JP3773839B2 - Digital signal reception analyzer - Google Patents

Digital signal reception analyzer Download PDF

Info

Publication number
JP3773839B2
JP3773839B2 JP2001371871A JP2001371871A JP3773839B2 JP 3773839 B2 JP3773839 B2 JP 3773839B2 JP 2001371871 A JP2001371871 A JP 2001371871A JP 2001371871 A JP2001371871 A JP 2001371871A JP 3773839 B2 JP3773839 B2 JP 3773839B2
Authority
JP
Japan
Prior art keywords
transmission line
digital signal
frequency response
noise
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001371871A
Other languages
Japanese (ja)
Other versions
JP2003174429A (en
Inventor
俊二 中原
嘉高 安藤
浩平 神原
浩一郎 今村
啓之 濱住
一彦 澁谷
洋雄 阿良田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Broadcasting Corp filed Critical Japan Broadcasting Corp
Priority to JP2001371871A priority Critical patent/JP3773839B2/en
Publication of JP2003174429A publication Critical patent/JP2003174429A/en
Application granted granted Critical
Publication of JP3773839B2 publication Critical patent/JP3773839B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、受信信号の誤り率や伝送路の応答などによりデジタル信号への影響の解析を行うものであり、広く放送・通信・記録媒体への応用が可能のデジタル信号の受信解析装置に関する。
【0002】
【従来の技術】
従来のデジタル信号受信解析装置には、MER測定装置、誤り率測定装置および伝送路応答検出装置がある。
【0003】
図7は、従来のMER測定装置の構成図を示す。
【0004】
図7に示すように、このMER(Modulation Error Ratioの略で変調誤差比とも云われている)測定装置は、受信器71で復調したデータを復調コンスタレーション部72で位相図(コンスタレーション)上に再配置し、送信データの位相図上のマッピング点からの距離の誤差を雑音成分とみなし、マッピング点から位相図の原点までの距離を信号成分とする演算を行い、MER測定部73で受信信号の信号対雑音比(以下、CN比)を求めるものである。
【0005】
図8は、従来の誤り率測定装置の構成図を示す。
【0006】
図8に示すように、この誤り率測定装置は、PN発生部81で変調器82と復調器83とが共に既知の擬似ランダムバイナリー信号を発生させ、擬似ランダムバイナリー信号を変調データとする変調器82を伝送路80の前におき、伝送路80の後には復調器83をおいて誤り率測定部84で誤り率を測定するものである。
【0007】
図9は、OFDM信号受信における従来の伝送路応答検出装置の構成図を示す。
【0008】
図9に示すように、この伝送路応答検出装置は、伝送路90を伝送されたデジタル信号を受信部91で受信し、受信した信号をFFT部92でFFTし、伝送路応答推定部93でFFT部92の出力データから既知のパイロット信号を取り出し、伝送路90の応答を推定し、周波数応答演算部94で伝送路90の周波数応答の演算や、遅延プロファイルの演算部95でインパルス応答となる遅延プロファイルの演算を行うものである。
【0009】
【発明が解決しようとする課題】
通常、受信したデジタル信号は、マルチパスなど伝送路の応答により線形歪と、熱雑音などの付加雑音を受けている。デジタル信号を復調した場合、誤り率はこの両者の影響により劣化する。図7に示す従来のMER測定装置では、受信信号の総合的なCN比は分かるものの、伝送路の影響と付加雑音の影響を分離して測定することは不可能であった。
【0010】
また、受信したデジタル信号の誤り率を測定する場合には、図8に示す従来の誤り率測定装置のように、特別に誤り率を測定するために、受信側既知の擬似ランダムバイナリー信号などを送信側変調器の変調データとして入力し、受信側では復調データと送信側擬似ランダムバイナリー信号とを比較しビット誤り率を求めていた。
【0011】
また、図9に示す従来の伝送路応答検出装置では、受信したデジタル信号から伝送路の周波数応答や遅延プロファイルを求めることは可能であったが、求めた伝送路応答が受信したデジタル信号に対して等価的な雑音としてどの程度影響があるのか、また、ビット誤り率の劣化にどの程度影響があるのか知ることができなかった。
【0012】
本発明は、このような従来の問題を解決するためになされたもので、伝送路を伝送されたデジタル信号を受信し、伝送路応答と付加雑音を求め、伝送路応答による影響の程度と付加雑音による影響の程度を分離し、伝送路の影響による等化CN比と付加雑音によるCN比をそれぞれ求めるデジタル信号の受信解析装置を提供するものであり、さらに、伝送路の前の送信側の変調器に誤り率測定用の擬似ランダムバイナリー信号などを変調データとして入力することなく、容易に誤り率を測定するデジタル信号の受信解析装置を提供するものである。
【0013】
【課題を解決するための手段】
本発明のデジタル信号の受信解析装置は、デジタル信号を受信し解析する装置であって、受信した前記デジタル信号から伝送路の周波数応答を推定する手段と、擬似ランダムバイナリー信号を発生する手段と、前記擬似ランダムバイナリー信号を変調データとして変調する手段と、この変調されたデジタル信号に前記伝送路の周波数応答を付加する手段と、この周波数応答が付加されたデジタル信号に設定したCN比に応じた雑音を付加する手段と、この雑音を付加された信号を復調する手段と、復調された擬似ランダムバイナリー信号と前記発生した擬似ランダムバイナリー信号を比較して誤り率を測定する手段と、前記設定したCN比と測定した誤り率から伝送路の等価CN比および伝送路の影響によるCN比劣化量を演算する手段とを備えることとした。
【0014】
また、前記伝送路の周波数応答を推定する手段には、伝送路の付加雑音を除去する手段を備えることとした。
【0015】
また、前記伝送路の周波数応答から付加雑音を除去する手段は、付加雑音除去前の周波数応答を逆フーリエ変換して遅延プロファイルを求め、この遅延プロファイルから伝送路のマルチパス成分の存在しない領域の成分を0にして除去するフィルタ処理を行って新たな遅延プロファイルを生成し、これをフーリエ変換して付加雑音を除去し伝送路の周波数応答を得ることとした。
【0016】
また、前記伝送路の周波数応答から付加雑音を除去する手段は、付加雑音除去前の周波数応答を時間軸のローパスフィルタまたは周波数軸のローパスフィルタ処理を行って付加雑音を除去し伝送路の周波数応答を得ることとした。
【0017】
さらに、伝送路の付加雑音を除去した伝送路の周波数応答と除去した付加雑音とから受信した前記デジタル信号のCN比を求める手段と、前記受信したデジタル信号のCN比を新たに付加雑音として付加する手段とを備えることとした。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を用いて説明する。
【0019】
ISDB−T伝送方式の地上デジタル放送に適用した場合について、以下に実施例を示す。ISDB−T伝送方式の伝送パラメータの値は、伝送モードごと決められている。
【0020】
ISDB−Tの変調および復調に用いるFFT(離散フーリエ変換)のサンプリング周波数fFFTは、2048/252MHz(=8.12698…MHz)で与えられる。また、FFTのポイント数NoはISDB−Tの伝送モード1のとき2048、伝送モード2のとき4096、伝送モード3のとき8192である。また、有効シンボル長Tuは、伝送モード1、2、3に対して、それぞれ、252μsec、504μsec、1008μsecである。ガードインターバル期間Tgは、有効シンボル長Tu/4、有効シンボル長Tu/8、有効シンボル長Tu/16、もしくは有効シンボル長Tu/32である。
【0021】
ISDB−T伝送方式のOFDMのキャリア数KとFFTのポイント数Noには、K<Noの関係がある。また、ISDB−TのOFDM信号には、特定のキャリアにAC(予備チャンネル)、TMCCなどのISDB−Tの制御信号データが割り当てられている。
【0022】
また、受信側のデータの等化基準となるパイロットデータは、図2に示すように特定のキャリアの特定のシンボルに割り当てられている。これをスキャッタードパイロット(以下、SP)と呼ぶ。SPの変調レベルは、送信データの変調レベルのRMS(Root Mean Squareの略)値をLとすると、その4/3倍であり、図3に示すように、位相図上に(4L/3,0)もしくは(−4L/3,0)に配置される。SPがどちらに配置されるかは、キャリア番号ごとに、あらかじめ決められている。
【0023】
なお、実施例では、OFDMの変調は16QAMとして説明するが、本発明は、変調を16QAMに限るものではなく、QPSK、64QAMなど任意の変調に適用可能である。
【0024】
図1は、本発明の第1の実施形態におけるデジタル信号の受信解析装置の構成図を示す。
【0025】
図1に示すように、本発明の第1の実施形態におけるデジタル信号の受信解析装置は、受信部10と、伝送路応答検出部20と、誤り率測定部30と、等価CN演算部40とから構成されている。
【0026】
伝送路応答検出部20は、FFT回路21と、伝送路応答推定回路22と、雑音除去回路23とからなり、誤り率測定部30はPN発生回路31と、変調回路32と、周波数特性付加回路33と、雑音付加回路34と、復調回路35と、誤り率測定回路36とからなる。
【0027】
受信部10は、OFDMデジタル信号を伝送路50より受信し、キャリア再生とクロック再生およびシンボルタイミング再生を行い、AD変換と直交復調を行いデジタル複素ベースバンド信号を出力する。
【0028】
伝送路応答検出部20において、FFT回路21は、入力されたデジタル複素ベースバンド信号をシンボル毎にフーリエ変換を行い、OFDMのキャリアデータY(i,k)を出力する。なお、iはシンボル番号、kはキャリア番号を示す。
【0029】
伝送路応答推定回路22では、入力されたOFDMのキャリアデータY(i,k)からSPを抜き取る。これを受信SPとすると受信SPは伝送路の周波数応答により振幅と位相の変移を受けている。伝送路応答は、受信SPを基準となる送信側のSPで複素除算することにより得られる。
【0030】
具体的には、ISDB−T伝送方式のOFDM信号には、図2に示すようにキャリア方向で表現したSPのパターンが全部で4通りあり、連続する4シンボルにそれぞれ配置されている。連続する異なるSPパターン1、2、3、4の4シンボル分のSPデータYsp(i,k)をOFDMのキャリアデータY(i,n)から抜き取り、(式1)のように加算し、SPデータYsp4(i,k)を得る。
【0031】
【数1】

Figure 0003773839
【0032】
なお、SPデータYsp4(i,k)は、過去のシンボルからでも未来のシンボルからでも求められる。
【0033】
(式1)で計算したSPデータYsp4(i,k)を、基準となる送信側のSPデータ部Ssp(k)で(式2)のように複素除算し、キャリア毎の伝送路応答H(i,k)を求める。
【0034】
【数2】
Figure 0003773839
【0035】
(式2)で求めたキャリア毎の伝送路応答H(i,k)は、3キャリアのうち2つはヌルデータであるため、伝送路応答H(i,k)をキャリア方向のフィルタに通過させ、補間を行う。これを新たなキャリア毎の伝送路応答H(i,k)とし、伝送路応答の推定値として出力する。ここで、伝送路の解析結果として、キャリアkに対応する伝送路周波数fに対して、伝送路の周波数応答H(f)を出力することや、周波数応答H(f)を逆フーリエ変換した遅延プロファイルh(t)(インパルス応答)として出力することが可能である。従って、周波数応答とインパルス応答は等価である。
【0036】
雑音除去回路23では、伝送路応答推定回路22で推定した伝送路応答H(i,k)に含まれる雑音を図4もしくは図5に示すような方法で除去する。図4では、入力された雑音除去前の伝送路応答H(i,k)を逆フーリエ変換し遅延プロファイルh(t)を求める。この、遅延プロファイルh(t)から伝送路のマルチパス成分の存在しない時間領域の成分を0にして除去するようなファイルタ処理を行い遅延プロファイルh’(t)を求め、これをフーリエ変換することにより雑音除去後の伝送路応答H’(i,k)を求める。なお、遅延プロファイルh’(t)は、遅延プロファイルh(t)のピークからXdB(X=−5、−20、−25など)より小さい成分を0にして除去する処理から求めることも可能である。
【0037】
また、図5では、入力された雑音除去前の伝送路応答H(i,k)を時間軸のローパスフィルタ、もしくは、周波数軸のローパスフィルタを挿入し、雑音除去後の伝送路応答H’(i,k)を求める。時間軸のローパスフィルタ処理は、伝送路応答H(i,k)をシンボルiに関し、(式3)のような平均化の演算を行う。
【0038】
【数3】
Figure 0003773839
【0039】
周波数軸のローパスフィルタ処理は、伝送路応答H(i,k)をキャリアkに関し、移動平均化の演算を行う。
【0040】
誤り率測定部30においては、PN発生回路31からITU−T勧告O.151などで勧告されている擬似ランダムバイナリー信号を発生する。
【0041】
変調回路32は擬似ランダムバイナリー信号を変調信号とする変調を行う。変調方式は、地上デジタル放送の伝送方式に従うOFDM変調などを行い、変調信号s(t)を出力する。なおここで、変調信号s(t)の周波数表現による変換対をS(f)とする。
【0042】
周波数特性付加回路33は、伝送路応答検出部20の雑音除去回路23から入力された雑音除去後の伝送路応答H’(i,k)から、キャリアkに対応する伝送路周波数fに対して、伝送路の周波数応答H’(f)を求め、次の(式4)、(式5)の演算を行い受信信号R(f)、あるいは受信信号r(t)を求める。
【0043】
【数4】
Figure 0003773839
【0044】
【数5】
Figure 0003773839
【0045】
または、伝送路の周波数応答H’(f)の変換対をh’(t)、畳み込み演算子を*とすると、次の(式6)の演算を行い受信信号r(t)を出力する。
【0046】
【数6】
Figure 0003773839
【0047】
雑音付加回路34では、設定したCN比に応じて、入力された受信信号R(f)にランダム雑音N(f)を付加し、雑音付加された受信信号R’(f)として出力する。もしくは、入力された受信信号r(t)にランダム雑音n(t)を付加し、雑音付加された受信信号r’(t)として出力する。
【0048】
復調回路35では、入力された受信信号R’(F)、もしくは受信信号r’(t)を復調し、復調データを出力する。
【0049】
誤り率測定回路36では、PN発生回路31で出力された擬似ランダムバイナリー信号と復調回路35から出力された復調データを比較し、誤り率を計算する。当然のことながら、伝送路の付加雑音を除去しないで測定した場合の誤り率は、実際の伝送路に擬似ランダムバイナリー信号を通したときの誤り率と等しい。
【0050】
なお、受信部10、伝送路応答検出部20および誤り率測定部30は、実際のハードウエアによる構成も、ソフトウエアによる構成も可能であることは言うまでもない。
【0051】
等価CN演算部40では、付加雑音回路34と誤り率測定回路36から得られたCN比と誤り率により、伝送路の等価CN比およびCN比劣化量の演算を行う。
【0052】
図6は、ANT1(黒丸でプロット)やANT2(白丸でプロット)に示すように、ある伝送路を伝送された信号のCN比対誤り率を示している。また、ガウス雑音のみの影響によるCN比対誤り率をAWGN(破線)で示している。このとき、ある誤り率Peとなるガウス雑音のCN比をCNR0(Pe)、ある伝送路を伝送された信号が誤り率PeとなるCN比をCNR1(Pe)とすると、伝送路の等価CN比およびCN比劣化量は次の(式7)および(式8)で与えられる。
【0053】
【数7】
Figure 0003773839
【0054】
【数8】
Figure 0003773839
【0055】
以上、本発明の第1の実施形態におけるデジタル信号の受信解析装置は、デジタル信号の受信と解析に関して、伝送路を伝送されたデジタル信号を受信し、伝送路応答と付加雑音を求め、伝送路応答による影響の程度と付加雑音による影響の程度を分離し、伝送路の影響による等化CN比と伝送路の影響によるCN比劣化量を得ることを可能とする。
【0056】
次に、本発明の第2の実施形態におけるデジタル信号の受信解析装置につき図1を使用し説明する。
【0057】
伝送路を伝送された信号は、映像や音声などのデータがほとんどであるため通常受信器の復調データからは誤り率は分からない。そこで、本発明の第2の実施形態におけるデジタル信号の受信解析装置は、特別にデータを入力することなく、容易に誤り率の測定をするものである。
【0058】
雑音除去回路23に入力した雑音除去前の伝送路応答H(i,k)と、雑音除去回路23で求めた雑音除去後の伝送路応答H’(i,k)の差分から雑音成分N(i,k)を求めCN比C/Nを(式9)から求める。なお、(式10)ではキャリア総数をKとしている。
【0059】
【数9】
Figure 0003773839
【0060】
【数10】
Figure 0003773839
【0061】
その後、誤り率測定部30を動作させるとき、雑音付加回路34に(式9)で求めたCN比C/Nを入力し、誤り率測定回路36にて、伝送路を伝送された信号の誤り率を求める。
【0062】
なお、SPの変調レベルは、実際のデータの平均変調レベルより4/3大きい。そのため伝送路応答検出部20での伝送路応答H(i,k)は、SPから求めているため、実際に伝送路を伝送された信号よりCN比が大きく、雑音付加回路34でのCN比はその分を減じることが必要である。
【0063】
以上、本発明の第2の実施形態におけるデジタル信号の受信解析装置は、伝送路の前の送信側変調器に誤り率測定用の擬似ランダムバイナリー信号などを変調データとして入力することなく、容易に誤り率を測定することを可能とする。
【0064】
【発明の効果】
本発明のデジタル信号の受信解析装置は、デジタル信号を受信し解析する装置であって、受信した前記デジタル信号から伝送路の周波数応答を推定する手段と、擬似ランダムバイナリー信号を発生する手段と、前記擬似ランダムバイナリー信号を変調データとして変調する手段と、この変調されたデジタル信号に前記伝送路の周波数応答を付加する手段と、この周波数応答が付加されたデジタル信号に設定したCN比に応じた雑音を付加する手段と、この雑音を付加された信号を復調する手段と、復調された擬似ランダムバイナリー信号と前記発生した擬似ランダムバイナリー信号を比較して誤り率を測定する手段と、前記設定したCN比と測定した誤り率から伝送路の等価CN比および伝送路の影響によるCN比劣化量を演算する手段とを備えることとしたため、デジタル信号の受信と解析に関して、伝送路を伝送されたデジタル信号を受信し、その伝送路の誤り率を測定できる。また、伝送路の周波数応答を推定する手段には付加雑音を除去する手段を備えるので、伝送路応答と付加雑音を求め、伝送路応答による影響の程度と付加雑音による影響の程度を分離し、伝送路の影響による等化CN比と伝送路の影響によるCN比劣化量を得ることができ、さらに、伝送路の前の送信側変調器に誤り率測定用の擬似ランダムバイナリー信号などを変調データとして入力することなく、容易に誤り率を測定することができ、的確にデジタル信号への影響の解析を行うことができる。
【0065】
また、前記伝送路の周波数応答を推定する手段には、伝送路の付加雑音を除去する手段を備えることとしたため、伝送路の影響による等化CN比と、伝送路の影響によるCN比劣化量とをさらに的確に得ることができる。
【0066】
また、前記伝送路の周波数応答から付加雑音を除去する手段は、付加雑音除去前の周波数応答を逆フーリエ変換して遅延プロファイルを求め、この遅延プロファイルから伝送路のマルチパス成分の存在しない領域の成分を0にして除去するフィルタ処理を行って新たな遅延プロファイルを生成し、これをフーリエ変換して付加雑音を除去し伝送路の周波数応答を得ることとしたため、付加雑音を除去し伝送路の周波数応答をさらに的確に得ることができる。
【0067】
また、前記伝送路の周波数応答から付加雑音を除去する手段は、付加雑音除去前の周波数応答を時間軸のローパスフィルタまたは周波数軸のローパスフィルタ処理を行って付加雑音を除去し伝送路の周波数応答を得ることとしたため、付加雑音を除去し伝送路の周波数応答をさらに的確に得ることができる。
【0068】
さらに、伝送路の付加雑音を除去した伝送路の周波数応答と除去した付加雑音とから受信した前記デジタル信号のCN比を求める手段と、前記受信したデジタル信号のCN比を新たに付加雑音として付加する手段とを備えることとしたため、伝送路の影響による等化CN比と、伝送路の影響によるCN比劣化量と、誤り率とをさらに的確に得ることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態におけるデジタル信号の受信解析装置の構成図を示す。
【図2】本発明の第1の実施形態におけるスキャッタードパイロット(SP)の配置図を示す。
【図3】本発明の第1の実施形態におけるスキャッタードパイロット(SP)の位相図を示す。
【図4】本発明の第1の実施形態における伝送路の周波数特性の雑音除去(その1)を示す。
【図5】本発明の第1の実施形態における伝送路の周波数特性の雑音除去(その2)を示す。
【図6】本発明の第1の実施形態における付加雑音を加えたときのCN比対ビット誤り率の特性図を示す。
【図7】従来のMER測定装置の構成図を示す。
【図8】従来の誤り率測定装置の構成図を示す。
【図9】OFDM信号受信における従来の伝送路応答検出装置の構成図を示す。
【符号の説明】
10 受信部
20 伝送路応答検出部
21 FFT回路
22 伝送路応答推定回路
23 雑音除去回路
30 誤り率測定部
31 PN発生回路
32 変調回路
33 周波数特性付加回路
34 雑音付加回路
35 復調回路
36 誤り率測定回路
40 等価CN演算部
50 伝送路[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a digital signal reception analysis apparatus that analyzes an influence on a digital signal based on an error rate of a received signal, a response of a transmission path, and the like and can be widely applied to broadcasting, communication, and a recording medium.
[0002]
[Prior art]
Conventional digital signal reception analysis devices include a MER measurement device, an error rate measurement device, and a transmission path response detection device.
[0003]
FIG. 7 shows a configuration diagram of a conventional MER measuring apparatus.
[0004]
As shown in FIG. 7, this MER (Modulation Error Ratio) measuring device is a demodulator constellation unit 72 that demodulates data demodulated by a receiver 71 on a phase diagram (constellation). , The error of the distance from the mapping point on the phase diagram of the transmission data is regarded as a noise component, and the calculation is performed with the distance from the mapping point to the origin of the phase diagram as the signal component. The signal-to-noise ratio (hereinafter referred to as CN ratio) of the signal is obtained.
[0005]
FIG. 8 shows a configuration diagram of a conventional error rate measuring apparatus.
[0006]
As shown in FIG. 8, in this error rate measuring apparatus, a modulator 82 and a demodulator 83 both generate a known pseudo-random binary signal in a PN generator 81, and the modulator uses the pseudo-random binary signal as modulation data. 82 is placed in front of the transmission line 80, and after the transmission line 80, a demodulator 83 is provided and the error rate measuring unit 84 measures the error rate.
[0007]
FIG. 9 shows a configuration diagram of a conventional transmission path response detection apparatus in OFDM signal reception.
[0008]
As shown in FIG. 9, this transmission path response detection apparatus receives a digital signal transmitted through a transmission path 90 by a receiving section 91, FFT of the received signal by an FFT section 92, and a transmission path response estimation section 93. A known pilot signal is extracted from the output data of the FFT unit 92, the response of the transmission line 90 is estimated, the frequency response calculation unit 94 calculates the frequency response of the transmission line 90, and the delay profile calculation unit 95 generates an impulse response. The delay profile is calculated.
[0009]
[Problems to be solved by the invention]
Usually, the received digital signal is subjected to linear distortion and additional noise such as thermal noise due to the response of the transmission path such as multipath. When a digital signal is demodulated, the error rate deteriorates due to the influence of both. In the conventional MER measuring apparatus shown in FIG. 7, although the total CN ratio of the received signal is known, it is impossible to measure separately the influence of the transmission path and the influence of the additional noise.
[0010]
Further, when measuring the error rate of the received digital signal, a known pseudo-random binary signal or the like on the receiving side is used to measure the error rate specially, as in the conventional error rate measuring apparatus shown in FIG. Input as modulation data of the transmission side modulator, and the reception side compares the demodulated data with the transmission side pseudo-random binary signal to obtain the bit error rate.
[0011]
In addition, in the conventional transmission line response detection apparatus shown in FIG. 9, it is possible to obtain the frequency response and delay profile of the transmission line from the received digital signal, but the obtained transmission line response is obtained for the received digital signal. Thus, it has not been possible to know how much the noise is affected as equivalent noise and how much it affects the deterioration of the bit error rate.
[0012]
The present invention has been made to solve such a conventional problem, and receives a digital signal transmitted through a transmission line, obtains a transmission line response and additional noise, and adds the degree of influence and addition of the transmission line response. The present invention provides a digital signal reception analysis apparatus that separates the degree of influence of noise and obtains an equalized CN ratio due to the influence of the transmission path and a CN ratio due to the additional noise, respectively, It is an object of the present invention to provide a digital signal reception analysis device that easily measures an error rate without inputting a pseudo-random binary signal or the like for error rate measurement to a modulator as modulation data.
[0013]
[Means for Solving the Problems]
The digital signal reception analysis apparatus of the present invention is an apparatus for receiving and analyzing a digital signal, a means for estimating a frequency response of a transmission path from the received digital signal, a means for generating a pseudo-random binary signal, Means for modulating the pseudo-random binary signal as modulation data, means for adding a frequency response of the transmission path to the modulated digital signal, and a CN ratio set for the digital signal to which the frequency response is added Means for adding noise, means for demodulating the signal to which the noise is added, means for comparing the demodulated pseudo-random binary signal with the generated pseudo-random binary signal, and measuring the error rate Means for calculating the equivalent CN ratio of the transmission line and the CN ratio deterioration amount due to the influence of the transmission line from the CN ratio and the measured error rate; It was possible to obtain.
[0014]
The means for estimating the frequency response of the transmission line includes means for removing additional noise on the transmission line.
[0015]
The means for removing the additional noise from the frequency response of the transmission line obtains a delay profile by performing inverse Fourier transform on the frequency response before the removal of the additional noise, and from this delay profile, an area in which the multipath component of the transmission line does not exist. A new delay profile is generated by performing filter processing to remove the component to 0, and this is Fourier transformed to remove the additional noise and obtain the frequency response of the transmission path.
[0016]
Further, the means for removing the additional noise from the frequency response of the transmission line performs a time-pass low-pass filter or a frequency-axis low-pass filter process on the frequency response before the additional noise removal to remove the additional noise and thereby reduce the frequency response of the transmission line. Decided to get.
[0017]
Further, a means for obtaining a CN ratio of the received digital signal from the frequency response of the transmission line from which the additional noise of the transmission line is removed and the removed additional noise, and a CN ratio of the received digital signal are newly added as additional noise. And means to do.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0019]
An example is shown below about the case where it applies to the terrestrial digital broadcasting of an ISDB-T transmission system. The value of the transmission parameter of the ISDB-T transmission system is determined for each transmission mode.
[0020]
An FFT (Discrete Fourier Transform) sampling frequency fFFT used for ISDB-T modulation and demodulation is given by 2048/252 MHz (= 8.1698... MHz). The number of FFT points No is 2048 for ISDB-T transmission mode 1, 4096 for transmission mode 2, and 8192 for transmission mode 3. The effective symbol length Tu is 252 μsec, 504 μsec, and 1008 μsec for the transmission modes 1, 2, and 3, respectively. The guard interval period Tg is the effective symbol length Tu / 4, the effective symbol length Tu / 8, the effective symbol length Tu / 16, or the effective symbol length Tu / 32.
[0021]
There is a relationship of K <No between the number of carriers of OFDM in the ISDB-T transmission system and the number of points of FFT. In addition, ISDB-T control signal data such as AC (standby channel) and TMCC is assigned to a specific carrier in the ISDB-T OFDM signal.
[0022]
In addition, pilot data that serves as an equalization reference for data on the receiving side is assigned to a specific symbol of a specific carrier as shown in FIG. This is called a scattered pilot (hereinafter referred to as SP). The modulation level of the SP is 4/3 times the RMS (abbreviation of Root Mean Square) value of the modulation level of the transmission data, and as shown in FIG. 3, (4L / 3, 3) 0) or (−4L / 3, 0). Where the SP is arranged is determined in advance for each carrier number.
[0023]
In the embodiment, the OFDM modulation is described as 16QAM, but the present invention is not limited to 16QAM, and can be applied to arbitrary modulation such as QPSK and 64QAM.
[0024]
FIG. 1 is a configuration diagram of a digital signal reception analysis apparatus according to a first embodiment of the present invention.
[0025]
As shown in FIG. 1, the digital signal reception analysis apparatus according to the first embodiment of the present invention includes a reception unit 10, a transmission line response detection unit 20, an error rate measurement unit 30, and an equivalent CN calculation unit 40. It is composed of
[0026]
The transmission line response detection unit 20 includes an FFT circuit 21, a transmission line response estimation circuit 22, and a noise removal circuit 23. The error rate measurement unit 30 includes a PN generation circuit 31, a modulation circuit 32, and a frequency characteristic addition circuit. 33, a noise adding circuit 34, a demodulating circuit 35, and an error rate measuring circuit 36.
[0027]
The receiving unit 10 receives the OFDM digital signal from the transmission path 50, performs carrier recovery, clock recovery, and symbol timing recovery, performs AD conversion and orthogonal demodulation, and outputs a digital complex baseband signal.
[0028]
In the transmission line response detection unit 20, the FFT circuit 21 performs Fourier transform on the input digital complex baseband signal for each symbol, and outputs OFDM carrier data Y (i, k). Note that i represents a symbol number and k represents a carrier number.
[0029]
The transmission path response estimation circuit 22 extracts SP from the input OFDM carrier data Y (i, k). If this is a reception SP, the reception SP has undergone a change in amplitude and phase due to the frequency response of the transmission path. The transmission line response is obtained by complex division of the received SP by the reference SP on the transmitting side.
[0030]
Specifically, in the OFDM signal of the ISDB-T transmission system, there are a total of four SP patterns expressed in the carrier direction, as shown in FIG. 2, and each is arranged in four consecutive symbols. SP data Ysp (i, k) for four symbols of consecutive different SP patterns 1, 2, 3, 4 are extracted from OFDM carrier data Y (i, n), added as in (Equation 1), and SP Data Ysp4 (i, k) is obtained.
[0031]
[Expression 1]
Figure 0003773839
[0032]
The SP data Ysp4 (i, k) can be obtained from a past symbol or a future symbol.
[0033]
The SP data Ysp4 (i, k) calculated in (Expression 1) is complex-divided as shown in (Expression 2) by the reference SP data portion Ssp (k) on the transmission side, and the transmission path response H (for each carrier) ( i, k).
[0034]
[Expression 2]
Figure 0003773839
[0035]
Since the transmission path response H (i, k) for each carrier obtained by (Equation 2) is null data, two of the three carriers are null data, so that the transmission path response H (i, k) is passed through a filter in the carrier direction. Interpolate. This is set as a transmission path response H (i, k) for each new carrier and output as an estimated value of the transmission path response. Here, as the analysis result of the transmission path, the frequency response H (f) of the transmission path is output with respect to the transmission path frequency f corresponding to the carrier k, or the delay obtained by inverse Fourier transforming the frequency response H (f). It is possible to output as a profile h (t) (impulse response). Therefore, the frequency response and the impulse response are equivalent.
[0036]
The noise removal circuit 23 removes noise included in the transmission path response H (i, k) estimated by the transmission path response estimation circuit 22 by a method as shown in FIG. In FIG. 4, the input channel response H (i, k) before noise removal is inverse Fourier transformed to obtain a delay profile h (t). From this delay profile h (t), a filter process is performed to remove the time-domain component that does not include the multipath component of the transmission path by setting it to 0 to obtain the delay profile h ′ (t), and this is subjected to Fourier transform. Thus, the transmission line response H ′ (i, k) after noise removal is obtained. Note that the delay profile h ′ (t) can also be obtained from a process of removing a component smaller than X dB (X = −5, −20, −25, etc.) from the peak of the delay profile h (t) by 0. is there.
[0037]
In FIG. 5, the input transmission line response H (i, k) before noise removal is inserted with a time-axis low-pass filter or a frequency-axis low-pass filter, and the transmission line response H ′ ( i, k). In the low-pass filter processing on the time axis, the transmission line response H (i, k) is calculated with respect to the symbol i, and an averaging operation is performed as in (Equation 3).
[0038]
[Equation 3]
Figure 0003773839
[0039]
The low-pass filter processing on the frequency axis performs a moving average operation on the transmission line response H (i, k) with respect to the carrier k.
[0040]
In the error rate measurement unit 30, the PN generation circuit 31 sends an ITU-T recommendation O.D. A pseudo-random binary signal recommended by 151 or the like is generated.
[0041]
The modulation circuit 32 performs modulation using a pseudo random binary signal as a modulation signal. The modulation method performs OFDM modulation or the like according to the transmission method of terrestrial digital broadcasting, and outputs a modulation signal s (t). Here, a conversion pair in the frequency representation of the modulation signal s (t) is S (f).
[0042]
The frequency characteristic adding circuit 33 uses the transmission line response H ′ (i, k) after noise removal input from the noise removal circuit 23 of the transmission line response detection unit 20 to the transmission line frequency f corresponding to the carrier k. Then, the frequency response H ′ (f) of the transmission path is obtained, and the reception signal R (f) or the reception signal r (t) is obtained by calculating the following (Expression 4) and (Expression 5).
[0043]
[Expression 4]
Figure 0003773839
[0044]
[Equation 5]
Figure 0003773839
[0045]
Alternatively, if the conversion pair of the frequency response H ′ (f) of the transmission path is h ′ (t) and the convolution operator is *, the following calculation is performed and the received signal r (t) is output.
[0046]
[Formula 6]
Figure 0003773839
[0047]
The noise adding circuit 34 adds random noise N (f) to the input received signal R (f) according to the set CN ratio, and outputs the received signal R ′ (f) with added noise. Alternatively, random noise n (t) is added to the input received signal r (t) and output as a received signal r ′ (t) with added noise.
[0048]
The demodulation circuit 35 demodulates the input received signal R ′ (F) or received signal r ′ (t) and outputs demodulated data.
[0049]
The error rate measurement circuit 36 compares the pseudo random binary signal output from the PN generation circuit 31 with the demodulated data output from the demodulation circuit 35 and calculates the error rate. Naturally, the error rate when measured without removing the additional noise in the transmission line is equal to the error rate when a pseudo-random binary signal is passed through the actual transmission line.
[0050]
Needless to say, the receiving unit 10, the transmission path response detecting unit 20, and the error rate measuring unit 30 can be configured by actual hardware or software.
[0051]
The equivalent CN calculation unit 40 calculates the equivalent CN ratio and the CN ratio deterioration amount of the transmission line based on the CN ratio and the error rate obtained from the additional noise circuit 34 and the error rate measurement circuit 36.
[0052]
FIG. 6 shows the CN ratio versus error rate of a signal transmitted through a certain transmission line, as shown in ANT1 (plotted by black circles) and ANT2 (plotted by white circles). Also, the CN ratio versus error rate due to the influence of Gaussian noise alone is indicated by AWGN (broken line). At this time, if the CN ratio of Gaussian noise with a certain error rate Pe is CNR0 (Pe), and the CN ratio with which the signal transmitted through a certain transmission path is the error rate Pe is CNR1 (Pe), the equivalent CN ratio of the transmission path The CN ratio deterioration amount is given by the following (Expression 7) and (Expression 8).
[0053]
[Expression 7]
Figure 0003773839
[0054]
[Equation 8]
Figure 0003773839
[0055]
As described above, the digital signal reception analysis apparatus according to the first embodiment of the present invention receives the digital signal transmitted through the transmission line, obtains the transmission line response and the additional noise, and receives the transmission signal. It is possible to obtain the equalization CN ratio due to the influence of the transmission path and the CN ratio deterioration amount due to the influence of the transmission path by separating the degree of the influence due to the response and the influence due to the additional noise.
[0056]
Next, a digital signal reception analysis apparatus according to a second embodiment of the present invention will be described with reference to FIG.
[0057]
Since the signal transmitted through the transmission path is mostly video and audio data, the error rate is not known from the demodulated data of the normal receiver. Therefore, the digital signal reception analysis apparatus according to the second embodiment of the present invention easily measures the error rate without specially inputting data.
[0058]
From the difference between the transmission line response H (i, k) before noise removal input to the noise removal circuit 23 and the transmission line response H ′ (i, k) after noise removal obtained by the noise removal circuit 23, the noise component N ( i, k) is obtained, and the CN ratio C / N is obtained from (Equation 9). In (Equation 10), the total number of carriers is K.
[0059]
[Equation 9]
Figure 0003773839
[0060]
[Expression 10]
Figure 0003773839
[0061]
Thereafter, when the error rate measuring unit 30 is operated, the CN ratio C / N obtained by (Equation 9) is input to the noise adding circuit 34, and the error rate measuring circuit 36 detects the error of the signal transmitted through the transmission path. Find the rate.
[0062]
The SP modulation level is 4/3 higher than the average modulation level of actual data. Therefore, since the transmission path response H (i, k) in the transmission path response detection unit 20 is obtained from the SP, the CN ratio is larger than the signal actually transmitted through the transmission path, and the CN ratio in the noise adding circuit 34 It is necessary to reduce that amount.
[0063]
As described above, the digital signal reception analysis apparatus according to the second embodiment of the present invention can easily input a pseudo-random binary signal for error rate measurement or the like as modulation data to the transmission-side modulator before the transmission path. It is possible to measure the error rate.
[0064]
【The invention's effect】
The digital signal reception analysis apparatus of the present invention is an apparatus for receiving and analyzing a digital signal, a means for estimating a frequency response of a transmission path from the received digital signal, a means for generating a pseudo-random binary signal, Means for modulating the pseudo-random binary signal as modulation data, means for adding a frequency response of the transmission path to the modulated digital signal, and a CN ratio set for the digital signal to which the frequency response is added Means for adding noise, means for demodulating the signal to which the noise is added, means for comparing the demodulated pseudo-random binary signal with the generated pseudo-random binary signal, and measuring the error rate Means for calculating the equivalent CN ratio of the transmission line and the CN ratio deterioration amount due to the influence of the transmission line from the CN ratio and the measured error rate; Since was possible to obtain, with respect to the reception and analysis of the digital signal, receiving a digital signal transmitted through the transmission line, it can measure the error rate of the transmission path. In addition, since the means for estimating the frequency response of the transmission line is provided with means for removing additional noise, the transmission line response and the additional noise are obtained, and the degree of influence due to the transmission line response and the degree of influence due to the additional noise are separated, It is possible to obtain an equalized CN ratio due to the influence of the transmission line and a CN ratio deterioration amount due to the influence of the transmission line. Further, the transmission side modulator in front of the transmission line is modulated with a pseudo-random binary signal or the like for error rate measurement. Therefore, the error rate can be easily measured without being input as, and the influence on the digital signal can be accurately analyzed.
[0065]
Further, since the means for estimating the frequency response of the transmission line is provided with a means for removing additional noise in the transmission line, the equalization CN ratio due to the influence of the transmission line and the CN ratio deterioration amount due to the influence of the transmission line And can be obtained more accurately.
[0066]
The means for removing the additional noise from the frequency response of the transmission line obtains a delay profile by performing inverse Fourier transform on the frequency response before the removal of the additional noise, and from this delay profile, an area in which the multipath component of the transmission line does not exist. A new delay profile is generated by performing filtering processing to remove the component to 0, and this is Fourier transformed to remove the additional noise and obtain the frequency response of the transmission line. The frequency response can be obtained more accurately.
[0067]
Further, the means for removing the additional noise from the frequency response of the transmission line performs a time-pass low-pass filter or a frequency-axis low-pass filter process on the frequency response before the additional noise removal to remove the additional noise and thereby reduce the frequency response of the transmission line. Therefore, it is possible to remove the additional noise and obtain the frequency response of the transmission line more accurately.
[0068]
Further, a means for obtaining a CN ratio of the received digital signal from the frequency response of the transmission line from which the additional noise of the transmission line is removed and the removed additional noise, and a CN ratio of the received digital signal are newly added as additional noise. Therefore, the equalization CN ratio due to the influence of the transmission path, the CN ratio deterioration amount due to the influence of the transmission path, and the error rate can be obtained more accurately.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a digital signal reception analysis apparatus according to a first embodiment of the present invention.
FIG. 2 is a layout diagram of a scattered pilot (SP) according to the first embodiment of the present invention.
FIG. 3 shows a phase diagram of a scattered pilot (SP) in the first embodiment of the present invention.
FIG. 4 shows noise removal (part 1) of the frequency characteristic of the transmission line in the first embodiment of the present invention.
FIG. 5 shows noise removal (part 2) of the frequency characteristic of the transmission line in the first embodiment of the present invention.
FIG. 6 is a characteristic diagram of CN ratio versus bit error rate when additional noise is added in the first embodiment of the present invention.
FIG. 7 shows a configuration diagram of a conventional MER measuring apparatus.
FIG. 8 shows a configuration diagram of a conventional error rate measuring apparatus.
FIG. 9 shows a configuration diagram of a conventional transmission path response detection apparatus in OFDM signal reception.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Reception part 20 Transmission path response detection part 21 FFT circuit 22 Transmission path response estimation circuit 23 Noise removal circuit 30 Error rate measurement part 31 PN generation circuit 32 Modulation circuit 33 Frequency characteristic addition circuit 34 Noise addition circuit 35 Demodulation circuit 36 Error rate measurement Circuit 40 Equivalent CN operation unit 50 Transmission path

Claims (5)

デジタル信号を受信し解析する装置であって、受信した前記デジタル信号から伝送路の周波数応答を推定する手段と、擬似ランダムバイナリー信号を発生する手段と、前記擬似ランダムバイナリー信号を変調データとして変調する手段と、この変調されたデジタル信号に前記伝送路の周波数応答を付加する手段と、この周波数応答が付加されたデジタル信号に設定したCN比に応じた雑音を付加する手段と、この雑音を付加された信号を復調する手段と、復調された擬似ランダムバイナリー信号と前記発生した擬似ランダムバイナリー信号を比較して誤り率を測定する手段と、前記設定したCN比と測定した誤り率から伝送路の等価CN比および伝送路の影響によるCN比劣化量を演算する手段とを備えたことを特徴とするデジタル信号の受信解析装置。An apparatus for receiving and analyzing a digital signal, a means for estimating a frequency response of a transmission path from the received digital signal, a means for generating a pseudo random binary signal, and modulating the pseudo random binary signal as modulation data Means for adding the frequency response of the transmission path to the modulated digital signal, means for adding noise corresponding to the CN ratio set for the digital signal to which the frequency response is added, and adding the noise Means for demodulating the received signal, means for measuring the error rate by comparing the demodulated pseudo-random binary signal and the generated pseudo-random binary signal, and determining the transmission path from the set CN ratio and the measured error rate. Means for calculating the CN ratio degradation amount due to the equivalent CN ratio and the influence of the transmission path, and receiving digital signals. Analysis apparatus. 前記伝送路の周波数応答を推定する手段は、伝送路の付加雑音を除去する手段を備えることを特徴とする請求項1に記載のデジタル信号の受信解析装置。2. The digital signal reception analysis apparatus according to claim 1, wherein the means for estimating the frequency response of the transmission line includes means for removing additional noise in the transmission line. 前記伝送路の周波数応答から付加雑音を除去する手段は、付加雑音除去前の周波数応答を逆フーリエ変換して遅延プロファイルを求め、この遅延プロファイルから伝送路のマルチパス成分の存在しない領域の成分を0にして除去するフィルタ処理を行って新たな遅延プロファイルを生成し、これをフーリエ変換して付加雑音を除去し伝送路の周波数応答を得ることを特徴とする請求項2に記載のデジタル信号の受信解析装置。The means for removing the additional noise from the frequency response of the transmission line obtains a delay profile by performing inverse Fourier transform on the frequency response before the removal of the additional noise, and the component of the region where the multipath component of the transmission line does not exist is obtained from the delay profile. 3. The digital signal according to claim 2, wherein a filtering process is performed to remove the noise by zero to generate a new delay profile, which is Fourier transformed to remove additional noise and obtain a frequency response of the transmission line. Reception analysis device. 前記伝送路の周波数応答から付加雑音を除去する手段は、付加雑音除去前の周波数応答を時間軸のローパスフィルタまたは周波数軸のローパスフィルタ処理を行って付加雑音を除去し伝送路の周波数応答を得ることを特徴とする請求項2に記載のデジタル信号の受信解析装置。The means for removing the additional noise from the frequency response of the transmission line obtains the frequency response of the transmission line by removing the additional noise by performing a time axis low pass filter or a frequency axis low pass filter process on the frequency response before the additive noise removal. The digital signal reception analysis apparatus according to claim 2. 伝送路の付加雑音を除去した伝送路の周波数応答と除去した付加雑音とから受信した前記デジタル信号のCN比を求める手段と、前記受信したデジタル信号のCN比を新たに付加雑音として付加する手段とを備えたことを特徴とする請求項2ないし4のいずれか1項に記載のデジタル信号の受信解析装置。Means for obtaining the CN ratio of the received digital signal from the frequency response of the transmission line from which the additional noise of the transmission line has been removed and the removed additional noise, and means for newly adding the CN ratio of the received digital signal as additional noise 5. The digital signal reception analysis apparatus according to claim 2, wherein the digital signal reception analysis apparatus comprises:
JP2001371871A 2001-12-05 2001-12-05 Digital signal reception analyzer Expired - Fee Related JP3773839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001371871A JP3773839B2 (en) 2001-12-05 2001-12-05 Digital signal reception analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001371871A JP3773839B2 (en) 2001-12-05 2001-12-05 Digital signal reception analyzer

Publications (2)

Publication Number Publication Date
JP2003174429A JP2003174429A (en) 2003-06-20
JP3773839B2 true JP3773839B2 (en) 2006-05-10

Family

ID=19180855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001371871A Expired - Fee Related JP3773839B2 (en) 2001-12-05 2001-12-05 Digital signal reception analyzer

Country Status (1)

Country Link
JP (1) JP3773839B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101171815A (en) * 2005-03-01 2008-04-30 高通股份有限公司 Channel estimate optimization for multiple transmit modes
WO2006098011A1 (en) 2005-03-16 2006-09-21 Fujitsu Limited Radio communication device in multi-input system and channel estimation and separation method
US7848463B2 (en) 2005-04-07 2010-12-07 Qualcomm Incorporated Adaptive time-filtering for channel estimation in OFDM system
JP4591969B2 (en) * 2005-12-27 2010-12-01 三洋電機株式会社 COMMUNICATION METHOD, RADIO DEVICE USING THE SAME, AND COMMUNICATION SYSTEM
JP2009088984A (en) 2007-09-28 2009-04-23 Kyocera Corp Reception device, radio communication terminal, radio base station and reception method
WO2012114769A1 (en) * 2011-02-25 2012-08-30 京セラ株式会社 Channel estimation device and channel estimation method
JP2012178635A (en) * 2011-02-25 2012-09-13 Kyocera Corp Channel estimation apparatus and channel estimation method
JP2012178634A (en) * 2011-02-25 2012-09-13 Kyocera Corp Channel estimation apparatus and channel estimation method
JP5968593B2 (en) * 2011-02-25 2016-08-10 京セラ株式会社 Channel estimation apparatus and channel estimation method
JP2013038746A (en) * 2011-08-11 2013-02-21 Nec Corp Radio communication device, radio communication method and computer program
RU2558611C1 (en) * 2014-01-10 2015-08-10 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАОУ ВО "СПбПУ") Method of processing binary data signals received in noise environment

Also Published As

Publication number Publication date
JP2003174429A (en) 2003-06-20

Similar Documents

Publication Publication Date Title
US7701841B2 (en) OFDM demodulating apparatus and method
US7570684B2 (en) Method for joint time synchronization and frequency offset estimation in OFDM system and apparatus of the same
US6774829B2 (en) Apparatus and method for receiving signals including data carriers and pilot carriers modulated by multi-carrier modulation method
US7664189B2 (en) OFDM demodulator, receiver, and method
JP2005287043A (en) Receiver
US7310393B2 (en) Method and apparatus for synchronization of the OFDM systems
KR100625686B1 (en) Mobile termile apparatus capable of efficiently measuring cnir and cnir measuring method thereof
US20080198942A1 (en) Long echo detection and channel estimation for ofdm systems
JP2008501275A (en) Signal processing method and signal processor in OFDM system
US7424048B2 (en) Guard interval analysis method and apparatus
EP1643702A2 (en) Apparatus and method for estimating delay spread of multi-path fading channel in wireless communication system
US20040218519A1 (en) Apparatus and method for estimation of channel state information in OFDM receivers
US8565295B1 (en) Low-complexity channel noise reduction method and apparatus for multi-carrier mode in wireless LANS
JP3773839B2 (en) Digital signal reception analyzer
EP0963086A2 (en) Error correcting apparatus for dealing with frequency selective noise
EP1195960B1 (en) Demapping in a multicarrier receiver
US8040962B2 (en) Channel response calculation in an OFDM receiver
US7978776B2 (en) Channel estimation device and related method of an orthogonal frequency division multiplexing system
KR100812351B1 (en) Apparatus for generating down link signal, and method and apparatus for determining the log-likelihood ratio in cellular system
JP5995703B2 (en) Equalizer, equalization method, and receiver
KR101294283B1 (en) Method for estimating channel based on cross correlation of ofdm system and device thereof
JP2002232389A (en) Ofdm receiver
JP3757144B2 (en) OFDM receiving apparatus and OFDM signal receiving method
JP2007202082A (en) Ofdm demodulating device and method
KR20030016751A (en) Signal to noise ratio estimation apparatus and method using frequency component information

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140224

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees