JP3773187B2 - Desalination wastewater treatment method and apparatus - Google Patents

Desalination wastewater treatment method and apparatus Download PDF

Info

Publication number
JP3773187B2
JP3773187B2 JP2002098518A JP2002098518A JP3773187B2 JP 3773187 B2 JP3773187 B2 JP 3773187B2 JP 2002098518 A JP2002098518 A JP 2002098518A JP 2002098518 A JP2002098518 A JP 2002098518A JP 3773187 B2 JP3773187 B2 JP 3773187B2
Authority
JP
Japan
Prior art keywords
water
electrode
wastewater
treated
desalted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002098518A
Other languages
Japanese (ja)
Other versions
JP2003290775A (en
Inventor
円 田辺
正一 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2002098518A priority Critical patent/JP3773187B2/en
Publication of JP2003290775A publication Critical patent/JP2003290775A/en
Application granted granted Critical
Publication of JP3773187B2 publication Critical patent/JP3773187B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Description

【0001】
【発明の属する技術分野】
本発明は、例えば半導体デバイス製造工程で使用される洗浄用超純水、ボイラ給水、医製薬製造に用いる注射用水の製造装置から排出される脱塩排水の処理方法及び処理装置に関するものである。
【0002】
【従来の技術】
半導体ウエハのような極めて清浄な表面を得ることが求められる被洗浄物の洗浄用脱塩水としては、微粒子、コロイダル物質、有機物、金属及びイオン類などが可能な限り除去された高純度な「超純水」と称される水が用いられる。この「超純水」の用語で説明される高純度な水は、必ずしも明確に定義されたものではないが、一般的には、原水を凝集沈殿装置、砂濾過装置、活性炭濾過装置等を用いて除濁することにより前処理水を得、次いで、2床3塔式イオン交換装置、逆浸透膜装置、混床式イオン交換装置、真空脱気装置、精密フィルター等を用いて前処理水中の不純物を除去したものを純水あるいは一次純水と称し、この一次純水をさらに紫外線照射装置、混床式ポリッシャ、限外濾過膜装置、逆浸透膜装置等を用いて、一次純水中に微量残留する微粒子、コロイダル物質、有機物、金属及びイオン等の不純物を可及的に除去したものを超純水あるいは二次純水と称している。
【0003】
このような超純水は超純水製造装置(以下、「脱塩装置」とも言う)40で製造され、被洗浄物を洗浄する使用場所50に供給される。使用場所50から排出された排水は、導電率やTOCにより分別し、汚染の少ないものは配管51により直接原水貯槽30に戻される。汚染が著しいものは配管52により廃水処理装置70に送られる。また、中程度の汚染の排水は、排水回収配管53により脱塩やTOC分解等を行う脱塩手段60に送られ、脱塩水は直接原水貯槽30に戻され回収されると共に、脱塩排水は廃水処理装置70に送られる。廃水処理装置70では廃水を中和、有機物、窒素及びリン等の低減処理後、放流される(図6)。このような超純水製造装置40では、高純度な脱塩水と同時に大量の脱塩排水を発生し、これを放流しなければならず、近年の環境保護関連の規制強化に伴う放流規制や地盤沈下の防止のための井水の取水制限、原水や下水料金の高騰に対応できない。
【0004】
このような立地条件や放流規制などによる制限から、放流設備を備えず脱塩排水をエバポレータで濃縮し、その濃縮液をそのまま、あるいはドラムドライヤ処理し、その蒸発乾固物を廃棄物処理業者に引き渡すクローズドシステム方式の排水処理装置も知られている。しかし、従来のクローズドシステム方式の排水処理装置は、エバポレータやドラムドライヤといった蒸発装置を使用するため莫大なエネルギーを消費するという問題がある。特に既設工場において、使用場所における洗浄用水の使用量が増大すると、それに伴い脱塩排水の増加が生じ、これを処理するために上記の蒸発装置の増設が必要となり、設備費用や運転費用が大きな負担となる。一方、脱塩排水には、井水及び工業用水由来のカルシウムイオン、半導体デバイスの洗浄排水由来のフッ化物イオンや硫酸イオンを含む塩が高濃度で含有されており、これらの塩は溶解度が低いため、不溶の塩が析出して懸濁状態のものもあり、通常の脱塩装置では処理できないという問題がある。このため、不溶の塩が析出するような懸濁状態にある脱塩排水を更に脱塩処理し、該処理水を原水に回収できるような排水処理方法や排水処理装置が望まれていた。
【0005】
これを解決するものとして、当該出願人は先に、廃水処理装置に供給される脱塩排水を予め極性転換方式電気透析装置で処理し、次いで、該処理水を逆浸透膜装置で処理し、逆浸透膜装置の透過水は前記脱塩装置の原水供給側に戻し、極性転換方式電気透析装置と逆浸透膜装置の濃縮水は廃水処理装置で処理する脱塩排水の処理方法を提供している(特願2000−293601号)。この排水処理方法によれば、不溶の塩を高濃度で含有する脱塩排水を更に脱塩処理でき、且つ水利用率が高く放流廃水が少なく、特にクローズドシステムにおいてはエバポレータやドラムドライヤの被処理水を減容化し、エネルギー消費の少ない点で極めて有効である。そして、この排水処理方法で使用する極性転換方式電気透析装置においては、電極室での電気抵抗を極力低減するため導電率の高い脱塩排水を電極室に供給している。
【0006】
【発明が解決しようとする課題】
しかしながら、この脱塩排水はフッ化物イオン濃度が高いため、電極室で使用している白金コーティングのSUS材や白金コーティングのチタン材の陽電極を腐食してしまう。このフッ化物イオンの腐食力は強力で、通常数年間は使用できる電極が僅か半年足らずで溶解し電極の交換を余儀なくされる。このような陽電極の腐食に伴う交換作業は、高額な電極部品の費用を発生させ、排水処理コストを増大させる。また、電極の交換作業のため装置を停止しなければならず、装置の安定運転上好ましくない。更に、陽極室では原水中の塩化物イオンが電極反応により塩素ガスとなり、電極水に同伴して排出される。この塩素ガスは周囲の金属を腐食すると共に、人体に有害であるため、気液分離の後、気相側に別途スクラバを設置して処理する必要があり、装置の設置スペースが増大する等の問題があった。
【0007】
従って、本発明の目的は、不溶の塩を高濃度で含有する脱塩排水を更に脱塩処理でき、且つ水利用率が高く放流廃水が少ない脱塩処理方法及び脱塩処理装置を提供することにあり、また、本発明の他の目的は、極性転換方式電気透析装置を用いる排水処理方法において、当該装置の陽電極の腐食を抑制することができ、陽極室における塩素ガスの発生もない脱塩処理方法及び脱塩処理装置を提供することにある。
【0008】
【課題を解決するための手段】
かかる実情において、本発明者は鋭意検討を行った結果、従来、廃水処理装置に供給されていた脱塩排水を予め極性転換方式電気透析装置で処理し、次いで、該処理水を逆浸透膜装置で処理し、逆浸透膜装置の透過水は前記脱塩装置の原水供給側に戻し、極性転換方式電気透析装置と逆浸透膜装置の濃縮水は廃水処理装置で処理すれば、不溶の塩が析出するような懸濁状態にある脱塩排水を更に脱塩処理し、該処理水を原水に回収できると共に、放流廃水が少なくできること、また、極性転換方式電気透析装置の電極水として、該逆浸透膜装置から得られる濃縮水の少なくとも一部を用いれば、当該装置の陽電極の腐食を抑制でき、陽極室における塩素ガスの発生もないこと等を見出し、本発明を完成するに至った。
【0009】
すなわち、本発明(1)は、脱塩装置から排出されるカルシウムイオン濃度10〜800mg/l、フッ化物イオン濃度10〜300mg/lの脱塩排水を極性転換方式電気透析装置で処理し、次いで、該処理水を逆浸透膜装置で処理して透過水と濃縮水を得、該逆浸透膜装置の透過水は前記脱塩装置の原水供給側に戻す脱塩排水の処理方法において、前記極性転換方式電気透析装置の電極水として、該逆浸透膜装置から得られる濃縮水を用いる脱塩排水の処理方法を提供するものである。かかる構成を採ることにより、溶解度の低い塩を多量に含み従来であれば、直接廃水処理装置で処理されるような脱塩排水を極性転換方式電気透析装置で更に脱塩処理できる。極性転換方式電気透析装置はシリカ及び有機物の除去率が低いが、これらは逆浸透膜装置で除去できるから、逆浸透膜装置の透過水は脱塩装置の原水として回収でき、水利用率を高めることができる。また、フッ化物イオンや塩化物イオンがほとんど除去された逆浸透膜装置の濃縮水を電極水として使用するため、陽電極を腐食することがなく、陽電極室内において塩素ガスの発生もない。
【0010】
また、本発明(2)は、前記電極水は循環して使用される前記脱塩排水の処理方法を提供するものである。かかる構成を採ることにより、前記発明と同様の効果を奏する他、水の利用率が高まると共に、電極水の導電率が向上し電極室の電気抵抗を低減できるため省電力化が図れる。
【0011】
また、本発明(3)は、前記電極水は塩類の添加により、前記脱塩排水と同等又はそれ以上の導電率に調整されたものである前記脱塩排水の処理方法を提供するものである。かかる構成を採ることにより、前記発明と同様の効果を奏する他、電極室の電気抵抗が更に低減できる。
【0012】
また、本発明(4)は、前記電極水は酸を添加してpH4以下に調整されたもの又はスケール発生防止剤が添加されたものである前記脱塩排水の処理方法を提供するものである。電極室には、陽イオン交換膜で仕切られている隣接の脱塩室又は濃縮室からのイオンの流入があり、特に陰極では陽イオンの流入によりpHが上昇してくる傾向がある。この場合、電極水が循環されていると、例えば流入したカルシウムイオンが水酸化物として析出し、流路を閉塞してしまう可能性があるが、酸の添加により、当該化合物の溶解性が高まりスケール発生を防止できるため、安定した連続運転が可能となる。また、スケール発生防止剤の添加により、珪酸カルシウムなどのスケールをミセル形成による荷電反発などにより分散させたり、あるいはキレート化により安定化させることができる。
【0013】
また、本発明(5)は、前記(2)の循環する電極水は酸を添加してpH4以下に調整されたもの又はスケール発生防止剤が添加されたものであって、且つ該循環する電極水の一部は前記極性転換電気透析装置の濃縮水として用いる脱塩排水の処理方法を提供するものである。かかる構成を採ることにより、スケール発生防止能が付与された高導電率の電極水を濃縮水として使用するため、当該極性転換電気透析装置の濃縮室内のスケールの発生を防止できる。
【0014】
また、本発明(6)は、脱塩装置から排出されるカルシウムイオン濃度10〜800mg/l、フッ化物イオン濃度10〜300mg/lの脱塩排水を被処理水とし、該脱塩排水中のイオン性不純物を除去する極性転換方式電気透析装置と、該極性転換方式電気透析装置の処理水を被処理水とする逆浸透膜装置と、少なくとも前記極性転換方式電気透析装置の濃縮水及び前記逆浸透膜装置の濃縮水を処理する廃水処理装置を備え、前記逆浸透膜装置の濃縮水を前記極性転換方式電気透析装置の電極室に流入させる配管を配設したものである脱塩排水の処理装置を提供するものである。かかる構成を採ることにより、従来の超純水製造装置に適用でき、前記排水の脱塩方法の発明を確実に実施できる。
【0015】
【発明の実施の形態】
次に、本発明の第1の実施の形態における脱塩排水の処理装置を図1を参照して説明する。図1において、脱塩排水の処理装置10aは、脱塩排水供給管12から供給される脱塩排水を被処理水とし、該脱塩排水中のイオン性不純物を除去する極性転換方式電気透析装置1と、極性転換方式電気透析装置1と配管15で連接される逆浸透膜装置2と、極性転換方式電気透析装置1の濃縮水及び電極水並びに逆浸透膜装置2の濃縮水を処理する廃水処理装置6を備える。
【0016】
極性転換方式電気透析装置1は、公知のものが使用でき、電気透析装置の電極の極性を所望の時間、例えば15〜20分毎に交互に転換できるようにしたものである。すなわち、図2及び図3に示すように、電極1c間にカチオン交換膜Cとアニオン交換膜Aを交互に、且つ両膜間は脱塩室1aと濃縮室1bを交互に形成するように配置したものであり、電極の極性の転換、すなわち、陽極を陰極に、陰極を陽極に転換することにより、転換前に脱塩室1a又は濃縮室1bであった流路は転換後は濃縮室1b又は脱塩室1aになるようにしたものである。最下段が陰極の場合が逆相の状態(図2)、陽極の場合が正相の状態(図3)、水の流れをXライン、Yラインで表すと、極性転換方式電気透析装置1の処理水と濃縮水の流れは極性転換を行うことにより切り替わるため、Xラインは逆相の時は処理水ラインとなり、正相の時は濃縮水ラインとなり、Yラインは逆相の時は濃縮水ラインで、正相の時は処理水ラインとなる。このため、Xライン及びYラインの流入側配管及び流出側配管にはそれぞれ不図示の三方弁を配設し、極性の転換に対応して流路が切替わるようになっている。また、特に流路が濃縮水の流れから処理水の流れに変わる際、脱塩室又は配管中に残存する濃縮水をパージするための工程を設けることが、後段の逆浸透膜装置の負荷を低減できる点で好適である。
【0017】
このような極性転換方式電気透析装置1の脱塩過程においては、従来と同様の脱塩が行われる他、例えば濃縮室1b内のイオン交換膜面上に付着したフッ化カルシウムなどのスケールは、上記電極の極性を転換して当該濃縮室1bを脱塩室1aとすれば、フッ化カルシウムはカルシウムイオンとフッ化物イオンに分解され、カルシウムイオンはカチオン交換膜Cを通して、フッ化物イオンはアニオン交換膜Aを通して濃縮室1b側へ移動し、該濃縮水は濃縮水流出配管16、廃水管191を通って廃水処理装置6に送られる。また、この脱塩過程において、濃縮室内のイオン交換膜面上にスケールが付着した場合には、再度電極の極性を転換して当該脱塩室を濃縮室、濃縮室を脱塩室にし、これを繰り返すことにより運転が継続される。極性転換方式電気透析装置の運転は通常、中性域で行われるため、pHが調整された被処理水が供給される。このように、極性転換方式電気透析装置を使用すれば、汚染が著しい脱塩排水中の不純物を効率よく除去することができる。
【0018】
脱塩排水の処理装置10aにおいて、逆浸透膜装置2の濃縮水管17は分岐し、一方の配管171は極性転換方式電気透析装置の電極室1cに接続され、他方の管172は廃水管191に接続している。また、極性転換方式電気透析装置の電極室1cの電極水流出配管19は廃水管191に接続している。また、脱塩排水の処理装置10aは更に、配管171に塩類を添加して電極室1cに流入する逆浸透膜装置2の濃縮水の導電率を調整する公知の塩類添加手段7が設置されている。塩類としては、フッ化物や塩化物を含まないものであれば特に制限されないが、例えば硫酸ナトリウム及び硝酸ナトリウムが挙げられる。なお、塩類添加手段7はその設置を省略してもよい。
【0019】
超純水製造系100は、原水貯槽3と脱塩装置4と脱塩水使用場所5とからなり、原水貯槽3と脱塩装置4は配管11で、脱塩装置4と脱塩水使用場所5は配管20でそれぞれ接続されている。脱塩装置4と極性転換方式電気透析装置1は脱塩排水供給管12、13、14で接続され、また、脱塩水の使用場所5からの廃水のうち、汚染が著しいものは配管18により直接廃水処理装置6に送られる。脱塩装置4は公知の超純水製造装置であり、例えば、凝集沈殿装置、砂濾過装置及び活性炭濾過装置等からなる前処理装置と、イオン交換装置、脱気装置及び再生型ポリッシャーからなる一次純水製造装置と、紫外線照射装置、混床式ポリッシャー、限外濾過膜装置及び逆浸透膜装置等からなる二次純水製造装置とから構成されるものが挙げられる。
【0020】
次に、脱塩排水の処理装置10aを使用する方法を説明する。原水を脱塩装置4で処理して得られる超純水は、微粒子、コロイダル物質、有機物、金属及びイオン等の不純物が極力除去された精製水であり、これは使用場所5に供給される。一方、脱塩装置4から排出される脱塩排水は極性転換方式電気透析装置1で処理される。脱塩装置4から排出される脱塩排水としては、例えばイオン交換装置から配管を通って排出される薬品による再生廃液、再生型ポリッシャーから配管を通って排出される薬品による再生廃液等が挙げられる。当該脱塩排水は、井水及び工業用水由来のカルシウムイオン、半導体デバイスの洗浄排水由来のフッ化物イオンや硫酸イオンを含む塩が高濃度で含有されており、これらの塩は溶解度が低いため、不溶の塩が析出して懸濁状態のものもあり、従来では直接廃水処理装置に送られていたものである。当該脱塩排水の水質は、カルシウムイオン濃度10〜800mg/l、フッ化物イオン濃度10〜300mg/lのものである。カルシウムイオン濃度やフッ化物イオン濃度が上記範囲未満のものは、極性転換方式電気透析装置1で処理することなく、直接原水に戻して回収できることが多く、また、上記範囲を越えるものは、極性転換方式電気透析装置1であっても処理できない程の濃厚廃液であり、もはや廃水処理装置で処理せざるを得ない。当該脱塩排水を極性転換方式電気透析装置1で処理すると、カルシウムイオンやフッ化物イオンなどのイオン性不純物が効率よく除去される。このように汚染が著しい脱塩排水中の不純物が極性転換方式電気透析装置で効率よく除去されるのは、後述するように、所望の時間毎に電気透析装置の電源の極性を転換できるためである。一方、シリカや有機物は除去され難いものの、これらは後段の逆浸透膜装置で除去される。
【0021】
次いで、極性転換方式電気透析装置1の処理水は逆浸透膜装置2で処理される。逆浸透膜装置2では、極性転換方式電気透析装置1で除去し難かったシリカ等のイオン性不純物が除去される。逆浸透膜装置2は公知のものが使用できる。逆浸透膜装置2の透過水は配管9により原水貯槽3に回収されると共に、逆浸透
膜装置2の濃縮水は一部が配管17、172を通って廃水処理装置6に送られ、残部が配管17、171を通って極性転換方式電気透析装置1の電極室1cに送られる。また、配管171を通って電極室1cに供給される濃縮水に塩類が添加される。塩類の添加量としては、特に制限されないが、例えば導電率1,000μS/cmの濃縮水を原水の導電率12,000μS/cmと同じか又はそれ以上の導電率の濃縮水となるように添加量が適宜決定される。導電率を高めることにより、電極室1cの電気抵抗を低減できるため、省電力化が図れる。なお、本例において、電極水は電極水流出配管19、廃水管191を通って廃水処理装置6に送られる。廃水処理装置6は公知の装置が使用でき、例えば、中和、有機物低減、窒素及びリン等の低減などの処理を行う装置が例示される。廃水処理装置6の処理水は放流される。
【0022】
第1の実施の形態例によれば、原水を超純水製造系で処理して、高度の水質を有する超純水を得る一方、超純水製造系で使用される脱塩装置から排出される、溶解度の低い塩を多量に含み従来であれば、直接廃水処理装置で処理されるような脱塩排水を極性転換方式電気透析装置、更に逆浸透膜装置で順次脱塩処理するため、逆浸透膜装置の透過水は脱塩装置の原水として回収でき、水利用率が高められる。また、フッ化物イオンや塩化物イオンがほとんど除去された逆浸透膜装置の濃縮水を電極水として使用するため、陽電極を腐食することがなく、陽電極室内において塩素ガスの発生もない。従って、陽電極の交換期間が延びて電極交換に伴う費用の発生等が抑制され、低コスト化が図れる。また、塩素ガス除去対策のための設備が不要となり、省スペース化も図れる。また、電極水の導電率も高く維持できるため、電極室の電気抵抗も低く保持できる。
【0023】
次に、第2の実施の形態例について、図4を参照して説明する。図4は図1の二点鎖線の枠内90の部分の異なる形態を示したフロー図で、図1と同一構成要素には同一符号を付してその説明を省略し、異なる点について主に説明する。すなわち、図4において図1と異なる点は、極性転換方式電気透析装置1の電極水を循環使用とした点及び電極水循環系の配管に薬剤を添加する薬剤添加手段を設けた点にある。すなわち、本例の脱塩排水処理装置10bにおいて、極性転換方式電気透析装置1の電極水供給系を循環配管21とし、逆浸透膜装置の濃縮水管17の分岐配管171を循環配管21に接続すると共に、薬剤添加手段8を薬剤が循環配管21に添加されるよう配置したものである。薬剤添加手段8は、pHを4以下に調整するpH調整手段又はスケール発生防止剤添加手段であり、これらは単独使用又は双方使用のいずれであってもよい。pH調整手段は、ふっ酸や塩酸以外の硫酸などの酸性溶液を添加するポンプ、酸溶液貯槽で構成され、必要に応じて、pH計と調節計を用いて一定pHを維持する制御系を設けてもよい。スケール発生防止剤添加手段は、スケール発生防止剤を添加するポンプ、薬剤貯槽で構成される公知のものが使用できる。スケール発生防止剤としては、例えば、アクリル酸系(共)重合体、マレイン酸系(共)重合体、スルホン酸系(共)重合体などの有機物高分子化合物;アミン系重合体、アミノカルボン酸系共重合体及びグルコン酸、クエン酸などのキレート剤が挙げられる。スケール発生防止剤の注入方法及び注入量は特に制限されず、適宜決定される。
【0024】
第2の実施の形態の脱塩排水処理装置10bにおいても、第1の実施の形態の脱塩排水処理装置10aと同様の効果を奏する他、電極水の導電率が更に向上し電極室の電気抵抗を低減できるため省電力化が図れる。また、電極水が循環されていると、例えば陰極室に流入したカルシウムイオンが水酸化物として析出し、流路を閉塞してしまう可能性があるが、pHを4以下とすることにより、当該化合物の溶解性が高まりスケール発生を防止できるため、安定した連続運転が可能となる。また、スケール発生防止剤の添加により、スケールをミセル形成による荷電反発などにより分散させたり、あるいはキレート化により安定化させることができる。また、第2の実施の形態の脱塩排水処理装置10bにおいては、薬剤添加手段8の設置を省略してもよい。
【0025】
次に、第3の実施の形態例について、図5を参照して説明する。図5は図1の二点鎖線の枠内90の部分の異なる形態であり、かつ図4の他の形態を示したフロー図で、図4と同一構成要素には同一符号を付してその説明を省略し、異なる点について主に説明する。すなわち、図5において図4と異なる点は、循環する電極水の一部を極性転換方式電気透析装置の濃縮水として用いる点及び電極水の廃水処理装置への供給を停止した点にある。すなわち、脱塩排水処理装置10cは極性転換方式電気透析装置1の電極水循環配管21と脱塩排水供給管14(濃縮水供給管14)を接続する配管211を設けると共に、電極水循環配管21と廃水管191を接続する配管を省略したものである。
【0026】
第3の実施の形態の脱塩排水処理装置10cにおいても、第1の実施の形態の脱塩排水処理装置10a及び第2の実施の形態の脱塩排水処理装置10bと同様の効果を奏する他、スケール発生防止能が付与された高導電率の電極水を濃縮水として使用するため、当該極性転換電気透析装置の濃縮室内のスケールの発生を防止できる。また、第3の実施の形態の脱塩排水処理装置10bにおいては、薬剤添加手段8の設置を省略してもよい。
【0027】
本発明の脱塩排水処理装置は、逆浸透膜装置の濃縮水を極性転換方式電気透析装置の電極室に流入させる配管を配設したものであるが、この配管は第1の実施の形態例のように、濃縮水管17の分岐配管171のようなものであっても、第2及び第3の実施の形態例のように、分岐配管171及び循環配管21で構成される配管であってもよい。また、本発明の脱塩排水処理装置で使用される極性転換方式電気透析装置は、電極水の供給圧力を濃縮水の供給圧力と同等又は例えば0.01〜0.02MPa程度高く設定しておくことが、濃縮水中に含まれるふっ化物や塩化物の電極室内へのリークを防止できる点で好適である。
【0028】
【発明の効果】
本発明(1)によれば、従来であれば、直接廃水処理装置で処理されるような溶解度の低い塩を多量に含む脱塩排水を極性転換方式電気透析装置で更に脱塩処理できる。極性転換方式電気透析装置はシリカ及び有機物の除去率が低いが、これらは逆浸透膜装置で除去できるから、逆浸透膜装置の透過水は脱塩装置の原水として回収でき、水利用率を高めることができる。また、フッ化物イオンや塩化物イオンがほとんど除去された逆浸透膜装置の濃縮水を電極水として使用するため、陽電極を腐食することがなく、陽電極室内において塩素ガスの発生もない。
【0029】
また、本発明(2)によれば、前記発明と同様の効果を奏する他、水の利用率が高まると共に、電極水の導電率が向上し電極室の電気抵抗を低減できるため省電力化が図れる。また、本発明(3)によれば、前記発明と同様の効果を奏する他、電極室の電気抵抗が更に低減できる。また、本発明(4)によれば、電極水の循環使用により電極水の導電率が向上する一方、電極室内にスケールが析出し、流路を閉塞する可能性もあるが、酸の添加及びスケール発生防止剤の添加により当該化合物のスケール発生を防止したり、分散除去したりすることができるため、安定した連続運転が可能となる。本発明(5)によれば、スケール発生防止能が付与された高導電率の電極水を濃縮水として使用するため、当該極性転換電気透析装置の濃縮室内のスケールの発生を防止できる。また、本発明(6)によれば、従来の超純水製造装置に適用でき、前記排水の脱塩方法の発明を確実に実施できる。
【図面の簡単な説明】
【図1】第1の実施の形態例における脱塩排水の処理装置のフロー図である。
【図2】極性転換方式電気透析装置の逆相状態における脱塩原理を説明する図である。
【図3】極性転換方式電気透析装置の正相状態における脱塩原理を説明する図である。
【図4】第2の実施の形態例における脱塩排水の処理装置のフロー図である。
【図5】第3の実施の形態例における脱塩排水の処理装置のフロー図である。
【図6】従来例における脱塩排水の処理装置のフロー図である。
【符号の説明】
1 極性転換方式電気透析装置
2 逆浸透膜装置
3、30 原水貯槽
4、40 脱塩装置
5、50 使用場所
6、70 廃水処理装置
7 塩類添加手段
8 薬剤添加手段
9、11〜20、51、52、171、172、191、211 配管
10a〜10c 脱塩排水の処理装置
21 循環配管
100 超純水製造系
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a processing method and a processing apparatus for desalted waste water discharged from an apparatus for manufacturing ultrapure water for washing used in, for example, a semiconductor device manufacturing process, boiler water supply, and water for injection used in pharmaceutical manufacturing.
[0002]
[Prior art]
As demineralized water for cleaning an object to be cleaned, which is required to obtain an extremely clean surface such as a semiconductor wafer, a high-purity “ultra-high” in which fine particles, colloidal substances, organic substances, metals and ions are removed as much as possible. Water called “pure water” is used. The high-purity water described in the term “ultra-pure water” is not necessarily clearly defined, but in general, raw water is used using a coagulating sedimentation device, sand filtration device, activated carbon filtration device, etc. To obtain pre-treated water, and then using pre-treated water using a two-bed / three-column ion exchange device, a reverse osmosis membrane device, a mixed bed ion exchange device, a vacuum deaeration device, a precision filter, etc. The water from which impurities have been removed is called pure water or primary pure water, and this primary pure water is further put into primary pure water using an ultraviolet irradiation device, a mixed bed type polisher, an ultrafiltration membrane device, a reverse osmosis membrane device, etc. A material obtained by removing impurities such as fine particles, colloidal substances, organic substances, metals and ions as much as possible is called ultrapure water or secondary pure water.
[0003]
Such ultrapure water is manufactured by an ultrapure water manufacturing apparatus (hereinafter also referred to as “desalting apparatus”) 40 and supplied to a use place 50 for cleaning an object to be cleaned. Waste water discharged from the place of use 50 is sorted by conductivity and TOC, and the less polluted one is directly returned to the raw water storage tank 30 by the pipe 51. What is significantly contaminated is sent to the wastewater treatment apparatus 70 through the pipe 52. The moderately polluted wastewater is sent to a desalting means 60 that performs desalting, TOC decomposition, and the like through the drainage recovery pipe 53, and the desalted water is directly returned to the raw water storage tank 30 and collected. It is sent to the waste water treatment device 70. In the wastewater treatment apparatus 70, the wastewater is discharged after neutralization and reduction treatment of organic matter, nitrogen, phosphorus and the like (FIG. 6). In such an ultrapure water production apparatus 40, a large amount of desalted wastewater must be generated at the same time as high-purity desalted water, and this must be discharged. Cannot cope with water intake restrictions to prevent subsidence, and rising raw water and sewage charges.
[0004]
Due to such restrictions due to site conditions and discharge regulations, desalination wastewater is not provided with discharge facilities, but concentrated with an evaporator, and the concentrated solution is treated as it is or with a drum dryer, and the evaporated and dried product is sent to a waste disposal contractor. A closed-system wastewater treatment apparatus is also known. However, the conventional closed system type wastewater treatment apparatus has a problem that it consumes enormous energy because it uses an evaporation device such as an evaporator or a drum dryer. Especially in existing factories, when the amount of water used for washing increases, the amount of desalted wastewater increases, and it is necessary to add the above-mentioned evaporators to handle this, resulting in large equipment and operating costs. It becomes a burden. On the other hand, desalted wastewater contains calcium ions derived from well water and industrial water, and salts containing fluoride ions and sulfate ions derived from semiconductor device cleaning wastewater, and these salts have low solubility. For this reason, some insoluble salts are precipitated and suspended, and there is a problem that they cannot be treated with a normal desalting apparatus. For this reason, there has been a demand for a wastewater treatment method and a wastewater treatment apparatus that can further desalinate desalted wastewater in a suspended state where insoluble salt is deposited, and recover the treated water into raw water.
[0005]
As a solution to this, the applicant first treated the desalted wastewater supplied to the wastewater treatment device in advance with a polarity conversion electrodialyzer, then treated the treated water with a reverse osmosis membrane device, Provided a method for treating desalted wastewater, wherein the permeated water of the reverse osmosis membrane device is returned to the raw water supply side of the desalting device, and the concentrated water of the polarity switching electrodialyzer and the reverse osmosis membrane device is treated by the waste water treatment device. (Japanese Patent Application No. 2000-293601). According to this wastewater treatment method, desalted wastewater containing a high concentration of insoluble salt can be further desalted, and the water utilization rate is high and the amount of discharged wastewater is small. Especially in closed systems, treatment of evaporators and drum dryers is required. It is extremely effective in reducing water consumption and reducing energy consumption. And in the polarity conversion type electrodialysis apparatus used in this waste water treatment method, demineralized waste water having high conductivity is supplied to the electrode chamber in order to reduce the electrical resistance in the electrode chamber as much as possible.
[0006]
[Problems to be solved by the invention]
However, since this desalted wastewater has a high fluoride ion concentration, it corrodes the positive electrode of platinum-coated SUS material or platinum-coated titanium material used in the electrode chamber. The corrosive power of fluoride ions is so strong that normally usable electrodes can be dissolved in less than half a year for several years and the electrodes must be replaced. Such replacement work associated with the corrosion of the positive electrode generates cost for expensive electrode parts and increases wastewater treatment costs. Moreover, the apparatus must be stopped for electrode replacement work, which is not preferable for stable operation of the apparatus. Further, in the anode chamber, chloride ions in the raw water are converted into chlorine gas by the electrode reaction and are discharged along with the electrode water. Since this chlorine gas corrodes the surrounding metal and is harmful to the human body, after gas-liquid separation, it is necessary to install a separate scrubber on the gas phase side, which increases the installation space of the equipment, etc. There was a problem.
[0007]
Accordingly, an object of the present invention is to provide a desalination treatment method and a desalination treatment apparatus that can further desalinate desalination wastewater containing a high concentration of insoluble salt, and have a high water utilization rate and low discharge wastewater. Another object of the present invention is to provide a wastewater treatment method using a polarity-changing electrodialysis apparatus, which can suppress corrosion of the positive electrode of the apparatus and eliminate generation of chlorine gas in the anode chamber. The object is to provide a salt treatment method and a desalination treatment apparatus.
[0008]
[Means for Solving the Problems]
In such a situation, the present inventor has intensively studied, and as a result, the desalted waste water that has been supplied to the waste water treatment device is treated in advance with a polarity conversion type electrodialyzer, and then the treated water is treated with a reverse osmosis membrane device. In this case, the permeated water of the reverse osmosis membrane device is returned to the raw water supply side of the demineralizer, and the concentrated water of the polarity switching electrodialyzer and the reverse osmosis membrane device is treated with a wastewater treatment device, so that insoluble salts are formed. The desalted waste water in a suspended state that precipitates can be further desalted, and the treated water can be recovered into raw water, and the amount of discharged waste water can be reduced. It has been found that the use of at least a part of the concentrated water obtained from the osmotic membrane device can suppress the corrosion of the positive electrode of the device and the generation of chlorine gas in the anode chamber, thereby completing the present invention.
[0009]
That is, the present invention (1) treats a desalinated waste water having a calcium ion concentration of 10 to 800 mg / l and a fluoride ion concentration of 10 to 300 mg / l discharged from the desalting apparatus with a polarity conversion type electrodialyzer, The treated water is treated with a reverse osmosis membrane device to obtain permeated water and concentrated water, and the permeated water of the reverse osmosis membrane device is returned to the raw water supply side of the desalting device. The present invention provides a method for treating desalted wastewater using concentrated water obtained from the reverse osmosis membrane device as electrode water for a conversion-type electrodialyzer. By adopting such a configuration, it is possible to further desalinate desalted wastewater that is treated directly by a wastewater treatment device using a polarity conversion type electrodialyzer if it contains a large amount of low-solubility salt. The polarity conversion type electrodialyzer has a low removal rate of silica and organic substances, but these can be removed by the reverse osmosis membrane device, so the permeated water of the reverse osmosis membrane device can be recovered as the raw water of the desalination device, increasing the water utilization rate be able to. Further, since the concentrated water of the reverse osmosis membrane apparatus from which fluoride ions and chloride ions have been almost removed is used as electrode water, the positive electrode is not corroded and chlorine gas is not generated in the positive electrode chamber.
[0010]
Moreover, this invention (2) provides the processing method of the said desalted waste water in which the said electrode water circulates and is used. By adopting such a configuration, the same effects as those of the above-described invention can be obtained, the water utilization rate can be increased, the electrical conductivity of the electrode water can be improved, and the electric resistance of the electrode chamber can be reduced, so that power saving can be achieved.
[0011]
Moreover, this invention (3) provides the processing method of the said desalted waste water by which the said electrode water is adjusted to the electrical conductivity equivalent to or more than the said desalted waste water by addition of salts. . By adopting such a configuration, the same effect as that of the present invention can be obtained, and the electrical resistance of the electrode chamber can be further reduced.
[0012]
Moreover, this invention (4) provides the processing method of the said desalination waste_water | drain whose said electrode water is what added the acid, and was adjusted to pH 4 or less, or the scale generation inhibitor was added. . In the electrode chamber, there is an inflow of ions from an adjacent desalting chamber or concentrating chamber partitioned by a cation exchange membrane. In particular, in the cathode, the pH tends to increase due to the inflow of cations. In this case, if the electrode water is circulated, for example, the inflowed calcium ions may precipitate as hydroxide and block the flow path, but the addition of acid increases the solubility of the compound. Since scale generation can be prevented, stable continuous operation is possible. Further, by adding a scale generation inhibitor, scales such as calcium silicate can be dispersed by charge repulsion due to micelle formation or stabilized by chelation.
[0013]
In the present invention (5), the circulating electrode water of the above (2) is adjusted to pH 4 or less by adding an acid or to which a scale generation inhibitor is added, and the circulating electrode A part of the water provides a method for treating desalted waste water used as the concentrated water of the polarity-changing electrodialyzer. By adopting such a configuration, electrode water with high conductivity to which scale generation prevention ability is imparted is used as concentrated water, and therefore scale generation in the concentration chamber of the polarity conversion electrodialysis apparatus can be prevented.
[0014]
Moreover, this invention (6) makes the desalination waste_water | drain of calcium ion density | concentration 10-800 mg / l and fluoride ion density | concentration 10-300 mg / l discharged | emitted from a desalination apparatus to be treated water, A polarity-changing electrodialyzer that removes ionic impurities, a reverse osmosis membrane device that uses treated water of the polarity-changing electrodialyzer as treated water, at least the concentrated water and the reverse of the polarity-changing electrodialyzer Treatment of desalted waste water comprising a wastewater treatment device for treating the concentrated water of the osmosis membrane device and provided with a pipe for allowing the concentrated water of the reverse osmosis membrane device to flow into the electrode chamber of the polarity switching electrodialysis device A device is provided. By adopting such a configuration, the invention can be applied to a conventional ultrapure water production apparatus, and the invention of the wastewater desalination method can be reliably implemented.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Next, the desalinating waste water treatment apparatus in the first embodiment of the present invention will be described with reference to FIG. In FIG. 1, a desalinating wastewater treatment device 10a uses a desalted wastewater supplied from a desalted wastewater supply pipe 12 as treated water, and removes ionic impurities in the desalted wastewater. 1, a reverse osmosis membrane device 2 connected to the polarity-changing electrodialyzer 1 and a pipe 15, waste water for treating the concentrated water and electrode water of the polarity-changing electrodialyzer 1 and the concentrated water of the reverse osmosis membrane device 2 A processing device 6 is provided.
[0016]
As the polarity conversion type electrodialysis apparatus 1, a known one can be used, and the polarity of the electrode of the electrodialysis apparatus can be alternately switched every desired time, for example, every 15 to 20 minutes. That is, as shown in FIGS. 2 and 3, the cation exchange membrane C and the anion exchange membrane A are alternately arranged between the electrodes 1c, and the desalting chamber 1a and the concentration chamber 1b are alternately formed between the two membranes. By changing the polarity of the electrodes, that is, by converting the anode to the cathode and the cathode to the anode, the flow path that was the desalination chamber 1a or the concentration chamber 1b before the conversion is changed to the concentration chamber 1b after the conversion. Alternatively, the desalination chamber 1a is provided. When the lowermost stage is a cathode, it is in a reverse phase state (FIG. 2), when the anode is in a normal phase state (FIG. 3), and the flow of water is represented by X line and Y line, the polarity conversion type electrodialyzer 1 Since the flow of treated water and concentrated water is switched by switching the polarity, the X line becomes the treated water line when in the reverse phase, the concentrated water line when in the normal phase, and the concentrated water when the Y line is in the reverse phase. Line is treated water line during positive phase. For this reason, a three-way valve (not shown) is provided in each of the inflow side pipe and the outflow side pipe of the X line and the Y line, and the flow path is switched corresponding to the change of polarity. In particular, when the flow path is changed from the flow of concentrated water to the flow of treated water, it is possible to provide a process for purging the concentrated water remaining in the desalination chamber or the piping, which reduces the load on the reverse osmosis membrane device in the subsequent stage. This is preferable in that it can be reduced.
[0017]
In such a desalting process of the polarity conversion type electrodialysis apparatus 1, in addition to the conventional desalting, for example, a scale such as calcium fluoride attached on the ion exchange membrane surface in the concentration chamber 1b, If the polarity of the electrode is changed to make the concentration chamber 1b a desalination chamber 1a, calcium fluoride is decomposed into calcium ions and fluoride ions, the calcium ions pass through the cation exchange membrane C, and the fluoride ions are anion-exchanged. It moves to the concentration chamber 1b side through the membrane A, and the concentrated water is sent to the waste water treatment device 6 through the concentrated water outflow pipe 16 and the waste water pipe 191. In the desalting process, if scale adheres to the surface of the ion exchange membrane in the concentration chamber, the polarity of the electrode is changed again to make the desalination chamber a concentration chamber and the concentration chamber as a desalination chamber. The operation is continued by repeating. Since the operation of the polarity switching type electrodialyzer is usually performed in a neutral range, treated water whose pH is adjusted is supplied. In this way, if the polarity switching type electrodialysis apparatus is used, impurities in the desalted waste water that are significantly contaminated can be efficiently removed.
[0018]
In the desalination wastewater treatment apparatus 10a, the concentrated water pipe 17 of the reverse osmosis membrane apparatus 2 branches, one pipe 171 is connected to the electrode chamber 1c of the polarity-changing electrodialyzer, and the other pipe 172 is connected to the waste water pipe 191. Connected. In addition, the electrode water outflow pipe 19 of the electrode chamber 1c of the polarity switching type electrodialysis apparatus is connected to the waste water pipe 191. Further, the desalinized wastewater treatment apparatus 10a is further provided with a known salt addition means 7 for adjusting the conductivity of the concentrated water of the reverse osmosis membrane apparatus 2 which adds salts to the pipe 171 and flows into the electrode chamber 1c. Yes. The salt is not particularly limited as long as it does not contain fluoride or chloride, and examples thereof include sodium sulfate and sodium nitrate. Note that the salt addition means 7 may be omitted.
[0019]
The ultrapure water production system 100 includes a raw water storage tank 3, a desalting apparatus 4, and a desalted water use place 5. The raw water storage tank 3 and the desalinating apparatus 4 are connected by a pipe 11, and the desalting apparatus 4 and the desalted water use place 5 are The pipes 20 are connected to each other. The desalting apparatus 4 and the polarity switching type electrodialysis apparatus 1 are connected by desalting drainage supply pipes 12, 13, and 14, and waste water from the desalted water use place 5 that is significantly contaminated is directly connected to the pipe 18. It is sent to the waste water treatment device 6. The demineralizer 4 is a known ultrapure water production apparatus, for example, a pretreatment device comprising a coagulation sedimentation device, a sand filtration device, an activated carbon filtration device, etc., and a primary comprising an ion exchange device, a deaeration device, and a regenerative polisher. Examples include a pure water production apparatus and a secondary pure water production apparatus including an ultraviolet irradiation device, a mixed bed polisher, an ultrafiltration membrane device, a reverse osmosis membrane device, and the like.
[0020]
Next, a method of using the desalinating wastewater treatment apparatus 10a will be described. The ultrapure water obtained by treating the raw water with the desalting apparatus 4 is purified water from which impurities such as fine particles, colloidal substances, organic substances, metals and ions are removed as much as possible, and is supplied to the use place 5. On the other hand, the desalted waste water discharged from the desalting apparatus 4 is processed by the polarity conversion type electrodialysis apparatus 1. Examples of the desalination drainage discharged from the desalination apparatus 4 include regeneration waste liquid by chemicals discharged from the ion exchange apparatus through the pipe, regeneration waste liquids by chemical discharge from the regeneration type polisher through the pipe, and the like. . The desalted wastewater contains high concentrations of calcium ions derived from well water and industrial water, fluoride ions and sulfate ions derived from semiconductor device cleaning wastewater, and these salts have low solubility. Some insoluble salts are precipitated and suspended, and are conventionally sent directly to a wastewater treatment apparatus. The water quality of the desalted waste water has a calcium ion concentration of 10 to 800 mg / l and a fluoride ion concentration of 10 to 300 mg / l. Those whose calcium ion concentration or fluoride ion concentration is less than the above range can often be recovered by directly returning to the raw water without being treated by the polarity conversion type electrodialysis apparatus 1, and those exceeding the above range are polarity-converted. It is a concentrated waste liquid that cannot be treated even with the system electrodialysis apparatus 1, and must be treated with a wastewater treatment apparatus. When the desalted waste water is treated with the polarity conversion electrodialysis apparatus 1, ionic impurities such as calcium ions and fluoride ions are efficiently removed. The reason why the impurities in the desalted waste water, which is extremely contaminated in this way, is efficiently removed by the polarity changing type electrodialyzer is that the polarity of the power source of the electrodialyzer can be changed every desired time, as will be described later. is there. On the other hand, although silica and organic substances are difficult to remove, they are removed by a reverse osmosis membrane device at a later stage.
[0021]
Next, the treated water of the polarity switching electrodialyzer 1 is treated by the reverse osmosis membrane device 2. In the reverse osmosis membrane device 2, ionic impurities such as silica that are difficult to remove by the polarity switching electrodialysis device 1 are removed. A known reverse osmosis membrane device 2 can be used. The permeated water of the reverse osmosis membrane device 2 is collected in the raw water storage tank 3 by the pipe 9 and reverse osmosis.
A part of the concentrated water of the membrane device 2 is sent to the waste water treatment device 6 through the pipes 17 and 172, and the remaining part is sent to the electrode chamber 1 c of the polarity switching type electrodialyzer 1 through the pipes 17 and 171. Further, salts are added to the concentrated water supplied to the electrode chamber 1c through the pipe 171. The amount of salt added is not particularly limited, but for example, a concentrated water having a conductivity of 1,000 μS / cm is added so that the concentrated water has a conductivity equal to or higher than the conductivity of the raw water of 12,000 μS / cm. The amount is appropriately determined. By increasing the electrical conductivity, the electrical resistance of the electrode chamber 1c can be reduced, so that power saving can be achieved. In this example, the electrode water is sent to the waste water treatment device 6 through the electrode water outflow pipe 19 and the waste water pipe 191. A known apparatus can be used as the wastewater treatment apparatus 6, and examples thereof include an apparatus that performs treatments such as neutralization, organic substance reduction, and nitrogen and phosphorus reduction. The treated water of the waste water treatment device 6 is discharged.
[0022]
According to the first embodiment, raw water is treated in an ultrapure water production system to obtain ultrapure water having a high level of water quality, while being discharged from a desalinator used in the ultrapure water production system. In the past, desalted effluent that would be treated directly by a wastewater treatment device would be desalted by a polarity-changing electrodialyzer and a reverse osmosis membrane device. The permeated water of the osmosis membrane device can be recovered as raw water of the desalting device, and the water utilization rate is increased. Further, since the concentrated water of the reverse osmosis membrane apparatus from which fluoride ions and chloride ions have been almost removed is used as electrode water, the positive electrode is not corroded and chlorine gas is not generated in the positive electrode chamber. Therefore, the positive electrode replacement period is extended, the generation of costs associated with electrode replacement, etc. are suppressed, and the cost can be reduced. In addition, a facility for removing chlorine gas is not required, and space can be saved. Moreover, since the electrical conductivity of the electrode water can be maintained high, the electrical resistance of the electrode chamber can be kept low.
[0023]
Next, a second embodiment will be described with reference to FIG. FIG. 4 is a flowchart showing a different form of the portion 90 in the frame of the two-dot chain line in FIG. 1. The same components as those in FIG. explain. That is, FIG. 4 is different from FIG. 1 in that the electrode water of the polarity switching type electrodialysis apparatus 1 is used for circulation and a drug addition means for adding a drug to the piping of the electrode water circulation system is provided. That is, in the desalination waste water treatment apparatus 10b of this example, the electrode water supply system of the polarity switching electrodialysis apparatus 1 is the circulation pipe 21, and the branch pipe 171 of the concentrated water pipe 17 of the reverse osmosis membrane apparatus is connected to the circulation pipe 21. At the same time, the medicine addition means 8 is arranged so that the medicine is added to the circulation pipe 21. The drug addition means 8 is a pH adjustment means or a scale generation inhibitor addition means for adjusting the pH to 4 or less, and these may be used alone or both. The pH adjustment means consists of a pump that adds an acidic solution such as sulfuric acid other than hydrofluoric acid and hydrochloric acid, and an acid solution storage tank. If necessary, a control system that maintains a constant pH using a pH meter and a controller is provided. May be. As the scale generation inhibitor addition means, a publicly known one composed of a pump for adding a scale generation inhibitor and a chemical reservoir can be used. Examples of the scale generation inhibitor include organic polymer compounds such as acrylic acid (co) polymers, maleic acid (co) polymers, and sulfonic acid (co) polymers; amine polymers, aminocarboxylic acids And a chelating agent such as gluconic acid and citric acid. The injection method and the injection amount of the scale generation inhibitor are not particularly limited and are appropriately determined.
[0024]
The desalination / drainage treatment device 10b of the second embodiment also has the same effect as the desalination / drainage treatment device 10a of the first embodiment, and further improves the conductivity of the electrode water and improves the electricity of the electrode chamber. Since the resistance can be reduced, power saving can be achieved. In addition, when the electrode water is circulated, for example, calcium ions that have flowed into the cathode chamber may precipitate as hydroxides and block the flow path. Since the solubility of the compound increases and scale generation can be prevented, stable continuous operation becomes possible. In addition, by adding a scale generation inhibitor, the scale can be dispersed by charge repulsion due to micelle formation or stabilized by chelation. Moreover, in the desalination waste water treatment apparatus 10b of 2nd Embodiment, installation of the chemical | medical agent addition means 8 may be abbreviate | omitted.
[0025]
Next, a third embodiment will be described with reference to FIG. FIG. 5 is a flow chart showing a different form of the portion 90 in the frame of the two-dot chain line in FIG. 1, and showing another form of FIG. 4. The same components as in FIG. The description will be omitted, and different points will be mainly described. That is, FIG. 5 is different from FIG. 4 in that a part of the circulating electrode water is used as the concentrated water of the polarity switching electrodialysis apparatus and the supply of the electrode water to the wastewater treatment apparatus is stopped. That is, the desalination wastewater treatment apparatus 10c is provided with a pipe 211 that connects the electrode water circulation pipe 21 and the desalination drainage supply pipe 14 (concentrated water supply pipe 14) of the polarity change type electrodialysis apparatus 1, and the electrode water circulation pipe 21 and the waste water. The pipe connecting the pipe 191 is omitted.
[0026]
The desalination waste water treatment apparatus 10c of the third embodiment also has the same effects as the desalination waste water treatment apparatus 10a of the first embodiment and the desalination waste water treatment apparatus 10b of the second embodiment. Since the electrode water with high conductivity to which scale generation prevention ability is imparted is used as the concentrated water, the generation of scale in the concentration chamber of the polarity conversion electrodialysis apparatus can be prevented. Moreover, in the desalinization waste water treatment equipment 10b of 3rd Embodiment, installation of the chemical | medical agent addition means 8 may be abbreviate | omitted.
[0027]
The desalination waste water treatment apparatus of the present invention is provided with a pipe for allowing the concentrated water of the reverse osmosis membrane apparatus to flow into the electrode chamber of the polarity switching type electrodialysis apparatus. This pipe is the first embodiment. In this way, even the branch pipe 171 of the concentrated water pipe 17 or the pipe constituted by the branch pipe 171 and the circulation pipe 21 as in the second and third embodiments may be used. Good. Moreover, in the polarity conversion type electrodialysis apparatus used in the desalinization waste water treatment apparatus of the present invention, the supply pressure of the electrode water is set to be equal to or higher than, for example, about 0.01 to 0.02 MPa. Is preferable in that it is possible to prevent leakage of fluoride and chloride contained in the concentrated water into the electrode chamber.
[0028]
【The invention's effect】
According to the present invention (1), conventionally, desalted waste water containing a large amount of low-solubility salt that can be directly treated by a wastewater treatment device can be further desalted by a polarity-changing electrodialyzer. The polarity conversion type electrodialyzer has a low removal rate of silica and organic substances, but these can be removed by the reverse osmosis membrane device, so the permeated water of the reverse osmosis membrane device can be recovered as the raw water of the desalination device, increasing the water utilization rate be able to. Further, since the concentrated water of the reverse osmosis membrane apparatus from which fluoride ions and chloride ions have been almost removed is used as electrode water, the positive electrode is not corroded and chlorine gas is not generated in the positive electrode chamber.
[0029]
In addition, according to the present invention (2), in addition to the same effects as the above invention, the water utilization rate is increased, the electrical conductivity of the electrode water is improved, and the electrical resistance of the electrode chamber can be reduced, thereby saving power. I can plan. Moreover, according to this invention (3), besides having the same effect as the said invention, the electrical resistance of an electrode chamber can further be reduced. In addition, according to the present invention (4), the conductivity of the electrode water is improved by the circulation use of the electrode water. On the other hand, there is a possibility that scales are deposited in the electrode chamber and block the flow path. Since the scale generation of the compound can be prevented or dispersed and removed by the addition of the scale generation inhibitor, stable continuous operation is possible. According to the present invention (5), since electrode water with high conductivity to which scale generation prevention ability is imparted is used as concentrated water, generation of scale in the concentration chamber of the polarity conversion electrodialyzer can be prevented. Moreover, according to this invention (6), it can apply to the conventional ultrapure water manufacturing apparatus, and the invention of the said desalination method of the waste_water | drain can be implemented reliably.
[Brief description of the drawings]
FIG. 1 is a flow diagram of a desalinating wastewater treatment apparatus according to a first embodiment.
FIG. 2 is a diagram for explaining the principle of desalting in a reverse phase state of a polarity switching type electrodialysis apparatus.
FIG. 3 is a diagram for explaining the principle of desalting in the normal phase state of the polarity switching type electrodialysis apparatus.
FIG. 4 is a flowchart of a desalinating waste water treatment apparatus in a second embodiment.
FIG. 5 is a flowchart of a desalinating waste water treatment apparatus in a third embodiment.
FIG. 6 is a flowchart of a desalinating wastewater treatment apparatus in a conventional example.
[Explanation of symbols]
1 Polarization switching type electrodialysis machine
2 Reverse osmosis membrane device
3, 30 Raw water storage tank
4, 40 Demineralizer
5, 50 Use place
6, 70 Wastewater treatment equipment
7 Salt addition means
8 Drug addition means
9, 11-20, 51, 52, 171, 172, 191, 211 Piping
10a-10c Desalination waste water treatment equipment
21 Circulation piping
100 Ultrapure water production system

Claims (6)

脱塩装置から排出されるカルシウムイオン濃度10〜800mg/l、フッ化物イオン濃度10〜300mg/lの脱塩排水を極性転換方式電気透析装置で処理し、次いで、該処理水を逆浸透膜装置で処理して透過水と濃縮水を得、該逆浸透膜装置の透過水は前記脱塩装置の原水供給側に戻す脱塩排水の処理方法において、前記極性転換方式電気透析装置の電極水として、該逆浸透膜装置から得られる濃縮水を用いることを特徴とする脱塩排水の処理方法。The desalted waste water having a calcium ion concentration of 10 to 800 mg / l and a fluoride ion concentration of 10 to 300 mg / l discharged from the desalting apparatus is treated with a polar conversion type electrodialyzer, and then the treated water is treated with a reverse osmosis membrane apparatus. In the method for treating desalted waste water, the permeated water and the concentrated water are obtained by treating with the reverse water, and the permeated water of the reverse osmosis membrane device is returned to the raw water supply side of the desalting device. A method for treating desalinated wastewater, characterized by using concentrated water obtained from the reverse osmosis membrane device. 前記電極水は循環して使用されることを特徴とする請求項1記載の脱塩排水の処理方法。2. The method for treating desalinated waste water according to claim 1, wherein the electrode water is circulated and used. 前記電極水は、塩類の添加により、前記脱塩排水と同等又はそれ以上の導電率に調整されたものであることを特徴とする請求項1又は2記載の脱塩排水の処理方法。The method for treating desalted wastewater according to claim 1 or 2, wherein the electrode water is adjusted to have a conductivity equal to or higher than that of the desalted wastewater by adding salts. 前記電極水は、酸を添加してpH4以下に調整されたもの又はスケール発生防止剤が添加されたものであることを特徴とする請求項1〜3のいずれか1項記載の脱塩排水の処理方法。The deionized wastewater according to any one of claims 1 to 3, wherein the electrode water is adjusted to pH 4 or less by adding an acid or added with a scale generation inhibitor. Processing method. 請求項2の循環する電極水は、酸を添加してpH4以下に調整されたもの又はスケール発生防止剤が添加されたものであって、且つ該循環する電極水の一部を前記極性転換電気透析装置の濃縮水として用いることを特徴とする脱塩排水の処理方法。The circulating electrode water according to claim 2 is adjusted to pH 4 or less by adding an acid or to which a scale generation inhibitor is added, and a part of the circulating electrode water is converted into the polarity-changing electricity. A method for treating desalinated waste water, which is used as concentrated water for a dialysis machine. 脱塩装置から排出されるカルシウムイオン濃度10〜800mg/l、フッ化物イオン濃度10〜300mg/lの脱塩排水を被処理水とし、該脱塩排水中のイオン性不純物を除去する極性転換方式電気透析装置と、該極性転換方式電気透析装置の処理水を被処理水とする逆浸透膜装置と、少なくとも前記極性転換方式電気透析装置の濃縮水及び前記逆浸透膜装置の濃縮水を処理する廃水処理装置を備え、前記逆浸透膜装置の濃縮水を前記極性転換方式電気透析装置の電極室に流入させる配管を配設したものであることを特徴とする脱塩排水の処理装置。A polarity conversion method for removing ionic impurities in the desalted wastewater, using desalted wastewater having a calcium ion concentration of 10 to 800 mg / l and a fluoride ion concentration of 10 to 300 mg / l discharged from the desalting apparatus as treated water. An electrodialysis apparatus, a reverse osmosis membrane apparatus using treated water of the polarity conversion type electrodialysis apparatus as treated water, and at least the concentrated water of the polarity conversion type electrodialysis apparatus and the concentrated water of the reverse osmosis membrane apparatus are treated. An apparatus for treating desalinated wastewater, comprising a wastewater treatment apparatus, wherein piping for allowing the concentrated water of the reverse osmosis membrane apparatus to flow into the electrode chamber of the polarity switching electrodialysis apparatus is disposed.
JP2002098518A 2002-04-01 2002-04-01 Desalination wastewater treatment method and apparatus Expired - Lifetime JP3773187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002098518A JP3773187B2 (en) 2002-04-01 2002-04-01 Desalination wastewater treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002098518A JP3773187B2 (en) 2002-04-01 2002-04-01 Desalination wastewater treatment method and apparatus

Publications (2)

Publication Number Publication Date
JP2003290775A JP2003290775A (en) 2003-10-14
JP3773187B2 true JP3773187B2 (en) 2006-05-10

Family

ID=29240469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002098518A Expired - Lifetime JP3773187B2 (en) 2002-04-01 2002-04-01 Desalination wastewater treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP3773187B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006281174A (en) * 2005-04-05 2006-10-19 Matsushita Electric Ind Co Ltd Method, apparatus and system for recycling wastewater
JP4737019B2 (en) * 2006-09-29 2011-07-27 三浦工業株式会社 Boiler feed water treatment system
US20140091039A1 (en) * 2012-09-28 2014-04-03 General Electric Company System and method for the treatment of hydraulic fracturing backflow water
KR101632685B1 (en) * 2013-06-28 2016-06-24 한국에너지기술연구원 Hybrid system for accomplishing selectively electrodialysis reversal and reverse electrodialysis
JP7354744B2 (en) * 2019-10-04 2023-10-03 栗田工業株式会社 Wastewater utilization system
CN113526781A (en) * 2020-04-22 2021-10-22 大连波美科技有限公司 Treatment and recycling system and process for vegetable oil saponin wastewater
JP7417289B2 (en) 2020-10-09 2024-01-18 株式会社オーセンアライアンス Water filtration system and water filtration method
CN114230057A (en) * 2022-01-10 2022-03-25 南京壹净电器科技有限公司 Water purification method and system with mineral substance adding function

Also Published As

Publication number Publication date
JP2003290775A (en) 2003-10-14

Similar Documents

Publication Publication Date Title
JP5873771B2 (en) Organic wastewater treatment method and treatment apparatus
JP4648307B2 (en) Continuous electrodeionization apparatus and method
JP5567468B2 (en) Method and apparatus for treating organic wastewater
EP1925596A1 (en) Electrodialyzer, waste water treatment method, and fluorine treatment system
KR100874269B1 (en) High efficiency seawater electrolysis apparatus and electrolysis method including pretreatment process
TWI438153B (en) Method and apparatus for purifying metal-containing water purifying
WO2011065222A1 (en) Device and method for treating nitrogen compound-containing acidic solutions
JP3800450B2 (en) Method and apparatus for treating organic wastewater containing high concentrations of salts
JP2007237062A (en) Artificial dialysis water manufacturing method and its manufacturing apparatus
TWI428293B (en) Method and apparatus for recovering phosphoric acid from phosphoric acid-containing water
JP3773187B2 (en) Desalination wastewater treatment method and apparatus
JP3800449B2 (en) Method and apparatus for treating organic wastewater containing high concentrations of salts
JP4697758B2 (en) Desalination wastewater treatment method and apparatus
JP2004108240A (en) Power generation plant and power generation method
JP3137831B2 (en) Membrane processing equipment
JP4152544B2 (en) Deionized water production method and apparatus
JP5277559B2 (en) Method and apparatus for recovering phosphoric acid from phosphoric acid-containing water
WO2021215099A1 (en) Waste water treatment method, ultrapure water production method, and waste water treatment apparatus
JP2006281174A (en) Method, apparatus and system for recycling wastewater
JPH09294974A (en) Water treatment apparatus
JP4505965B2 (en) Pure water production method
JP3714076B2 (en) Fluorine-containing wastewater treatment apparatus and treatment method
JP3473472B2 (en) Treatment method for fluorine-containing water
JP2017064639A (en) Method and apparatus for recovering and using waste water from steam power plant
JPH11221579A (en) Treatment of fluorine-containing water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060210

R150 Certificate of patent or registration of utility model

Ref document number: 3773187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140224

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term