JP3771878B2 - 積層誘電体アンテナ - Google Patents
積層誘電体アンテナ Download PDFInfo
- Publication number
- JP3771878B2 JP3771878B2 JP2002218943A JP2002218943A JP3771878B2 JP 3771878 B2 JP3771878 B2 JP 3771878B2 JP 2002218943 A JP2002218943 A JP 2002218943A JP 2002218943 A JP2002218943 A JP 2002218943A JP 3771878 B2 JP3771878 B2 JP 3771878B2
- Authority
- JP
- Japan
- Prior art keywords
- conductor
- antenna
- dielectric antenna
- radiation
- dielectric layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Waveguide Aerials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、例えば携帯電話や無線LAN等の無線通信機器、その他の各種通信機器等において使用される積層誘電体アンテナに関するものである。
【0002】
【従来の技術】
例えば携帯電話や無線LAN等の無線通信機器、その他の各種通信機器等において使用される、従来の積層誘電体アンテナを使用したアンテナとしてパッチアンテナが知られている(例えば、最新平面アンテナ技術、総合技術センター、1993年発行を参照)。その構造の一例を、図4に透視斜視図で、図5に透視平面図で示す。これらの図において、111は誘電体層、121は誘電体層111の上面に配された放射導体、141は誘電体層111を貫通して配され、一端が放射導体121と電気的に接続された接続導体、131は誘電体層111の下面に配され、接続導体141が電気的に絶縁されて貫通する開口部142を有する接地導体である。なお、図5においては誘電体層111の図示は省略している。
【0003】
この従来の積層誘電体アンテナでは、接続導体141の接地導体131側の一端から高周波電流を給電することにより、放射導体121上に共振電流が生じて電波が放射されることによってアンテナとして用いることができる。
【0004】
【発明が解決しようとする課題】
しかしながら、このような従来の積層誘電体アンテナにおいては、帯域幅を広げるためには誘電体層111の厚みを厚くする必要があり、広帯域化と低背化の両立が困難であるという問題点があった。
【0005】
本発明は上記問題点に鑑みて案出されたものであり、その目的は、低背で広帯域な積層誘電体アンテナを提供することにある。
【0006】
【課題を解決するための手段】
本発明の第1の積層誘電体アンテナは、誘電体層と、この誘電体層の上面に配された四角形状の放射導体と、この放射導体の一辺に沿って接続された帯状の抵抗体と、前記誘電体層を貫通して配され、一端が前記放射導体および前記抵抗体の全体の中心から前記一辺に平行にずれた位置で前記放射導体と電気的に接続された接続導体と、前記誘電体層の下面に配され、前記接続導体が電気的に絶縁されて貫通する開口部を有する接地導体とを具備することを特徴とするものである。
【0007】
また、本発明の第2の積層誘電体アンテナは、前記放射導体の前記一辺に対向する辺にも帯状の抵抗体が接続され、前記接続導体の前記一端が前記放射導体および両方の前記抵抗体の全体の中心から前記一辺に平行にずれた位置で前記放射導体と電気的に接続されていることを特徴とするものである。
【0008】
本発明の第1の積層誘電体アンテナによれば、接続導体の接地導体側の一端から高周波電流を給電することにより、放射導体および抵抗体上に共振電流が生じて電波が放射されるが、その共振電流の振幅が最大となる位置、すなわち放射導体の一辺に沿って帯状の抵抗体が配されており、放射導体および抵抗体の全体の中心から放射導体のこの一辺に平行にずれた位置で接続導体が接続されていることから、抵抗体の導体損によって共振電流が効果的に消費されてアンテナのQが下がるので、反射特性を示す周波数特性曲線における共振点部分のピークをなだらかにすることができるため、放射効率は下がるものの帯域幅を広げることができる。
【0009】
また、本発明の第2の積層誘電体アンテナによれば、放射導体の一辺に対向する辺にも帯状の抵抗体が接続され、接続導体の一端が放射導体および両方の抵抗体の全体の中心から放射導体の一辺に平行にずれた位置で放射導体と電気的に接続されていることから、両方の抵抗体の導体損によって共振電流がより一層効果的に消費されてアンテナのQが下がるので、反射特性を示す周波数特性曲線における共振点部分のピークをよりなだらかにすることができるため、放射効率は下がるものの帯域幅をより一層広げることができる。
【0010】
すなわち、本発明の積層誘電体アンテナによれば、従来の一般的に知られている広帯域化の手法としての誘電体層の厚みを厚くするといった方法に対して、誘電体層の厚みを厚くすることなく広帯域なアンテナを提供することができ、低背化にも対応することができるものとなる。
【0011】
【発明の実施の形態】
以下、本発明の積層誘電体アンテナを図面を参照しつつ説明する。
【0012】
図1(a)および(b)ならびに図2(a)および(b)は、それぞれ本発明の第1および第2の積層誘電体アンテナの実施の形態の一例を示す透視斜視図ならびに透視平面図である。これらの図において、11は誘電体層、21は誘電体層11の上面に配された四角形状の放射導体、41は誘電体層11を貫通して配され、放射導体21および抵抗体51の全体の中心から放射導体21の一辺に平行にずれた位置で一端が放射導体21と電気的に接続された接続導体、51は放射導体21の一辺に沿って接続された帯状の抵抗体、52はこの一辺に対向する辺に接続された帯状の抵抗体、31は誘電体層11の下面に配され、接続導体41が電気的に絶縁されて貫通する開口部42を有する接地導体である。なお、図2においては誘電体層11を透視して接地導体31を示している。
【0013】
このように構成された本発明の第1の積層誘電体アンテナによれば、接続導体41の接地導体31側の一端から高周波電流を給電することにより、放射導体21および抵抗体51上に共振電流が生じて電波が放射されるが、その共振電流の振幅が最大となる位置、すなわち放射導体21の一辺に沿って帯状の抵抗体51が配されており、放射導体21および抵抗体51の全体の中心から放射導体21のこの一辺に平行にずれた位置で接続導体41が接続されていることから、抵抗体51の導体損によって共振電流が効果的に消費されてアンテナのQが下がるので、反射特性を示す周波数特性曲線における共振点部分のピークをなだらかにすることができるため、放射効率は下がるものの帯域幅を広げることができる。
【0014】
また、本発明の第2の積層誘電体アンテナによれば、第1の積層誘電体アンテナの構成に加えて、放射導体21の一辺に対向する辺に沿っても帯状の抵抗体52が配されており、放射導体21および抵抗体51・52の全体の中心から放射導体21のこの一辺に平行にずれた位置で接続導体41が接続されていることから、両方の抵抗体51・52の導体損によって共振電流がより一層効果的に消費されてアンテナのQが下がるので、反射特性を示す周波数特性曲線における共振点部分のピークをよりなだらかにすることができるため、放射効率は下がるものの帯域幅をより一層広げることができる。
【0015】
すなわち、これら本発明の積層誘電体アンテナによれば、従来の一般的に知られている広帯域化の手法としての誘電体層の厚みを厚くするといった方法に対して、誘電体層11の厚みを厚くすることなく広帯域なアンテナを提供することができ、従って低背化にも対応することができるものとなる。
【0016】
本発明の積層誘電体アンテナにおいては、積層誘電体アンテナ全体の外形が図1および図2に示すような略直方体状である場合には、放射導体21をその形状に沿った形状の四角形状とすると、放射導体21の面積を誘電体層11の上面で十分に広く取ることができるので、周波数帯域をさらに広帯域化させることができる。
【0017】
また、本発明の積層誘電体アンテナにおいては、抵抗体51・52(図1(a)および図2(a)に示す本発明の第1の積層誘電体アンテナについては抵抗体51を、図1(b)および図2(b)に示す本発明の第2の積層誘電体アンテナについては抵抗体51および52を指す。以下同様。)の抵抗が大きいほど帯域幅を広げることができる。ただしその反面、抵抗を大きくしすぎると、帯域幅は広がるものの、放射効率が下がり、結果として利得が下がることとなるので、抵抗体51・52の抵抗値は、帯域幅および放射効率・利得に対する要求に応じて適切に設定する。
【0018】
ここで、抵抗体51の幅W51および抵抗体52の幅W52を広くすると、抵抗が大きくなるので帯域幅を広げることができる。このとき、放射導体21および抵抗体51・52の全体の中心と放射導体21の接続導体41が接続された位置とを通る線から放射導体21の端に向かうに従って共振電流の振幅が大きくなり、共振電流の振幅が最大となる位置に抵抗体51・52を設けると、効果的に共振電流が消費されてアンテナのQが下がるので、帯域幅を広げることができる。これに対し、放射導体21および抵抗体51・52の全体の中心から放射導体21および抵抗体51・52の全体の中心と放射導体21の接続導体41が接続された位置とを通る線の方向へ向かうに従って共振電流の振幅が小さくなり、この方向にある辺に抵抗体を設けてもその抵抗体ではあまり共振電流が消費されない。
【0019】
なお、抵抗体51・52の幅W51・W52は、その抵抗体51・52の抵抗値が帯域幅および放射効率・利得に対する要求に応じた値となるように、抵抗体51・52の抵抗率を考慮して設定する。
【0020】
また、抵抗体51・52の抵抗率を上げても抵抗が大きくなるので、抵抗率を上げることにより帯域幅を広げることができる。ただし、抵抗率を上げすぎると、帯域幅は広がるものの放射効率が下がり、結果として利得が下がるので、抵抗体51・52の抵抗率は、1Ω・m以下で、十分な抵抗値を得るためには0.0001Ω・m以上(すなわち導電率では1S/m以上10000S/m以下)であることが好ましい。
【0021】
また、本発明の積層誘電体アンテナの接続導体41は、図4および図5に示す従来の積層誘電体アンテナの接続導体141の位置と同様に、中心線から帯状の抵抗体と平行な方向に、放射導体21の長さLの約0.15倍オフセットした位置に接続することで、インピーダンス整合が取れて高効率なアンテナとして動作させることができる。なお、図2(a)および(b)にこのオフセット量をρ0で示す。
【0022】
また、本発明の積層誘電体アンテナの接続導体41は、直径が小さいほど、インピーダンス整合を取りやすく周波数帯域やVSWRの調整がしやすいものとなる。
【0023】
なお、接続導体41の接続位置は、上述のように放射導体21および抵抗体51・52の全体の中心から帯状の抵抗体51・52と平行な方向に、放射導体21の長さLの約0.15倍オフセットした位置にするとよいので、接続導体41を円柱状のものとして形成する場合には、その半径は放射導体21の長さLの0.15倍以下に設定することが好ましい。また、接続導体41の直径が小さすぎると抵抗が高くなるので、接続導体41の直径は0.05mm以上であることが好ましい。
【0024】
本発明の積層誘電体アンテナを形成するに当たり、誘電体層11・放射導体21・接地導体31・接続導体41には、周知の高周波用配線基板に使用される種々の材料・形態のものと同様のものを使用することができる。
【0025】
誘電体層11としては、例えばアルミナセラミックス・ムライトセラミックス等のセラミックス材料やガラスセラミックス等の無機系材料、あるいは四フッ化エチレン−エチレン樹脂(ポリテトラフルオロエチレン;PTFE)・四フッ化エチレン−エチレン共重合樹脂(テトラフルオロエチレン−エチレン共重合樹脂;ETFE)・四フッ化エチレン−パーフルオロアルコキシエチレン共重合樹脂(テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合樹脂;PFA)等のフッ素樹脂やガラスエポキシ樹脂・ポリイミド等の樹脂系材料等が用いられる。これらの材料による誘電体層11の形状や寸法(厚みや幅・長さ)は、使用される周波数や用途等に応じて設定される。
【0026】
放射導体21・接地導体31・接続導体41は、高周波信号伝送用の金属材料の導体層、例えばCu層・Mo−Mnのメタライズ層上にNiメッキ層およびAuメッキ層を被着させたもの・Wのメタライズ層上にNiメッキ層およびAuメッキ層を被着させたもの・Cr−Cu合金層・Cr−Cu合金層上にNiメッキ層およびAuメッキ層を被着させたもの・Ta2N層上にNi−Cr合金層およびAuメッキ層を被着させたもの・Ti層上にPt層およびAuメッキ層を被着させたもの、またはNi−Cr合金層上にPt層およびAuメッキ層を被着させたもの等を用いて、厚膜印刷法あるいは各種の薄膜形成方法やメッキ法等により形成される。その厚みや幅等も、伝送される高周波信号の周波数や用途等に応じて設定される。
【0027】
抵抗体51・52を形成するための抵抗材料としては、抵抗温度係数が低く、また許容電流値が大きいものとして、例えばタングステン・レニウム・モリブデンやニクロム・窒化タンタルあるいはそれらの合金を用いることができる。中でも、タングステン−レニウム合金を用いると、抵抗温度係数が約100×10-6/℃と低く、誘電体層11にセラミックスを用いる場合に誘電体層11との同時焼成が可能である点で好適なものとなる。
【0028】
本発明の積層誘電体アンテナの作製方法としては、例えば誘電体層11がガラスセラミックスから成る場合であれば、まず誘電体層11となるガラスセラミックスのグリーンシートを準備し、これに所定の打ち抜き加工を施して接続導体41としての貫通導体が配設される貫通孔を形成した後、スクリーン印刷法によりCu等の導体ペーストを貫通孔に充填するとともに、放射導体21・接地導体31となる導体層のパターンおよび必要に応じてその他の所定の伝送線路パターン、ならびに抵抗体51・52となる抵抗体層のパターンを印刷塗布する。次に、850〜1000℃で焼成を行ない、最後に各導体層の表面にNiメッキおよびAuメッキを施す。
【0029】
図3(a)および(b)は、それぞれ図1および図2に示す本発明の第1および第2の積層誘電体アンテナの実施の形態の一例についての反射特性を示す線図である。図3(a)および(b)において、それぞれ横軸は周波数(単位:GHz)、縦軸はVSWRであり、特性曲線は反射特性、すなわちVSWRの周波数特性を示している。この線図に示す反射特性は、電磁界シミュレーションを用いて得たものである。第1の積層誘電体アンテナの反射特性を示す図3(a)においては、VSWRが2以下の帯域幅は113MHzであることが分かる。また、このときアンテナのQは32.25である。また、第2の積層誘電体アンテナの反射特性を示す図3(b)においては、VSWRが2以下の帯域幅は134MHzとより一層広帯域化が図れることが分かる。また、このときアンテナのQは25.5である。
【0030】
また、第1の積層誘電体アンテナの共振周波数である5.16GHzにおける利得の最大値は−0.07dBiであり、第2の積層誘電体アンテナの共振周波数である5.10GHzにおける利得の最大値は−1.15dBiであるが、抵抗体51・52の導電率をさらに下げる(すなわち、抵抗率をさらに上げる)と、帯域幅は広がるものの、放射効率が下がり、結果として利得が下がることとなる。
【0031】
図3(a)および(b)に示す反射特性を得た本発明の第1および第2の積層誘電体アンテナにおいては、誘電体層11の厚み:H11を1mm、放射導体21の一辺の長さ:Lを8.9mm、放射導体の幅:W21を8.4mm、抵抗体51・52の幅:W51・W52を0.5mm、放射導体21および抵抗体51・52の全体の中心からのオフセット量:ρ0を1.4mm(放射導体21および抵抗体51・52の長さ:L=8.9mmの0.16倍)、接続導体41の直径を0.2mm、誘電体層11の比誘電率を9.6、抵抗体51・52の導電率を1000S/mとした。
【0032】
また、図6は図4および図5に示す従来の積層誘電体アンテナの実施の形態の一例についての反射特性を示す線図である。図6においても、横軸は周波数(単位:GHz)、縦軸はVSWRであり、特性曲線は反射特性、すなわちVSWRの周波数特性を示している。この線図に示す反射特性は、図3(a)および(b)に示した結果を得るのに使用したものと同一の電磁界シミュレーションを用いて得たものである。この結果より、VSWRが2以下の帯域幅は75MHzであることが分かる。また、このときアンテナのQは43.3である。
【0033】
図6に示す反射特性を得た従来の積層誘電体アンテナにおいては、誘電体層111の厚み:H111を1mm、放射導体121の一辺の長さ:L121を8.9mm、接続導体141の放射導体141の中心からのオフセット量:ρ0を1mm(放射導体121の長さL121=8.9mmの0.11倍)、接続導体141の直径を0.2mm、誘電体層11の比誘電率を9.6とした。
【0034】
なお、この従来の積層誘電体アンテナは、図3(a)および(b)に示す結果を得た本発明の第1および第2の積層誘電体アンテナと比べて、放射導体121に抵抗体が形成されていない点の他はすべて同じ条件である。放射導体121の一辺の長さL121は本発明の積層誘電体アンテナにおける放射導体Lに等しくなっている。
【0035】
以上より、帯域幅に関しては、図3(a)の結果を得た本発明の第1の積層誘電体アンテナでは113MHz、また、図3(b)の結果を得た本発明の第2の積層誘電体アンテナでは134MHzであるのに対して、図6の結果を得るのに用いた従来の積層誘電体アンテナでは75MHzであり、本発明の積層誘電体アンテナの方が広帯域であることが分かる。また誘電体層の厚みに関しては、図3の結果を得た本発明の積層誘電体アンテナでは1mmであるのに対して、図6の結果を得るのに用いた従来の積層誘電体アンテナでも1mmとなり、本発明の積層誘電体アンテナと従来の積層誘電体アンテナは同じ厚みである。すなわち、図1および図2に示す本発明の積層誘電体アンテナによれば、厚みを厚くすることなく広帯域なアンテナを提供することができ、従って、アンテナの低背化にも対応できるものであることが分かる。
【0036】
なお、本発明は以上の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。例えば、放射導体を接地導体に対向する位置に複数個配してもよく、そのような構成にすると、各放射導体で共振を起こさせて、多周波共用特性を得ることができる。
【0037】
【発明の効果】
本発明の第1の積層誘電体アンテナによれば、誘電体層と、この誘電体層の上面に配された四角形状の放射導体と、この放射導体の一辺に沿って接続された帯状の抵抗体と、前記誘電体層を貫通して配され、一端が前記放射導体および前記抵抗体の全体の中心から前記一辺に平行にずれた位置で前記放射導体と電気的に接続された接続導体と、前記誘電体層の下面に配され、前記接続導体が電気的に絶縁されて貫通する開口部を有する接地導体とを具備することから、接続導体の接地導体側の一端から高周波電流を給電することにより放射導体および抵抗体上に生じる共振電流の振幅が最大となる位置に抵抗体が配されることとなり、抵抗体の導体損によって共振電流が効果的に消費されてアンテナのQが下がるので、反射特性を示す周波数特性曲線における共振点部分のピークをなだらかにすることができるため、放射効率は下がるものの帯域幅を広げることができる。
【0038】
また、本発明の第2の積層誘電体アンテナによれば、前記放射導体の前記一辺に対向する辺にも帯状の抵抗体が接続され、前記接続導体の前記一端が前記放射導体および両方の前記抵抗体の全体の中心から前記一辺に平行にずれた位置で前記放射導体と電気的に接続されていることから、接続導体の接地導体側の一端から高周波電流を給電することにより放射導体および抵抗体上に生じる共振電流の振幅が最大となる位置に抵抗体が配されることとなり、両方の抵抗体の導体損によって共振電流がより一層効果的に消費されてアンテナのQが下がるので、反射特性を示す周波数特性曲線における共振点部分のピークをよりなだらかにすることができるため、放射効率は下がるものの放射導体の一辺に沿って接続された帯状の抵抗体としたときより、より一層帯域幅を広げることができる。
【0039】
すなわち、本発明の積層誘電体アンテナによれば、従来の一般的に知られている広帯域化の手法としての誘電体層の厚みを厚くするといった方法に対して、誘電体層の厚みを厚くすることなく広帯域なアンテナを提供することができ、低背化にも対応することができるものとなる。
【0040】
以上により、本発明によれば、低背で広帯域な積層誘電体アンテナを提供することができた。
【図面の簡単な説明】
【図1】(a)および(b)は、それぞれ本発明の第1の積層誘電体アンテナおよび本発明の第2の積層誘電体アンテナの実施の形態の一例を示す透視斜視図である。
【図2】(a)および(b)は、それぞれ本発明の第1の積層誘電体アンテナおよび本発明の第2の積層誘電体アンテナの実施の形態の一例を示す透視平面図である。
【図3】(a)および(b)は、それぞれ本発明の第1の積層誘電体アンテナおよび本発明の第2の積層誘電体アンテナの反射特性の一例を示す線図である。
【図4】従来の積層誘電体アンテナの一例を示す透視斜視図である。
【図5】従来の積層誘電体アンテナの一例を示す透視平面図である。
【図6】従来の積層誘電体アンテナの反射特性の一例を示す線図である。
【符号の説明】
11・・・誘電体層
21・・・放射導体
31・・・接地導体
41・・・接続導体
42・・・開口部
51、52・・・抵抗体
【発明の属する技術分野】
本発明は、例えば携帯電話や無線LAN等の無線通信機器、その他の各種通信機器等において使用される積層誘電体アンテナに関するものである。
【0002】
【従来の技術】
例えば携帯電話や無線LAN等の無線通信機器、その他の各種通信機器等において使用される、従来の積層誘電体アンテナを使用したアンテナとしてパッチアンテナが知られている(例えば、最新平面アンテナ技術、総合技術センター、1993年発行を参照)。その構造の一例を、図4に透視斜視図で、図5に透視平面図で示す。これらの図において、111は誘電体層、121は誘電体層111の上面に配された放射導体、141は誘電体層111を貫通して配され、一端が放射導体121と電気的に接続された接続導体、131は誘電体層111の下面に配され、接続導体141が電気的に絶縁されて貫通する開口部142を有する接地導体である。なお、図5においては誘電体層111の図示は省略している。
【0003】
この従来の積層誘電体アンテナでは、接続導体141の接地導体131側の一端から高周波電流を給電することにより、放射導体121上に共振電流が生じて電波が放射されることによってアンテナとして用いることができる。
【0004】
【発明が解決しようとする課題】
しかしながら、このような従来の積層誘電体アンテナにおいては、帯域幅を広げるためには誘電体層111の厚みを厚くする必要があり、広帯域化と低背化の両立が困難であるという問題点があった。
【0005】
本発明は上記問題点に鑑みて案出されたものであり、その目的は、低背で広帯域な積層誘電体アンテナを提供することにある。
【0006】
【課題を解決するための手段】
本発明の第1の積層誘電体アンテナは、誘電体層と、この誘電体層の上面に配された四角形状の放射導体と、この放射導体の一辺に沿って接続された帯状の抵抗体と、前記誘電体層を貫通して配され、一端が前記放射導体および前記抵抗体の全体の中心から前記一辺に平行にずれた位置で前記放射導体と電気的に接続された接続導体と、前記誘電体層の下面に配され、前記接続導体が電気的に絶縁されて貫通する開口部を有する接地導体とを具備することを特徴とするものである。
【0007】
また、本発明の第2の積層誘電体アンテナは、前記放射導体の前記一辺に対向する辺にも帯状の抵抗体が接続され、前記接続導体の前記一端が前記放射導体および両方の前記抵抗体の全体の中心から前記一辺に平行にずれた位置で前記放射導体と電気的に接続されていることを特徴とするものである。
【0008】
本発明の第1の積層誘電体アンテナによれば、接続導体の接地導体側の一端から高周波電流を給電することにより、放射導体および抵抗体上に共振電流が生じて電波が放射されるが、その共振電流の振幅が最大となる位置、すなわち放射導体の一辺に沿って帯状の抵抗体が配されており、放射導体および抵抗体の全体の中心から放射導体のこの一辺に平行にずれた位置で接続導体が接続されていることから、抵抗体の導体損によって共振電流が効果的に消費されてアンテナのQが下がるので、反射特性を示す周波数特性曲線における共振点部分のピークをなだらかにすることができるため、放射効率は下がるものの帯域幅を広げることができる。
【0009】
また、本発明の第2の積層誘電体アンテナによれば、放射導体の一辺に対向する辺にも帯状の抵抗体が接続され、接続導体の一端が放射導体および両方の抵抗体の全体の中心から放射導体の一辺に平行にずれた位置で放射導体と電気的に接続されていることから、両方の抵抗体の導体損によって共振電流がより一層効果的に消費されてアンテナのQが下がるので、反射特性を示す周波数特性曲線における共振点部分のピークをよりなだらかにすることができるため、放射効率は下がるものの帯域幅をより一層広げることができる。
【0010】
すなわち、本発明の積層誘電体アンテナによれば、従来の一般的に知られている広帯域化の手法としての誘電体層の厚みを厚くするといった方法に対して、誘電体層の厚みを厚くすることなく広帯域なアンテナを提供することができ、低背化にも対応することができるものとなる。
【0011】
【発明の実施の形態】
以下、本発明の積層誘電体アンテナを図面を参照しつつ説明する。
【0012】
図1(a)および(b)ならびに図2(a)および(b)は、それぞれ本発明の第1および第2の積層誘電体アンテナの実施の形態の一例を示す透視斜視図ならびに透視平面図である。これらの図において、11は誘電体層、21は誘電体層11の上面に配された四角形状の放射導体、41は誘電体層11を貫通して配され、放射導体21および抵抗体51の全体の中心から放射導体21の一辺に平行にずれた位置で一端が放射導体21と電気的に接続された接続導体、51は放射導体21の一辺に沿って接続された帯状の抵抗体、52はこの一辺に対向する辺に接続された帯状の抵抗体、31は誘電体層11の下面に配され、接続導体41が電気的に絶縁されて貫通する開口部42を有する接地導体である。なお、図2においては誘電体層11を透視して接地導体31を示している。
【0013】
このように構成された本発明の第1の積層誘電体アンテナによれば、接続導体41の接地導体31側の一端から高周波電流を給電することにより、放射導体21および抵抗体51上に共振電流が生じて電波が放射されるが、その共振電流の振幅が最大となる位置、すなわち放射導体21の一辺に沿って帯状の抵抗体51が配されており、放射導体21および抵抗体51の全体の中心から放射導体21のこの一辺に平行にずれた位置で接続導体41が接続されていることから、抵抗体51の導体損によって共振電流が効果的に消費されてアンテナのQが下がるので、反射特性を示す周波数特性曲線における共振点部分のピークをなだらかにすることができるため、放射効率は下がるものの帯域幅を広げることができる。
【0014】
また、本発明の第2の積層誘電体アンテナによれば、第1の積層誘電体アンテナの構成に加えて、放射導体21の一辺に対向する辺に沿っても帯状の抵抗体52が配されており、放射導体21および抵抗体51・52の全体の中心から放射導体21のこの一辺に平行にずれた位置で接続導体41が接続されていることから、両方の抵抗体51・52の導体損によって共振電流がより一層効果的に消費されてアンテナのQが下がるので、反射特性を示す周波数特性曲線における共振点部分のピークをよりなだらかにすることができるため、放射効率は下がるものの帯域幅をより一層広げることができる。
【0015】
すなわち、これら本発明の積層誘電体アンテナによれば、従来の一般的に知られている広帯域化の手法としての誘電体層の厚みを厚くするといった方法に対して、誘電体層11の厚みを厚くすることなく広帯域なアンテナを提供することができ、従って低背化にも対応することができるものとなる。
【0016】
本発明の積層誘電体アンテナにおいては、積層誘電体アンテナ全体の外形が図1および図2に示すような略直方体状である場合には、放射導体21をその形状に沿った形状の四角形状とすると、放射導体21の面積を誘電体層11の上面で十分に広く取ることができるので、周波数帯域をさらに広帯域化させることができる。
【0017】
また、本発明の積層誘電体アンテナにおいては、抵抗体51・52(図1(a)および図2(a)に示す本発明の第1の積層誘電体アンテナについては抵抗体51を、図1(b)および図2(b)に示す本発明の第2の積層誘電体アンテナについては抵抗体51および52を指す。以下同様。)の抵抗が大きいほど帯域幅を広げることができる。ただしその反面、抵抗を大きくしすぎると、帯域幅は広がるものの、放射効率が下がり、結果として利得が下がることとなるので、抵抗体51・52の抵抗値は、帯域幅および放射効率・利得に対する要求に応じて適切に設定する。
【0018】
ここで、抵抗体51の幅W51および抵抗体52の幅W52を広くすると、抵抗が大きくなるので帯域幅を広げることができる。このとき、放射導体21および抵抗体51・52の全体の中心と放射導体21の接続導体41が接続された位置とを通る線から放射導体21の端に向かうに従って共振電流の振幅が大きくなり、共振電流の振幅が最大となる位置に抵抗体51・52を設けると、効果的に共振電流が消費されてアンテナのQが下がるので、帯域幅を広げることができる。これに対し、放射導体21および抵抗体51・52の全体の中心から放射導体21および抵抗体51・52の全体の中心と放射導体21の接続導体41が接続された位置とを通る線の方向へ向かうに従って共振電流の振幅が小さくなり、この方向にある辺に抵抗体を設けてもその抵抗体ではあまり共振電流が消費されない。
【0019】
なお、抵抗体51・52の幅W51・W52は、その抵抗体51・52の抵抗値が帯域幅および放射効率・利得に対する要求に応じた値となるように、抵抗体51・52の抵抗率を考慮して設定する。
【0020】
また、抵抗体51・52の抵抗率を上げても抵抗が大きくなるので、抵抗率を上げることにより帯域幅を広げることができる。ただし、抵抗率を上げすぎると、帯域幅は広がるものの放射効率が下がり、結果として利得が下がるので、抵抗体51・52の抵抗率は、1Ω・m以下で、十分な抵抗値を得るためには0.0001Ω・m以上(すなわち導電率では1S/m以上10000S/m以下)であることが好ましい。
【0021】
また、本発明の積層誘電体アンテナの接続導体41は、図4および図5に示す従来の積層誘電体アンテナの接続導体141の位置と同様に、中心線から帯状の抵抗体と平行な方向に、放射導体21の長さLの約0.15倍オフセットした位置に接続することで、インピーダンス整合が取れて高効率なアンテナとして動作させることができる。なお、図2(a)および(b)にこのオフセット量をρ0で示す。
【0022】
また、本発明の積層誘電体アンテナの接続導体41は、直径が小さいほど、インピーダンス整合を取りやすく周波数帯域やVSWRの調整がしやすいものとなる。
【0023】
なお、接続導体41の接続位置は、上述のように放射導体21および抵抗体51・52の全体の中心から帯状の抵抗体51・52と平行な方向に、放射導体21の長さLの約0.15倍オフセットした位置にするとよいので、接続導体41を円柱状のものとして形成する場合には、その半径は放射導体21の長さLの0.15倍以下に設定することが好ましい。また、接続導体41の直径が小さすぎると抵抗が高くなるので、接続導体41の直径は0.05mm以上であることが好ましい。
【0024】
本発明の積層誘電体アンテナを形成するに当たり、誘電体層11・放射導体21・接地導体31・接続導体41には、周知の高周波用配線基板に使用される種々の材料・形態のものと同様のものを使用することができる。
【0025】
誘電体層11としては、例えばアルミナセラミックス・ムライトセラミックス等のセラミックス材料やガラスセラミックス等の無機系材料、あるいは四フッ化エチレン−エチレン樹脂(ポリテトラフルオロエチレン;PTFE)・四フッ化エチレン−エチレン共重合樹脂(テトラフルオロエチレン−エチレン共重合樹脂;ETFE)・四フッ化エチレン−パーフルオロアルコキシエチレン共重合樹脂(テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合樹脂;PFA)等のフッ素樹脂やガラスエポキシ樹脂・ポリイミド等の樹脂系材料等が用いられる。これらの材料による誘電体層11の形状や寸法(厚みや幅・長さ)は、使用される周波数や用途等に応じて設定される。
【0026】
放射導体21・接地導体31・接続導体41は、高周波信号伝送用の金属材料の導体層、例えばCu層・Mo−Mnのメタライズ層上にNiメッキ層およびAuメッキ層を被着させたもの・Wのメタライズ層上にNiメッキ層およびAuメッキ層を被着させたもの・Cr−Cu合金層・Cr−Cu合金層上にNiメッキ層およびAuメッキ層を被着させたもの・Ta2N層上にNi−Cr合金層およびAuメッキ層を被着させたもの・Ti層上にPt層およびAuメッキ層を被着させたもの、またはNi−Cr合金層上にPt層およびAuメッキ層を被着させたもの等を用いて、厚膜印刷法あるいは各種の薄膜形成方法やメッキ法等により形成される。その厚みや幅等も、伝送される高周波信号の周波数や用途等に応じて設定される。
【0027】
抵抗体51・52を形成するための抵抗材料としては、抵抗温度係数が低く、また許容電流値が大きいものとして、例えばタングステン・レニウム・モリブデンやニクロム・窒化タンタルあるいはそれらの合金を用いることができる。中でも、タングステン−レニウム合金を用いると、抵抗温度係数が約100×10-6/℃と低く、誘電体層11にセラミックスを用いる場合に誘電体層11との同時焼成が可能である点で好適なものとなる。
【0028】
本発明の積層誘電体アンテナの作製方法としては、例えば誘電体層11がガラスセラミックスから成る場合であれば、まず誘電体層11となるガラスセラミックスのグリーンシートを準備し、これに所定の打ち抜き加工を施して接続導体41としての貫通導体が配設される貫通孔を形成した後、スクリーン印刷法によりCu等の導体ペーストを貫通孔に充填するとともに、放射導体21・接地導体31となる導体層のパターンおよび必要に応じてその他の所定の伝送線路パターン、ならびに抵抗体51・52となる抵抗体層のパターンを印刷塗布する。次に、850〜1000℃で焼成を行ない、最後に各導体層の表面にNiメッキおよびAuメッキを施す。
【0029】
図3(a)および(b)は、それぞれ図1および図2に示す本発明の第1および第2の積層誘電体アンテナの実施の形態の一例についての反射特性を示す線図である。図3(a)および(b)において、それぞれ横軸は周波数(単位:GHz)、縦軸はVSWRであり、特性曲線は反射特性、すなわちVSWRの周波数特性を示している。この線図に示す反射特性は、電磁界シミュレーションを用いて得たものである。第1の積層誘電体アンテナの反射特性を示す図3(a)においては、VSWRが2以下の帯域幅は113MHzであることが分かる。また、このときアンテナのQは32.25である。また、第2の積層誘電体アンテナの反射特性を示す図3(b)においては、VSWRが2以下の帯域幅は134MHzとより一層広帯域化が図れることが分かる。また、このときアンテナのQは25.5である。
【0030】
また、第1の積層誘電体アンテナの共振周波数である5.16GHzにおける利得の最大値は−0.07dBiであり、第2の積層誘電体アンテナの共振周波数である5.10GHzにおける利得の最大値は−1.15dBiであるが、抵抗体51・52の導電率をさらに下げる(すなわち、抵抗率をさらに上げる)と、帯域幅は広がるものの、放射効率が下がり、結果として利得が下がることとなる。
【0031】
図3(a)および(b)に示す反射特性を得た本発明の第1および第2の積層誘電体アンテナにおいては、誘電体層11の厚み:H11を1mm、放射導体21の一辺の長さ:Lを8.9mm、放射導体の幅:W21を8.4mm、抵抗体51・52の幅:W51・W52を0.5mm、放射導体21および抵抗体51・52の全体の中心からのオフセット量:ρ0を1.4mm(放射導体21および抵抗体51・52の長さ:L=8.9mmの0.16倍)、接続導体41の直径を0.2mm、誘電体層11の比誘電率を9.6、抵抗体51・52の導電率を1000S/mとした。
【0032】
また、図6は図4および図5に示す従来の積層誘電体アンテナの実施の形態の一例についての反射特性を示す線図である。図6においても、横軸は周波数(単位:GHz)、縦軸はVSWRであり、特性曲線は反射特性、すなわちVSWRの周波数特性を示している。この線図に示す反射特性は、図3(a)および(b)に示した結果を得るのに使用したものと同一の電磁界シミュレーションを用いて得たものである。この結果より、VSWRが2以下の帯域幅は75MHzであることが分かる。また、このときアンテナのQは43.3である。
【0033】
図6に示す反射特性を得た従来の積層誘電体アンテナにおいては、誘電体層111の厚み:H111を1mm、放射導体121の一辺の長さ:L121を8.9mm、接続導体141の放射導体141の中心からのオフセット量:ρ0を1mm(放射導体121の長さL121=8.9mmの0.11倍)、接続導体141の直径を0.2mm、誘電体層11の比誘電率を9.6とした。
【0034】
なお、この従来の積層誘電体アンテナは、図3(a)および(b)に示す結果を得た本発明の第1および第2の積層誘電体アンテナと比べて、放射導体121に抵抗体が形成されていない点の他はすべて同じ条件である。放射導体121の一辺の長さL121は本発明の積層誘電体アンテナにおける放射導体Lに等しくなっている。
【0035】
以上より、帯域幅に関しては、図3(a)の結果を得た本発明の第1の積層誘電体アンテナでは113MHz、また、図3(b)の結果を得た本発明の第2の積層誘電体アンテナでは134MHzであるのに対して、図6の結果を得るのに用いた従来の積層誘電体アンテナでは75MHzであり、本発明の積層誘電体アンテナの方が広帯域であることが分かる。また誘電体層の厚みに関しては、図3の結果を得た本発明の積層誘電体アンテナでは1mmであるのに対して、図6の結果を得るのに用いた従来の積層誘電体アンテナでも1mmとなり、本発明の積層誘電体アンテナと従来の積層誘電体アンテナは同じ厚みである。すなわち、図1および図2に示す本発明の積層誘電体アンテナによれば、厚みを厚くすることなく広帯域なアンテナを提供することができ、従って、アンテナの低背化にも対応できるものであることが分かる。
【0036】
なお、本発明は以上の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。例えば、放射導体を接地導体に対向する位置に複数個配してもよく、そのような構成にすると、各放射導体で共振を起こさせて、多周波共用特性を得ることができる。
【0037】
【発明の効果】
本発明の第1の積層誘電体アンテナによれば、誘電体層と、この誘電体層の上面に配された四角形状の放射導体と、この放射導体の一辺に沿って接続された帯状の抵抗体と、前記誘電体層を貫通して配され、一端が前記放射導体および前記抵抗体の全体の中心から前記一辺に平行にずれた位置で前記放射導体と電気的に接続された接続導体と、前記誘電体層の下面に配され、前記接続導体が電気的に絶縁されて貫通する開口部を有する接地導体とを具備することから、接続導体の接地導体側の一端から高周波電流を給電することにより放射導体および抵抗体上に生じる共振電流の振幅が最大となる位置に抵抗体が配されることとなり、抵抗体の導体損によって共振電流が効果的に消費されてアンテナのQが下がるので、反射特性を示す周波数特性曲線における共振点部分のピークをなだらかにすることができるため、放射効率は下がるものの帯域幅を広げることができる。
【0038】
また、本発明の第2の積層誘電体アンテナによれば、前記放射導体の前記一辺に対向する辺にも帯状の抵抗体が接続され、前記接続導体の前記一端が前記放射導体および両方の前記抵抗体の全体の中心から前記一辺に平行にずれた位置で前記放射導体と電気的に接続されていることから、接続導体の接地導体側の一端から高周波電流を給電することにより放射導体および抵抗体上に生じる共振電流の振幅が最大となる位置に抵抗体が配されることとなり、両方の抵抗体の導体損によって共振電流がより一層効果的に消費されてアンテナのQが下がるので、反射特性を示す周波数特性曲線における共振点部分のピークをよりなだらかにすることができるため、放射効率は下がるものの放射導体の一辺に沿って接続された帯状の抵抗体としたときより、より一層帯域幅を広げることができる。
【0039】
すなわち、本発明の積層誘電体アンテナによれば、従来の一般的に知られている広帯域化の手法としての誘電体層の厚みを厚くするといった方法に対して、誘電体層の厚みを厚くすることなく広帯域なアンテナを提供することができ、低背化にも対応することができるものとなる。
【0040】
以上により、本発明によれば、低背で広帯域な積層誘電体アンテナを提供することができた。
【図面の簡単な説明】
【図1】(a)および(b)は、それぞれ本発明の第1の積層誘電体アンテナおよび本発明の第2の積層誘電体アンテナの実施の形態の一例を示す透視斜視図である。
【図2】(a)および(b)は、それぞれ本発明の第1の積層誘電体アンテナおよび本発明の第2の積層誘電体アンテナの実施の形態の一例を示す透視平面図である。
【図3】(a)および(b)は、それぞれ本発明の第1の積層誘電体アンテナおよび本発明の第2の積層誘電体アンテナの反射特性の一例を示す線図である。
【図4】従来の積層誘電体アンテナの一例を示す透視斜視図である。
【図5】従来の積層誘電体アンテナの一例を示す透視平面図である。
【図6】従来の積層誘電体アンテナの反射特性の一例を示す線図である。
【符号の説明】
11・・・誘電体層
21・・・放射導体
31・・・接地導体
41・・・接続導体
42・・・開口部
51、52・・・抵抗体
Claims (2)
- 誘電体層と、該誘電体層の上面に配された四角形状の放射導体と、該放射導体の一辺に沿って接続された帯状の抵抗体と、前記誘電体層を貫通して配され、一端が前記放射導体および前記抵抗体の全体の中心から前記一辺に平行にずれた位置で前記放射導体と電気的に接続された接続導体と、前記誘電体層の下面に配され、前記接続導体が電気的に絶縁されて貫通する開口部を有する接地導体とを具備することを特徴とする積層誘電体アンテナ。
- 前記放射導体の前記一辺に対向する辺にも帯状の抵抗体が接続され、前記接続導体の前記一端が前記放射導体および両方の前記抵抗体の全体の中心から前記一辺に平行にずれた位置で前記放射導体と電気的に接続されていることを特徴とする請求項1記載の積層誘電体アンテナ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002218943A JP3771878B2 (ja) | 2002-06-26 | 2002-07-26 | 積層誘電体アンテナ |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002186867 | 2002-06-26 | ||
JP2002218943A JP3771878B2 (ja) | 2002-06-26 | 2002-07-26 | 積層誘電体アンテナ |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004088136A JP2004088136A (ja) | 2004-03-18 |
JP3771878B2 true JP3771878B2 (ja) | 2006-04-26 |
Family
ID=32071686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002218943A Expired - Fee Related JP3771878B2 (ja) | 2002-06-26 | 2002-07-26 | 積層誘電体アンテナ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3771878B2 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012157016A1 (en) * | 2011-05-16 | 2012-11-22 | Nec Corporation | Broadband patch antenna |
CN112152325B (zh) * | 2019-06-28 | 2023-06-20 | 北京小米移动软件有限公司 | 线圈位置调整方法、装置和存储介质 |
-
2002
- 2002-07-26 JP JP2002218943A patent/JP3771878B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004088136A (ja) | 2004-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6950066B2 (en) | Apparatus and method for forming a monolithic surface-mountable antenna | |
WO2004051800A1 (ja) | チップアンテナ、チップアンテナユニット及びこれらを用いた無線通信装置 | |
KR20000029757A (ko) | 벤트세그먼트나선상안테나 | |
JP3735580B2 (ja) | 積層誘電体アンテナ | |
JP4263972B2 (ja) | 表面実装型アンテナおよびアンテナ装置ならびに無線通信装置 | |
WO2008018230A1 (fr) | Dispositif d'antenne | |
EP0762533B1 (en) | Antenna matching device | |
US8279128B2 (en) | Tapered slot antenna | |
WO2000052783A1 (en) | Broadband antenna assembly of matching circuitry and ground plane conductive radiating element | |
JP4206325B2 (ja) | アンテナ | |
US8269685B2 (en) | Tapered slot antenna | |
JP3771878B2 (ja) | 積層誘電体アンテナ | |
KR100783349B1 (ko) | 다층 방사체를 이용한 칩안테나 | |
JP2005020433A (ja) | 表面実装型アンテナおよびアンテナ装置ならびに無線通信装置 | |
JP2004186731A (ja) | チップアンテナおよびそれを用いた無線通信装置 | |
JP3699687B2 (ja) | 積層誘電体アンテナ | |
JP2007174153A (ja) | ループアンテナおよび通信機器 | |
JP3880295B2 (ja) | チップアンテナ | |
JP3735582B2 (ja) | 積層誘電体アンテナ | |
JP4041444B2 (ja) | アンテナ一体型高周波素子収納用パッケージおよびアンテナ装置 | |
JP2004180034A (ja) | ダイバーシティアンテナ | |
JP3838973B2 (ja) | 積層誘電体アンテナ | |
JP4841398B2 (ja) | ループアンテナ、アンテナ基板、アンテナ一体モジュールおよび通信機器 | |
JP2004260582A (ja) | パッチアンテナ | |
KR101765047B1 (ko) | 이동통신 단말기용 스파이럴 안테나 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040812 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060207 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060210 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |