JP3773587B2 - Purification method for organic compound monomers - Google Patents

Purification method for organic compound monomers Download PDF

Info

Publication number
JP3773587B2
JP3773587B2 JP11697696A JP11697696A JP3773587B2 JP 3773587 B2 JP3773587 B2 JP 3773587B2 JP 11697696 A JP11697696 A JP 11697696A JP 11697696 A JP11697696 A JP 11697696A JP 3773587 B2 JP3773587 B2 JP 3773587B2
Authority
JP
Japan
Prior art keywords
organic compound
monomer
vapor deposition
vacuum
deposition polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11697696A
Other languages
Japanese (ja)
Other versions
JPH09279332A (en
Inventor
善和 高橋
昌敏 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP11697696A priority Critical patent/JP3773587B2/en
Publication of JPH09279332A publication Critical patent/JPH09279332A/en
Application granted granted Critical
Publication of JP3773587B2 publication Critical patent/JP3773587B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機化合物モノマーを蒸発させて重合を行う蒸着重合に用いられる有機化合物モノマーの精製方法に関する。
【0002】
【従来の技術】
近年、真空中で有機化合物の有機化合物モノマーを蒸発させてこれを基体上で重合させることによって高分子薄膜を形成する蒸着重合法が提案されている。
【0003】
図6は、一般的な蒸着重合装置の一例を示すものである。
図6に示すように、この蒸着重合装置101は、気密状態を保持可能な処理室102を有し、この処理室102は、図示しない外部の真空ポンプその他の真空排気系に接続されている。そして、処理室102内の上部には、高分子薄膜を形成すべき基板103が基板ホルダ104によって下向きに保持され、また、基板ホルダ104の背面側には、基板103を所望の温度に加熱するためのヒーター105が設けられている。
【0004】
一方、処理室102の下方には、基板103に対抗するように、各有機化合物モノマーa、bを蒸発させるための蒸発源が設けられる。この蒸発源は、例えばガラスからなる蒸発用容器106、107が設けられるとともに、各蒸発用容器106、107の近傍に、加熱用のヒーター108、109と温度センサ110、111が設けられ、これらによって有機化合物モノマーa、bの蒸発レートが常に一定に保たれるように構成される。
【0005】
また、蒸発用容器106、107の間には、各有機化合物モノマーa、bの蒸気の混合を防止するための仕切板112が設けられ、また、加熱用のヒーター108、109の上方には、有機化合物モノマーa、bの蒸気の混入を防止するためのシャッター113が設けられている。
【0006】
従来、このような装置を用いて高分子薄膜を形成する例として、4、4'−ジフェニルメタンジイソシアナート(MDI)と4、4'−ジアミノジフェニルメタン(MDA)を用い、基板103上にポリ尿素膜を形成する方法が知られている。
【0007】
【発明が解決しようとする課題】
しかしながら、このような従来の蒸着重合方法においては、次のような問題があった。
すなわち、上述のMDIとMDAを真空中でそれぞれ70℃、100℃に加熱して蒸発させ、基板103にポリ尿素膜を形成しようとした場合、同じ温度条件で連続して蒸着し続けると、蒸着の初期の段階で得られた膜と12時間程度経過後に得られた膜とでは薄膜のモノマーの組成比が同じではなく、そのため、安定した膜の絶縁特性、圧電、焦電特性が得られないという問題があった。
【0008】
すなわち、従来は、有機化合物のモノマーは市販品をそのまま蒸着重合に用いていたので、モノマー中に含有する不純物がモノマーの加熱中に蒸発し、蒸発面の近傍において不純物による蒸気がモノマーの蒸発を阻害するため、モノマーの安定した蒸発速度が得られず、結果的に生成した高分子薄膜に含まれるモノマーの組成比が異なってしまうという問題があった。
【0009】
この場合、24時間程度連続して蒸着を行えば、不純物が概ね放出されるため、モノマーの組成比はほぼ一定になるが、これでは、不純物の除去の効率が悪く、ひいては蒸着重合自体を効率良く行うことができないという問題が生じていた。
【0010】
本発明は、このような従来の技術の課題を解決するためになされたもので、有機化合物モノマーに含まれる不純物を効率良く除去し、その蒸着速度を安定化しうる有機化合物モノマーの精製方法を提供することを目的とするものである。
【0011】
【課題を解決するための手段】
本発明者等は、前記課題を解決すべく鋭意研究を重ねた結果、真空中において有機化合物モノマーを所定の温度で所定の時間加熱することにより、蒸着重合の際の加熱時における蒸発速度が安定する有機化合物モノマーが得られることを見い出し、本発明を完成するに至った。
【0012】
すなわち、請求項1記載の発明は、真空中で複数の有機化合物モノマーを蒸発させて基体上で重合を行う蒸着重合に用いる有機化合物モノマーの精製方法であって、上記蒸着重合を行う前に、上記複数の有機化合物モノマーのそれぞれについて、不純物除去用の真空槽内において蒸発速度が当該蒸着重合の際のそれぞれの蒸発速度より低くなる温度で所定の時間加熱し、当該複数の有機化合物モノマー中の不純物を除去することを特徴とする。
また、請求項2記載の発明のように、請求項1記載の発明において、モノマーの蒸発速度が2×10-8g/cm2・秒以下となる温度に当該モノマーを加熱して当該モノマーに含まれる不純物を除去することも効果的である。この場合、モノマーの蒸発速度の下限は特に限定されないが、蒸発速度が1×10-10g/cm2・秒程度より大きくなる温度に当該モノマーを加熱することがより効果的である。
さらに、請求項3記載の発明のように、請求項1又は2のいずれか1項記載の発明において、当該複数の有機化合物モノマーの蒸着重合による成膜がポリ尿素膜の形成である場合にも効果的である。
さらにまた、請求項4記載の発明のように、請求項3記載の発明において、当該有機化合物モノマー中の不純物がアニリン又は4−メチル−2,6−ジターシャルブチルフェノールである場合にも効果的である。
一方、有機化合物モノマーとしては、種々のものを用いることができるが、特に、請求項記載の発明のように、有機化合物モノマーとして、4、4'−ジフェニルメタンジイソシアナート(MDI)と、4、4'−ジアミノジフェニルメタン(MDA)を用いるとより効果的である。
【0013】
発明の場合、蒸着重合を行う前に、複数の有機化合物モノマー(例えば、MDI、MDA等)をそれぞれ加熱して当該モノマー中の不純物を除去することから、蒸着重合における各モノマーの加熱中に不純物による蒸気は発生せず、各有機化合物モノマーの蒸発が円滑に行われるため、蒸着重合の際、モノマーの安定した蒸発速度が得られる。その結果、生成した高分子薄膜に含まれるモノマーの組成比が一定に保たれる。
この場合、真空中において蒸発速度が蒸着重合の際のそれぞれの蒸発速度より低くなる温度、特に、モノマーの蒸発速度が2×10-8g/cm2・秒以下となる温度に複数の有機化合物モノマーを加熱すれば、加熱時に各有機化合物モノマーはさほど蒸発せず、不純物が主体となって蒸発し除去されるようになる。
また、本発明によれば、複数の有機化合物モノマーのそれぞれについて、不純物除去用の真空槽内において加熱して不純物の除去を行うことから、蒸着重合装置内において長時間蒸発させることによってモノマーの組成比を安定化させる従来の方法に比べ、蒸着重合装置の使用効率を向上させることができる。
【0014】
【発明の実施の形態】
以下、本発明に係る有機化合物モノマーの精製方法の実施の形態を図面を参照して詳細に説明する。
【0015】
図1は、本発明が適用される真空処理装置の一例の概略構成を示すものである。
図1に示すように、この真空処理装置1は、気密状態を保持可能な真空槽2を有し、この真空槽2は、真空バルブ6を介して図示しない外部の真空ポンプその他の真空排気系7に接続されている。
【0016】
真空槽2の周囲には、真空槽2を加熱するためのヒーター3が巻き付けられている。この場合、図1に示すように、ヒーター3は、均一な加熱を行うため真空槽2の上下左右の全周囲にわたって巻き付けられている。
【0017】
真空槽2は、有機化合物モノマー5を収容するための容器4が複数個配置可能となっている。本実施の形態においては、例えば、3つの容器4A、4B、4Cが配置され、各容器4A、4B、4Cに、MDI、MDA等の有機化合物モノマー5A、5B、5Cが収容されている。なお、容器4は、蒸着重合装置内に配される蒸発用容器又は試薬瓶のいずれであってもよい。
【0018】
このような構成の真空処理装置1を用いて有機化合物モノマー5の精製を行う場合には、有機化合物モノマー5を注入した容器4を真空槽2の内部に配置し、真空槽2の真空度を高真空(1×10-3Pa程度)に調整するとともに、ヒーター3によって真空槽2を所定時間加熱する。
【0019】
本実施の形態においては、真空中で有機化合物モノマー5を加熱して不純物を除去することから、蒸着重合におけるモノマーの加熱中に不純物による蒸気は発生せず、その蒸発が円滑に行われるため、有機化合物モノマー5の安定した蒸発速度が得られる。その結果、生成した高分子薄膜におけるモノマーの組成比を一定に保つことができ、その絶縁特性、圧電、焦電特性を安定させることができる。
【0020】
この場合、真空中において蒸発速度が蒸着重合の際の蒸発速度より低くなるように、モノマーの蒸発速度が2×10-8g/cm2・秒以下となる温度に有機化合物モノマーを加熱すれば、加熱時に当該有機化合物モノマーはほとんど蒸発せず、不純物が主体となって蒸発し除去されるようになるため、効率良く不純物の除去を行うことができる。
【0021】
また、本実施の形態によれば、真空槽2内に複数個の容器4を収容することができるため、蒸着重合装置内において長時間蒸発させることによってモノマーの組成比を安定化させる従来の方法に比べ、蒸着重合装置の使用効率を向上させることができる。
【0022】
【実施例】
以下、本発明に係る有機化合物モノマーの精製方法の実施例を詳細に説明する。
図1に示すように、有機化合物モノマー5AとしてMDIを注入した容器4Aを真空槽2の内部に配置し、高真空中(1×10-3Pa)において47℃に加熱し、60時間放置して不純物の除去を行った。
【0023】
また、有機化合物モノマー5BとしてMDAを注入した容器4Bを真空槽2の内部に配置し、高真空中(1×10-3Pa)において60℃に加熱し、12時間放置して不純物の除去を行った。
【0024】
そして、これらの容器4A、4Bを一般的な蒸着重合装置に装着し、所定の真空度まで真空排気した後に、それぞれの容器4A、4Bを70℃、100℃に加熱し、有機化合物モノマー5A、5Bを蒸発させて基板上にポリ尿素膜を形成した。
【0025】
このような方法によりポリ尿素膜の連続蒸着を行ったところ、蒸着開始直後に形成されたポリ尿素膜の比誘電率は4.3となった。さらに、蒸着開始1時間後のポリ尿素膜の比誘電率は4.0となり、その後、連続して30時間にわたって比誘電率が4.0±0.05のポリ尿素膜が安定して得られた。
【0026】
次に、本実施例の作用を図2〜図4を用いて詳細に説明する。
図2は、市販されている有機化合物モノマーであるMDIを真空中で47℃に加熱した場合に得られる質量スペクトルの代表的なピークの経時変化を示すグラフである。
【0027】
ここで、MDIは分子量が250であることから、m/e(mはイオンの質量、eはイオンの電荷)=250である曲線AはMDIを表し、また、市販のMDIに添加されている4−メチル−2,6−ジターシャルブチルフェノールの分子量が205であることから、m/e=205である曲線Bはこれによるものである。
【0028】
図2に示すように、MDIを真空中で47℃に加熱すると、不純物成分のピーク強度を示す曲線Bが時間とともに低下し、約60時間経過後にモノマーに含まれる不純物成分が概ね抜けることが理解される。
【0029】
一方、図3は、市販されている有機化合物モノマーであるMDAを真空中で60℃に加熱した場合に得られる質量スペクトルの代表的なピークの経時変化を示すグラフである。
【0030】
ここで、MDAは分子量が198であることから、m/e=198である曲線CはMDAを表すが、m/e=93である曲線Dは、市販のMDAに不純物として含まれているアニリンによるものと推定される。
【0031】
図3に示すように、MDAモノマーを真空中で60℃に加熱すると、不純物成分のピーク強度を示す曲線Dが時間とともに低下し、約10時間経過後にモノマーに含まれる不純物成分が概ね抜けることが理解される。
【0032】
図4は、MDIの蒸発温度と蒸発速度との関係を示すグラフである。
図4から理解されるように、実施例におけるMDIの蒸発温度である47℃では、モノマーとしてのMDIの蒸発量は小さく、蒸着重合の際の蒸発温度である70℃の場合の蒸発量より一桁以上小さい値である。したがって、本実施例の方法によれば、MDAモノマーについて効率の良い不純物ガスの除去が可能になる。
【0033】
図5は、MDAの蒸発温度と蒸発速度との関係を示すグラフである。
図5から理解されるように、実施例におけるMDIの蒸発温度である60℃では、モノマーとしてのMDIの蒸発量はきわめて小さく、蒸着重合の際の蒸発温度である100℃の場合の蒸発量より二桁近く小さい値である。したがって、本実施例の方法によれば、MDIについても効率の良い不純物ガスの除去が可能になる。
【0034】
【発明の効果】
以上述べたように本発明によれば、蒸着重合におけるモノマーの加熱中に不純物による蒸気は発生せず、その蒸発が円滑に行われるため、その蒸着速度を安定化することができる。
これにより、蒸着重合により生成した高分子薄膜におけるモノマーの組成比を一定に保つことができ、その絶縁特性、圧電、焦電特性を安定させることができるという効果がある。
【図面の簡単な説明】
【図1】 本発明が適用される真空処理装置の一例を示す概略構成図
【図2】 市販されているモノマーであるMDIを真空中で47℃に加熱した場合に得られる質量スペクトルの代表的なピークの経時変化を示すグラフ
【図3】 市販されているモノマーであるMDAを真空中で60℃に加熱した場合に得られる質量スペクトルの代表的なピークの経時変化を示すグラフ
【図4】 MDIの蒸発温度と蒸発速度との関係を示すグラフ
【図5】 MDAの蒸発温度と蒸発速度との関係を示すグラフ
【図6】 一般的な蒸着重合装置の一例を示す概略構成図
【符号の説明】
1…真空処理装置、2…真空槽、3…ヒーター、4(4A、4B、4C)…容器、5(5A、5B、5C)…有機化合物モノマー、6…真空バルブ、7…真空排気系
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for purifying an organic compound monomer used for vapor deposition polymerization in which an organic compound monomer is evaporated to perform polymerization.
[0002]
[Prior art]
In recent years, a vapor deposition polymerization method has been proposed in which a polymer thin film is formed by evaporating an organic compound monomer of an organic compound in a vacuum and polymerizing it on a substrate.
[0003]
FIG. 6 shows an example of a general vapor deposition polymerization apparatus.
As shown in FIG. 6, this vapor deposition polymerization apparatus 101 has a processing chamber 102 capable of maintaining an airtight state, and this processing chamber 102 is connected to an external vacuum pump (not shown) or other vacuum exhaust system. A substrate 103 on which a polymer thin film is to be formed is held downward by the substrate holder 104 in the upper part of the processing chamber 102, and the substrate 103 is heated to a desired temperature on the back side of the substrate holder 104. A heater 105 is provided.
[0004]
On the other hand, an evaporation source for evaporating the organic compound monomers a and b is provided below the processing chamber 102 so as to oppose the substrate 103. The evaporation source is provided with evaporation containers 106 and 107 made of glass, for example, and heating heaters 108 and 109 and temperature sensors 110 and 111 are provided in the vicinity of the evaporation containers 106 and 107, respectively. It is configured so that the evaporation rate of the organic compound monomers a and b is always kept constant.
[0005]
A partition plate 112 is provided between the evaporation containers 106 and 107 to prevent mixing of the vapors of the organic compound monomers a and b, and above the heaters 108 and 109 for heating, A shutter 113 is provided for preventing vapor mixture of the organic compound monomers a and b.
[0006]
Conventionally, as an example of forming a polymer thin film using such an apparatus, 4,4′-diphenylmethane diisocyanate (MDI) and 4,4′-diaminodiphenylmethane (MDA) are used. A method for forming a film is known.
[0007]
[Problems to be solved by the invention]
However, such a conventional vapor deposition polymerization method has the following problems.
That is, when MDI and MDA described above are evaporated by heating to 70 ° C. and 100 ° C., respectively, in a vacuum to form a polyurea film on the substrate 103, if the vapor deposition is continued under the same temperature conditions, The film composition obtained in the initial stage of the film and the film obtained after about 12 hours are not the same in the composition ratio of the monomer of the thin film, so that stable insulating properties, piezoelectric properties, and pyroelectric properties cannot be obtained. There was a problem.
[0008]
That is, in the past, commercially available monomers of organic compounds were used for vapor deposition polymerization as they were, so the impurities contained in the monomers evaporated during the heating of the monomer, and the vapors of the impurities evaporated the monomer near the evaporation surface. This hinders the problem that a stable evaporation rate of the monomer cannot be obtained, and the composition ratio of the monomer contained in the resulting polymer thin film is different.
[0009]
In this case, if vapor deposition is continuously performed for about 24 hours, impurities are almost released, so that the composition ratio of the monomer becomes almost constant. However, in this case, the efficiency of removing impurities is poor, and the vapor deposition polymerization itself is efficient. The problem of not being able to do well occurred.
[0010]
The present invention has been made to solve the problems of the conventional technology, and provides a method for purifying an organic compound monomer capable of efficiently removing impurities contained in the organic compound monomer and stabilizing the deposition rate. It is intended to do.
[0011]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have heated the organic compound monomer at a predetermined temperature in a vacuum for a predetermined time, thereby stabilizing the evaporation rate during heating during vapor deposition polymerization. The present inventors have found that an organic compound monomer can be obtained, and have completed the present invention.
[0012]
That is, the invention described in claim 1 is a method for purifying an organic compound monomer used for vapor deposition polymerization in which a plurality of organic compound monomers are evaporated in a vacuum to perform polymerization on a substrate, and before performing the vapor deposition polymerization, for each of the plurality of organic compound monomer, evaporation rate in a vacuum chamber for removing impurities is heated for a predetermined time in each of the evaporation rate from the lower temperature in the said deposition polymerization, of the plurality of organic compound in the monomer It is characterized by removing impurities.
Further, as in the invention according to claim 2, in the invention according to claim 1, the monomer is heated to a temperature at which the evaporation rate of the monomer is 2 × 10 −8 g / cm 2 · sec or less, and the monomer is converted into the monomer. It is also effective to remove impurities contained therein . In this case, the lower limit of the evaporation rate of the monomer is not particularly limited, but it is more effective to heat the monomer to a temperature at which the evaporation rate is higher than about 1 × 10 −10 g / cm 2 · sec.
Furthermore, as in the invention of claim 3, in the invention of claim 1 or 2, the film formation by vapor deposition polymerization of the plurality of organic compound monomers is the formation of a polyurea film. It is effective.
Furthermore, as in the invention according to claim 4, in the invention according to claim 3, it is also effective when the impurity in the organic compound monomer is aniline or 4-methyl-2,6-ditertiary butylphenol. is there.
On the other hand, various organic compound monomers can be used. In particular, as in the invention described in claim 5 , 4, 4′-diphenylmethane diisocyanate (MDI) and 4 It is more effective to use 4′-diaminodiphenylmethane (MDA).
[0013]
In the case of the present invention, before performing vapor deposition polymerization, a plurality of organic compound monomers (for example, MDI, MDA, etc.) are heated to remove impurities in the monomers, so that during the heating of each monomer in vapor deposition polymerization, Since vapor due to impurities is not generated and each organic compound monomer is evaporated smoothly, a stable evaporation rate of the monomer can be obtained during vapor deposition polymerization . As a result, the composition ratio of the monomers contained in the generated polymer thin film is kept constant.
In this case, each of the evaporation rate from the lower temperature in the evaporation rate vapor deposition polymerization in a vacuum, in particular, motor Nomar plurality of organic to a temperature evaporation rate is 2 × 10 -8 g / cm 2 · sec or less for When the compound monomer is heated, each organic compound monomer does not evaporate so much during heating, and the impurities are mainly evaporated and removed.
Further, according to the present invention, each of the plurality of organic compound monomers is heated in the vacuum tank for removing impurities to remove the impurities, so that the monomer composition is obtained by evaporating for a long time in the vapor deposition polymerization apparatus. Compared with the conventional method of stabilizing the ratio, the use efficiency of the vapor deposition polymerization apparatus can be improved.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a method for purifying an organic compound monomer according to the present invention will be described in detail with reference to the drawings.
[0015]
FIG. 1 shows a schematic configuration of an example of a vacuum processing apparatus to which the present invention is applied.
As shown in FIG. 1, this vacuum processing apparatus 1 has a vacuum chamber 2 capable of maintaining an airtight state, and this vacuum chamber 2 is connected to an external vacuum pump (not shown) or other vacuum exhaust system via a vacuum valve 6. 7 is connected.
[0016]
A heater 3 for heating the vacuum chamber 2 is wound around the vacuum chamber 2. In this case, as shown in FIG. 1, the heater 3 is wound around the entire top, bottom, left, and right of the vacuum chamber 2 in order to perform uniform heating.
[0017]
In the vacuum chamber 2, a plurality of containers 4 for accommodating the organic compound monomer 5 can be arranged. In the present embodiment, for example, three containers 4A, 4B, and 4C are arranged, and organic compounds monomers 5A, 5B, and 5C such as MDI and MDA are accommodated in the containers 4A, 4B, and 4C. The container 4 may be either an evaporation container or a reagent bottle arranged in the vapor deposition polymerization apparatus.
[0018]
When purifying the organic compound monomer 5 using the vacuum processing apparatus 1 having such a configuration, the container 4 into which the organic compound monomer 5 is injected is placed inside the vacuum chamber 2, and the degree of vacuum of the vacuum chamber 2 is set. While adjusting to a high vacuum (about 1 × 10 −3 Pa), the vacuum chamber 2 is heated by the heater 3 for a predetermined time.
[0019]
In the present embodiment, the organic compound monomer 5 is heated in vacuum to remove the impurities, so that vapor due to the impurities is not generated during the heating of the monomer in the vapor deposition polymerization, and the evaporation is performed smoothly. A stable evaporation rate of the organic compound monomer 5 is obtained. As a result, the composition ratio of the monomer in the generated polymer thin film can be kept constant, and the insulation characteristics, piezoelectricity, and pyroelectric characteristics can be stabilized.
[0020]
In this case, the organic compound monomer 5 is heated to a temperature at which the evaporation rate of the monomer is 2 × 10 −8 g / cm 2 · sec or less so that the evaporation rate in vacuum is lower than the evaporation rate during vapor deposition polymerization. For example, the organic compound monomer 5 hardly evaporates at the time of heating, and the impurities are mainly evaporated and removed, so that the impurities can be efficiently removed.
[0021]
Further, according to the present embodiment, since a plurality of containers 4 can be accommodated in the vacuum chamber 2, a conventional method of stabilizing the monomer composition ratio by evaporating for a long time in the vapor deposition polymerization apparatus. Compared to the above, the use efficiency of the vapor deposition polymerization apparatus can be improved.
[0022]
【Example】
Hereinafter, examples of the method for purifying an organic compound monomer according to the present invention will be described in detail.
As shown in FIG. 1, a container 4A filled with MDI as an organic compound monomer 5A is placed inside the vacuum chamber 2, heated to 47 ° C. in a high vacuum (1 × 10 −3 Pa), and left for 60 hours. The impurities were removed.
[0023]
Further, a container 4B filled with MDA as the organic compound monomer 5B is placed inside the vacuum chamber 2, heated to 60 ° C. in a high vacuum (1 × 10 −3 Pa), and left for 12 hours to remove impurities. went.
[0024]
Then, these containers 4A and 4B are mounted on a general vapor deposition polymerization apparatus and evacuated to a predetermined degree of vacuum, and then the respective containers 4A and 4B are heated to 70 ° C. and 100 ° C. to obtain organic compound monomers 5A, 5B was evaporated to form a polyurea film on the substrate.
[0025]
When continuous deposition of the polyurea film was performed by such a method, the relative permittivity of the polyurea film formed immediately after the start of deposition was 4.3. Further, the relative dielectric constant of the polyurea film after 1 hour from the start of deposition is 4.0, and thereafter, a polyurea film having a relative dielectric constant of 4.0 ± 0.05 is stably obtained over 30 hours. It was.
[0026]
Next, the effect | action of a present Example is demonstrated in detail using FIGS.
FIG. 2 is a graph showing a change with time of a typical peak of a mass spectrum obtained when MDI, which is a commercially available organic compound monomer, is heated to 47 ° C. in a vacuum.
[0027]
Here, since MDI has a molecular weight of 250, curve A where m / e (m is the mass of the ion, e is the charge of the ion) = 250 represents MDI, and is added to the commercially available MDI. Since the molecular weight of 4-methyl-2,6-ditertiary butylphenol is 205, curve B with m / e = 205 is attributed to this.
[0028]
As shown in FIG. 2, it is understood that when MDI is heated to 47 ° C. in a vacuum, the curve B showing the peak intensity of the impurity component decreases with time, and the impurity component contained in the monomer is almost eliminated after about 60 hours. Is done.
[0029]
On the other hand, FIG. 3 is a graph showing a change with time of a typical peak of a mass spectrum obtained when MDA, which is a commercially available organic compound monomer, is heated to 60 ° C. in a vacuum.
[0030]
Here, since MDA has a molecular weight of 198, curve C with m / e = 198 represents MDA, but curve D with m / e = 93 represents aniline contained as an impurity in commercially available MDA. It is estimated that
[0031]
As shown in FIG. 3, when the MDA monomer is heated to 60 ° C. in a vacuum, the curve D indicating the peak intensity of the impurity component decreases with time, and the impurity component contained in the monomer is almost eliminated after about 10 hours. Understood.
[0032]
FIG. 4 is a graph showing the relationship between the evaporation temperature of MDI and the evaporation rate.
As can be seen from FIG. 4, at the evaporation temperature of 47 ° C. of MDI in the example, the evaporation amount of MDI as a monomer is small, which is one more than the evaporation amount at 70 ° C., which is the evaporation temperature during vapor deposition polymerization. The value is more than one digit. Therefore, according to the method of this example, the impurity gas can be efficiently removed from the MDA monomer.
[0033]
FIG. 5 is a graph showing the relationship between the evaporation temperature of MDA and the evaporation rate.
As can be seen from FIG. 5, the evaporation amount of MDI as a monomer is extremely small at 60 ° C., which is the evaporation temperature of MDI in the example, and is smaller than the evaporation amount at 100 ° C., which is the evaporation temperature during vapor deposition polymerization. The value is almost two orders of magnitude smaller. Therefore, according to the method of the present embodiment, it is possible to efficiently remove the impurity gas even for MDI.
[0034]
【The invention's effect】
According to the present invention as mentioned above, the steam due to impurities during heating of the monomer in the vapor deposition polymerization does not occur, since the evaporation is carried out smoothly, it is possible to stabilize the deposition rate of that.
Thereby, the composition ratio of the monomer in the polymer thin film formed by vapor deposition polymerization can be kept constant, and there is an effect that its insulating characteristics, piezoelectricity, and pyroelectric characteristics can be stabilized.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an example of a vacuum processing apparatus to which the present invention is applied. FIG. 2 is a representative mass spectrum obtained when MDI, which is a commercially available monomer, is heated to 47 ° C. in a vacuum. [Fig. 3] A graph showing a time-dependent change of a typical peak of a mass spectrum obtained when MDA, which is a commercially available monomer, is heated to 60 ° C. in a vacuum. [Fig. 4] FIG. 5 is a graph showing the relationship between the evaporation temperature and the evaporation rate of MDI. FIG. 5 is a graph showing the relationship between the evaporation temperature and the evaporation rate of MDA. FIG. 6 is a schematic diagram showing an example of a general vapor deposition polymerization apparatus. Explanation】
DESCRIPTION OF SYMBOLS 1 ... Vacuum processing apparatus, 2 ... Vacuum tank, 3 ... Heater, 4 (4A, 4B, 4C) ... Container, 5 (5A, 5B, 5C) ... Organic compound monomer, 6 ... Vacuum valve, 7 ... Vacuum exhaust system

Claims (5)

真空中で複数の有機化合物モノマーを蒸発させて基体上で重合を行う蒸着重合に用いる有機化合物モノマーの精製方法であって、
上記蒸着重合を行う前に、上記複数の有機化合物モノマーのそれぞれについて、不純物除去用の真空槽内の真空中において蒸発速度が当該蒸着重合の際のそれぞれの蒸発速度より低くなる温度で所定の時間加熱し、当該複数の有機化合物モノマー中の不純物を除去することを特徴とする有機化合物モノマーの精製方法。
A method for purifying an organic compound monomer used for vapor deposition polymerization in which a plurality of organic compound monomers are evaporated in a vacuum and polymerized on a substrate,
Before performing the vapor deposition polymerization, for each of the plurality of organic compound monomer, each of the evaporation predetermined time lower than consisting temperature rate during evaporation rate the vapor deposition polymerization in a vacuum in the vacuum chamber for removing impurities A method for purifying an organic compound monomer, which comprises heating and removing impurities in the plurality of organic compound monomers.
モノマーの蒸発速度が2×10-8g/cm2・秒以下となる温度に当該モノマーを加熱して当該モノマーに含まれる不純物を除去することを特徴とする請求項1記載の有機化合物モノマーの精製方法。2. The organic compound monomer according to claim 1, wherein the monomer is heated to a temperature at which the evaporation rate of the monomer is 2 × 10 −8 g / cm 2 · sec or less to remove impurities contained in the monomer. Purification method. 当該複数の有機化合物モノマーの蒸着重合による成膜がポリ尿素膜の形成であることを特徴とする請求項1又は2のいずれか1項記載の有機化合物モノマーの精製方法。3. The method for purifying an organic compound monomer according to claim 1, wherein the film formation by vapor deposition polymerization of the plurality of organic compound monomers is formation of a polyurea film. 当該有機化合物モノマー中の不純物がアニリン又は4−メチル−2,6−ジターシャルブチルフェノールであることを特徴とする請求項3記載の有機化合物モノマーの精製方法。The method for purifying an organic compound monomer according to claim 3, wherein the impurity in the organic compound monomer is aniline or 4-methyl-2,6-ditertiary butylphenol. 有機化合物モノマーが4、4'−ジフェニルメタンジイソシアナート(MDI)と、4、4 ' −ジアミノジフェニルメタン(MDA)であることを特徴とする請求項1乃至4のいずれか1項記載の有機化合物モノマーの精製方法。Organic compound monomer is 4,4'-diphenylmethane diisocyanate and (MDI), 4,4 '- diaminodiphenylmethane (MDA) organic compound monomer according to any one of claims 1 to 4, characterized in that it is Purification method.
JP11697696A 1996-04-15 1996-04-15 Purification method for organic compound monomers Expired - Fee Related JP3773587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11697696A JP3773587B2 (en) 1996-04-15 1996-04-15 Purification method for organic compound monomers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11697696A JP3773587B2 (en) 1996-04-15 1996-04-15 Purification method for organic compound monomers

Publications (2)

Publication Number Publication Date
JPH09279332A JPH09279332A (en) 1997-10-28
JP3773587B2 true JP3773587B2 (en) 2006-05-10

Family

ID=14700423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11697696A Expired - Fee Related JP3773587B2 (en) 1996-04-15 1996-04-15 Purification method for organic compound monomers

Country Status (1)

Country Link
JP (1) JP3773587B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4570403B2 (en) * 2004-06-28 2010-10-27 日立造船株式会社 Evaporation apparatus, vapor deposition apparatus, and method for switching evaporation apparatus in vapor deposition apparatus
EP2000299A4 (en) 2006-03-24 2009-08-05 Konica Minolta Med & Graphic Transparent barrier sheet and method for producing transparent barrier sheet
WO2007111076A1 (en) 2006-03-24 2007-10-04 Konica Minolta Medical & Graphic, Inc. Transparent barrier sheet and method for producing transparent barrier sheet

Also Published As

Publication number Publication date
JPH09279332A (en) 1997-10-28

Similar Documents

Publication Publication Date Title
US5119760A (en) Methods and apparatus for material deposition
JPH09502301A (en) Method for processing semiconductor wafer
JP3516819B2 (en) Evaporation system for monomer, vacuum processing chamber provided with the same, and method for forming organic compound film
JP3773587B2 (en) Purification method for organic compound monomers
JPS6178463A (en) Formation of synthetic resin film
CN105070646B (en) A kind of preparation method of low stress nitride silicon thin film
US4649024A (en) Method for forming evaporated pnictide and alkali metal polypnictide films
JPH11172418A (en) Film forming device
JP2912756B2 (en) Apparatus and method for forming synthetic resin film
JPH09272703A (en) Vaporizing source for organic compound and vapor-deposition polymerization apparatus using the same
JP3059972B2 (en) Manufacturing method of organic optical thin film and its equipment
Wang et al. Piezoelectric and dielectric properties of aromatic polyureas synthesized by vapor deposition polymerization
JPH0718000B2 (en) Method for forming synthetic resin film
JP3745051B2 (en) Film thickness measurement method
US4214018A (en) Method for making adherent pinhole free aluminum films on pyroelectric and/or piezoelectric substrates
JPS60197730A (en) Formation of polyimide film
JPH05171412A (en) Production of material for vapor-depositing silicon monoxide
JPH0776416B2 (en) Method for forming polyimide resin coating
JPH03143506A (en) Method and device for refining
JP3847863B2 (en) Vacuum apparatus and manufacturing method thereof
JPS60178618A (en) Forming method of thin-film
JP3957811B2 (en) Method for forming low dielectric constant polymer film
WO2006003231A1 (en) Phosphorus effusion cell arrangement and method for producing molecular phosphorus
JP3481395B2 (en) Method of forming interlayer insulating film
JPH0734225A (en) Production of conductive polymer/ion exchanger composite thin film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051215

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140224

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees