H:入側板厚
h:出側板厚
k:変形抵抗
μ:摩擦係数
σ :平均入側張力
σ :平均出側張力
Δε:伸びひずみ差
Δσ :残留応力−20≦Δσ ≦20[MPa]
E:材料のヤング率、であり、
本発明の請求項2は、前記厚鋼板が質量で、
C:0.08〜0.46%、
Si:0.15〜0.35%、
Mn:0.66〜1.67%
P:0.017%以下、
S:0.007%以下、
及び不可避的不純物元素を含み、残部Feからなることを特徴とする請求項1に記載の厚鋼板の製造方法であり、
本発明の請求項3は、前記厚鋼板が質量で、
Cu:0.14%以下、
Ni:0.08%以下、
Cr:0.25%以下、
V:0.23%以下、
Ti:0.08%以下の合金元素をいずれか又は2つ以上含むことを特徴とする請求項2に記載の厚鋼板の製造方法である。
【0006】
【発明の実施の形態】
以下、本発明を具体的に説明する。先ず、本発明の厚鋼板の製造方法を完成するに至った経緯に関して具体的に述べる。
図1は市販の厚鋼材を引っ張り試験した際の応力−伸び線図の一例である。図1に示したように、市販の厚鋼板には伸びが約0.05〜0.2%の間に上下降伏点が有る。このような材料を加工する場合には、上降伏点以上の応力を加える必要があるためにそれに相当するプレスの圧力または、曲げの荷重を加える必要がある。従って、このような二次加工をする加工装置にはより大きな能力が必要となり、設備費が増大する。また、荷重が高いと加工装置の工具の寿命が摩耗等によって短くなるという問題がある。さらに、上下降伏点が有ると二次加工次の変形中にリューダース帯が発生し、表面の性状を乱し微細な凹凸面を発生させ、また、変形が局所的に集中するという問題がある。このような変形が生じると、その部分の耐腐食性が悪化するという問題がある。これをさけるためには、加工時の歪み速度を上げる必要がある。即ち、高速加工が必要であり、それに伴う高応答の制御が必要となってくる。従って、これもまた設備費の増大や製造コストの増大を招いている。発明者らは様々な厚鋼板で曲げ試験および腐食試験を行い上記課題を解決するには、材料の上下降伏点を無くすことで対策が得られることを見出した。
【0007】
また、厚鋼板を加工する際、厚鋼板を予め所望の寸法に切断する場合がある。このような切断加工を行うのは板幅2.5m以上の厚鋼板であり、この厚鋼板が加工する前に完全なフラットであっても切断した場合に、反りやキャンバーと呼ばれる曲がりが発生し、生産性を著しく低下させていることを見出した。これらの発見に基づいて、本発明がなされた。
【0008】
次に、本発明の他の特徴について以下に具体的に述べる。上下降伏点を無くす方法として薄板材の調質圧延の効果が公知である。この効果が厚鋼板でも有効であるかを確認するため、表1に示す化学成分を持つ板厚20mmの厚鋼板を伸び率2.0%までの軽圧下圧延して、圧延後のサンプルを切り出し引っ張り試験を行った。
【0009】
【表1】

Figure 0003774619
【0010】
上下降伏点は伸び率0.2%以上の圧下を加えることによって解消することを確認した。次に、軽圧下後の圧延方向および板幅方向の耐力の平均値を原板の圧延方向および板幅方向の耐力の平均値で除した値を耐力比と定義し、耐力比に及ぼす軽圧下の影響を調べた。その結果を図2に示す。図2より明らかなように軽圧下を加えることによって、耐力が原板よりも低減することが明らかになった。その効果は厚鋼板の種類によって異なるが伸び率が0.2%未満では耐力として原板とあまり変わらないことが判明した。このことから伸び率の下限は0.2%とした。また、図2より明らかなように。伸び率が大きくなると耐力は原板以上になる。耐力が原板よりも小さくなる範囲は厚鋼板の種類によって異なるが伸び率が約1.2%までは耐力が小さいことが明らかになった。なお、耐力の観点からは伸び率の好ましい値は図2より約0.5%程度であることが分かる。以上のことから伸び率の上限は1.2%とした。また、種々の検討を行った結果、実機では、製造コスト面を考慮すると、少なくとも仕上圧延機で圧延された圧延板の冷却装置を有し、該冷却装置の下流側に、少なくとも1台の軽圧下圧延機を配備した厚鋼板圧延製造設備において、上述の伸び率を与えるのが最も有利であることを突き止め、これを本発明の限定範囲とした。
【0011】
図3に圧延機の形状制御端であるワークロールベンダーを操作して端伸びから中伸び方向に変化させた際の形状変化挙動を示す。図3に示すように板厚が5mm未満の材料を圧延した場合、フラットな板形状が得られるベンダーの値は1点であり、その際圧延された材料を切断しても反りや曲がりが発生しないことを確認した。これに対し、板厚が5mm以上の材料を圧延した場合、フラットな板形状が得られるベンダーの値は複数存在し、その際圧延された材料を切断すると、反りや曲がりが発生したりしなかったりすることを確認した。以上のことから板厚5mm以上の厚鋼板では形状不感帯が存在し、見掛け上フラットな材料でも切断すると反りや曲がりが発生する、潜在的な平坦度不良製品があり得ることが判明した。また、幅方向に複数の歪みゲージを材料の表裏目に張り付け切断し、切断しても反りや曲がりが発生しない残留応力分布差を明らかにした結果、切断しても反りや曲がりが発生しない板幅方向の残留応力分布差は±20MPa以下で有ることが明らかになった。この知見をもとに本発明がなされた。
【0012】
上述の板幅方向の残留応力差が±20MPa以下である板厚5mm以上の厚鋼板は、圧延機の後の圧延材の板形状を目視やセンサーをもってしても、形状不感帯のために製造することは困難である。これを実現するためには圧延機自体が圧延時の板幅方向の残留応力分布を推定することの可能な圧延機が不可欠である。以上の理由から、該軽圧下圧延機として、上下少なくともどちらか一方のロールアセンブリーが、軸方向に3分割以上に分割された分割バックアップロールによってワークロールを支持する機構であり、各分割バックアップロールには独立した荷重検出装置と圧下装置とが配置された板圧延機を用いることが最良であることを見出した。この知見をもとに本発明がなされた。
【0013】
【実施例】
実施は図4に示す厚鋼板製造設備で行った。図4において、冷却装置2は、仕上圧延機1の下流側に位置し、圧延方向を3で示している。冷却装置2の下流側に、軽圧下圧延機4が配備されている。軽圧下圧延機4の前後にピンチロール5および6が配備されており、軽圧下圧延機4の後ろには幅方向板厚測定装置7が設置されている。
【0014】
本発明の実施例では仕上圧延機1は、一対のワークロールを一対のバックアップロールで支持する機構の4段圧延機を用いた。冷却装置2では、仕上圧延機1の下流側に位置し、圧延が終了した後の厚鋼板を所定の温度まで冷却する。冷却装置2は、水を冷媒として使用する設備を用いた。仕上圧延機1と冷却装置2との間には、図示はしていないがローラレベラー等の装置が配備されている。冷却装置2の下流側には、軽圧下圧延機4が配備されている。この軽圧下圧延機4の詳細を図5に示す。
【0015】
この軽圧下圧延機4は、電動モータによるパスライン調整機8(ロール交換した際のロール径の変化に対応してパスラインを調整する装置)および油圧圧下を用いた主圧下装置9(圧下位置は油圧シリンダーの位置を検出することによって測定)で上下する上下のインナーハウジング内に、図5(b)に示すように、軸方向に15分割した直径750mm、胴長300mmの分割バックアップロール10、11によって直径300mm、胴長4500mmの上下のワークロール12を支持する機構を有しており、各々の分割バックアップロール10a〜10g、11a〜11hには、それぞれ独立に荷重検出装置と圧下機構および位置検出機構を備えている。図示はしていないが上下のワークロールは駆動モータによって圧延に必要なトルクを伝達されている。さらに、インナーハウジング内にワークロールチョックが設けられている。板厚測定装置7としてγ線による非接触板厚計が軽圧下知能圧延機から8m下流に設置されている。
【0016】
厚鋼板の板幅方向の残留応力分布差を±20MPa以下にする具体的な方法に関しては、例えば発明者らが既に出願している特開平6−262228号公報に公示されている方法を用いた。
すなわち、第i分割バックアップロールに作用する荷重をq、その位置に対応する圧延材〜ワークロール間荷重をpとし、ワークロール軸心たわみの変形マトリクスをK ij、バックアップロール系の変形マトリクスをK ij、ロールクラウンの型式で表現したワークロールプロフィルをC 、分割バックアップロールプロフィルをC 、上ワークロール軸心たわみをy とすると、分割バックアップロールとワークロールの適合条件より、式(1)が得られる。
=K ij+C +C (1)
【0017】
なお、本明細書の数式では、同添字の繰り返しがある場合にはアインシュタインの総和規約を用いて表現する。また、K ijは第j分割バックアップロールに単位荷重が負荷された時の第i分割バックアップロールの変位を表す影響係数マトリクスであるが、ここでは、ハウジングの変形およびワークロール〜分割バックアップロールの接触による両ロールの偏平変形を含めた変形マトリクスを表す。K ij、K ij、y はすべてミルセンターからの相対位置のみを抽出する。
【0018】
一方、上ワークロールたわみは、変形マトリクスK ijおよび圧延材〜ワークロール間に作用する圧延荷重分布pを用いて、式(2)で表される。
=K ij(p−q) (2)
式(1)、式(2)よりy を消去し、整理すると式(3)が得られる。
=[K+K−1 ij(K jk−C −Cj) (3)
上式の右辺で、[K+K−1 ijはK ij ij の逆マトリクスである。
【0019】
ところで、圧延荷重pは、一般に、入側板厚H、出側板厚h、変形抵抗k、摩擦係数μ、平均入側張力σ、平均出側張力σ、板形状を表現する伸びひずみ差Δεの関数であり、式(4)で与えられる。
=p(H、h、k、μ、σ、σ、Δε) (4)
ここで、ロールバイト中の、μは板幅方向にほとんど一定であり計算および実験によって求めることができ、入側板厚Hと出側板厚hと平均入側張力σと平均出側張力σは所望とする圧延条件を入力することによって与えられる。
残留応力Δσと伸びひずみ差Δεの関係は材料のヤング率Eを用いると式(5)で与えられる。
Δσ=Δε・E (5)
【0020】
従って、式(5)より、目標とする伸びひずみ差Δεを求め、この値を式(4)に代入すれば、所望の残留応力差が得られるための圧延荷重pが求められる。
この圧延荷重pを式(3)に代入することによって、所望の形状が得られるための各分割バックアップロールの荷重qが求められる。従って、各分割バックアップロールの荷重がqと一致するように各分割バックアップロールの荷重を見ながら各分割バックアップロールの変位を調整した。
【0021】
圧延材として、材質は表1のAと同じもので、板厚40mm、板幅4000mm、長さ60mの厚鋼板(耐力約450MPa)を用いた。板形状は見掛け上フラットであった。この材料を伸び率0.5%で、残留応力分布差として±5MPa目標で圧延した。残留応力分布の評価方法として圧延前後の材料を2mに切断し切断前後の曲がりやうねりを調べた。また、耐力に関しては圧延前後の板から引っ張り試験片を作成し、引っ張り試験を行い比較した。圧延前後の材料で均一変形に関しては3点曲げを行い、リューダース帯の発生や表面の性状を調べた。また、加工性に関しては3点曲げを行う際の荷重で評価した。結果を表2に示す。表中で従来技術は圧延前の材料の特性を表す。表2から明らかなように本発明によって、曲げ加工やプレス加工や剪断加工などの二次加工性に優れた厚鋼板が得られた。
【0022】
【表2】
Figure 0003774619
【0023】
【発明の効果】
本発明の製造方法によって得られる厚鋼板を用いることにより、曲げ加工やプレス加工時の加工力や摩耗およびその製造設備コストを低減でき、剪断加工などを行っても曲がりやうねりの発生しないため、矯正や仕上げ加工を省略し、製造コストを低減できる。また、本発明の製造方法によれば、上記した二次加工性の優れた厚鋼板を確実に得ることができることから、その工業上の寄与するところ大である。
【図面の簡単な説明】
【図1】 市販の厚鋼材を引っ張り試験した際の応力−伸び線図の一例である。
【図2】 耐力比に及ぼす軽圧下の影響を示す図である。
【図3】 ワークロールベンダーを操作して端伸びから中伸び方向に変化させた際の形状変化挙動を示す一例である。
【図4】 本発明の実施例に用いた厚鋼板製造設備の概略を示す図である。
【図5】 (a)は本発明の実施例に用いた軽圧下圧延機の概略を示す図、(b)は軽圧下圧延機における分割バックアップロールの具体例を示す平面略図である。
【符号の説明】
1 仕上圧延機
2 冷却装置
3 圧延板進行方向
4 軽圧下圧延機
5 軽圧下圧延機前面ピンチロール
6 軽圧下圧延機後面ピンチロール
7 幅方向板厚測定装置
8 パスライン調整機
9 主圧下装置
10、11 バックアップロール
10a〜10g、11a〜11h 分割バックアップロール
12 ワークロール[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a thick steel plate excellent in secondary workability such as bending, pressing or shearing with a plate thickness of 5 mm or more and a plate width of 2.5 m or more.
[0002]
[Prior art]
In recent years, quality requirements for steel materials called thick steel plates with a thickness of 5 mm or more and a width of 2.5 m or more are becoming stricter, and various rolling and straightening techniques have been developed to meet this requirement. In general, the above-described thick steel plate is a steel plate rolling facility, that is, a rolled plate that has undergone finish rolling in a thick plate rolling mill, is subjected to a cooling device and / or a cooling bed, and is subjected to adjustments such as shearing, heat treatment, shape correction, and painting. It is transported to the process, where it is shipped as a product. A processing maker uses this product to cut it to a desired size, and then performs secondary processing such as bending or pressing, and then welding to manufacture a final product.
When performing secondary processing at the manufacturer, even with the same material, the processing force is small, such as pressing and bending, and deformation is not concentrated locally. Products that have no undulations or bends are desired.
[0003]
In response to these requirements, secondary workability has been dealt with by changing the alloy components of the thick steel plate, but there has been a problem of increasing costs due to the addition of alloy components and changes in manufacturing conditions. In addition, when the product is swelled or bent when it is cut into a predetermined dimension, there is no means to cope with it, and it has been dealt with by correcting with a leveler or a press in order to guarantee flatness at the time of product shipment.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a method for producing a thick steel plate that is excellent in secondary workability and has no undulation or bending when cut.
[0005]
[Means for Solving the Problems]
In order to solve the above problems,
Claim 1 of the present invention has a cooling device for a rolled sheet rolled at least by a finish rolling mill, and a steel plate rolling facility provided with at least one light rolling mill on the downstream side of the cooling device, When manufacturing a thick steel plate with a plate thickness of 5 mm or more and a plate width of 2.5 m or more,
As a rolling mill that performs light reduction rolling, at least one of the upper and lower roll assemblies has a mechanism for supporting a work roll by a divided backup roll divided into three or more in the axial direction. Using a plate rolling machine in which an independent load detection device and a reduction device are arranged,
While controlling the displacement of the backup roll based on q i obtained by the following equations (3), (4) and (5) ,
A method for producing a thick steel sheet, wherein the rolled material is produced by cold light rolling at an elongation of 0.2% or more and 1.2% or less with the light rolling mill, wherein:
q i = [K B + K W] -1 ij (K W jk p k -C W j -C B j) (3)
p i = p i (H, h, k, μ, σ b , σ f , Δε) (4)
Δσ i = Δε · E (5)
q i : Load acting on the i-th divided backup roll
p i : Load between rolled material and work roll corresponding to the position
K W ij : Deformation matrix of work roll axis deflection
K B ij : Deformation matrix of backup roll system
C W i: work roll profile that was expressed in the type of roll crown
C B i : Split backup roll profile
[K B + K W ] −1 ij : Inverse matrix of K W ij + K B ij
H: Thickness on the entry side
h: Outboard thickness
k: Deformation resistance
μ: Friction coefficient
σ b : average entry side tension
σ f : Average delivery tension
Δε: Elongation strain difference
Δσ i : Residual stress−20 ≦ Δσ i ≦ 20 [MPa]
E: Young's modulus of the material,
According to claim 2 of the present invention, the thick steel plate is mass,
C: 0.08 to 0.46%,
Si: 0.15-0.35%,
Mn: 0.66 to 1.67%
P: 0.017% or less,
S: 0.007% or less,
And the inevitable impurity element, comprising the balance Fe , The method for producing a thick steel plate according to claim 1 ,
According to a third aspect of the present invention, the thick steel plate is mass,
Cu: 0.14% or less,
Ni: 0.08% or less,
Cr: 0.25% or less,
V: 0.23% or less,
The method for producing a thick steel plate according to claim 2, wherein any one or more of Ti: 0.08% or less of an alloy element is included.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be specifically described below. First, a specific description will be given of how the thick steel plate manufacturing method of the present invention was completed.
FIG. 1 is an example of a stress-elongation diagram when a commercial thick steel material is subjected to a tensile test. As shown in FIG. 1, a commercially available thick steel plate has an upper and lower yield point between about 0.05 to 0.2% in elongation. When processing such a material, it is necessary to apply a stress higher than the upper yield point, and therefore it is necessary to apply a corresponding press pressure or bending load. Therefore, a processing apparatus that performs such secondary processing requires a larger capacity, and the equipment cost increases. Further, when the load is high, there is a problem that the tool life of the processing apparatus is shortened due to wear or the like. Furthermore, if there is an upper and lower yield point, there is a problem that a Luders band is generated during deformation following the secondary processing, the surface properties are disturbed and fine irregularities are generated, and deformation is concentrated locally. . When such deformation occurs, there is a problem that the corrosion resistance of the portion deteriorates. In order to avoid this, it is necessary to increase the strain rate during processing. In other words, high-speed machining is required, and high-response control associated therewith is required. Therefore, this also increases the equipment cost and the manufacturing cost. The inventors have found that in order to solve the above problems by performing a bending test and a corrosion test on various thick steel plates, a countermeasure can be obtained by eliminating the upper and lower yield points of the material.
[0007]
Moreover, when processing a thick steel plate, a thick steel plate may be previously cut | disconnected to a desired dimension. Such a cutting process is performed on a thick steel plate having a width of 2.5 m or more. When this thick steel plate is cut even if it is completely flat, warping or bending called camber occurs. And found that productivity is significantly reduced. Based on these findings, the onset Akira has been made.
[0008]
Next, other features of the present invention will be specifically described below. The effect of temper rolling of a thin sheet material is known as a method for eliminating the upper and lower yield points. In order to confirm whether this effect is effective even with a thick steel plate, a 20 mm thick steel plate having the chemical components shown in Table 1 is lightly rolled to an elongation of 2.0%, and a sample after rolling is cut out. A tensile test was performed.
[0009]
[Table 1]
Figure 0003774619
[0010]
It was confirmed that the upper and lower yield points were eliminated by applying a reduction with an elongation of 0.2% or more. Next, the value obtained by dividing the average value of the proof stress in the rolling direction and the sheet width direction after the light reduction by the average value of the proof stress in the rolling direction and the plate width direction of the original sheet is defined as the proof stress ratio. The effect was investigated. The result is shown in FIG. As is clear from FIG. 2, it was revealed that the proof stress is reduced as compared with the original plate by applying light reduction. The effect differs depending on the type of thick steel plate, but it has been found that when the elongation is less than 0.2%, the yield strength is not much different from the original plate. For this reason, the lower limit of elongation was set to 0.2%. As is clear from FIG. When the elongation increases, the proof stress becomes more than the original plate. The range in which the proof stress is smaller than that of the original plate differs depending on the type of the thick steel plate, but it has been clarified that the proof strength is small up to about 1.2% elongation. From the viewpoint of yield strength, it can be seen from FIG. 2 that a preferable value of elongation is about 0.5%. From the above, the upper limit of the elongation rate was set to 1.2%. In addition, as a result of various studies, the actual machine has a cooling device for at least the rolled sheet rolled by the finish rolling mill in consideration of the manufacturing cost, and at least one light machine is provided on the downstream side of the cooling device. In the thick steel plate rolling production facility provided with the rolling mill, it was determined that it is most advantageous to give the above-mentioned elongation rate, and this was defined as a limited range of the present invention.
[0011]
FIG. 3 shows the shape change behavior when the work roll bender, which is the shape control end of the rolling mill, is operated to change from the end extension to the middle extension direction. As shown in FIG. 3, when a material with a plate thickness of less than 5 mm is rolled, the value of the bender for obtaining a flat plate shape is one point, and even when the rolled material is cut, warping or bending occurs. Confirmed not to. On the other hand, when a material having a thickness of 5 mm or more is rolled, there are a plurality of values of the bender that can obtain a flat plate shape. When the rolled material is cut at that time, no warping or bending occurs. I confirmed that. From the above, it has been found that there is a potential inferior flatness product in which a shape dead zone exists in a thick steel plate having a thickness of 5 mm or more, and warping or bending occurs when cutting even an apparently flat material. In addition, a plurality of strain gauges in the width direction are attached to the front and back of the material and cut, and the residual stress distribution difference that does not cause warping or bending even if cut is clarified. It became clear that the residual stress distribution difference in the width direction was ± 20 MPa or less. The present invention was made based on this finding.
[0012]
The above-mentioned thick steel plate with a thickness of 5 mm or more whose residual stress difference in the plate width direction is ± 20 MPa or less is produced for the shape dead zone even if the plate shape of the rolled material after the rolling mill is visually or with a sensor. It is difficult. In order to realize this, a rolling mill capable of estimating the residual stress distribution in the sheet width direction during rolling is indispensable. For the above reasons, as the light rolling mill, at least one of the upper and lower roll assemblies is a mechanism for supporting a work roll by a divided backup roll divided into three or more in the axial direction, and each divided backup roll It has been found that it is best to use a plate rolling machine in which an independent load detection device and a reduction device are arranged. The present invention was made based on this finding.
[0013]
【Example】
The implementation was performed at the thick steel plate manufacturing facility shown in FIG. In FIG. 4, the cooling device 2 is located on the downstream side of the finish rolling mill 1, and the rolling direction is indicated by 3. A light reduction rolling mill 4 is disposed downstream of the cooling device 2. Pinch rolls 5 and 6 are arranged before and after the light rolling mill 4, and a width direction plate thickness measuring device 7 is installed behind the light rolling mill 4.
[0014]
In the embodiment of the present invention, the finishing mill 1 is a four-high rolling mill having a mechanism for supporting a pair of work rolls with a pair of backup rolls. The cooling device 2 is located downstream of the finishing mill 1 and cools the thick steel plate after the rolling is finished to a predetermined temperature. The cooling device 2 used equipment using water as a refrigerant. Although not shown, a device such as a roller leveler is disposed between the finishing mill 1 and the cooling device 2. On the downstream side of the cooling device 2, a light rolling mill 4 is provided. Details of the light rolling mill 4 are shown in FIG.
[0015]
This light rolling mill 4 includes a pass line adjuster 8 (an apparatus that adjusts a pass line in response to a change in roll diameter when a roll is replaced) by an electric motor, and a main reduction apparatus 9 (a reduction position) using hydraulic reduction. Is measured by detecting the position of the hydraulic cylinder), as shown in FIG. 5 (b), in the upper and lower inner housings, as shown in FIG. 5 (b), the divided backup roll 10 having a diameter of 750 mm and a barrel length of 300 mm, 11 has a mechanism for supporting upper and lower work rolls 12 having a diameter of 300 mm and a barrel length of 4500 mm. Each of the divided backup rolls 10a to 10g and 11a to 11h has a load detection device, a reduction mechanism, and a position independently. A detection mechanism is provided. Although not shown, the upper and lower work rolls are transmitted with torque necessary for rolling by a drive motor. Furthermore, a work roll chock is provided in the inner housing. A non-contact plate thickness gauge using γ rays is installed as a plate thickness measuring device 7 8 m downstream from the light rolling intelligent rolling mill.
[0016]
Regarding a specific method of setting the residual stress distribution difference in the plate width direction of the thick steel plate to ± 20 MPa or less, for example, a method published in Japanese Patent Laid-Open No. Hei 6-262228 already filed by the inventors was used. .
That is, the load of q i which acts on the i split backup rolls, a load-rolled material - work roll corresponding to the position and p i, deform the deformation matrix work roll axis deflection of K W ij, backup roll system Assuming that the matrix is K B ij , the work roll profile expressed in the form of roll crown is C W i , the divided backup roll profile is C B i , and the upper work roll axis deflection is y W i , the divided backup roll and work roll Equation (1) is obtained from the matching conditions.
y W i = K B ij q j + C W i + C B i (1)
[0017]
In addition, in the mathematical expression of this specification, when there is repetition of the subscript, it is expressed using Einstein's sum rules. K B ij is an influence coefficient matrix representing the displacement of the i-th divided backup roll when a unit load is applied to the j-th divided backup roll. Here, the deformation of the housing and the work roll to the divided backup roll It represents a deformation matrix including flat deformation of both rolls due to contact. K B ij , K W ij , and y W i all extract only the relative position from the mill center.
[0018]
On the other hand, the deflection upper work rolls, using the rolling force distribution p i acting between deformation matrix K W ij and the rolled material - work roll is represented by the formula (2).
y W i = K W ij ( p j -q j) (2)
Equation (1), erase the more y W i Equation (2), Equation (3) is obtained and arranging.
q i = [K B + K W] -1 ij (K W jk p k -C W j -C B j) (3)
In the right side of the above equation, [K B + K W ] −1 ij is an inverse matrix of K W ij + K B ij .
[0019]
Incidentally, the rolling load p i is generally thickness at entrance side H, delivery side thickness h, deformation resistance k, friction coefficient mu, the average entry side tension sigma b, the average exit side tension sigma f, elongation strain difference representing the shape of a flat plate It is a function of Δε and is given by equation (4).
p i = p i (H, h, k, μ, σ b , σ f , Δε) (4)
Here, k 1 and μ in the roll bite are almost constant in the plate width direction and can be obtained by calculation and experiment. The entrance side plate thickness H, the exit side plate thickness h, the average entrance side tension σ b, and the average exit side tension σ f is given by inputting desired rolling conditions.
The relationship between the residual stress Δσ i and the elongation strain difference Δε is given by equation (5) using the Young's modulus E of the material.
Δσ i = Δε · E (5)
[0020]
Therefore, the equation (5), determine the elongation strain difference Δε a target, by substituting this value into equation (4), rolling load p i for desired residual stress difference can be obtained is determined.
By substituting this rolling load p i in formula (3), the load q i of each divided backup roll for the desired shape is obtained is obtained. Therefore, the displacement of each divided backup roll was adjusted while observing the load of each divided backup roll so that the load of each divided backup roll coincided with q i .
[0021]
As the rolled material, the same material as A in Table 1 was used, and a thick steel plate (with a yield strength of about 450 MPa) having a plate thickness of 40 mm, a plate width of 4000 mm, and a length of 60 m was used. The plate shape was apparently flat. This material was rolled with an elongation of 0.5% and a residual stress distribution difference of ± 5 MPa. As a method for evaluating the residual stress distribution, the material before and after rolling was cut into 2 m, and the bending and waviness before and after cutting were examined. Moreover, regarding the proof stress, a tensile test piece was created from the plate before and after rolling, and a tensile test was performed for comparison. The material before and after rolling was subjected to three-point bending for uniform deformation, and the occurrence of Lueders band and the surface properties were examined. Further, the workability was evaluated by the load when performing the three-point bending. The results are shown in Table 2. In the table, the prior art represents the characteristics of the material before rolling. As is apparent from Table 2, the present invention yielded a thick steel plate excellent in secondary workability such as bending, pressing and shearing.
[0022]
[Table 2]
Figure 0003774619
[0023]
【The invention's effect】
By using the thick steel plate obtained by the production method of the present invention, it is possible to reduce the working force and wear at the time of bending and pressing and its production equipment cost, and even if shearing or the like is performed, bending and undulation do not occur. Correction and finishing can be omitted, and manufacturing costs can be reduced. Moreover, according to the manufacturing method of this invention, since the above-mentioned thick steel plate excellent in secondary workability can be obtained reliably, the industrial contribution is large.
[Brief description of the drawings]
FIG. 1 is an example of a stress-elongation diagram when a commercial thick steel material is subjected to a tensile test.
FIG. 2 is a diagram showing the influence of light pressure on the yield strength ratio.
FIG. 3 is an example showing a shape change behavior when the work roll bender is operated to change from an end extension to a middle extension direction.
FIG. 4 is a diagram showing an outline of a thick steel plate manufacturing facility used in an example of the present invention.
5A is a diagram showing an outline of a light rolling mill used in an embodiment of the present invention, and FIG. 5B is a schematic plan view showing a specific example of a split backup roll in the light rolling mill.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Finishing mill 2 Cooling device 3 Rolling plate advancing direction 4 Light rolling mill 5 Light rolling mill front pinch roll 6 Light rolling mill rear pinch roll 7 Width direction plate thickness measuring device 8 Pass line adjuster 9 Main rolling rolling device 10 11 Backup rolls 10a to 10g, 11a to 11h Divided backup rolls 12 Work rolls

Claims (3)

少なくとも仕上圧延機で圧延された圧延板の冷却装置を有し、該冷却装置の下流側に、少なくとも1台の軽圧下圧延機を配備した厚鋼板圧延設備により、板厚5mm以上かつ板幅2.5m以上の厚鋼板を製造するに際し
軽圧下圧延を施す圧延機として、上下少なくともどちらか一方のロールアセンブリーが、軸方向に3分割以上に分割された分割バックアップロールによってワークロールを支持する機構を有し、各分割バックアップロールには独立した荷重検出装置と圧下装置とが配置された板圧延機を用い、
下記(3)式、(4)式及び(5)式により求められたq に基づいてバックアップロール変位を制御しながら、
前記軽圧下圧延機で圧延材を伸び率0.2%以上1.2%以下で冷間軽圧下圧延することによって製造することを特徴とする厚鋼板の製造方法。
=[K +K −1 ij (K jk −C −C ) (3)
=p (H、h、k、μ、σ 、σ 、Δε) (4)
Δσ =Δε・E (5)
:第i分割バックアップロールに作用する荷重
:その位置に対応する圧延材〜ワークロール間荷重
ij :ワークロール軸心たわみの変形マトリクス
ij :バックアップロール系の変形マトリクス
:ロールクラウンの型式で表現したワークロールプロフィル
:分割バックアップロールプロフィル
[K +K −1 ij :K ij +K ij の逆マトリクス
H:入側板厚
h:出側板厚
k:変形抵抗
μ:摩擦係数
σ :平均入側張力
σ :平均出側張力
Δε:伸びひずみ差
Δσ :残留応力−20≦Δσ ≦20[MPa]
E:材料のヤング率
At least 5 mm in thickness and 2 mm in plate width by a steel plate rolling facility having a cooling device for at least a rolled plate rolled by a finish rolling mill and having at least one light rolling mill provided on the downstream side of the cooling device. When manufacturing thick steel plates of 5m or more,
As a rolling mill that performs light reduction rolling, at least one of the upper and lower roll assemblies has a mechanism for supporting a work roll by a divided backup roll divided into three or more in the axial direction. Using a plate rolling machine in which an independent load detection device and a reduction device are arranged,
While controlling the displacement of the backup roll based on q i obtained by the following equations (3), (4) and (5) ,
A method for producing a thick steel sheet, comprising producing a rolled material by cold light rolling at an elongation of 0.2% or more and 1.2% or less with the light rolling mill.
q i = [K B + K W] -1 ij (K W jk p k -C W j -C B j) (3)
p i = p i (H, h, k, μ, σ b , σ f , Δε) (4)
Δσ i = Δε · E (5)
q i : Load acting on the i-th divided backup roll
p i : Load between rolled material and work roll corresponding to the position
K W ij : Deformation matrix of work roll axis deflection
K B ij : Deformation matrix of backup roll system
C W i: work roll profile that was expressed in the type of roll crown
C B i : Split backup roll profile
[K B + K W ] −1 ij : Inverse matrix of K W ij + K B ij
H: Thickness on the entry side
h: Outboard thickness
k: Deformation resistance
μ: Friction coefficient
σ b : average entry side tension
σ f : Average delivery tension
Δε: Elongation strain difference
Δσ i : Residual stress−20 ≦ Δσ i ≦ 20 [MPa]
E: Young's modulus of material
前記厚鋼板が質量で、
C:0.08〜0.46%、
Si:0.15〜0.35%、
Mn:0.66〜1.67%
P:0.017%以下、
S:0.007%以下、
及び不可避的不純物元素を含み、残部Feからなることを特徴とする請求項1に記載の厚鋼板の製造方法。
The steel plate is mass,
C: 0.08 to 0.46%,
Si: 0.15-0.35%,
Mn: 0.66 to 1.67%
P: 0.017% or less,
S: 0.007% or less,
The method for producing a thick steel plate according to claim 1, further comprising an inevitable impurity element and the balance being Fe .
前記厚鋼板が質量で、The steel plate is mass,
Cu:0.14%以下、Cu: 0.14% or less,
Ni:0.08%以下、Ni: 0.08% or less,
Cr:0.25%以下、Cr: 0.25% or less,
V:0.23%以下、V: 0.23% or less,
Ti:0.08%以下の合金元素をいずれか又は2つ以上含むことを特徴とする請求項2に記載の厚鋼板の製造方法。The method for producing a thick steel plate according to claim 2, comprising any one or more of Ti: 0.08% or less of alloy elements.
JP2000246876A 2000-08-16 2000-08-16 Manufacturing method of thick steel plate with excellent secondary workability Expired - Fee Related JP3774619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000246876A JP3774619B2 (en) 2000-08-16 2000-08-16 Manufacturing method of thick steel plate with excellent secondary workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000246876A JP3774619B2 (en) 2000-08-16 2000-08-16 Manufacturing method of thick steel plate with excellent secondary workability

Publications (2)

Publication Number Publication Date
JP2002066603A JP2002066603A (en) 2002-03-05
JP3774619B2 true JP3774619B2 (en) 2006-05-17

Family

ID=18737092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000246876A Expired - Fee Related JP3774619B2 (en) 2000-08-16 2000-08-16 Manufacturing method of thick steel plate with excellent secondary workability

Country Status (1)

Country Link
JP (1) JP3774619B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4846242B2 (en) * 2005-01-25 2011-12-28 新日本製鐵株式会社 Bending method of thick steel plate with excellent heat bending characteristics
JP4648775B2 (en) * 2005-07-01 2011-03-09 新日本製鐵株式会社 Steel sheet straightening method
JP4660363B2 (en) * 2005-11-28 2011-03-30 新日本製鐵株式会社 Manufacturing method of thick steel plate with excellent toughness
JP4695537B2 (en) * 2006-03-31 2011-06-08 新日本製鐵株式会社 Manufacturing method of pressure vessel member with excellent workability
JP5621697B2 (en) * 2011-04-05 2014-11-12 新日鐵住金株式会社 Shape measuring method in hot rolling of thin steel plate and thick steel plate, and hot rolling method of thin steel plate and thick steel plate
KR102020386B1 (en) 2017-12-24 2019-09-10 주식회사 포스코 High manganese austenitic steel having high strength and method for manufacturing the same
CN109513752A (en) * 2018-11-02 2019-03-26 北京首钢股份有限公司 A method of controlling thin narrow specification mild steel tail portion middle wave
CN112371722A (en) * 2020-09-17 2021-02-19 邯郸一三高研科技有限公司 High-speed steel rolling method and device

Also Published As

Publication number Publication date
JP2002066603A (en) 2002-03-05

Similar Documents

Publication Publication Date Title
WO2010090352A1 (en) Titanium material for hot rolling and manufacturing method thereof
EP3560616B1 (en) Method for cooling steel sheet and method for manufacturing steel sheet
JP3774619B2 (en) Manufacturing method of thick steel plate with excellent secondary workability
JP4990747B2 (en) Temper rolling method
JP6922873B2 (en) Temperable rolling method, temper rolling equipment and steel sheet manufacturing method
JP3930847B2 (en) Thick plate rolling method
JP4986463B2 (en) Shape control method in cold rolling
JP3924276B2 (en) Straightening method for thin wide plate
JP4018572B2 (en) Manufacturing method of steel sheet with small variation in yield stress and residual stress
CN115335158B (en) Method, control system and production line for controlling strip flatness of rolled material
JP2019130550A (en) Rolling machine leveling setting method, rolling machine leveling setting device, and steel plate manufacturing method
JP2013180335A (en) Method of straightening steel sheet with roller leveler and roller leveler straightener
JP2002292427A (en) Setting method for setting depression position of correction roll for roller leveler
JP7103329B2 (en) Rolling mill control method and control device
JP7151513B2 (en) Roller straightening method
JP2008254026A (en) Method of manufacturing high tensile strength metal strip having excellent press formability
JP7067541B2 (en) Rolling mill control method and control device
JP2019072757A (en) Leveling setting method of rolling mill, leveling setting device of rolling mill and manufacturing method of steel plate
JP6070616B2 (en) Manufacturing method of hot-rolled steel sheet
JP6954196B2 (en) Roller straightening method and roller straightening equipment for the plate to be straightened
JP2993414B2 (en) Plate Profile Control Method in Hot Rolling
JP6874794B2 (en) Temper rolling method for hot-rolled steel sheet
JP3328566B2 (en) Method and apparatus for camber control of rolled material
JP4412442B2 (en) Correction method of metal plate by roller leveler
US20220118492A1 (en) Cold rolling mill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140224

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees