JP3772331B2 - Method for producing magnesium ethylate spherical fine particles - Google Patents

Method for producing magnesium ethylate spherical fine particles Download PDF

Info

Publication number
JP3772331B2
JP3772331B2 JP23952194A JP23952194A JP3772331B2 JP 3772331 B2 JP3772331 B2 JP 3772331B2 JP 23952194 A JP23952194 A JP 23952194A JP 23952194 A JP23952194 A JP 23952194A JP 3772331 B2 JP3772331 B2 JP 3772331B2
Authority
JP
Japan
Prior art keywords
magnesium
ethyl alcohol
reaction
metal
ethylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23952194A
Other languages
Japanese (ja)
Other versions
JPH0873388A (en
Inventor
暁 別府
仁 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP23952194A priority Critical patent/JP3772331B2/en
Publication of JPH0873388A publication Critical patent/JPH0873388A/en
Application granted granted Critical
Publication of JP3772331B2 publication Critical patent/JP3772331B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【産業上の利用分野】
本発明は、α−オレフィン重合触媒用の担体としての使用に好適な、球状で平均粒径10〜50μmの微粒品のマグネシウムエチラートの製造方法を提供するものである。
【0002】
【従来の技術】
α−オレフィン重合触媒としてチーグラー型触媒が開発され、一般にはマグネシウム、チタン、ハロゲンを含有する固体成分とアルミニウム有機化合物とを反応させることによる種々の方法で製造されていることは周知の事実である。この種の担持型触媒の担体として、マグネシウムエチラートを用いる方法が多数提案され、触媒の高活性化推進の一翼を担っているが、一方、重合体の粒子形状は触媒の形状を忠実に反映することが知られており、重合用触媒として10〜50μmの球状微粒品のマグネシウムエチラートの製造技術確立が、強く産業界から望まれていた。現在、この様な球状微粒品のマグネシウムエチラートの製造方法として以下の方法が提案されている。
【0003】
▲1▼ 機械的な粉砕により粒度調整する方法
▲2▼ 金属マグネシウムとアルコールとの反応をマグネシウム/アルコールの最終添加割合を1/9〜1/15の範囲として、アルコールとマグネシウムをアルコール還流下に断続的もしくは連続的に添加して反応させる方法(特開平3−74341)
▲3▼ カルボキシル化されたマグネシウムアルコキシドのアルコール溶液を噴霧乾燥し、続いて脱カルボキシル化することによって球状微細粒子を製造する方法(特開平6−87773)
▲4▼ 金属マグネシウムとアルコールとを飽和炭化水素の共存下で反応させる方法(特公昭63−4815)
▲5▼ Mg(OR)2 をR′OH中に溶解後噴霧乾燥して得られた固体粒子をROH中に懸濁させ、蒸留によってR′OHを除去してMg(OR)2-a (OR′)a で示される球状品を製造する方法(特開昭62−51633)
【0004】
しかしながら、これらの製造技術は以下の点からいずれも満足のいくものではなかった。
▲1▼の方法では、粒子の形状が破砕状になり、粒子の表面状態や粒度分布を整えたものを得ようとすれば、収率の低下を覚悟せねばならず工業的に有用な方法とは言えない。
▲2▼の方法では、最終のマグネシウム/アルコール添加割合比を1/9〜1/15の範囲と規定しているが、本発明者等が検討実施した結果では、例えば反応中一貫して添加割合比を1/9に固定すれば、反応後半での急激な粘度上昇の起きる反応率80%を越えた時点で充分な撹拌ができずに粒子の凝集が起きて均一な球形度のものが得られず、無理に撹拌を強めれば粒子の破砕を招いてしまう欠点を持っていることが判った。又、添加割合比を最初から1/15の様なアルコール量の多い条件で反応した場合、反応終盤での粘度上昇時の撹拌はスムースになるものの、得られた粒子の形状は丸みに欠け、粒子表面状態が荒れたものになり、嵩密度も低く満足のいくものではないことが判った。
▲3▼〜▲5▼の各方法では、MgとROH以外の原料を必要とし、操作が煩雑であるため所望されている微粒品の製造方法としては不向きなものと言え、形状、粒径の点からも満足すべき方法とは言えない。
【0005】
【発明が解決しようとする課題】
本発明者らは、金属マグネシウムとエチルアルコールとの直接反応によって球状微粒品のマグネシウムエチラートを製造する方法を鋭意検討した結果、反応終盤の反応液粘度が急上昇する前迄とそれ以降とで金属マグネシウムに対するアルコール仕込み比率を変化させ、なおかつ使用する金属マグネシウムの粒径を規定することで、従来の方法に比べて粒度分布幅が狭くて粒子表面の滑らかな球状で微粒品の嵩密度を改善したマグネシウムエチラートを製造できることを見いだし、本発明を完成するに至った。
【0006】
【課題を解決するための手段】
本発明は、金属マグネシウムとエチルアルコールとをハロゲン化合物の触媒の存在下に反応させて、マグネシウムエチラートを製造する方法に於いて、
1)金属マグネシウムと金属マグネシウムの仕込み全量に対して7〜9倍(重量比)のエチルアルコールとを、エチルアルコールの還流下反応させ、
2)金属マグネシウムの反応率が70〜85%に達した時点で、さらにエチルアルコールを最初からの使用量合計が金属マグネシウムの仕込み全量に対して最終的に15〜20倍(重量比)となるように添加し、エチルアルコールの還流下に熟成すること、
を特徴とする球状微粒品のマグネシウムエチラートの製造方法に関するものである。
【0007】
以下、本発明の内容を具体的に説明する。
本発明の特徴とする点は、反応終盤の反応液粘度が急上昇する前と後とで金属マグネシウムとエチルアルコールとの仕込み比率を変化させることにある。当製造方法で得られたマグネシウムエチラートは、10〜50μmの平均粒径で電子顕微鏡等を使用しての観察により、球状で均一な粒度を持った粒子表面が滑らかで密な微粒品であることが判る。
【0008】
本発明で使用する金属マグネシウムは、反応性が良好なものであればどのような形状のものでも良い。即ち、顆粒状、リボン状、粉末状いずれの形状のものでも使用可能だが、反応性が良好なものであることが必要であり、当然のことながら表面に酸化マグネシウムが生成しているようなものは、使用上好ましくない。
マグネシウムエチラートの粒度を平均10〜50μmにするためには、金属マグネシウムは350μm以下の粒度、好ましくは350〜88μmの粒度のものが、均一な反応性を維持する上で好適である。
【0009】
本発明に用いるエチルアルコール中の水分は、少なければ少ない程良く、一般には200ppm以下が好ましい。水分の多いアルコールを使用すると、反応性が悪くなる他に得られたマグネシウムエチラートは、粒度分布幅が広く特に数μm程度の微粉の増加が顕著となり好ましくない結果をもたらす。
【0010】
本発明に於いて、エチルアルコールの金属マグネシウムに対する仕込み比率を金属マグネシウムからの反応率で70〜85%を境に変化させることは、球形で平均粒径10〜50μmのマグネシウムエチラートを製造する上で非常に重要な点である。
即ち、反応開始から反応率70〜85%迄の間のエチルアルコール使用量(重量比)を金属マグネシウムの全量に対し7〜9倍、特に好ましくは7.5〜8.5倍、に維持することで反応液の流動性を保ちながら高濃度下で反応を進めることによって、球形で粒度分布幅の狭い反応物を得ることが可能となる。
【0011】
しかし、上記エチルアルコール/金属マグネシウム仕込み比率のまま反応を継続すると、反応率が80%を超えた頃から反応液の粘度が急上昇するために流動性が著しく悪くなり、折角ほぼ安定した粒子形状になったものが、撹拌によって破砕されてしまうし、破砕を避けるために撹拌を弱めれば粒子の凝集を招いて不定形になって好ましくない。尚、流動性が消失してくると反応液の取り出しにも支障を来たし、収率の低下等の原因となることは言うまでもないことである。
【0012】
そこで球状微粒品を得るためには、マグネシウムの反応率が70〜85%を超えた時点でエチルアルコールのみを追加仕込みし、反応液の流動性を保ちながら反応を継続(熟成)することが好ましく、そのためには通常、最初からのエチルアルコールの使用合計が金属マグエネシウムの仕込み全量に対して最終的に15〜20倍、特に好ましくは15.5〜17.5倍となるようにアルコールで希釈するのが良い方法であることを見いだした。
【0013】
金属マグネシウムの仕込み方法は、分割して仕込んでも最初に一括して仕込んでも良いが、水素ガスが一時的に大量に発生するのを防ぎ、反応熱の除熱をスムースに行うためには分割仕込みが優っており、又、下記式で示される球形度(S)がS<1.10となるものを得るためには、4分割以上に分割して仕込むことが好ましい。
【0014】
【式1】
S=(A/B)2
(ここでAは粒子の投影の輪郭長、Bは粒子の投影面積に等しい円周長を表す)
【0015】
エチルアルコールの仕込みは、金属マグネシウムを分割して仕込む場合には、これに合わせて分割仕込みを行うことが好ましく、その場合でも液粘度が急上昇する反応率70〜85%に達する迄は、エチルアルコール/金属マグネシウム比が7/1〜9/1の範囲で行うことは言うまでもない。
【0016】
本発明による反応に、触媒の存在が不可欠であることは当然である。
使用する触媒としては、ハロゲン化合物の中から選択され、具体的には塩化マグネシウム、臭化マグネシウム等のハロゲン化金属類、臭化エチル、塩化メチル等の有機ハロゲン化合物、及び沃素等のハロゲンが用いられる。これら触媒の使用量は、金属マグネシウムの粒度と触媒の種類の組み合わせによって規制される。沃素を触媒に選択し、金属マグネシウム粒度が210〜149μmのものを使用した場合、触媒量としては金属マグネシウム1モル当たり0.002モル以上、好ましくは0.0025〜0.01モルの使用が好適である。触媒の添加方法に特に制限はなく、エチルアルコールに溶解して仕込んでも良いし、固形のまま仕込んでも良い。
【0017】
以上の様に、所定量の触媒の存在下に金属マグネシウムとエチルアルコールとを反応系に一括もしくは分割して仕込み、エチルアルコールの還流下で0.5〜1時間反応を行うと、液の粘度が急に上昇し始める。この時点での反応率は、通常の方法例えば発生する水素量の測定、あるいは反応液をサンプリングして未反応マグネシウムを定量することで求めることができ、通常は反応率70〜85%に達すると粘度の急変が起きる。反応液の流動性を確保するためにエチルアルコールの追加仕込みを行った後、引き続き0.5〜7時間前後エチルアルコール還流下で反応を継続(熟成)することにより、反応を完結させることができる。
反応の終点は、水素の発生が無くなったことで確認することができる。
【0018】
【実施例】
以下、実施例で本発明を更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
【0019】
(実施例1)
撹拌機付き500ml四つ口フラスコに、積算型ガスメーターを接続した還流コンデンサー、温度計、エチルアルコール用滴下ロート、並びにガス流量計を経由した窒素導入管を設置し、系内を充分に窒素置換を行った後、無水エチルアルコール(水分200ppm)34.0g、沃素0.63gを仕込んで溶解させる。この中に金属マグネシウム3g(粒度210〜149μm)を仕込み、撹拌下オイルバスにてアルコールの還流温度まで昇温を行うと、金属マグネシウムの仕込みから10分以内に反応は安定化するので、以降10分毎に1回当たりエチルアルコール22.6g、金属マグネシウム3gを3回に分けて仕込んで反応を継続した。金属マグネシウムの仕込み全量は12g、この時点でのエチルアルコールの使用量は101.8gである。3回目の仕込み終了から約2時間後に液粘度が急上昇し始めたので、エチルアルコール90.0gを反応液に追加した。この時点の反応率を発生水素ガス量から換算すると81%であった。熟成反応を、排ガス中に水素ガスが検出されなくなるまで続行したところ、最初の仕込みから通算して6時間を要した。
【0020】
エチルアルコール/金属マグネシウム比は、エチルアルコール追加仕込み前迄は8.5/1で、追加仕込み後で16/1になる。反応完結時の液の流動性は良く、容器からの取り出しも容易であった。反応後液は、ロータリーエバポレーターにて減圧乾燥し、56.4gのマグネシウムエチラートを得た。得られたマグネシウムエチラートを走査型電子顕微鏡(日本電子データム(株)製JSM−5300)にて、加速電圧20kV、1000倍で観察した結果、亜球状の粒子で一粒子は細片状のものが密に重なり合ってできているが粒子表面は滑らかであり、撮影した写真より球形度(S)を求めると1.01であった。粒度分布は、レーザー回折式粒度分布測定装置(SYMPATEC社製HELOS&RODOS)を用いて測定したところ、D50が30μm、D10が2.2μm、D90が67μmの分布幅の狭いものであった。又、嵩比重(ゆるみ)の測定結果は、0.274であった。
【0021】
(実施例2)
実施例1と同じ装置を用い、金属マグネシウム、沃素の仕込み量及び仕込み方法も実施例1に準じ、エチルアルコールの仕込み量のみ次の様に変えて反応を行った。最初にフラスコに仕込むエチルアルコールは28g、その後3回に分けて仕込む量は1回当たり18.6g、反応率83%で追加したエチルアルコールは、102.2gとした。即ち、エチルアルコール/金属マグネシウム比は、最後のエチルアルコール追加前で7/1、追加後で15.5/1になる。反応完結時の液の流動性は良く、反応容器からの取り出しは容易であった。
実施例1同様にロータリーエバポレーターで乾燥して、56.3gのマグネシウムエチラートを得た。走査型電子顕微鏡による観察の結果、粒子の大きさが揃っていて球状でしかも粒子表面が密であることが確認された。球形度(S)は、1.02で、D50=23μm、D10=1.6μm、D90=45μmの粒度のものであった。又、嵩比重(ゆるみ)は0.288であった。
【0022】
(実施例3)
実施例1と同一装置を使用し、金属マグネシウム粒度が350〜210μmのものを用いた以外は、仕込み量、仕込み方法等全て実施例1に準じて反応を行った。反応液は終始流動性が保たれ、容器からの排出も容易であった。乾燥後のマグネシウムエチラートは、56.4gあり、球形度(S)=1.08のやや表面に凹凸はあるが亜球状の粒子で、D50=48μm、D10=13μm、D90=123μmの粒度で嵩比重(ゆるみ)は、0.269であった。
【0023】
(比較例1)
実施例1と同一装置を使用し、無水エチルアルコール50g、沃素0.63g、金属マグネシウム2.5g(350〜210μm)を仕込み、アルコール還流下まで昇温して反応を開始させた。反応開始後、金属マグネシウム1.25g、エチルアルコール12.5gを5分毎に8回に分割し、合計して40分間にわたって添加した。添加終了時のエチルアルコール/金属マグネシウム比は12/1であった。添加終了後熟成反応を5時間行って、反応を完結させた。乾燥して得られた粒子は、球形度(S)=1.25、D50=69μm、D10=40μm、D90=289μmで粒子表面が密でなく、凸凹が多く見られる球形度にやや欠けるものであった。又、嵩比重(ゆるみ)は、0.248であった。尚、反応完結後の液は流動性に欠けていて容器から排出しずらく、内壁には多数付着した凝集粒子が見られた。
【0024】
(比較例2)
実施例1と同一装置、同一原料を用いて、同様の反応を行ったが最後のエチルアルコールの添加時期のみを反応率53%の時点とした。
即ち、金属マグネシウム3gとエチルアルコール34g、沃素0.63gを最初に仕込んだ後、10分毎に3回の仕込みを1回当たり金属マグネシウム3gとエチルアルコール22.6gで行い、アルコール還流下で反応を行った。3回目の仕込み終了から40分後に反応率を測定したところ、53%であった。反応液の粘度はまだ上昇傾向を示していなかったが、エチルアルコール90gを反応液に追加し、水素の発生がなくなるまで反応を継続した。反応時間は最初の仕込みから通算して、6.5時間を要した。反応完結後の液の流動性は良く、排出は容易であったが、乾燥後のマグネシウムエチラートの粒径は、D50=30μm、D10=1.9μm、D90=176μmと粒度分布幅が広かった。走査型電子顕微鏡による観察の結果、形状は球形ではなく凸凹しており、粒子を形成している細片の大きさが大きくて、表面状態は滑らかではなく又、密でもなかった。球形度(S)は1.16で、嵩比重は0.204であった。
【0025】
【発明の効果】
本発明の製造方法によれば、粒度分布幅が狭くて粒子表面が滑らかな球状で微粒品の嵩密度を改善したマグネシウムエチラートを一段階の反応で得ることができ、得られたマグネシウムエチラートは、α−オレフィン重合触媒を製造する際に有用なものである。
[0001]
[Industrial application fields]
The present invention provides a method for producing a spherical magnesium fine ethylate having an average particle size of 10 to 50 μm, which is suitable for use as a carrier for an α-olefin polymerization catalyst.
[0002]
[Prior art]
It is a well-known fact that Ziegler type catalysts have been developed as α-olefin polymerization catalysts and are generally produced by various methods by reacting solid components containing magnesium, titanium and halogen with an organic organic compound. . A number of methods using magnesium ethylate have been proposed as a support for this type of supported catalyst, and play a part in promoting high activation of the catalyst. On the other hand, the polymer particle shape accurately reflects the catalyst shape. The establishment of a manufacturing technique for 10-50 μm spherical fine particles of magnesium ethylate as a polymerization catalyst has been strongly desired by the industry. At present, the following method has been proposed as a method for producing such a spherical fine grain magnesium ethylate.
[0003]
(1) Method of adjusting particle size by mechanical grinding (2) The reaction between magnesium metal and alcohol is adjusted to a final magnesium / alcohol addition ratio in the range of 1/9 to 1/15, and the alcohol and magnesium are subjected to alcohol reflux. Method of reacting by adding intermittently or continuously (JP-A-3-74341)
(3) A method for producing spherical fine particles by spray-drying an alcohol solution of carboxylated magnesium alkoxide followed by decarboxylation (JP-A-6-87773)
(4) Method of reacting magnesium metal and alcohol in the presence of saturated hydrocarbon (Japanese Patent Publication No. 63-4815)
(5) Solid particles obtained by dissolving Mg (OR) 2 in R′OH and then spray-dried are suspended in ROH, and R′OH is removed by distillation to remove Mg (OR) 2-a ( OR ') a method of producing spherical products represented by a (JP 62-51633)
[0004]
However, none of these manufacturing techniques is satisfactory from the following points.
In the method (1), if the shape of the particles is crushed and an attempt is made to obtain a particle whose surface condition and particle size distribution are adjusted, it is necessary to be prepared for a decrease in yield, which is an industrially useful method. It can not be said.
In the method (2), the final magnesium / alcohol addition ratio is defined to be in the range of 1/9 to 1/15. If the ratio ratio is fixed at 1/9, when the reaction rate exceeds 80%, where a sudden increase in viscosity occurs in the second half of the reaction, sufficient agitation is not possible and particle agglomeration occurs, resulting in a uniform sphericity. It could not be obtained, and it was found that there was a defect that if the stirring was forcibly increased, the particles were crushed. In addition, when the reaction is carried out under the condition of a large amount of alcohol such as 1/15 from the beginning, the stirring at the end of the reaction at the end of the viscosity is smooth, but the shape of the obtained particles lacks roundness. It was found that the particle surface was rough and the bulk density was low and not satisfactory.
In each of the methods (3) to (5), raw materials other than Mg and ROH are required, and the operation is complicated. Therefore, it can be said that it is not suitable as a method for producing a desired fine product. From a point of view, it is not a satisfactory method.
[0005]
[Problems to be solved by the invention]
As a result of intensive studies on a method for producing spherical fine-grained magnesium ethylate by direct reaction between magnesium metal and ethyl alcohol, the present inventors have found that the metal before and after the reaction solution viscosity rapidly increases at the end of the reaction. By changing the ratio of alcohol to magnesium and by defining the particle size of magnesium metal to be used, the particle size distribution width is narrower than the conventional method, and the bulk density of fine particles is improved with a smooth spherical surface. It has been found that magnesium ethylate can be produced, and the present invention has been completed.
[0006]
[Means for Solving the Problems]
The present invention relates to a process for producing magnesium ethylate by reacting magnesium metal and ethyl alcohol in the presence of a halogen compound catalyst.
1) 7-9 times (weight ratio) ethyl alcohol with metal magnesium and the total amount of metal magnesium charged are reacted under reflux of ethyl alcohol,
2) When the reaction rate of metal magnesium reaches 70 to 85%, the total amount of ethyl alcohol used from the beginning is finally 15 to 20 times (weight ratio) with respect to the total amount of metal magnesium charged. And ripening under reflux of ethyl alcohol,
The present invention relates to a method for producing a spherical fine grain magnesium ethylate.
[0007]
The contents of the present invention will be specifically described below.
The feature of the present invention is that the charging ratio of magnesium metal and ethyl alcohol is changed before and after the viscosity of the reaction solution at the end of the reaction rises rapidly. Magnesium ethylate obtained by this production method is a fine particle product with a smooth and dense particle surface with a spherical and uniform particle size, as observed by using an electron microscope or the like with an average particle size of 10 to 50 μm. I understand that.
[0008]
The magnesium metal used in the present invention may have any shape as long as it has good reactivity. In other words, it can be used in the form of granules, ribbons, or powders, but it must have good reactivity, and naturally magnesium oxide is generated on the surface. Is not preferred for use.
In order to make the average particle size of magnesium ethylate 10 to 50 μm, a metal magnesium having a particle size of 350 μm or less, preferably 350 to 88 μm, is suitable for maintaining uniform reactivity.
[0009]
The lower the water content in ethyl alcohol used in the present invention, the better. In general, it is preferably 200 ppm or less. When alcohol with a high water content is used, the reactivity becomes worse, and the obtained magnesium ethylate has an unfavorable result because the particle size distribution width is wide and the increase of fine powder of about several μm is particularly remarkable.
[0010]
In the present invention, changing the charging ratio of ethyl alcohol to metallic magnesium at a reaction rate from metallic magnesium of 70 to 85% is the reason for producing magnesium ethylate having a spherical shape and an average particle diameter of 10 to 50 μm. This is a very important point.
That is, the amount (weight ratio) of ethyl alcohol used between the start of the reaction and the reaction rate of 70 to 85% is maintained at 7 to 9 times, particularly preferably 7.5 to 8.5 times the total amount of metal magnesium. Thus, by proceeding the reaction at a high concentration while maintaining the fluidity of the reaction solution, it is possible to obtain a spherical reaction product having a narrow particle size distribution width.
[0011]
However, if the reaction is continued with the above ethyl alcohol / magnesium magnesium charging ratio, the viscosity of the reaction solution suddenly increases from the time when the reaction rate exceeds 80%, so that the fluidity is remarkably deteriorated, and the particle shape is almost stable. The resulting material is crushed by agitation, and if the agitation is weakened to avoid crushing, the particles are agglomerated and become indefinite. Needless to say, when the fluidity disappears, the reaction solution is taken out, which causes a decrease in yield.
[0012]
Therefore, in order to obtain spherical fine particles, it is preferable to add only ethyl alcohol when the magnesium reaction rate exceeds 70 to 85%, and to continue (ripen) the reaction while maintaining the fluidity of the reaction solution. In order to do so, it is usually diluted with alcohol so that the total use of ethyl alcohol from the beginning is finally 15 to 20 times, particularly preferably 15.5 to 17.5 times the total charged amount of metal magnesium. I found that is a good way.
[0013]
The magnesium metal can be charged separately or initially, but in order to prevent a large amount of hydrogen gas from being temporarily generated and to smoothly remove the heat of reaction, it is divided. In order to obtain a sphericity (S) represented by the following formula with S <1.10, it is preferable to divide into four or more parts.
[0014]
[Formula 1]
S = (A / B) 2
(Here, A represents the contour length of the projected particle, and B represents the circumferential length equal to the projected area of the particle)
[0015]
As for the preparation of ethyl alcohol, when metal magnesium is dividedly charged, it is preferable to carry out a divided preparation accordingly. Even in this case, ethyl alcohol is used until the reaction rate reaches 70 to 85% at which the liquid viscosity rapidly increases. Needless to say, the metal magnesium ratio is in the range of 7/1 to 9/1.
[0016]
Of course, the presence of a catalyst is essential for the reaction according to the invention.
The catalyst to be used is selected from halogen compounds. Specifically, metal halides such as magnesium chloride and magnesium bromide, organic halogen compounds such as ethyl bromide and methyl chloride, and halogens such as iodine are used. It is done. The amount of these catalysts used is regulated by the combination of the metal magnesium particle size and the type of catalyst. When iodine is selected as the catalyst and the metal magnesium particle size is 210 to 149 μm, the catalyst amount is 0.002 mol or more, preferably 0.0025 to 0.01 mol per mol of metal magnesium. It is. There is no restriction | limiting in particular in the addition method of a catalyst, It melt | dissolves in ethyl alcohol and may be charged and you may charge with solid.
[0017]
As described above, when magnesium magnesium and ethyl alcohol are charged into a reaction system all at once or divided into a reaction system in the presence of a predetermined amount of catalyst and reacted for 0.5 to 1 hour under reflux of ethyl alcohol, the viscosity of the liquid Begins to rise suddenly. The reaction rate at this point can be determined by a usual method such as measurement of the amount of hydrogen generated, or by sampling the reaction solution and quantifying unreacted magnesium. Usually, when the reaction rate reaches 70 to 85%. A sudden change in viscosity occurs. After additional charging of ethyl alcohol to ensure the fluidity of the reaction solution, the reaction can be completed by continuing (ripening) the reaction under reflux of ethyl alcohol for about 0.5 to 7 hours. .
The end point of the reaction can be confirmed by the disappearance of hydrogen generation.
[0018]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.
[0019]
Example 1
A 500 ml four-necked flask equipped with a stirrer is equipped with a reflux condenser connected with an integrating gas meter, a thermometer, a dropping funnel for ethyl alcohol, and a nitrogen inlet tube via a gas flow meter to fully replace the system with nitrogen. Then, 34.0 g of anhydrous ethyl alcohol (water 200 ppm) and 0.63 g of iodine are charged and dissolved. When 3 g of metal magnesium (particle size 210 to 149 μm) is charged therein and heated to the reflux temperature of the alcohol in an oil bath with stirring, the reaction stabilizes within 10 minutes after the metal magnesium is charged. The reaction was continued by charging 22.6 g of ethyl alcohol and 3 g of metallic magnesium in 3 portions per minute. The total amount of metal magnesium charged is 12 g, and the amount of ethyl alcohol used at this point is 101.8 g. About 2 hours after the completion of the third charge, the liquid viscosity began to increase rapidly, so 90.0 g of ethyl alcohol was added to the reaction liquid. The reaction rate at this time was 81% when converted from the amount of generated hydrogen gas. When the aging reaction was continued until no hydrogen gas was detected in the exhaust gas, it took 6 hours from the initial charging.
[0020]
The ratio of ethyl alcohol / magnesium magnesium is 8.5 / 1 before the additional charging of ethyl alcohol, and 16/1 after the additional charging. The fluidity of the liquid at the completion of the reaction was good, and removal from the container was easy. The solution after the reaction was dried under reduced pressure using a rotary evaporator to obtain 56.4 g of magnesium ethylate. The obtained magnesium ethylate was observed with a scanning electron microscope (JSM-5300 manufactured by JEOL Datum Co., Ltd.) at an acceleration voltage of 20 kV and 1000 times. Are closely overlapped with each other, but the particle surface is smooth, and the sphericity (S) is 1.01 from the photograph taken. The particle size distribution was measured using a laser diffraction type particle size distribution measuring apparatus (HELOS & RODOS manufactured by SYMPATEC). As a result, D 50 was 30 μm, D 10 was 2.2 μm, and D 90 was 67 μm. The measurement result of bulk specific gravity (loosening) was 0.274.
[0021]
(Example 2)
Using the same apparatus as in Example 1, the amounts of metal magnesium and iodine and the method of charging were also changed according to Example 1, except that the amount of ethyl alcohol was changed as follows. The amount of ethyl alcohol initially charged in the flask was 28 g, and thereafter, the amount charged in three portions was 18.6 g, and the amount of ethyl alcohol added at a reaction rate of 83% was 102.2 g. That is, the ethyl alcohol / metal magnesium ratio is 7/1 before the last addition of ethyl alcohol and 15.5 / 1 after the addition. The fluidity of the liquid at the completion of the reaction was good, and it was easy to remove from the reaction vessel.
It dried with the rotary evaporator similarly to Example 1, and obtained 56.3 g of magnesium ethylates. As a result of observation with a scanning electron microscope, it was confirmed that the particles had a uniform size, were spherical, and the particle surface was dense. The sphericity (S) was 1.02, and the particle size was D 50 = 23 μm, D 10 = 1.6 μm, and D 90 = 45 μm. The bulk specific gravity (loosening) was 0.288.
[0022]
Example 3
The same apparatus as in Example 1 was used, and the reaction was carried out according to Example 1 except that the metal magnesium particle size was 350 to 210 μm, and the charging amount and charging method were all used. The reaction solution maintained fluidity from beginning to end, and was easily discharged from the container. Magnesium ethylate after drying is 56.4 g, sphericity (S) = 1.08, slightly uneven but subspherical particles, D 50 = 48 μm, D 10 = 13 μm, D 90 = 123 μm The bulk specific gravity (slackness) was 0.269.
[0023]
(Comparative Example 1)
Using the same apparatus as in Example 1, 50 g of anhydrous ethyl alcohol, 0.63 g of iodine, and 2.5 g of metal magnesium (350 to 210 μm) were charged, and the reaction was started by raising the temperature to reflux of alcohol. After the start of the reaction, 1.25 g of metal magnesium and 12.5 g of ethyl alcohol were divided into 8 portions every 5 minutes and added over a total of 40 minutes. The ethyl alcohol / metal magnesium ratio at the end of the addition was 12/1. After completion of the addition, the ripening reaction was carried out for 5 hours to complete the reaction. The particles obtained by drying had a sphericity (S) = 1.25, D 50 = 69 μm, D 10 = 40 μm, D 90 = 289 μm, and the particle surface was not dense and somewhat spherical. It was lacking. The bulk specific gravity (loosening) was 0.248. The liquid after completion of the reaction lacked fluidity and was difficult to discharge from the container, and a large number of aggregated particles adhered to the inner wall.
[0024]
(Comparative Example 2)
The same reaction was carried out using the same apparatus and the same raw materials as in Example 1, but only the last addition time of ethyl alcohol was set as the time point when the reaction rate was 53%.
That is, 3 g of metal magnesium, 34 g of ethyl alcohol, and 0.63 g of iodine were initially charged, and then charged every 3 minutes for 3 times with 3 g of metal magnesium and 22.6 g of ethyl alcohol. Went. When the reaction rate was measured 40 minutes after the completion of the third charge, it was 53%. Although the viscosity of the reaction solution did not show an increasing tendency yet, 90 g of ethyl alcohol was added to the reaction solution, and the reaction was continued until no hydrogen was generated. The reaction time took 6.5 hours from the initial charging. The fluidity of the liquid after completion of the reaction was good and the discharge was easy, but the particle size of the magnesium ethylate after drying was D 50 = 30 μm, D 10 = 1.9 μm, D 90 = 176 μm. Was wide. As a result of observation with a scanning electron microscope, the shape was not spherical but uneven, the size of the strips forming the particles was large, and the surface state was neither smooth nor dense. The sphericity (S) was 1.16 and the bulk specific gravity was 0.204.
[0025]
【The invention's effect】
According to the production method of the present invention, a magnesium ethylate having a narrow particle size distribution width, a smooth spherical particle surface, and improved bulk density of a fine product can be obtained by a one-step reaction, and the obtained magnesium ethylate Is useful when producing an α-olefin polymerization catalyst.

Claims (3)

金属マグネシウムとエチルアルコールとを、ハロゲン化合物の触媒の存在下に反応させてマグネシウムエチラートMg(OC2 5 2 を製造する方法に於いて、
1)金属マグネシウムと金属マグネシウムの仕込み全量に対して7〜9倍(重量比)のエチルアルコールとを、エチルアルコールの還流下反応させ、
2)金属マグネシウムの反応率が70〜85%に達した時点で、さらにエチルアルコールを最初からの使用合計が金属マグネシウムの仕込み全量に対して最終的に15〜20倍(重量比)となるように添加し、エチルアルコールの還流下に熟成すること、
を特徴とする球状微粒品のマグネシウムエチラートの製造方法。
In a process for producing magnesium ethylate Mg (OC 2 H 5 ) 2 by reacting magnesium metal and ethyl alcohol in the presence of a halogen compound catalyst,
1) 7-9 times (weight ratio) ethyl alcohol with metal magnesium and the total amount of metal magnesium charged is reacted under reflux of ethyl alcohol,
2) When the reaction rate of metal magnesium reaches 70 to 85%, the total use of ethyl alcohol from the beginning is finally 15 to 20 times (weight ratio) with respect to the total amount of metal magnesium charged. Ripening under reflux of ethyl alcohol,
A method for producing magnesium ethylate as a spherical fine particle product.
使用する金属マグネシウムの粒度が350μm以下である請求項1に記載したマグネシウムエチラートの製造方法。The method for producing a magnesium ethylate according to claim 1, wherein the metal magnesium used has a particle size of 350 µm or less. マグネシウムエチラートの粒径(D50)が、10〜50μmの範囲にある微細で球状を呈した請求項1記載のマグネシウムエチラートの製造方法。Magnesium particle diameter of ethylate (D 50) The production method of magnesium ethylate of claim 1 exhibited spherical fine in the range of 10 to 50 [mu] m.
JP23952194A 1994-09-07 1994-09-07 Method for producing magnesium ethylate spherical fine particles Expired - Fee Related JP3772331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23952194A JP3772331B2 (en) 1994-09-07 1994-09-07 Method for producing magnesium ethylate spherical fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23952194A JP3772331B2 (en) 1994-09-07 1994-09-07 Method for producing magnesium ethylate spherical fine particles

Publications (2)

Publication Number Publication Date
JPH0873388A JPH0873388A (en) 1996-03-19
JP3772331B2 true JP3772331B2 (en) 2006-05-10

Family

ID=17046043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23952194A Expired - Fee Related JP3772331B2 (en) 1994-09-07 1994-09-07 Method for producing magnesium ethylate spherical fine particles

Country Status (1)

Country Link
JP (1) JP3772331B2 (en)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19849353A1 (en) * 1998-10-27 2000-05-04 Degussa High coarse grain magnesium ethoxide, process for its preparation and its use
WO2003099749A1 (en) * 2002-05-24 2003-12-04 Idemitsu Kosan Co., Ltd Magnesium compound, solid catalyst component for olefin polymerization, catalyst for olefin polymerization and method for producing polyolefin
TWI253451B (en) 2002-08-29 2006-04-21 Toho Catalyst Co Ltd Solid catalyst component, catalyst for polymerization of olefins, and polymerizing method of olefins
KR100624027B1 (en) * 2004-09-23 2006-09-15 삼성토탈 주식회사 Method of preparation of spherical support for olefin polymerization catalyst
CN100364946C (en) * 2005-07-18 2008-01-30 曹衍军 Process for producing solid magnesium alcoholate
JP2007297371A (en) * 2006-04-07 2007-11-15 Colcoat Kk Dialkoxymagnesium granular material and synthesis and use thereof
KR20090005298A (en) 2006-04-07 2009-01-13 콜코트 가부시키가이샤 Dialkoxymagnesium granular material and method for synthesis of the same
KR100807895B1 (en) * 2006-08-30 2008-02-27 삼성토탈 주식회사 Method for preparation of spherical support for olefin polymerization catalyst
KR100874089B1 (en) * 2007-04-25 2008-12-16 삼성토탈 주식회사 Process for preparing a catalyst for propylene polymerization
KR100954056B1 (en) 2007-12-12 2010-04-20 삼성토탈 주식회사 Method of preparation of spherical support for olefin polymerization catalyst
EA017589B1 (en) * 2008-03-14 2013-01-30 Сауди Бейсик Индастриз Корпорейшн A catalyst system and a process for the production of polyethylene in the presence of this catalyst system
KR20100007076A (en) 2008-07-11 2010-01-22 삼성토탈 주식회사 Method for controlling size of spherical support for olefin polymerization catalyst
JP5703029B2 (en) 2009-01-07 2015-04-15 東邦チタニウム株式会社 Process for producing solid catalyst component for olefin polymerization and catalyst, and process for producing olefin polymer
BRPI1004565B1 (en) 2009-03-17 2019-09-10 Toho Titanium Co Ltd solid catalyst component, olefin polymerization catalyst, and process for producing an olefin polymer.
KR101140112B1 (en) 2009-05-22 2012-04-30 삼성토탈 주식회사 A preparation method of dialkoxymagnesium support for catalyst for olefin polymerization, a preparation method of catalyst for olefin polymerization using the same and a polymerization method of olefin using the same
EP2284199A1 (en) 2009-08-14 2011-02-16 Saudi Basic Industries Corporation A catalyst system and a process for the production of polyethylene
EP2540693B1 (en) * 2010-02-25 2018-04-04 Colcoat Co., Ltd. Mixed magnesium dialkoxide particulate, method for synthesizing same, and method for use thereof
KR101169861B1 (en) 2010-05-27 2012-07-31 삼성토탈 주식회사 Method of preparation of spherical support and solid catalyst for olefin polymerization using the support
EP2636688B1 (en) 2010-11-04 2016-11-16 Toho Titanium Co., Ltd. Method for producing solid catalyst component for olefin polymerization, catalyst for olefin polymerization, and olefin polymers
ES2665526T3 (en) 2011-07-06 2018-04-26 Toho Titanium Co., Ltd. Solid catalyst component for olefin polymerization, olefin polymerization catalyst, and method for producing an olefin polymer
US10364304B2 (en) 2011-08-25 2019-07-30 Toho Titanium Co., Ltd. Method for producing solid catalyst component for olefin polymerization, catalyst for olefin polymerization, and method for producing olefin polymer
BR112014005755B1 (en) 2011-09-20 2020-12-29 Toho Titanium Co., Ltd solid catalyst component for olefin polymerization, catalyst for olefin polymerization, and method for producing olefin polymer
KR102043481B1 (en) 2012-07-18 2019-11-11 도호 티타늄 가부시키가이샤 Method for Producing Solid Catalyst Component for Use in Polymerization of Olefin, Catalyst for Use in Polymerization of Olefin, and Method for Producing Olefin Polymer
KR102006050B1 (en) 2012-09-28 2019-07-31 도호 티타늄 가부시키가이샤 Solid catalyst component for polymerization of olefins, catalyst for polymerization of olefins, and method for producing olefin polymer
CN102992958A (en) * 2012-11-01 2013-03-27 济南大学 Preparation method of spherical magnesium ethylate
CN104822712B (en) 2013-02-27 2018-02-23 东邦钛株式会社 The manufacture method of ingredient of solid catalyst for olefin polymerization, the catalyst for olefin polymerization and olefin polymerization
SG11201506721TA (en) 2013-02-27 2015-09-29 Toho Titanium Co Ltd Method for producing propylene block copolymer
WO2014132806A1 (en) 2013-02-27 2014-09-04 東邦チタニウム株式会社 Production method for solid catalyst component for polymerizing olefins, catalyst for polymerizing olefins, and production method for polymerized olefins
KR102060850B1 (en) 2013-02-27 2020-02-11 도호 티타늄 가부시키가이샤 Production method for solid catalyst component for polymerizing olefins, catalyst for polymerizing olefins, and production method for polymerized olefins
JP7145149B2 (en) 2017-05-10 2022-09-30 東邦チタニウム株式会社 Olefin polymerization catalyst, method for producing olefin polymer, and propylene-α-olefin copolymer
WO2019005261A1 (en) 2017-06-27 2019-01-03 Exxonmobil Chemical Patents Inc. High stiffness polypropylene impact copolymer
US10113014B1 (en) 2017-06-27 2018-10-30 Toho Titanium Co., Ltd. Method for producing solid catalyst component containing vanadium compound for olefin polymerization, olefin polymerization catalyst, and method for producing olefin polymer
CN110997738B (en) 2017-06-27 2022-08-16 埃克森美孚化学专利公司 High impact polypropylene impact copolymers
US10246530B2 (en) 2017-06-27 2019-04-02 Toho Titanium Co., Ltd. Method for producing solid catalyst component for olefin polymerization, catalyst for olefin polymerization and a process for propylene polymerization
EP3689918A4 (en) 2017-09-29 2021-09-15 Toho Titanium CO., LTD. Catalyst for olefin polymerization, method for producing catalyst for olefin polymerization, method for producing olefin polymer, and propylene- -olefin copolymer
CN107936154B (en) 2017-12-01 2020-11-06 中国石油天然气股份有限公司 Alkoxy magnesium catalyst carrier and preparation method and application thereof
KR20210004977A (en) 2018-04-20 2021-01-13 도호 티타늄 가부시키가이샤 Olefin polymer and method for producing olefin polymer
JP7283203B2 (en) 2019-04-25 2023-05-30 住友化学株式会社 Method for producing propylene polymer
CN114729068A (en) 2019-11-29 2022-07-08 泰国聚乙烯有限公司 Catalyst composition for the polymerization of olefins
JP2021161216A (en) 2020-03-31 2021-10-11 住友化学株式会社 Solid catalyst component for olefin polymerization
JP7036995B1 (en) 2020-04-28 2022-03-15 東邦チタニウム株式会社 A method for producing a solid catalyst component for olefin polymerization, a catalyst for olefin polymerization, and an olephye polymer.
JP2021172776A (en) 2020-04-28 2021-11-01 東邦チタニウム株式会社 Solid catalyst component for polymerizing olefins and manufacturing method thereof, catalyst for polymerizing olefins and manufacturing method thereof and manufacturing method of polymer of olefins
EP4159773A1 (en) 2020-05-27 2023-04-05 Toho Titanium Co., Ltd. Method for producing catalyst for olefin polymerization, catalyst for olefin polymerization, and method for producing olefin polymer
JP7023322B2 (en) 2020-05-27 2022-02-21 東邦チタニウム株式会社 Method for producing catalyst for olefin polymerization
WO2022094508A1 (en) 2020-10-30 2022-05-05 Exxonmobil Chemical Patents Inc. Polypropylene produced using modified styrenic internal electron donors
JP2022181400A (en) 2021-05-26 2022-12-08 東邦チタニウム株式会社 Solid catalyst component for polymerizing olefins, catalyst for polymerizing olefins, method for producing olefins polymer, olefin polymer, method for producing propylene-based block copolymer and propylene-based block copolymer
EP4155324A3 (en) 2021-09-22 2023-05-03 Sumitomo Chemical Company, Limited Method for producing solid catalyst component for olefin polymerization, method for producing catalyst for olefin polymerization, and method for producing olefin polymer
JP2023103559A (en) 2022-01-14 2023-07-27 住友化学株式会社 Heterophasic propylene polymerization material and olefin polymer

Also Published As

Publication number Publication date
JPH0873388A (en) 1996-03-19

Similar Documents

Publication Publication Date Title
JP3772331B2 (en) Method for producing magnesium ethylate spherical fine particles
JP5753587B2 (en) Method for producing magnesium alcoholate
SU628805A3 (en) Method of producing catalyst for olefin polymerization
JPH0720898B2 (en) A method for synthesizing spherical, narrow particle size distribution magnesium alcoholates.
JPH0822883B2 (en) Production of polyethylene by gas phase reaction
JP4829118B2 (en) Spherical particles
JPS5874705A (en) Improved polymerization catalyst, manufacture and use for ethylene polymerization
JP3474317B2 (en) Manufacturing method of magnesium hydride
RU1838236C (en) Method of trichloromonosilane synthesis
JP4909515B2 (en) Phenol compound beads and method for producing the same
CN115594615B (en) N, N&#39; -guanidinodiacetic acid
CN113620779B (en) Alkoxy magnesium carrier, preparation method thereof and polyolefin solid catalyst containing same
JP2613259B2 (en) Method for producing trichlorosilane
NO180714B (en) Process for producing oxamide
JPH09187641A (en) Operating method of fluidized bed reactor
EP1614673B1 (en) CRYSTAL OF p-HYDROXYBENZOIC ACID AND PROCESS FOR PRODUCING THE SAME
JPS6012976B2 (en) Method for producing chromium dichloride and iron dichloride
JPH05255214A (en) Hydration of nitrile compound
JPH0131454B2 (en)
JPS58125697A (en) Preparation of sic whisker
JPH07278132A (en) Small sphere of coumarin and/or its derivative and production of small sphere
JPS6136045B2 (en)
TW201936557A (en) Method for producing alkoxymagnesium and alkoxymagnesium
EP0026860A1 (en) Process for producing silicon tetrachloride
JPS589948A (en) Manufacture of metallic titanium

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140224

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees