JP3772248B2 - Seismic isolation method for intermediate floors of existing buildings - Google Patents

Seismic isolation method for intermediate floors of existing buildings Download PDF

Info

Publication number
JP3772248B2
JP3772248B2 JP22411597A JP22411597A JP3772248B2 JP 3772248 B2 JP3772248 B2 JP 3772248B2 JP 22411597 A JP22411597 A JP 22411597A JP 22411597 A JP22411597 A JP 22411597A JP 3772248 B2 JP3772248 B2 JP 3772248B2
Authority
JP
Japan
Prior art keywords
seismic isolation
existing
support jack
axial force
steel pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22411597A
Other languages
Japanese (ja)
Other versions
JPH1162271A (en
Inventor
孝 鹿島
一博 井ノ上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP22411597A priority Critical patent/JP3772248B2/en
Publication of JPH1162271A publication Critical patent/JPH1162271A/en
Application granted granted Critical
Publication of JP3772248B2 publication Critical patent/JP3772248B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Description

【0001】
【発明が属する技術分野】
この発明は、既存建物の耐震安全性を改善するべく同建物の中間階に免震装置を設置して免震構造化する技術の分野に属し、特には既存建物を使用しながら施工する「居ながら免震化」の方法であり、中間階の既存柱を利用して免震構造化する工法に関する。
【0002】
【従来の技術】
建物の中間階に免震装置を設置して免震構造化する技術の先行技術としては、特開平8ー338155号公報に記載された既存建物の免震構造化方法が認められる。但し、この先行技術は、建物の中間階の既存柱を利用して免震装置を設置するけれども、建物の上部構造の梁の下にサポートジャッキを含む架台を設置し、この架台で梁を介して上部構造の全体を支持せしめた上で既存柱を切断し、サポートジャッキで上部構造の全体を上昇させ、離れた柱間へ免震装置を設置し、その後架台の負荷を免震装置へ切り替える工程を主な内容としている。既存建物の梁が架台による上部構造の支持が可能な強度を有することが前提の工法である。
【0003】
また、本出願人は、先の特願平9ー107683号明細書及び図面に、やはり既存建物の中間階の既存柱を利用して免震構造化する方法の発明を提案している。但し、この先願発明は、既存柱の軸力の盛り替え用に、プレストレス導入用のPC鋼線を配置してコンクリートの増打ちを行うことを主な内容としている。
【0004】
【本発明が解決しようとする課題】
既存建物を使用しながら施工する「居ながら免震化」の方法を実施する場合は、施工中の安全性を確保することが絶対の条件であるし、施工階を免震階に限定することが必要である。また、免震化に伴う柱断面の増大は最小限に抑えることが、施工後の床面積の有効利用に重要である。
【0005】
そのような観点で上記特開平8ー338155号公報に記載された既存建物の免震構造化方法を検討すると、柱を切断した後、架台のジャッキで建物の上部構造の全体を上昇させる旨の記載が図2と共に認められる。その状態でもしも地震が起きたらと考えるだけで、これはとても既存建物を使用しながら施工する「居ながら免震化」の方法として実施することは難しいと認められる。また、同公報の請求項2〜4に、下部構造の柱の頂部間に梁を架設するとか、上部構造の柱の脚部間に梁を架設する旨の記載が認められ、施工後の免震階の有効利用は困難である。のみならず、当業者の理解として、既存建物は架台で支持する上下階の梁の強度が不足する場合が多く、同梁の補強やサポートを複数階に設置しなければならない、等々の欠点、問題点が認められる。
【0006】
また、上記先願の特願平9ー107683号明細書及び図面に記載された、既存建物の中間階の既存柱を利用して免震構造化する方法は、既存柱の軸力の盛り替え用に、プレストレス導入用のPC鋼線を配置したコンクリートの増打ちを行うので、免震化に伴う柱断面の増大が著しく、施工後の床面積の有効利用に不利な問題点が在る。
【0007】
従って、本発明の目的は、施工階を免震階に限定し、柱断面の増大を可及的に抑制すること、及び柱の軸変形を制御し、上部構造の健全性を確保すること、並びに施工中の耐震安全性を確保し、建物を使用しながら施工する「居ながら免震化」の施工を実現する中間階免震構造化工法を提供することである。
【0008】
【課題を解決するための手段】
上記の課題を解決するための手段として、請求項1記載の発明に係る既存建物の中間階免震構造化工法は、
既存建物の中間階の既存柱の躯体表面に目荒らし処理を行、前記既存柱の免震装置取付け部位を除く上部と下部の外周に、二分割された半割り鋼管を建て込み溶接により接合して鋼管4、5を完成し、同鋼管内にモルタル等を充填し既存柱と鋼管4、5を一体化する工作を、既存建物の当該中間階の既存柱1の全てについて行い、しかる後施工中の地震に対し必要とされるブレース箇所数により決定された既存柱1の鋼管4、5の間に施工時ブレース8、9をボルト接合によって取り付ける段階と、
免震装置の取付けを行う既存柱1についてのみ前記施工時ブレース8、9を一時撤去して、上下の鋼管4、5外面に相対峙する配置でブラケット11をボルト接合により撤去可能に取付け、上下のブラケット11、11の間にサポートジャッキ10を設置し、同サポートジャッキ10を駆動して軸力を導入し当該既存柱が負担している軸力をサポートジャッキ10の軸力へ盛り替える段階と、
上下の鋼管4、5の間の既存柱を切断し撤去する段階と、
上下の鋼管4、5の端面に免震装置取付けプレート12を仮付けし、前記上下の免震装置取付けプレート12、12の間に免震装置13を取付け、各免震装置取付けプレート12と鋼管4、5の端面との隙間にモルタル等を充填する段階と、
前記充填モルタルが強度を発現した後に、サポートジャッキ10の軸力を解放して免震装置13による支持に盛り替え、サポートジャッキ10を撤去すると共に再び施工時ブレース8、9を当該柱の鋼管4、5に取り付ける段階と、
以下、同様の段階を全ての既存柱について繰り返すことを特徴とする。
【0011】
請求項記載の発明は、請求項1に記載した既存建物の中間階免震構造化工法において、上下の鋼管4、5の間にサポートジャッキ10を設置する方法として、上下の鋼管4、5の外周に環状の水平リブ17を持つブラケットをボルト接合により撤去可能に取付け、上下の水平リブ17の間にサポートジャッキ10を設置することを特徴とする。
請求項記載の発明は、請求項1に記載した既存建物の中間階免震構造化工法において、サポートジャッキ10の駆動は、軸力を導入する際にはサポートジャッキ10の軸力及び変位の大きさを計測し管理して行い、軸力の解放の際には、免震装置13の軸変形を計測して急激な変形が発生しないように管理して行うこと特徴とする。
【0012】
求項記載の発明は、請求項1に記載した既存建物の中間階免震構造化工法において、免震装置13の取付けを完成した既存柱については上下の鋼管4、5の外面間に拘束用のストッパプレート16を接合し、既存建物の全ての既存柱に免震装置13の取付けを完了した段階で同時期に前記のストッパプレート16を撤去することを特徴とする。
【0013】
【発明の実施形態】
請求項1記載の発明に係る既存建物の中間階免震構造化工法は、図1以下に枢要な工程図で示した形態で実施される。
先ずは図1に示したように、既存建物の中間階(免震階)の既存柱1の躯体表面に目荒らし処理(散点部分)を行う。既存柱1の表面仕上げを除去し、タガネでコンクリート表面を凹凸状に荒らすなどの処理を行うのであるが、後で切断し免震装置を取り付ける部位(長さLの範囲、Lは約450mm)は、処理が無駄になるから放置しておく。図1において符号23 は免震階として選択した既存建物の3階床スラブ、24 は4階床スラブであり、3は4階の梁を指す。
【0014】
図2は上記既存柱1の免震装置の取付け部位Lを除く上部と下部の外周に鋼管4,5を建て込み、同鋼管4、5内にモルタル等の固着材を充填して既存柱1と鋼管4、5を一体化する段階を示している。鋼管4、5は、既存柱1の外径が図5に示したように900×900mmであるのに対して、1200×1200mm、厚さ16mmの角鋼管を二等分割した半割り鋼管を既存柱1の左右からその外周へ相似形の配置に建て込み、突き合わされた分割線に裏当てを設け、溶接により接合して1個の鋼管に完成している。既存柱1と各鋼管4、5との隙間をモルタル6で充填して一体化する。上位の鋼管4の下端面はモルタル6が漏れ出さない程度の底板(図示は省略)で閉塞されている。但し、後述する免震装置取付けプレートの良好な一体化を達成するため、前記底板には合板の如く後で解体撤去が可能な材質のものを使用し、且つダボ効果による一体化を図るため上向きに少し上げ底状態に設けられる。また、前記モルタル6の充填と硬化を利用して既存柱1とのより強固な一体化を達成するため、各鋼管4、5の内部には、縦、横方向の内側スタッド7が既存柱1を避けた配置で設置されている(請求項3の発明)。因みに、図5中の符号1aは既存柱1の鉄骨を示している。
【0015】
図3は、請求項2記載の発明の実施形態を示したものである。上記したように建物の中間階(免震階)の既存柱への鋼管4、5の建て込み、及び同既存柱1と一体化する工作は、既存建物の当該中間階の既存柱の全てについて行う。しかる後、既存柱1の上下の鋼管4、5の間に施工時ブレース8、9を後で解体撤去が容易なボルト接合の方法によって取り付けることを示している。既存建物の免震構造化の施工期間中の耐震安全性を確保し「居ながら免震化」を実現するためである。ブレース8にはH形鋼の外周に補剛管を嵌めて補剛した構造のものが使用され、ブレース9には200×200×8×12mm程度のH形鋼が使用されている。但し、全ての既存柱へブレースを取付けるのではなく、施工中に予測される地震の発生に対し、必要とされるブレース箇所数により決定した既存柱に施工時ブレース8、9を取付ける。そして、後の工程として行われる免震装置の取付け施工の対象である既存柱についてのみ、前記施工時ブレース8、9は一時撤去して免震化施工を行う。何故なら、ブレースの働きは本来既存建物へ地震等によって入力する水平力を負担し、結局は柱の軸力を増大させるから、免震化施工中の柱にそのような作用が発生しないように未然に防ぐ配慮に基づく。従って、当然のことながら、免震化の施工を完了した段階で再び施工時ブレース8、9を当該柱1の鋼管4、5に取り付ける。なお、以下に説明する既存柱1の免震化の各工程は、近隣の数本の柱を1グループの単位として施工を進める。
【0016】
次に、図4は上下の鋼管4、5の間にサポートジャッキ(油圧ジャッキ)10を設置し、同サポートジャッキ10を駆動して軸力を導入し、同既存柱1が負担している軸力をサポートジャッキ10の軸力へと盛り替える段階を示している。図3〜図9までは上下の鋼管4、5の間にサポートジャッキ10を設置する方法として、上下の鋼管4、5の外面に上下に相対峙する配置でブラケット11をボルト接合により撤去可能に取付け、上下のブラケット11、11の間にサポートジャッキ10を設置した構成(請求項4の発明)を示している。ブラケット11を後で撤去可能にボルト接合する手段として、上下の鋼管4、5には予めブラケット11の取付け位置にネジ穴を設けておき、該ネジ穴へねじ込むワンサイドボルトによる接合を行う。図4と図5はブラケット11とサポートジャッキ10を鋼管の左右に二つずつ合計4台使用する構成を示している。サポートジャッキ10の駆動方法としては、軸力を導入する際にはサポートジャッキ10の軸力及び変位の大きさをセンサーにより計測し、解析まで一貫して行う管理システムで行う。
【0017】
次に、図6は上下の鋼管4、5の間の既存柱1を長さLの範囲だけ切断し撤去した段階を示している。既存柱1の切断は、例えばダイアモンドチエーンソウで行う。既存柱1に負荷される軸力(鉛直荷重)はサポートジャッキ10を経由して伝達される。
図7は上下の鋼管4、5の端面に免震装置取付けプレート12を仮付けした段階を示す。上方の鋼管4に関しては、上述したモルタル充填用の底板を撤去し、硬化したモルタルの下面が露出する状態とした上で、免震装置取付けプレート12の仮付けを行う。免震装置取付けプレート12は免震装置による軸力及び曲げモーメントの負担に耐える剛性板であり、十分に厚肉の平鋼板が使用される。免震装置取付けプレート12には免震装置取付け用のボルト孔が予め必要数設けられているほか、上下の鋼管4、5と充填モルタルによって強固に一体化できるようにスタッドを突設した構成とされている。免震装置取付けプレート12の仮付けは、免震装置の取付け作業に支障ない固定状態を意味する。
【0018】
図8は、上下の免震装置取付けプレート12、12の間に免震装置13をボルト14で取付け、また、各免震装置取付けプレート12と鋼管4、5内に露出する充填モルタルの端面との隙間に充填材ないし固着材としてモルタル等を充填し隙間を完全に埋めた段階を示している。モルタルが完全に硬化すれば、免震装置取付けプレート12に付設してあるスタッドの支圧効果等により完全な一体化を達成できる。上下の免震装置取付けプレート12と免震装置13との接合は、複数本のボルト14(図9参照)を免震装置プレート13aの側から免震装置取付けプレート12のボルト孔へねじ込み締結するボルト接合である。将来予想される交換ないし調整の作業を容易ならしめるためである。免震装置13は鋼板とゴムシートを交互に貼り付けて柱状に構成したものであり、その柱状部外径は800mm位である。図9中の符号15はエネルギー吸収用ダンパーとして免震装置13の中心部の軸方向に貫通された鉛棒ないし低降伏点鋼である。
【0019】
図10は、上述の工程を経て免震装置13の取付けを完了し、充填モルタルが十分に強度を発現した後に、サポートジャッキ10の軸力を解放して免震装置13による支持に盛り替え、サポートジャッキ10及びブラケット11を撤去した段階を示している。したがって、柱1の最大径は鋼管4、5の外径(1200×1200mm)でしかない。サポートジャッキ10の軸力の解放の際には、免震装置13の軸変形を計測して急激な変形が発生しないように管理して行う(請求項6の発明)。撤去したサポートジャッキ10とブラケット11は次なる既存柱の免震化施工に転用する。
【0020】
以下、同様の施工段階を当該既存建物における中間階(免震階)の全ての既存柱1について繰り返す。但し、免震装置13の取付けを完成した既存柱1については、図11に示したように、上下の鋼管4、5の外面間に拘束用の剛なストッパプレート(鋼板)16を後で撤去が容易なボルト接合の方法で取り付けておく。何故なら、既存建物の中間階(免震階)に免震装置を取り付けた柱と、未だ取り付けていない(切断もされていない。)柱とが混在する場合に、地震等の水平力が入力すると、建物が捩じれたりして危険だからである。従って、既存建物の全ての既存柱1に免震装置13の取付けを完了した段階では、同時期に前記のストッパプレート16は全て撤去する。
【0021】
次に、図12と図13は、基本的には請求項1記載の発明と略同じ段階を経て既存建物の中間階を免震構造化する工法の実施例であるが、特には上記した実施例に比して既存柱が負担する軸力が大きい、大規模建物の場合であって上下の鋼管4、5の間にサポートジャッキ10を設置する手段が異なる例を示す。即ち、上下の鋼管4、5の外周には、環状の水平リブ17と縦リブ18とから成るブラケットをボルト接合により撤去可能に取付ける(図12を参照)。水平リブ17は、上方の鋼管4についてはその上面側、下方の鋼管5については下面側に縦リブ18を配置して補剛を行い、ブラケットの働きをする構成とされている。上下の水平リブ17、17の間にサポートジャッキ10を設置する。本実施例の構成によれば、柱の軸力をサポートジャッキ10の軸力に盛り替えた際に発生する曲げモーメントは水平リブ17の引張り応力と相殺され、鋼管4、5との接合ボルトにはせん断力のみが伝達され、力学的に有利である。
【0022】
【本発明が奏する効果】
本発明に係る既存建物の中間階免震構造化工法によれば、施工階を建物の中間階(免震階)に限定し、既存柱が負担する軸力は同柱からその外周に一体化した鋼管を経由してサポートジャッキへ伝達するから、サポートジャッキを撤去する結果、柱断面の増大は鋼管の外径の限度に可及的に抑制することになり、施工後の床面積の有効利用に寄与するころ大である。
【0023】
また、サポートジャッキ及び施工時ブレースを併用して柱の軸変形を制御し、上部構造の健全性を確保すると共に施工中の耐震安全性を確保するから、建物を使用しながら施工する「居ながら免震化」の施工を実現することができる。しかも既存柱の支持を原則としているから、既存建物の特定箇所を補強したりサポートを併用する等の面倒な負担がない。
【0024】
各仮設のブラケット、ブレース、ストッパプレートなどの取付けはボルト接合とし火気は一切使用しないから、施工の安全性が保証されるし、各仮設物の転用ができ、経済的である。
【図面の簡単な説明】
【図1】本発明に係る中間階免震構造化工法の目荒らし段階を示した立面図である。
【図2】既存柱に対する鋼管の一体化の段階を示した立面図である。
【図3】施工時ブレースの設置状況を示した部分図である。
【図4】サポートジャッキの設置状態を示した立面図である。
【図5】図4のAーA線矢視図である。
【図6】柱の切断状況を示した立面図である。
【図7】免震装置取付けプレートの仮付け状況を示した立面図である。
【図8】免震装置の取付け状況を示した立面図である。
【図9】図8のBーB線矢視図である。
【図10】免震装置の取付けを完成した状況を示した立面図である。
【図11】免震装置にストッパプレートを取付けた状況を示した立面図である。
【図12】免震装置の取付け状況の異なる実施例を示した立面図である。
【図13】図12のCーC線矢視図である。
【符号の説明】
1 既存柱
L 免震装置の取付け部位
4、5 鋼管
6 モルタル
10 サポートジャッキ
12 免震装置取付けプレート
13 免震装置
8、9 施工時ブレース
11 ブラケット
17 水平リブ
16 ストッパプレート
[0001]
[Technical field to which the invention belongs]
This invention belongs to the field of technology for seismic isolation structure by installing seismic isolation devices on the intermediate floor of the building to improve the seismic safety of the existing building. Is a method of seismic isolation while using existing pillars on the intermediate floor.
[0002]
[Prior art]
As a prior art of a technique for installing a seismic isolation device on an intermediate floor of a building to make a seismic isolation structure, an existing building seismic isolation structuring method described in JP-A-8-338155 is recognized. However, this prior art installs a seismic isolation device using the existing pillars on the intermediate floor of the building, but installs a frame that includes a support jack under the beam of the superstructure of the building, and this frame supports the beam. After supporting the entire upper structure, cut the existing column, lift the entire upper structure with a support jack, install a seismic isolation device between the separated columns, and then switch the load on the gantry to the seismic isolation device The process is the main content. The construction method is based on the premise that the beam of the existing building is strong enough to support the superstructure by the frame.
[0003]
In addition, the applicant of the present application has proposed an invention of a method for seismic isolation structure using an existing pillar on the intermediate floor of an existing building in the specification and drawings of Japanese Patent Application No. 9-107683. However, this invention of the prior application mainly includes the addition of pre-stressed PC steel wire to increase the concrete by replacing the axial force of the existing column.
[0004]
[Problems to be solved by the present invention]
When implementing the method of seismic isolation while using an existing building, ensuring safety during construction is an absolute requirement, and the construction floor should be limited to a seismic isolation floor is required. In addition, it is important for effective use of the floor area after construction to minimize the increase in the cross section of the column due to seismic isolation.
[0005]
From such a point of view, the seismic isolation structuring method for an existing building described in the above-mentioned Japanese Patent Application Laid-Open No. 8-338155 is that after the pillar is cut, the entire upper structure of the building is lifted with a pedestal jack. The description is recognized in conjunction with FIG. Even in that state, if you think that an earthquake will occur, it will be recognized that this is very difficult to implement as a method of "isolating while staying" while using existing buildings. Further, in claims 2 to 4 of the same publication, it is recognized that a beam is installed between the tops of the columns of the lower structure or that the beams are installed between the legs of the columns of the upper structure. Effective use of the earthquake is difficult. Not only that, those skilled in the art understand that existing buildings often lack the strength of beams on the upper and lower floors supported by the gantry, and the reinforcement and support of the beams must be installed on multiple floors, etc. The problem is recognized.
[0006]
In addition, the method of seismic isolation structure using the existing pillar on the intermediate floor of the existing building described in the specification and the drawings of the above-mentioned Japanese Patent Application No. 9-107683 is the replacement of the axial force of the existing pillar. Because of the increase in the concrete with pre-stressed PC steel wire, the increase in column cross-section due to seismic isolation is significant, and there is a disadvantage in effective use of the floor area after construction. .
[0007]
Therefore, the purpose of the present invention is to limit the construction floor to a seismic isolation floor, to suppress the increase in the column cross section as much as possible, and to control the axial deformation of the column and ensure the soundness of the superstructure, In addition, it is intended to provide an intermediate floor seismic isolation structuring method that ensures seismic safety during construction and realizes construction of “isolation while staying” while using the building.
[0008]
[Means for Solving the Problems]
As means for solving the above problems, the intermediate floor seismic isolation structuring method for the existing building according to the invention of claim 1 is:
There intermediate floor rows roughening treatment skeleton surface of an existing column 1 of an existing building, the top and bottom of the outer periphery except for the isolator mounting portion L of the existing column 1, like an anchor a bisected halved steel tube joined by welding to complete the steel tube 4 and 5, the tool to integrate the existing Hashira 1 and steel pipe 4,5 by filling the mortar into the steel pipe, all existing Hashira 1 of the intermediate floors of an existing building The stage of attaching braces 8 and 9 at the time of construction between the steel pipes 4 and 5 of the existing pillar 1 determined by the number of brace points required for the earthquake under construction after that,
Only for the existing pillar 1 to which the seismic isolation device is attached, the braces 8 and 9 at the time of construction are temporarily removed, and the bracket 11 is removably attached to the outer surfaces of the upper and lower steel pipes 4 and 5 by bolting, support jack 10 placed between the upper and lower brackets 11, 11, replacing prime the axial forces to which the existing column 1 by introducing axial forces to drive the same support jack 10 is borne to the axial force of the support jack 10 Stages,
Cutting and removing the existing pillar 1 between the upper and lower steel pipes 4 , 5 ;
The seismic isolation device mounting plate 12 to the end surface of the upper and lower steel 4,5 tacked, attach the isolator 13 between the upper and lower seismic isolation device mounting plate 12, 12, each of the isolator mounting plate 12 and the steel tube Filling the gap between the end faces of 4 and 5 with mortar and the like;
After the filling mortar develops strength, the axial force of the support jack 10 is released and replaced with support by the seismic isolation device 13 , the support jack 10 is removed, and the braces 8 and 9 at the time of construction are replaced with the steel pipe 4 of the column. The stage of attaching to 5 ,
Hereinafter, the same step is repeated for all the existing pillars 1 .
[0011]
According to a second aspect of the invention, the intermediate sponge Shin structured method of existing buildings as claimed in claim 1, as a method of installing a support jack 10 between the upper and lower steel 4,5, the upper and lower steel 4,5 A bracket having an annular horizontal rib 17 on the outer periphery thereof is removably attached by bolting, and a support jack 10 is installed between the upper and lower horizontal ribs 17 .
According to a third aspect of the invention, in the intermediate sponge Shin structured method of existing buildings as claimed in claim 1, driving movement of the support jack 10, the axial force of the support jack 10 when introducing the axial force and displacement the size measure done by management, upon release of the axial force, and carrying out rapid variations by measuring the axial deformation of the isolator 13 is managed so as not to generate.
[0012]
Invention Motomeko 4 wherein, in the intermediate sponge Shin structuring method of the existing building according to claim 1, for an existing column 1 which has completed installation of the seismic isolation device 13, the outer surface of the upper and lower steel 4,5 The stopper plate 16 for restraint is joined in between, and the stopper plate 16 is removed at the same time when the installation of the seismic isolation device 13 is completed on all the existing columns 1 of the existing building.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The intermediate-floor seismic isolation structuring method for an existing building according to the invention described in claim 1 is carried out in the form shown in the key process diagrams in FIG.
First, as shown in FIG. 1, a roughening process (scattered portion) is performed on the surface of the frame of the existing pillar 1 on the intermediate floor (base isolation floor) of the existing building. The surface finish of the existing pillar 1 is removed, and the concrete surface is roughened with a chisel, etc., but the part to be cut later and the seismic isolation device is attached (length L range, L is about 450 mm) Leave it because the processing is wasted. In FIG. 1, reference numeral 2 3 denotes a third floor slab of an existing building selected as a seismic isolation floor, 2 4 denotes a fourth floor slab, and 3 denotes a beam on the fourth floor.
[0014]
FIG. 2 shows steel pillars 4 and 5 installed on the outer circumferences of the upper and lower parts excluding the mounting portion L of the existing seismic isolation device 1 and the existing pillars 1 and 5 are filled with a fixing material such as mortar. And the steps of integrating the steel pipes 4 and 5. As for the steel pipes 4 and 5, the outer diameter of the existing pillar 1 is 900 × 900 mm as shown in FIG. 5, whereas a half steel pipe obtained by dividing a square steel pipe of 1200 × 1200 mm and thickness 16 mm into two equal parts is existing. It is built in a similar arrangement from the left and right sides of the pillar 1 to the outer periphery, and a backing is provided on the abutting parting line and joined by welding to complete one steel pipe. The gap between the existing pillar 1 and each steel pipe 4, 5 is filled with mortar 6 and integrated. The lower end surface of the upper steel pipe 4 is closed with a bottom plate (not shown) so that the mortar 6 does not leak out. However, in order to achieve good integration of the seismic isolation device mounting plate, which will be described later, the bottom plate is made of a material that can be dismantled and removed later, such as plywood, and upwards for integration by the dowel effect. A slightly raised bottom is provided. Further, in order to achieve stronger integration with the existing pillar 1 by using the filling and hardening of the mortar 6, longitudinal and lateral inner studs 7 are provided inside the steel pipes 4 and 5 in the existing pillar 1. (Invention of claim 3). Incidentally, reference numeral 1 a in FIG. 5 indicates the steel frame of the existing pillar 1.
[0015]
FIG. 3 shows an embodiment of the second aspect of the invention. As described above, the construction of steel pipes 4 and 5 on the existing pillars of the intermediate floor (base isolation floor) of the building and the integration with the existing pillars 1 are for all the existing pillars of the intermediate floor of the existing building. Do. Thereafter, it is shown that the braces 8 and 9 at the time of construction are attached between the upper and lower steel pipes 4 and 5 of the existing pillar 1 by a bolt joining method that can be easily disassembled and removed later. This is to ensure seismic safety during the construction period of seismic isolation structuring of existing buildings and to realize “isolation while staying”. The brace 8 has a structure in which a stiffening pipe is fitted around the outer periphery of the H-shaped steel, and the brace 9 is formed of an H-shaped steel of about 200 × 200 × 8 × 12 mm. However, the braces 8 and 9 at the time of construction are attached to the existing pillars determined according to the number of required braces for the occurrence of an earthquake predicted during construction, instead of attaching the braces to all existing pillars. And only about the existing pillar which is the object of the installation construction of the seismic isolation apparatus performed as a later process, the braces 8 and 9 at the time of construction are temporarily removed to perform seismic isolation construction. Because the work of braces originally bears the horizontal force input to existing buildings due to earthquakes, etc., and eventually increases the axial force of the columns, so that such an effect does not occur on the columns during the seismic isolation construction Based on consideration to prevent. Therefore, as a matter of course, the braces 8 and 9 at the time of construction are attached to the steel pipes 4 and 5 of the column 1 again at the stage where the construction for seismic isolation is completed. In addition, each process of seismic isolation of the existing pillar 1 described below proceeds with the construction of several neighboring pillars as a unit of one group.
[0016]
Next, in FIG. 4, a support jack (hydraulic jack) 10 is installed between the upper and lower steel pipes 4 and 5, and the axial force is introduced by driving the support jack 10. The step of changing the force to the axial force of the support jack 10 is shown. 3 to 9, as a method of installing the support jack 10 between the upper and lower steel pipes 4, 5, the bracket 11 can be removed by bolting in an arrangement where the support jacks 10 are vertically opposed to the outer surfaces of the upper and lower steel pipes 4, 5. The structure (invention of Claim 4) which attached and installed the support jack 10 between the upper and lower brackets 11 and 11 is shown. As means for bolting the bracket 11 so that it can be removed later, the upper and lower steel pipes 4 and 5 are preliminarily provided with screw holes at the mounting position of the bracket 11 and are joined by one-side bolts screwed into the screw holes. 4 and 5 show a configuration in which a total of four brackets 11 and two support jacks 10 are used on the left and right sides of the steel pipe. The support jack 10 is driven by a management system in which the axial force and displacement of the support jack 10 are measured by a sensor when the axial force is introduced, and the analysis is consistently performed.
[0017]
Next, FIG. 6 shows a stage in which the existing column 1 between the upper and lower steel pipes 4 and 5 is cut and removed by a length L range. The existing pillar 1 is cut by, for example, diamond chain saw. The axial force (vertical load) applied to the existing column 1 is transmitted via the support jack 10.
FIG. 7 shows a stage in which the seismic isolation device mounting plate 12 is temporarily attached to the end surfaces of the upper and lower steel pipes 4 and 5. With respect to the upper steel pipe 4, the above-described bottom plate for mortar filling is removed and the lower surface of the hardened mortar is exposed, and then the seismic isolation device mounting plate 12 is temporarily attached. The seismic isolation device mounting plate 12 is a rigid plate that can withstand the load of axial force and bending moment caused by the seismic isolation device, and a sufficiently thick flat steel plate is used. The seismic isolation device mounting plate 12 is provided with a necessary number of bolt holes for mounting the seismic isolation device in advance, and has a configuration in which studs are provided so as to be firmly integrated with the upper and lower steel pipes 4 and 5 and the filling mortar. Has been. The temporary attachment of the seismic isolation device mounting plate 12 means a fixed state that does not hinder the seismic isolation device mounting operation.
[0018]
FIG. 8 shows that the seismic isolation device 13 is attached with bolts 14 between the upper and lower seismic isolation device mounting plates 12, 12, and the end surfaces of the filling mortar exposed in each of the seismic isolation device mounting plates 12 and the steel pipes 4, 5. The gap is completely filled with mortar or the like as a filler or a fixing material. If the mortar is completely cured, complete integration can be achieved by the bearing effect of the stud attached to the seismic isolation device mounting plate 12. The upper and lower seismic isolation device mounting plates 12 and the seismic isolation device 13 are joined by screwing a plurality of bolts 14 (see FIG. 9) into the bolt holes of the seismic isolation device mounting plate 12 from the seismic isolation device plate 13a side. Bolt connection. This is to facilitate future replacement or adjustment work. The seismic isolation device 13 is configured by sticking steel plates and rubber sheets alternately to form a columnar shape, and the outer diameter of the columnar portion is about 800 mm. Reference numeral 15 in FIG. 9 denotes a lead bar or low yield point steel that penetrates in the axial direction of the central portion of the seismic isolation device 13 as an energy absorbing damper.
[0019]
FIG. 10 shows that after the installation of the seismic isolation device 13 has been completed through the above-described steps and the filling mortar has sufficiently developed strength, the axial force of the support jack 10 is released and replaced with support by the seismic isolation device 13. The stage which removed the support jack 10 and the bracket 11 is shown. Therefore, the maximum diameter of the column 1 is only the outer diameter (1200 × 1200 mm) of the steel pipes 4 and 5. When the axial force of the support jack 10 is released, the axial deformation of the seismic isolation device 13 is measured and managed so as not to generate a sudden deformation (invention of claim 6). The removed support jack 10 and the bracket 11 will be diverted to the seismic isolation work for the next existing pillar.
[0020]
Hereinafter, the same construction stage is repeated for all existing pillars 1 on the intermediate floor (base isolation floor) in the existing building. However, for the existing column 1 for which the seismic isolation device 13 has been installed, a rigid stopper plate (steel plate) 16 for restraint is removed later between the outer surfaces of the upper and lower steel pipes 4 and 5, as shown in FIG. It is attached by the method of bolt joining that is easy. This is because horizontal forces such as earthquakes are input when a column with a seismic isolation device on an intermediate floor (base isolation floor) of an existing building and a column that has not yet been mounted (not cut) are mixed. Then, it is dangerous because the building is twisted. Therefore, at the stage where the installation of the seismic isolation device 13 is completed on all the existing pillars 1 of the existing building, all the stopper plates 16 are removed at the same time.
[0021]
Next, FIG. 12 and FIG. 13 are practical examples of the construction method for seismically isolating the intermediate floor of an existing building through basically the same steps as the invention of claim 1, and in particular, the above-described implementation. An example in which the means for installing the support jack 10 between the upper and lower steel pipes 4 and 5 is different in the case of a large-scale building where the axial force borne by the existing pillar is larger than the example will be shown. That is, brackets made up of annular horizontal ribs 17 and vertical ribs 18 are removably attached to the outer peripheries of the upper and lower steel pipes 4 and 5 (see FIG. 12). The horizontal ribs 17 are configured to be stiffened by arranging vertical ribs 18 on the upper surface side of the upper steel pipe 4 and on the lower surface side of the lower steel pipe 5 to function as a bracket. The support jack 10 is installed between the upper and lower horizontal ribs 17 and 17. According to the configuration of the present embodiment, the bending moment generated when the axial force of the column is replaced with the axial force of the support jack 10 is offset by the tensile stress of the horizontal rib 17 and is applied to the joint bolt with the steel pipes 4 and 5. Only shear force is transmitted, which is mechanically advantageous.
[0022]
[Effects of the present invention]
According to the seismic isolation structure method for existing floors of an existing building according to the present invention, the construction floor is limited to the middle floor (base isolation floor) of the building, and the axial force borne by the existing pillar is integrated from the same pillar to its outer periphery. As a result of removing the support jack, the increase in the column cross-section is suppressed to the limit of the outer diameter of the steel pipe as much as possible, and effective use of the floor area after construction It is great when it contributes to
[0023]
Also, support jacks and braces during construction are used in combination to control the axial deformation of the columns, ensuring the soundness of the superstructure and ensuring seismic safety during construction. Construction of seismic isolation can be realized. In addition, since the existing pillars are supported in principle, there is no troublesome burden such as reinforcing a specific part of the existing building or using the support together.
[0024]
The installation of each temporary bracket, brace, stopper plate, etc. is bolted and no fire is used, so construction safety is guaranteed and each temporary object can be diverted, which is economical.
[Brief description of the drawings]
FIG. 1 is an elevational view showing a roughening stage of an intermediate floor seismic isolation structuring method according to the present invention.
FIG. 2 is an elevation view showing a stage of integration of a steel pipe with an existing column.
FIG. 3 is a partial view showing the installation situation of braces during construction.
FIG. 4 is an elevational view showing an installed state of the support jack.
5 is a view taken along line AA in FIG.
FIG. 6 is an elevation view showing a cutting situation of a pillar.
FIG. 7 is an elevation view showing a temporary attachment state of the seismic isolation device mounting plate.
FIG. 8 is an elevational view showing the installation state of the seismic isolation device.
FIG. 9 is a view taken along the line BB in FIG.
FIG. 10 is an elevation view showing a state where the installation of the seismic isolation device is completed.
FIG. 11 is an elevation view showing a state in which a stopper plate is attached to the seismic isolation device.
FIG. 12 is an elevational view showing different examples of the installation situation of the seismic isolation device.
13 is a view taken along the line CC of FIG.
[Explanation of symbols]
1 Existing Column L Seismic Isolator Installation Site 4, 5 Steel Pipe 6 Mortar 10 Support Jack 12 Seismic Isolator Installation Plate 13 Seismic Isolator 8, 9 Brace 11 During Construction Bracket 17 Horizontal Rib 16 Stopper Plate

Claims (4)

既存建物の中間階の既存柱の躯体表面に目荒らし処理を行、前記既存柱の免震装置取付け部位を除く上部と下部の外周に、二分割された半割り鋼管を建て込み溶接により接合して鋼管を完成し、同鋼管内にモルタル等を充填し既存柱と鋼管を一体化する工作を、既存建物の当該中間階の既存柱の全てについて行い、しかる後施工中の地震に対し必要とされるブレース箇所数により決定された既存柱の鋼管の間に施工時ブレースをボルト接合によって取り付ける段階と、
免震装置の取付けを行う既存柱についてのみ前記施工時ブレースを一時撤去して、上下の鋼管の外面に相対峙する配置でブラケットをボルト接合により撤去可能に取付け、上下のブラケットの間にサポートジャッキを設置し、同サポートジャッキを駆動して軸力を導入し同既存柱が負担している軸力をサポートジャッキの軸力へ盛り替える段階と、
上下の鋼管の間の既存柱を切断し撤去する段階と、
上下の鋼管の端面に免震装置取付けプレートを仮付けし、前記上下の免震装置取付けプレートの間に免震装置を取付け、各免震装置取付けプレートと鋼管の端面との隙間にモルタル等を充填する段階と、
前記充填モルタルが強度を発現した後に、サポートジャッキの軸力を解放して免震装置による支持に盛り替え、サポートジャッキを撤去すると共に再び施工時ブレースを当該柱の鋼管に取り付ける段階と、
以下、同様の段階を全ての既存柱について繰り返すことを特徴とする、既存建物の中間階免震構造化工法。
There rows roughening treatment skeleton surface of the intermediate floor of an existing column of an existing building, the top and bottom of the outer periphery except for the isolator mounting portion of the existing columns, welded like an anchor a bisected halved steel tube and to complete the steel pipe, the work to integrate the existing pillars and steel pipe is filled with a mortar or the like in the same steel pipe, performed for all of the intermediate floor of the existing pillars of the existing building, to the earthquake in Thereafter construction Attach the braces during construction between the steel pipes of the existing columns determined by the number of required brace points by bolting ;
Remove the braces during construction only for the existing columns to which the seismic isolation device is attached, and install the brackets so that they can be removed by bolting in a manner that they face the outer surfaces of the upper and lower steel pipes, and support jacks between the upper and lower brackets. Installing the shaft, introducing the axial force by driving the support jack, replacing the axial force borne by the existing pillar with the axial force of the support jack,
Cutting and removing existing pillars between the upper and lower steel pipes;
Temporarily attach seismic isolation device mounting plates to the upper and lower steel pipe end faces, install seismic isolation equipment between the upper and lower seismic isolation equipment mounting plates, and put mortar etc. in the gap between each seismic isolation equipment mounting plate and the end face of the steel pipe. Filling, and
After the filling mortar develops strength, the axial force of the support jack is released and replaced with support by a seismic isolation device, the support jack is removed and the brace is attached to the steel pipe of the column again during construction ,
In the following, the intermediate floor seismic isolation structuring method for existing buildings, characterized by repeating the same steps for all existing columns.
上下の鋼管の間にサポートジャッキを設置する方法として、上下の鋼管の外周に環状の水平リブを持つブラケットをボルト接合により撤去可能に取付け、上下の水平リブの間にサポートジャッキを設置することを特徴とする、請求項1に記載した既存建物の中間階免震構造化工法。As a method of installing a support jack between the upper and lower steel pipes, a bracket having an annular horizontal rib on the outer circumference of the upper and lower steel pipes is removably attached by bolting, and a support jack is installed between the upper and lower horizontal ribs. The intermediate floor seismic isolation structuring method for an existing building according to claim 1, characterized in that it is characterized in that サポートジャッキの駆動は、軸力を導入する際にはサポートジャッキの軸力及び変位の大きさを計測し管理して行い、軸力の解放の際には免震装置の軸変形を計測して急激な変形が発生しないように管理して行うこと特徴とする、請求項1に記載した既存建物の中間階免震構造化工法。Driving movement of the support jack, in introducing axial forces is carried out by measuring the axial force and the magnitude of the displacement of the support jack manage and upon release of the axial force measuring axial deformation of the isolator The intermediate floor seismic isolation method for an existing building according to claim 1, wherein the method is performed so as not to cause sudden deformation. 免震装置の取付けを完成した既存柱については上下の鋼管の外面間に拘束用のストッパプレートを接合し、既存建物の全ての既存柱に免震装置の取付けを完了した段階で同時期に前記のストッパプレートを撤去することを特徴とする、請求項1に記載した既存建物の中間階免震構造化工法。For existing columns that have completed installation of seismic isolation devices, a stopper plate for restraint is joined between the outer surfaces of the upper and lower steel pipes, and at the same time the installation of seismic isolation devices is completed on all existing columns of the existing building. The intermediate floor seismic isolation structuring method for an existing building according to claim 1, wherein the stopper plate is removed.
JP22411597A 1997-08-20 1997-08-20 Seismic isolation method for intermediate floors of existing buildings Expired - Fee Related JP3772248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22411597A JP3772248B2 (en) 1997-08-20 1997-08-20 Seismic isolation method for intermediate floors of existing buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22411597A JP3772248B2 (en) 1997-08-20 1997-08-20 Seismic isolation method for intermediate floors of existing buildings

Publications (2)

Publication Number Publication Date
JPH1162271A JPH1162271A (en) 1999-03-05
JP3772248B2 true JP3772248B2 (en) 2006-05-10

Family

ID=16808778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22411597A Expired - Fee Related JP3772248B2 (en) 1997-08-20 1997-08-20 Seismic isolation method for intermediate floors of existing buildings

Country Status (1)

Country Link
JP (1) JP3772248B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101884357B1 (en) * 2017-12-18 2018-08-01 매크로드 주식회사 Seismic Isolation Method for Seismic Performance Improvement of Structures with Seismic Isolators Base on Cutting Columns

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4391335B2 (en) * 2004-06-28 2009-12-24 大成建設株式会社 Intermediate seismic isolation structure of existing buildings
JP2007308979A (en) * 2006-05-18 2007-11-29 Okumura Corp Base isolation construction method for existing building
JP5023388B2 (en) * 2007-06-19 2012-09-12 間瀬建設株式会社 Existing column cutting and holding method and load receiving member
JP5346572B2 (en) * 2008-12-18 2013-11-20 戸田建設株式会社 Installation method of seismic isolation devices for existing buildings
JP6114071B2 (en) * 2013-03-01 2017-04-12 株式会社奥村組 Seismic isolation method for existing buildings and temporary structure under construction
JP6247117B2 (en) * 2014-03-04 2017-12-13 株式会社奥村組 Temporary structure during seismic isolation of existing building
JP6208090B2 (en) * 2014-08-07 2017-10-04 株式会社奥村組 Temporary support structure for seismic isolation work and seismic isolation method for existing buildings
CN109838114B (en) * 2019-04-01 2024-01-26 吉林建筑大学 Reinforced concrete structure reverse dismantling temporary support conversion device and operation method thereof
CN110318558B (en) * 2019-07-31 2023-06-06 南方工程检测修复技术研究院 Prestress application device of prestress FRP reinforced cylindrical structure and construction method thereof
CN114411755A (en) * 2022-01-14 2022-04-29 中国建筑第八工程局有限公司 Steel support axial force compensation device and construction method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101884357B1 (en) * 2017-12-18 2018-08-01 매크로드 주식회사 Seismic Isolation Method for Seismic Performance Improvement of Structures with Seismic Isolators Base on Cutting Columns

Also Published As

Publication number Publication date
JPH1162271A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
WO2006038620A1 (en) Joined part structure of pedestal and method of joining pedestal
JP3772248B2 (en) Seismic isolation method for intermediate floors of existing buildings
KR101870309B1 (en) Aseismatic Reinforcement Steel Frame Structure and Aseismatic Reinforcement Method using thereof
JP2004285738A (en) Box girder bridge structure and method of constructing the same
JP3703204B2 (en) Seismic reinforcement method for existing buildings
KR100605514B1 (en) Bracket support type downward construction system and construction method using the same
CN110469140B (en) Construction method for prestress reinforcement of frame beam
KR200372315Y1 (en) Moving-fabricated supporting bracket structure of downward construction system
JPH09310405A (en) Reinforced concrete column and precast form
CN111041986A (en) Cast-in-place continuous box girder formwork system and construction method
JPH1150418A (en) Temporary receive work of bridge girder and frame base therefor
JP3725818B2 (en) How to install seismic isolation devices on existing pillars
JPH0674621B2 (en) Joint structure of concrete pipe, concrete pipe and construction method
JP2019027195A5 (en)
JPH1136232A (en) Composite column base structure and its construction method
JP2001329700A (en) Temporary jointing method for column during building demolition in jack system
JP3551816B2 (en) Seismic isolation method for existing buildings
JPH09273318A (en) Earthquakeproof reinforcing structure for beam-column joint in existing reinforced concrete or steel-concrete composite structure
CN114635586B (en) Method for dismantling bearing wall of brick-concrete structure and supporting frame
JP2001049873A (en) Vibration-isolation construction method of existing building
JP2001271499A (en) Temporary bearing construction method for existing building by steel batter brace member
JP2002013297A (en) Earthquake resistant reinforcing method
CN217151146U (en) Super 5 meters girder steel subassembly of encorbelmenting of concrete form support system that encorbelments
JP3830062B2 (en) Seismic reinforcement method for reinforced concrete buildings
CN214531160U (en) Connection structure of composite pile and basement beam slab

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140224

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees