JP3771815B2 - Photosensitive laminate, positive resist composition used therefor, and resist pattern forming method using them - Google Patents

Photosensitive laminate, positive resist composition used therefor, and resist pattern forming method using them Download PDF

Info

Publication number
JP3771815B2
JP3771815B2 JP2001165726A JP2001165726A JP3771815B2 JP 3771815 B2 JP3771815 B2 JP 3771815B2 JP 2001165726 A JP2001165726 A JP 2001165726A JP 2001165726 A JP2001165726 A JP 2001165726A JP 3771815 B2 JP3771815 B2 JP 3771815B2
Authority
JP
Japan
Prior art keywords
layer
parts
component
mass
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001165726A
Other languages
Japanese (ja)
Other versions
JP2002357903A (en
Inventor
和行 新田
卓 中緒
英一 志村
正一 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Ohka Kogyo Co Ltd
Original Assignee
Tokyo Ohka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Ohka Kogyo Co Ltd filed Critical Tokyo Ohka Kogyo Co Ltd
Priority to JP2001165726A priority Critical patent/JP3771815B2/en
Priority to TW092135984A priority patent/TWI275907B/en
Priority to KR1020020029760A priority patent/KR100573819B1/en
Priority to TW091111491A priority patent/TW594413B/en
Publication of JP2002357903A publication Critical patent/JP2002357903A/en
Application granted granted Critical
Publication of JP3771815B2 publication Critical patent/JP3771815B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0046Photosensitive materials with perfluoro compounds, e.g. for dry lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0395Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having a backbone with alicyclic moieties

Description

【0001】
【発明の属する技術分野】
本発明は、基板上に設けた、孤立電子対をもつ原子を含む層、すなわち窒化ケイ素、四窒化三ケイ素、リン・シリケートガラス、ホウ素・リン・シリケートガラス又は窒化チタンの層の上に、レジストパターンを形成する場合に、高解像度で、しかもフッティングを有しない優れた断面形状をもつレジストパターンを形成しうる感光性積層体、それに用いる孤立電子対をもつ原子を含む層に積層するための化学増幅型ポジ型レジスト組成物及びそれらを用いたレジストパターン形成方法に関するものである。
【0002】
【従来の技術】
近年、半導体デバイスの集積化は高まる一方であり、既にデザインルール0.20μm付近のLSIの量産が開始され、近い将来にはデザインルール0.15μm付近のLSIの量産も実現される状況にある。
【0003】
ところで、最近、化学増幅型ポジ型レジスト組成物が提案され、これは基材樹脂としてノボラック樹脂を、感光剤としてナフトキノンジアジドスルホン酸エステルを用いる従来の非化学増幅型のポジ型レジストに比べ、解像性や感度が優れているところから、次第にこのものの使用に移行しつつある。
【0004】
そして、このような化学増幅型ポジ型レジスト組成物としては、例えば基材樹脂として、p‐(1‐エトキシエトキシ)スチレンとp‐ヒドロキシスチレンとの共重合体を、酸発生剤としてビス(シクロヘキシルスルホニル)ジアゾメタンのようなスルホニルジアゾメタン系酸発生剤を用いたものが知られている(特開平5−249682号公報)。
【0005】
これは、溶解抑制基として比較的弱い酸で解離するアセタール基と比較的弱い酸を発生するスルホニルジアゾメタン系化合物とを組み合わせることにより、高解像性のレジストパターンを形成させるものであるが、アセタール基のみを有する基材樹脂を用いた場合には、いったん形成されたレジストパターンが経過的に細る傾向がある上、耐熱性、基板依存性などの点で、必ずしも満足できるものではないため、実用化は困難である。
【0006】
このような欠点を克服するために、アセタール基に加え、tert‐ブトキシカルボニル基、tert‐ブチル基、テトラヒドロピラニル基のような弱酸では解離しにくく、強酸で解離する酸解離性基を共存させた共重合体や混合樹脂を、スルホニルジアゾメタン系酸発生剤を用いた化学増幅型ポジ型レジスト組成物が提案され、現在ではこれが主流となっている。
【0007】
他方において、半導体デバイスの製造に際しては、その使用目的に応じ、基板上に絶縁層、半導体層、金属層などを設けた上に、レジスト層を有する感光性積層体を用いてレジストパターンを形成することが行われている。
【0008】
そして、通常、この絶縁層としては、酸化ケイ素(SiO2)、窒化ケイ素(SiN)、四窒化三ケイ素(Si34)、五酸化二タンタル(Ta25)、リン・シリケートガラス(PSG)、ホウ素・リン・シリケートガラス(BPSG)、有機SOG、ポリイミドなどの層が、半導体層としては、多結晶ケイ素の層が、金属層としては、アルミニウム、アルミニウム・ケイ素合金、アルミニウム・ケイ素・銅合金、ケイ化タングステン(WSi)、窒化チタン(TiN)などの層が用いられている。
【0009】
ところで、これらの層を設けた感光性積層体については、これまで0.30μm程度の微細パターンが形成できれば十分に目的を達成し得たのであるが、最も微細なデザインルールが要求される0.15μm付近のLSIの量産が現実的になってくるとともに、これらの感光性積層体についても0.25μm付近のパターンサイズが要求されるようになってきた。
【0010】
しかしながら、このような感光性積層体を用いて上記の微細パターンを形成させると、SiN、Si34、PSG、BPSG又はTiNの層などの孤立電子対をもつ原子を含む層と、レジストパターン層との境界にフッティングを生じ、断面形状がそこなわれるのを免れない。
【0011】
【発明が解決しようとする課題】
本発明は、このような事情のもとで、SiN、Si34、PSG、BPSG又はTiN層のような、孤立電子対をもつ原子を含む層の上にレジストパターンを形成する際に、これらの層とレジスト層との境界におけるフッティングの発生を防止しうる感光性積層体を提供することを目的としてなされたものである。
【0012】
【課題を解決するための手段】
本発明者らは、基板上に孤立電子対をもつ原子を含む層を介して化学増幅型ポジ型レジスト層を設けた感光性積層体を用いてレジストパターンを形成する際のフッティングの発生を抑制する手段について種々研究を重ねた結果、特定の樹脂成分と、特定の酸発生剤とアミンとの組合せを含む化学増幅型ポジ型レジストを用いることにより、その目的を達成しうることを見出し、この知見に基づいて本発明をなすに至った。
【0013】
すなわち、本発明は、窒化チタン層、リン・シリケートガラス層、ホウ素・リン・シリケートガラス層、窒化ケイ素層及び四窒化三ケイ素層の中から選ばれた孤立電子対をもつ原子を含む層を介して基板上に化学増幅型ポジ型レジスト層を設けた感光性積層体であって、該化学増幅型ポジ型レジスト組成物が、(A)ポリヒドロキシスチレンの水酸基の30〜60%の水素原子が1‐エトキシエチル基で置換されたポリマーと、ポリヒドロキシスチレンの水酸基の30〜60%の水素原子がtert‐ブトキシカルボニル基又はテトラヒドロピラニル基で置換されたポリマーの質量比1:9ないし9:1の混合物からなる樹脂成分、(B)(A)成分100質量部当り0.5〜30質量部の一般式
1−SO2−C(N2)−SO2−R2
(式中のR1及びR2はそれぞれイソプロピル基又はtert‐ブチル基である)
で表わされるジアゾメタン系化合物の中から選ばれた少なくとも1種からなる酸発生剤及び(C)(A)成分100質量部当り0.01〜1.0質量部のアミンを含有することを特徴とする感光性積層体、その感光性積層体を用い、これに選択的に活性線を照射し、後加熱したのち、アルカリ現像することを特徴とするレジストパターン形成方法、(A)ポリヒドロキシスチレンの水酸基の30〜60%の水素原子が1‐エトキシエチル基で置換されたポリマーと、ポリヒドロキシスチレンの水酸基の30〜60%の水素原子がtert‐ブトキシカルボニル基又はテトラヒドロピラニル基で置換されたポリマーの質量比1:9ないし9:1の混合物からなる樹脂成分、(B)(A)成分100質量部当り0.5〜30質量部の一般式
1−SO2−C(N2)−SO2−R2
(式中のR1及びR2はそれぞれイソプロピル基又はtert‐ブチル基である)
で表わされるジアゾメタン系化合物の中から選ばれた少なくとも1種からなる酸発生剤及び(C)(A)成分100質量部当り0.01〜1.0質量部のアミンを含有することを特徴とする、窒化チタン層、リン・シリケートガラス層、ホウ素・リン・シリケートガラス層、窒化ケイ素層及び四窒化三ケイ素層の中から選ばれた孤立電子対をもつ原子を含む層に積層するレジスト層を形成するための化学増幅型ポジ型レジスト組成物、及び窒化チタン層、リン・シリケートガラス層、ホウ素・リン・シリケートガラス層、窒化ケイ素層及び四窒化三ケイ素層の中から選ばれた孤立電子対をもつ原子を含む層を設けた基板上に、この化学増幅型レジスト組成物を用いてレジスト層を形成し、次いでこれに選択的に活性線を照射し、後加熱したのち、アルカリ現像することを特徴とするレジストパターン形成方法を提供するものである。
【0014】
【発明の実施の形態】
本発明の感光性積層体は、基板上に設けた、特定の孤立電子対をもつ原子を含む第一層とその上に設けた化学増幅型ポジ型レジスト組成物からなる第二層で構成されている。そして、基板としては、通常、半導体デバイス製造の際に慣用されている基板、例えばシリコンウエーハが用いられる。
【0015】
また、この基板上に設けられる孤立電子対をもつ原子を含む第一層としては、窒化チタン(TiN)層、リン・シリケートガラス(PSG)層、ホウ素・リン・シリケートガラス(BPSG)層、窒化ケイ素(SiN)層、四窒化三ケイ素(Si34)層が用いられるこれらの層は、例えば化学蒸着法(CVD)法、有機又は無機SOG法、有機ポリマーの回転塗布法により基板上に層厚0.02〜0.5μmで設けられる。
【0016】
次に、この第一層の上に設けられる第二層は、化学増幅型ポジ型レジスト組成物を回転塗布法、コートアンドスピン法などにより層厚0.3〜3.0μmで塗布することにより設けられる。
【0017】
この化学増幅型ポジ型レジスト組成物は、(A)樹脂成分、(B)酸発生剤及び(C)アミンを含有してなっている。
そして、この(A)成分の樹脂成分としては、(a1)ヒドロキシスチレン単位、及び(a2)ヒドロキシスチレン単位における水酸基の水素原子が1‐エトキシエチル基により置換された単位からなるポリヒドロキシスチレンと、(a1ヒドロキシスチレン単位及び(a3)ヒドロキシスチレン単位における水酸基の水素原子が1‐エトキシエチル基よりも酸解離しにくいtert‐ブトキシカルボニル基又はテトラヒドロピラニル基置換された単位からなるポリヒドロキシスチレンとの混合物が用いられる
【0018】
上記の(a1)単位は、アルカリ可溶性や基板への密着性を付与する単位であり、ヒドロキシスチレンエチレン性二重結合が開裂して誘導される単位である。このヒドロキシル基の結合位置は、o‐位、m‐位、p‐位のいずれでもよいが、入手が容易で低価格であることからp‐位が最も好ましい。
【0019】
また、(a2)単位は、上記ヒドロキシスチレン単位における水酸基の水素原子を1‐エトキシエチル基で置換した単位であり、これが露光部において放射線の照射により発生した酸の作用により、1‐エトキシエチル基が脱離しフェノール性水酸基に変化することから、露光前はアルカリ不溶性(A)成分露光後はアルカリ可溶性に変
【0020】
このような酸解離性溶解抑制基をもつポリヒドロキシスチレンは、例えば特開平5−249682号公報に記載されている。
【0021】
他方、(a3単位は1‐エトキシエチル基より解離しにくい溶解抑制基を含む単位であり、この溶解抑制基としてはtert‐ブトキシカルボニル基又はテトラヒドロピラニル基が用いられる。
【0022】
これらの酸解離性溶解抑制基をもつポリヒドロキシスチレンは、例えば特許第2690656号明細書、特開平9−211866号公報、特開平10−48826号公報及び特開平11−95434号公報に記載されている
【0023】
本発明においては、(A)成分として2種のポリマーの混合物、すなわちポリヒドロキシスチレンの水酸基の30〜60%の水素原子が1‐エトキシエチル基で置換されたポリマーとポリヒドロキシスチレンの水酸基の30〜60%の水素原子がtert‐ブトキシカルボニル基又はテトラヒドロピラニル基で置換されたポリマーの質量比1:9ないし9:1の混合物が用いられる
【0024】
これらの樹脂成分は、質量平均分子量3,000〜30,000、分散度1.0〜6.0の範囲のものが、高解像性、高耐熱性のレジストパターンを与えるので好ましい。また、分散度は小さいほど高解像性、高耐熱性のレジストパターンを与えるので、1.0〜1.5の範囲のものが好ましい。
本発明においては、上記のポリヒドロキシスチレンの代りに対応するポリ(α‐メチルヒドロキシスチレン)を用いることもできる
【0025】
これまでの化学増幅型ポジ型レジスト組成物においては、樹脂成分として低級アルコキシアルキル基のような比較的弱い酸で解離する溶解抑制基と、tert‐ブトキシカルボニル基、tert‐ブチル基又はテトラヒドロピラニル基のような強い酸により解離する溶解抑制基との組合せを含む樹脂成分を用いた場合には、KrFエキシマレーザーに対して高い透明性を有し、かつ露光により発生する酸がかさ高い基を有するため、露光後の加熱により拡散する距離が適度であるという理由で、酸発生剤としては、主としてビス(シクロヘキシルスルホニル)ジアゾメタンが用いられ、場合によりこれとオニウム塩を組み合わせて用いられていた。
【0026】
しかしながら、一段と微細化が要求される今日、孤立電子対をもつ原子を含む層に接してレジスト層を設け、パターン形成した場合には、これらの接触部分にフッティングと呼ばれる裾引きが発生するのを免れない。これは、レジストの露光部と未露光部の境界部位における酸発生量が少ない上に、露光により酸発生剤から発生した酸が孤立電子対と結合し、失活すること及びビス(シクロヘキシルスルホニル)ジアゾメタンに関しては、かさ高い基をもつ酸発生剤であることから、境界部位付近ではアルカリに対する溶解抑制基としての挙動を示すとともに、露光後加熱した際に、発生した酸が拡散しにくいことに起因している。
【0027】
また、オニウム塩に関しては、これがアニオンとカチオンを有するため、境界付近においてアニオンが露光により発生する酸のプロトンと結合してこれを失活させること、及びオニウム塩はフェニル基のようなかさ高い基を有するため、境界部付近では、アルカリに対する溶解抑制基としての挙動を示すためと考えられる。従って、本発明における(B)成分は、このような欠点を有さない酸発生剤を用いる必要がある。そのような酸発生剤とは、シクロヘキシル基やフェニル基などのかさ高い基を有さず、アルカリ溶解性が比較的高い酸発生剤である。すなわち、前記した溶解試験にて、膜減量が0.6nm/秒以上の酸発生剤でよい。そして、これらビス(シクロヘキシルスルホニル)ジアゾメタンやオニウム塩のような酸発生剤は、前記した溶解試験を施した場合に、いずれも膜減量は0.6nm/秒よりも少なくなるため、本発明の酸発生剤としては不適格である。
【0028】
本発明においては、(B)成分の酸発生剤として、一般式
1−SO2−C(N2)−SO2−R2 (I)
(式中、R1及びR2はそれぞれイソプロピル基又はtert‐ブチル基である)
で表わされるジアゾメタン系化合物を用いることが必要である
したがって、一般式(I)の化合物としては、例えばビス(イソプロピルスルホニル)ジアゾメタンビス(tert‐ブチルスルホニル)ジアゾメタンを挙げることができる
【0029】
これらの(B)成分は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。その配合量は、(A)成分100質量部に対し、0.5〜30質量部、好ましくは1〜10質量部の範囲で選ばれる。この配合量が0.5質量部未満ではパターン形成が十分に行われないし、30質量部を超えると均一な溶液が得られにくく、保存安定性が低下する原因となる。
【0030】
本発明で用いる化学増幅型ポジ型レジスト組成物には、前記した(A)成分及び(B)成分に加え、さらに(C)成分としてアミンを配合する必要がある。このようなアミン成分としては、例えば脂肪族アミン、芳香族アミン、複素環式アミンなどが挙げられる。ここで、脂肪族アミンとしては、例えばメチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、n‐プロピルアミン、ジ‐n‐プロピルアミン、トリ‐n‐プロピルアミン、イソプロピルアミンなどが挙げられる。また、芳香族アミンとしては、例えばベンジルアミン、アニリン、N‐メチルアニリン、N,N‐ジメチルアニリン、o‐メチルアニリン、m‐メチルアニリン、p‐メチルアニリン、N,N‐ジエチルアニリン、ジフェニルアミン、ジ‐p‐トリルアミンなどが挙げられる。さらに、複素環式アミンとしては、例えばピリジン、o‐メチルピリジン、o‐エチルピリジン、2,3‐ジメチルピリジン、4‐エチル‐2‐メチルピリジン、3‐エチル‐4‐メチルピリジンなどが挙げられる。特に、本発明においては孤立電子対をもつ原子を含む第一層、その上に設けるレジスト中の樹脂成分と酸発生剤の相互関係から、プレベーク時に揮散しにくく、露光後熱処理の際に拡散しにくくするために、沸点150℃以上のアルカノールアミンを配合するとレジストパターンのトップ部分の形状が改善され、矩形性が向上するので好ましい。このようなアルカノールアミンとしては、トリエタノールアミン、トリイソプロパノールアミン、トリブタノールアミンのような第三級アミン、特にトリエタノールアミンが好ましい。これらは単独で用いてもよいし、また2種以上組み合わせて用いてもよい。この配合量としては、(A)成分100質量部当り0.01〜1.0質量部の範囲が選ばれる。
【0031】
本発明で用いる化学増幅型ポジ型レジスト組成物には、前記した(A)、(B)、(C)成分に加えて、所望に応じ(D)有機カルボン酸及び従来の化学増幅型ポジ型レジスト組成物に慣用されていたハレーション防止剤やストリエーション防止のための界面活性剤などを配合することもできる。
【0032】
このような有機カルボン酸としては、例えば、酢酸、クエン酸、コハク酸、マロン酸、マレイン酸などの脂肪族カルボン酸や安息香酸、サリチル酸などの芳香族カルボン酸が用いられる。これらは単独で用いてもよいし、2種以上組み合わせて用いてもよい。これらの有機カルボン酸は(A)成分100質量部当り、通常0.01〜1.0質量部の範囲で用いられる。
【0033】
上記の化学増幅型ポジ型レジスト組成物は、(A)成分、(B)成分、(C)成分及び所望により加えられる添加成分を有機溶剤に溶解し、塗布液として用いられる。この際用いる有機溶剤としては、上記の両成分を溶解し、均一な溶液とすることができるものであればよく、従来化学増幅型レジストの溶媒として公知のものの中から任意のものを1種又は2種以上適宜選択して用いることができる。
【0034】
このような有機溶剤の例としては、アセトン、メチルエチルケトン、シクロヘキサノン、メチルイソアミルケトン、2‐ヘプタノンなどのケトン類や、エチレングリコール、エチレングリコールモノアセテート、ジエチレングリコール、ジエチレングリコールモノアセテート、プロピレングリコール、プロピレングリコールモノアセテート、ジプロピレングリコール、又はジプロピレングリコールモノアセテートのモノメチルエーテル、モノエチルエーテル、モノプロピルエーテル、モノブチルエーテル又はモノフェニルエーテルなどの多価アルコール類及びその誘導体や、ジオキサンのような環式エーテル類や、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、ピルビン酸メチル、ピルビン酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチルなどのエステル類を挙げることができる。
【0035】
本発明の感光性積層体は、基材上に前記した第一層を設け、第二層として、上記のようにして調製した化学増幅型ポジ型レジスト組成物の塗布液を塗布し、厚さ0.3〜3.0μmの塗布層を形成させることによって製造することができる。
【0036】
本発明の感光性積層体は、通常の感光性積層体の場合と同様に、活性線、例えばKrFエキシマレーザー光を所望のマスクパターンを介して照射し、加熱する。次いでこれをアルカリ現像液、例えば0.1〜10質量%テトラメチルアンモニウムヒドロキシド水溶液を用いて現像処理する。このようにして、マスクパターンに忠実なパターンを形成させることができる。
その際の活性線としては、KrFエキシマレーザーのほかに、それより短波長のArFレーザー、F2レーザー、EUV(極紫外線)、VUV(真空紫外線)、電子線、X線、軟X線などの活性線も用いることができる。
【0037】
【実施例】
次に実施例により本発明をさらに詳細に説明する。なお、各例中の諸物性は次のようにして測定したものである。
【0038】
(1)感度:
試料をスピンナーを用いて所定の第一層を設けた基板上に塗布し、これをホットプレート上で100℃、90秒間乾燥して、膜厚0.70μmのレジスト膜を形成させ、この膜にマスクを介して、縮小投影露光装置FPA−3000EX3(キャノン社製)を用いて、KrFエキシマレーザーを1mJ/cm2ずつドーズ量を加え露光したのち、110℃、90秒間のPEB(POST EXPOSURE BAKE)を行い、2.38質量%テトラメチルアンモニウムヒドロキシド水溶液で23℃にて60秒間現像し、30秒間水洗して乾燥したとき、現像後の露光部の膜厚が0となる最小露光時間を感度としてmJ/cm2(エネルギー量)単位で測定した。
【0039】
(2)フッティングの有無:
上記(1)の操作により得られたラインアンドスペース0.25μmレジストパターンをSEM(走査型電子顕微鏡)写真により観察し、上記薄膜とレジストパターンの界面にフッティングが発生していないものを○、小さなフッティングが発生しているものを△、大きなフッティングが発生しているものを×とした。
【0040】
(3)解像度:
上記(1)の操作により得られたラインアンドスペースパターンの限界解像度を調べた。
【0041】
参考例1
水酸基の35%の水素原子が1‐エトキシ‐1‐エチル基で置換された質量平均分子量12,000、分散度1.2のポリヒドロキシスチレン18質量部とビス(tert‐ブチルスルホニル)ジアゾメタン5質量部をプロピレングリコールモノメチルアセテート82質量部に溶解し、化学増幅型レジスト組成物を調製した。次いで、該組成物を基板上に塗布し、膜厚700nmのレジスト層を設け、次いで2.38質量%テトラメチルアンモニウムヒドロキシド水溶液を滴下し、23℃で1分間放置した。この水溶液の処理で660nmに減少していた。
したがって、膜減量は0.67nm/秒であった。
【0042】
参考例2
参考例1の化学増幅型レジスト組成物において、ビス(tert‐ブチルスルホニル)ジアゾメタンの代りに、同量のビス(イソプロピルスルホニル)ジアゾメタンを用いた以外は同様にして化学増幅型レジスト組成物を調製した。次いで、同様にして、テトラメチルアンモニウムヒドロキシド水溶液で処理したところ、650nmに減少していた。
したがって、膜減量は0.83nm/秒であった。
【0043】
参考例3
参考例1の化学増幅型レジスト組成物において、ビス(tert‐ブチルスルホニル)ジアゾメタンの代りに、質量比1:1の同量のビス(tert‐ブチルスルホニル)ジアゾメタンとビス(イソプロピルスルホニル)ジアゾメタンの混合物を用いた以外は同様にして化学増幅型レジスト組成物を調製した。次いで、同様にして、テトラメチルアンモニウムヒドロキシド水溶液で処理したところ、660nmに減少していた。
したがって、膜減量は0.67nm/秒であった
【0044】
実施例
(A)成分として水酸基の35%の水素原子が1‐エトキシ‐1‐エチル基で置換された質量平均分子量12,000、分散度1.2のポリヒドロキシスチレン60質量部と、水酸基の35%の水素原子がtert‐ブトキシカルボニル基で置換された質量平均分子量12,000、分散度1.2のポリヒドロキシスチレン40質量部との混合物を、(B)成分としてビス(tert‐ブチルスルホニル)ジアゾメタン10質量部を用い、これらをトリエタノールアミン0.3質量部及びマロン酸0.07質量部とともに、プロピレングリコールモノメチルエーテルアセテート500質量部に溶解し、孔径0.2μmのメンブランフィルターによりろ過して、化学増幅型ポジ型レジスト組成物の塗布液を調製した。
次に、表1に示す第一層を設けたシリコンウエーハの上に、スピンナーを用いてこの塗布液を塗布し、100℃のホットプレート上で90秒間乾燥することにより、膜厚0.70μmのレジスト膜を形成させることにより感光性積層体を製造した。このものの物性を表1に示す。
【0045】
実施例
(A)成分として水酸基の35%の水素原子が1‐エトキシ‐1‐エチル基で置換された質量平均分子量12,000、分散度1.2のポリヒドロキシスチレン70質量部と、水酸基の30%の水素原子がtert‐ブチル基で置換された質量平均分子量12,000、分散度1.2のポリヒドロキシスチレン30質量部との混合物を、(B)成分としてビス(tert‐ブチルスルホニル)ジアゾメタン5質量部を用い、これらをトリエタノールアミン0.2質量部及びサリチル酸0.2質量部とともに、プロピレングリコールモノメチルエーテルアセテート500質量部に溶解し、ろ過して塗布液を調製した。次にこれを用いて実施例1と同様にして感光性積層体を製造した。このものの物性を表1に示す。
【0046】
実施例
(A)成分として水酸基の35%の水素原子が1‐エトキシ‐1‐エチル基で置換された質量平均分子量12,000、分散度1.2のポリヒドロキシスチレン50質量部と、水酸基の35%の水素原子がテトラヒドロピラニル基で置換された質量平均分子量12,000、分散度1.2のポリヒドロキシスチレン50質量部との混合物を、(B)成分としてビス(tert‐ブチルスルホニル)ジアゾメタンとビス(イソプロピルスルホニル)ジアゾメタンの等量混合物10質量部を用い、これらをトリエタノールアミン0.2質量部及びマレイン酸0.05質量部とともに、プロピレングリコールモノメチルエーテルアセテート500質量部に溶解し、ろ過して塗布液を調製した。次にこれを用いて実施例1と同様にして感光性積層体を製造した。このものの物性を表1に示す
【0047】
比較例
(B)成分としてビス(シクロヘキシルスルホニル)ジアゾメタン5質量部とトリフェニルスルホニウムトリフルオロメタンスルホネート2質量部との混合物を用いること以外は、全く実施例と同様にして感光性積層体を製造した。このものの物性を表1に示す。
【0048】
【表1】

Figure 0003771815
【0049】
【発明の効果】
本発明によると、基板上に設けた特定の孤立電子対をもつ原子を含む層の上にレジストパターンを形成する場合に、高解像性で、しかもフッティングを有しない優れた断面形状をもつレジストパターンを得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention provides a resist on a layer containing an atom having a lone pair of electrons, that is , a layer of silicon nitride, trisilicon trinitride, phosphorus silicate glass, boron / phosphorus silicate glass, or titanium nitride provided on a substrate. When forming a pattern, a photosensitive laminate that can form a resist pattern with high resolution and excellent cross-sectional shape without footing, and a layer containing atoms with lone pairs used for it. The present invention relates to a chemically amplified positive resist composition and a resist pattern forming method using them.
[0002]
[Prior art]
In recent years, the integration of semiconductor devices has been increasing, and mass production of LSIs having a design rule of about 0.20 μm has already started, and in the near future, mass production of LSIs having a design rule of about 0.15 μm is also being realized.
[0003]
Recently, a chemically amplified positive resist composition has been proposed, which is a solution compared to a conventional non-chemically amplified positive resist using a novolak resin as a base resin and a naphthoquinone diazide sulfonate ester as a photosensitizer. Since the image quality and sensitivity are excellent, the use of this material is gradually shifting.
[0004]
As such a chemically amplified positive resist composition, for example, a copolymer of p- (1-ethoxyethoxy) styrene and p-hydroxystyrene is used as a base resin, and bis (cyclohexyl) is used as an acid generator. One using a sulfonyldiazomethane acid generator such as (sulfonyl) diazomethane is known (Japanese Patent Laid-Open No. 5-249682).
[0005]
This is a combination of an acetal group that dissociates with a relatively weak acid as a dissolution inhibiting group and a sulfonyldiazomethane compound that generates a relatively weak acid to form a high-resolution resist pattern. When a base resin having only a group is used, the resist pattern once formed tends to be thinned over time, and is not necessarily satisfactory in terms of heat resistance, substrate dependency, etc. Is difficult.
[0006]
In order to overcome these disadvantages, in addition to an acetal group, an acid dissociable group that is difficult to dissociate with a weak acid such as a tert-butoxycarbonyl group, tert-butyl group, or tetrahydropyranyl group, but dissociates with a strong acid is allowed to coexist A chemically amplified positive resist composition using a sulfonyldiazomethane acid generator as a copolymer or a mixed resin has been proposed, and is now mainstream.
[0007]
On the other hand, when manufacturing a semiconductor device, a resist pattern is formed using a photosensitive laminate having a resist layer on an insulating layer, a semiconductor layer, a metal layer, etc. provided on a substrate according to the purpose of use. Things have been done.
[0008]
In general, the insulating layer includes silicon oxide (SiO 2 ), silicon nitride (SiN), trisilicon tetranitride (Si 3 N 4 ), tantalum pentoxide (Ta 2 O 5 ), phosphorus silicate glass ( PSG), boron-phosphorus-silicate glass (BPSG), organic SOG, polyimide, etc., semiconductor layer is polycrystalline silicon layer, metal layer is aluminum, aluminum-silicon alloy, aluminum-silicon- Layers of copper alloy, tungsten silicide (WSi), titanium nitride (TiN), etc. are used.
[0009]
By the way, about the photosensitive laminated body provided with these layers, if the fine pattern of about 0.30 micrometer could be formed until now, the objective could be fully achieved, but the finest design rule is required. As mass production of LSIs near 15 μm becomes practical, pattern sizes near 0.25 μm have been required for these photosensitive laminates.
[0010]
However, when the above fine pattern is formed using such a photosensitive laminate, a layer containing atoms having a lone electron pair such as a layer of SiN, Si 3 N 4 , PSG, BPSG or TiN, and a resist pattern Footing occurs at the boundary with the layer, and the cross-sectional shape is unavoidable.
[0011]
[Problems to be solved by the invention]
Under such circumstances, the present invention provides a resist pattern on a layer containing an atom having a lone pair of electrons, such as a SiN, Si 3 N 4 , PSG, BPSG or TiN layer. The object of the present invention is to provide a photosensitive laminate capable of preventing the occurrence of footing at the boundary between these layers and a resist layer.
[0012]
[Means for Solving the Problems]
The present inventors have found that footing occurs when a resist pattern is formed using a photosensitive laminate in which a chemically amplified positive resist layer is provided on a substrate through a layer containing atoms having lone electron pairs. As a result of repeated research on the means to suppress, it has been found that the purpose can be achieved by using a chemically amplified positive resist containing a specific resin component and a combination of a specific acid generator and an amine. The present invention has been made based on this finding.
[0013]
That is, the present invention relates to a layer containing an atom having a lone electron pair selected from a titanium nitride layer, a phosphorus / silicate glass layer, a boron / phosphorus / silicate glass layer, a silicon nitride layer, and a trisilicon trinitride layer. A photosensitive laminate in which a chemically amplified positive resist layer is provided on a substrate, wherein the chemically amplified positive resist composition comprises (A) 30-60% hydrogen atoms of the hydroxyl groups of polyhydroxystyrene. Mass ratio of polymer substituted with 1-ethoxyethyl group and polymer substituted with tert-butoxycarbonyl group or tetrahydropyranyl group in 30 to 60% of the hydroxyl groups of polyhydroxystyrene 1: 9 to 9: Resin component consisting of 1 mixture, 0.5 to 30 parts by mass per 100 parts by mass of component (B) (A) R 1 —SO 2 —C (N 2 ) —SO 2 —R 2
(Wherein R 1 and R 2 are each an isopropyl group or a tert-butyl group)
And an acid generator composed of at least one selected from diazomethane compounds represented by the formula (1) and (C) (A) containing 0.01 to 1.0 part by weight of amine per 100 parts by weight of the component, A photosensitive layered product, a resist pattern forming method characterized by using the photosensitive layered product, selectively irradiating actinic rays to the photosensitive layered product, post-heating and then developing with alkali, (A) polyhydroxystyrene A polymer in which 30 to 60% of the hydrogen atoms of the hydroxyl group are substituted with 1-ethoxyethyl groups, and 30 to 60% of the hydroxyl groups in the polyhydroxystyrene are substituted with tert-butoxycarbonyl groups or tetrahydropyranyl groups. Resin component comprising a mixture having a polymer mass ratio of 1: 9 to 9: 1, 0.5 to 30 parts by mass of the general formula R 1- per 100 parts by mass of component (B) and component (A) SO 2 -C (N 2) -SO 2 -R 2
(Wherein R 1 and R 2 are each an isopropyl group or a tert-butyl group)
And an acid generator composed of at least one selected from diazomethane compounds represented by the formula (1) and (C) (A) containing 0.01 to 1.0 part by weight of amine per 100 parts by weight of the component, A resist layer laminated on a layer containing an atom having a lone electron pair selected from a titanium nitride layer, a phosphorus / silicate glass layer, a boron / phosphorus / silicate glass layer, a silicon nitride layer, and a trisilicon trinitride layer. Chemically amplified positive resist composition for forming , and a lone electron pair selected from a titanium nitride layer, a phosphorus silicate glass layer, a boron phosphorus silicate glass layer, a silicon nitride layer, and a trisilicon tetranitride layer on a substrate having a layer containing an atom having, for this by using a chemically amplified resist composition to form a resist layer, and then selectively irradiated with actinic rays which was post-heated , There is provided a method of forming a resist pattern, characterized by alkali development.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The photosensitive laminate of the present invention is composed of a first layer comprising an atom having a specific lone pair of electrons provided on a substrate and a second layer comprising a chemically amplified positive resist composition provided thereon. ing. And as a board | substrate, the board | substrate normally used in the case of semiconductor device manufacture, for example, a silicon wafer, is used.
[0015]
In addition, as the first layer including an atom having a lone electron pair provided on this substrate , a titanium nitride (TiN) layer, a phosphorus silicate glass (PSG) layer, a boron / phosphorus silicate glass (BPSG) layer, a nitridation A silicon (SiN) layer or trisilicon tetranitride (Si 3 N 4 ) layer is used . These layers are provided with a layer thickness of 0.02 to 0.5 μm on the substrate by, for example, chemical vapor deposition (CVD), organic or inorganic SOG, or organic polymer spin coating.
[0016]
Next, the second layer provided on the first layer is formed by applying a chemically amplified positive resist composition with a layer thickness of 0.3 to 3.0 μm by a spin coating method, a coat-and-spin method, or the like. Provided.
[0017]
This chemically amplified positive resist composition contains (A) a resin component, (B) an acid generator, and (C) an amine.
Then, as the resin component of the component (A), (a 1) hydroxystyrene units, and (a 2) a hydrogen atom of a hydroxyl group in a hydroxystyrene units composed of units which are substituted by 1-ethoxyethyl group polyhydroxystyrene When it is substituted with (a 1) hydroxystyrene units and (a 3) hydrogen atoms of hydroxyl groups in the hydroxystyrene units have difficulty with acid dissociation than 1-ethoxyethyl group t Ert- butoxycarbonyl group or a tetrahydropyranyl group A mixture with polyhydroxystyrene consisting of different units is used .
[0018]
The unit (a 1 ) is a unit that imparts alkali solubility or adhesion to a substrate, and is a unit that is derived by cleavage of an ethylenic double bond of hydroxystyrene. The bonding position of the hydroxyl group may be any of the o-position, m-position, and p-position, but the p-position is most preferred because it is readily available and inexpensive.
[0019]
Further, (a 2) units is a unit obtained by substituting the hydrogen atoms of hydroxyl groups in the hydroxystyrene units with 1-ethoxyethyl group, which by the action of an acid generated by irradiation in the exposure unit, a 1-ethoxyethyl since changes in the phenolic hydroxyl group is eliminated prior to exposure after exposure component (a) alkali insoluble ging Wa alkali-soluble.
[0020]
Polyhydroxystyrene having such an acid dissociable, dissolution inhibiting group is described, for example, in JP-A-5-249682.
[0021]
On the other hand, the unit (a 3 ) is a unit containing a dissolution inhibiting group that is less likely to dissociate than the 1-ethoxyethyl group , and a tert-butoxycarbonyl group or a tetrahydropyranyl group is used as this dissolution inhibiting group.
[0022]
These polyhydroxystyrenes having acid dissociable, dissolution inhibiting groups are described in, for example, Japanese Patent No. 2690656, Japanese Patent Application Laid-Open No. 9-21866, Japanese Patent Application Laid-Open No. 10-48826, and Japanese Patent Application Laid-Open No. 11-95434. Yes .
[0023]
In the present invention, a mixture of two polymers as the component (A), i.e., a polymer substituted with 30% to 60% of the hydrogen atoms 1-ethoxyethyl group for the hydroxyl group of polyhydroxystyrene, polyhydroxystyrene hydroxyl groups A mixture with a mass ratio of 1: 9 to 9: 1 with a polymer in which 30 to 60% of the hydrogen atoms are replaced by tert-butoxycarbonyl groups or tetrahydropyranyl groups is used .
[0024]
Those resin components having a mass average molecular weight of 3,000 to 30,000 and a dispersion degree of 1.0 to 6.0 are preferable because they give a resist pattern having high resolution and high heat resistance. Moreover, since a resist pattern with high resolution and high heat resistance is provided as the degree of dispersion is small, those in the range of 1.0 to 1.5 are preferable.
In the present invention, poly (α-methylhydroxystyrene) corresponding to the above-mentioned polyhydroxystyrene can be used .
[0025]
In conventional chemically amplified positive resist compositions, as a resin component, a dissolution inhibiting group dissociating with a relatively weak acid such as a lower alkoxyalkyl group, a tert-butoxycarbonyl group, a tert-butyl group, or tetrahydropyranyl When a resin component containing a combination with a dissolution inhibiting group that is dissociated by a strong acid such as a group is used, a group having high transparency with respect to a KrF excimer laser and a high acid generated by exposure. Therefore, bis (cyclohexylsulfonyl) diazomethane is mainly used as the acid generator because the diffusion distance by heating after exposure is moderate, and this is sometimes used in combination with an onium salt.
[0026]
However, today, where further miniaturization is required, when a resist layer is provided in contact with a layer containing an atom having a lone electron pair and a pattern is formed, tailing called footing occurs at these contact portions. I can not escape. This is because the amount of acid generated at the boundary portion between the exposed and unexposed portions of the resist is small, and the acid generated from the acid generator by exposure is combined with a lone pair of electrons and deactivated, and bis (cyclohexylsulfonyl) As diazomethane is an acid generator with a bulky group, it behaves as a dissolution-inhibiting group for alkali in the vicinity of the boundary, and the generated acid is difficult to diffuse when heated after exposure. is doing.
[0027]
As for the onium salt, since it has an anion and a cation, the anion binds to and deactivates the proton of the acid generated by exposure near the boundary, and the onium salt has a bulky group such as a phenyl group. Therefore, in the vicinity of the boundary portion, it is considered to behave as a dissolution inhibiting group for alkali. Therefore, the component (B) in the present invention needs to use an acid generator that does not have such disadvantages. Such an acid generator is an acid generator that does not have a bulky group such as a cyclohexyl group or a phenyl group and has a relatively high alkali solubility. That is, an acid generator having a film loss of 0.6 nm / second or more in the above-described dissolution test may be used. These acid generators such as bis (cyclohexylsulfonyl) diazomethane and onium salts all have a film loss of less than 0.6 nm / second when subjected to the dissolution test described above. Not suitable as a generator.
[0028]
In the present invention, as the acid generator of the component (B), the general formula R 1 —SO 2 —C (N 2 ) —SO 2 —R 2 (I)
(Wherein R 1 and R 2 are each an isopropyl group or a tert-butyl group )
It is necessary to use represented by diazomethane-based compound in.
Accordingly, the compounds of formula (I), it can be, for example, bis (isopropylsulfonyl) diazomethane, bis (tert- butylsulfonyl) diazomethane.
[0029]
These (B) components may be used independently and may be used in combination of 2 or more type. The blending amount is selected in the range of 0.5 to 30 parts by mass, preferably 1 to 10 parts by mass with respect to 100 parts by mass of the component (A). If the amount is less than 0.5 parts by mass, pattern formation is not sufficiently performed, and if it exceeds 30 parts by mass, it is difficult to obtain a uniform solution, which causes a decrease in storage stability.
[0030]
In addition to the above-described components (A) and (B), the chemically amplified positive resist composition used in the present invention must further contain an amine as the component (C). Examples of such amine components include aliphatic amines, aromatic amines, and heterocyclic amines. Here, examples of the aliphatic amine include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, n-propylamine, di-n-propylamine, tri-n-propylamine, and isopropylamine. Examples of the aromatic amine include benzylamine, aniline, N-methylaniline, N, N-dimethylaniline, o-methylaniline, m-methylaniline, p-methylaniline, N, N-diethylaniline, diphenylamine, Examples thereof include di-p-tolylamine. Further, examples of the heterocyclic amine include pyridine, o-methylpyridine, o-ethylpyridine, 2,3-dimethylpyridine, 4-ethyl-2-methylpyridine, 3-ethyl-4-methylpyridine and the like. . In particular, in the present invention, the first layer containing an atom having a lone pair of electrons, and the mutual relationship between the resin component and the acid generator in the resist provided thereon, it is difficult to volatilize during pre-baking and diffuses during post-exposure heat treatment. In order to make it difficult, it is preferable to add an alkanolamine having a boiling point of 150 ° C. or higher because the shape of the top portion of the resist pattern is improved and the rectangularity is improved. As such an alkanolamine, a tertiary amine such as triethanolamine, triisopropanolamine and tributanolamine, particularly triethanolamine is preferable. These may be used alone or in combination of two or more. As this compounding quantity, the range of 0.01-1.0 mass part is chosen per 100 mass parts of (A) component.
[0031]
In addition to the components (A), (B), and (C) described above, the chemical amplification type positive resist composition used in the present invention includes (D) an organic carboxylic acid and a conventional chemical amplification type positive type as desired. An antihalation agent or a surfactant for preventing striation that is conventionally used in resist compositions can also be blended.
[0032]
Examples of such organic carboxylic acids include aliphatic carboxylic acids such as acetic acid, citric acid, succinic acid, malonic acid, and maleic acid, and aromatic carboxylic acids such as benzoic acid and salicylic acid. These may be used alone or in combination of two or more. These organic carboxylic acids are usually used in the range of 0.01 to 1.0 part by mass per 100 parts by mass of component (A).
[0033]
The chemical amplification type positive resist composition described above is used as a coating solution by dissolving the component (A), the component (B), the component (C) and an additive component added as required in an organic solvent. As the organic solvent used in this case, any organic solvent can be used as long as it can dissolve both of the above-described components to form a uniform solution, and any one of known solvents for conventional chemically amplified resists can be used. Two or more types can be appropriately selected and used.
[0034]
Examples of such organic solvents include ketones such as acetone, methyl ethyl ketone, cyclohexanone, methyl isoamyl ketone, 2-heptanone, ethylene glycol, ethylene glycol monoacetate, diethylene glycol, diethylene glycol monoacetate, propylene glycol, propylene glycol monoacetate. Polyhydric alcohols such as dipropylene glycol or dipropylene glycol monoacetate monomethyl ether, monoethyl ether, monopropyl ether, monobutyl ether or monophenyl ether and derivatives thereof, cyclic ethers such as dioxane, Methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, butyl acetate, methyl pyruvate, ethyl pyruvate, methoxypropion Include methyl, esters such as ethyl ethoxypropionate.
[0035]
In the photosensitive laminate of the present invention, the first layer described above is provided on a base material, and a coating liquid of the chemically amplified positive resist composition prepared as described above is applied as the second layer to obtain a thickness. It can be produced by forming a coating layer of 0.3 to 3.0 μm.
[0036]
The photosensitive laminate of the present invention is heated by irradiating an active ray, for example, KrF excimer laser light through a desired mask pattern as in the case of a normal photosensitive laminate. Subsequently, this is developed using an alkaline developer, for example, an aqueous 0.1 to 10% by mass tetramethylammonium hydroxide solution. In this way, a pattern faithful to the mask pattern can be formed.
Active rays at that time include KrF excimer laser, ArF laser with shorter wavelength, F 2 laser, EUV (extreme ultraviolet), VUV (vacuum ultraviolet), electron beam, X-ray, soft X-ray, etc. An active line can also be used.
[0037]
【Example】
Next, the present invention will be described in more detail with reference to examples. In addition, the various physical properties in each example are measured as follows.
[0038]
(1) Sensitivity:
The sample was applied onto a substrate provided with a predetermined first layer using a spinner, and dried on a hot plate at 100 ° C. for 90 seconds to form a 0.70 μm-thick resist film. Using a reduced projection exposure apparatus FPA-3000EX3 (manufactured by Canon Inc.) through a mask, a KrF excimer laser is exposed at a dose of 1 mJ / cm 2 and then exposed to PEB (POST EXPOSURE BAKE) at 110 ° C. for 90 seconds. When developing with a 2.38 mass% tetramethylammonium hydroxide aqueous solution at 23 ° C. for 60 seconds, washing with water for 30 seconds and drying, the minimum exposure time at which the film thickness of the exposed area after development becomes 0 is sensitivity. As mJ / cm 2 (energy amount).
[0039]
(2) Presence of footing:
The line-and-space 0.25 μm resist pattern obtained by the above operation (1) is observed with a SEM (scanning electron microscope) photograph, and the one in which no footing occurs at the interface between the thin film and the resist pattern. The case where small footing occurred was indicated by Δ, and the case where large footing occurred was indicated by ×.
[0040]
(3) Resolution:
The limit resolution of the line and space pattern obtained by the operation (1) was examined.
[0041]
Reference example 1
18% by mass of polyhydroxystyrene having a weight average molecular weight of 12,000 and a dispersity of 1.2 in which 35% of the hydrogen atoms of the hydroxyl group are replaced by 1-ethoxy-1-ethyl group, and 5 mass of bis (tert-butylsulfonyl) diazomethane A part was dissolved in 82 parts by mass of propylene glycol monomethyl acetate to prepare a chemically amplified resist composition. Next, the composition was applied onto a substrate, a resist layer having a thickness of 700 nm was provided, and then an aqueous 2.38 mass% tetramethylammonium hydroxide solution was dropped and left at 23 ° C. for 1 minute. It decreased to 660 nm by processing of this aqueous solution.
Therefore, the film loss was 0.67 nm / second.
[0042]
Reference example 2
A chemically amplified resist composition was prepared in the same manner as in the chemically amplified resist composition of Reference Example 1 except that the same amount of bis (isopropylsulfonyl) diazomethane was used instead of bis (tert-butylsulfonyl) diazomethane. . Subsequently, when treated with an aqueous tetramethylammonium hydroxide solution in the same manner, it was reduced to 650 nm.
Therefore, the film loss was 0.83 nm / second.
[0043]
Reference example 3
In the chemically amplified resist composition of Reference Example 1, in place of bis (tert-butylsulfonyl) diazomethane, a mixture of bis (tert-butylsulfonyl) diazomethane and bis (isopropylsulfonyl) diazomethane having the same mass ratio of 1: 1. A chemically amplified resist composition was prepared in the same manner except that was used. Subsequently, when treated with an aqueous tetramethylammonium hydroxide solution in the same manner, it was reduced to 660 nm.
Therefore, the film loss was 0.67 nm / second .
[0044]
Example 1
(A) 60% by mass of polyhydroxystyrene having a mass average molecular weight of 12,000 and a dispersity of 1.2 in which 35% of the hydrogen atoms of the hydroxyl group are replaced by 1-ethoxy-1-ethyl group, and 35% of the hydroxyl group And a mixture of 40 parts by mass of polyhydroxystyrene having a weight average molecular weight of 12,000 and a dispersity of 1.2, in which hydrogen atoms of bis (tert-butoxycarbonyl) are substituted, as component (B), bis (tert-butylsulfonyl) diazomethane Using 10 parts by mass, these were dissolved in 500 parts by mass of propylene glycol monomethyl ether acetate together with 0.3 parts by mass of triethanolamine and 0.07 parts by mass of malonic acid, and filtered through a membrane filter having a pore size of 0.2 μm . A coating solution of a chemically amplified positive resist composition was prepared.
Next , this coating solution is applied on a silicon wafer provided with the first layer shown in Table 1 using a spinner, and dried on a hot plate at 100 ° C. for 90 seconds, whereby a film thickness of 0.70 μm is obtained. A photosensitive laminate was manufactured by forming a resist film . The physical properties of this product are shown in Table 1.
[0045]
Example 2
(A) 70% by mass of polyhydroxystyrene having a mass average molecular weight of 12,000 and a dispersity of 1.2 in which 35% of the hydrogen atoms of the hydroxyl group are replaced by 1-ethoxy-1-ethyl group, and 30% of the hydroxyl group And a mixture of 30 parts by mass of polyhydroxystyrene having a weight average molecular weight of 12,000 and a dispersity of 1.2, in which hydrogen atoms of bis (tert-butyl group) are substituted with bis (tert-butylsulfonyl) diazomethane 5 as component (B) Using parts by mass, these were dissolved in 500 parts by mass of propylene glycol monomethyl ether acetate together with 0.2 parts by mass of triethanolamine and 0.2 parts by mass of salicylic acid, and filtered to prepare a coating solution. Next, using this, a photosensitive laminate was produced in the same manner as in Example 1. The physical properties of this product are shown in Table 1.
[0046]
Example 3
(A) 50% by mass of a polyhydroxystyrene having a mass average molecular weight of 12,000 and a dispersity of 1.2 in which 35% of the hydrogen atoms of the hydroxyl group are replaced by 1-ethoxy-1-ethyl groups, and 35% of the hydroxyl group A mixture of 50 parts by mass of polyhydroxystyrene having a weight average molecular weight of 12,000 and a dispersity of 1.2, in which the hydrogen atom is substituted with a tetrahydropyranyl group, bis (tert-butylsulfonyl) diazomethane as component (B) Using 10 parts by weight of an equivalent mixture of bis (isopropylsulfonyl) diazomethane, these were dissolved in 500 parts by weight of propylene glycol monomethyl ether acetate together with 0.2 parts by weight of triethanolamine and 0.05 parts by weight of maleic acid and filtered. A coating solution was prepared. Next, using this, a photosensitive laminate was produced in the same manner as in Example 1. The physical properties of this product are shown in Table 1 .
[0047]
A photosensitive laminate was produced in exactly the same manner as in Example 1 except that a mixture of 5 parts by mass of bis (cyclohexylsulfonyl) diazomethane and 2 parts by mass of triphenylsulfonium trifluoromethanesulfonate was used as the component of Comparative Example (B). . The physical properties of this product are shown in Table 1.
[0048]
[Table 1]
Figure 0003771815
[0049]
【The invention's effect】
According to the present invention, when a resist pattern is formed on a layer containing an atom having a specific lone electron pair provided on a substrate, it has an excellent cross-sectional shape with high resolution and no footing. A resist pattern can be obtained.

Claims (6)

窒化チタン層、リン・シリケートガラス層、ホウ素・リン・シリケートガラス層、窒化ケイ素層及び四窒化三ケイ素層の中から選ばれた孤立電子対をもつ原子を含む層を介して基板上に化学増幅型ポジ型レジスト層を設けた感光性積層体であって、該化学増幅型ポジ型レジスト組成物が、(A)ポリヒドロキシスチレンの水酸基の30〜60%の水素原子が1‐エトキシエチル基で置換されたポリマーと、ポリヒドロキシスチレンの水酸基の30〜60%の水素原子がtert‐ブトキシカルボニル基又はテトラヒドロピラニル基で置換されたポリマーの質量比1:9ないし9:1の混合物からなる樹脂成分、(B)(A)成分100質量部当り0.5〜30質量部の一般式
1−SO2−C(N2)−SO2−R2
(式中のR1及びR2はそれぞれイソプロピル基又はtert‐ブチル基である)
で表わされるジアゾメタン系化合物の中から選ばれた少なくとも1種からなる酸発生剤及び(C)(A)成分100質量部当り0.01〜1.0質量部のアミンを含有することを特徴とする感光性積層体。
Chemical amplification on the substrate through a layer containing an atom having a lone pair of electrons selected from a titanium nitride layer, a phosphorus-silicate glass layer, a boron-phosphorus-silicate glass layer, a silicon nitride layer and a trisilicon tetranitride layer A chemically laminated positive resist composition provided with a positive type resist layer, wherein the chemically amplified positive type resist composition comprises (A) 30-60% of the hydroxyl groups of polyhydroxystyrene having 1-ethoxyethyl groups. Resin comprising a mixture of a substituted polymer and a polymer in which 30 to 60% of the hydroxyl groups of polyhydroxystyrene are substituted with a tert-butoxycarbonyl group or a tetrahydropyranyl group in a mass ratio of 1: 9 to 9: 1 component, (B) (a) the general formula R 1 -SO 2 -C components 100 parts by per 0.5 to 30 parts by weight (N 2) -SO 2 -R 2
(Wherein R 1 and R 2 are each an isopropyl group or a tert-butyl group)
And an acid generator composed of at least one selected from diazomethane compounds represented by the formula (1) and (C) (A) containing 0.01 to 1.0 part by weight of amine per 100 parts by weight of the component. A photosensitive laminate.
該化学増幅型ポジ型レジスト組成物が、さらに(D)(A)成分100質量部当り0.01〜1.0質量部の有機カルボン酸を含有する請求項1記載の感光性積層体 The photosensitive laminate according to claim 1, wherein the chemically amplified positive resist composition further comprises 0.01 to 1.0 part by weight of an organic carboxylic acid per 100 parts by weight of component (D) (A) . 請求項1又は2記載の感光性積層体を用い、これに選択的に活性線を照射し、後加熱したのち、アルカリ現像することを特徴とするレジストパターン形成方法。After claims using the photosensitive laminate to claim 1, selectively irradiating active rays thereto, and post-heating, the resist pattern forming method characterized by alkali development. (A)ポリヒドロキシスチレンの水酸基の30〜60%の水素原子が1‐エトキシエチル基で置換されたポリマーと、ポリヒドロキシスチレンの水酸基の30〜60%の水素原子がtert‐ブトキシカルボニル基又はテトラヒドロピラニル基で置換されたポリマーの質量比1:9ないし9:1の混合物からなる樹脂成分、(B)(A)成分100質量部当り0.5〜30質量部の一般式
1−SO2−C(N2)−SO2−R2
(式中のR1及びR2はそれぞれイソプロピル基又はtert‐ブチル基である)
で表わされるジアゾメタン系化合物の中から選ばれた少なくとも1種からなる酸発生剤及び(C)(A)成分100質量部当り0.01〜1.0質量部のアミンを含有することを特徴とする、窒化チタン層、リン・シリケートガラス層、ホウ素・リン・シリケートガラス層、窒化ケイ素層及び四窒化三ケイ素層の中から選ばれた孤立電子対をもつ原子を含む層に積層するレジスト層を形成するための化学増幅型ポジ型レジスト組成物。
(A) A polymer in which 30 to 60% of the hydroxyl groups of polyhydroxystyrene are substituted with 1-ethoxyethyl groups, and 30 to 60% of the hydroxyl groups of polyhydroxystyrene are substituted with tert-butoxycarbonyl groups or tetrahydro Resin component comprising a mixture of polymers substituted with pyranyl groups in a mass ratio of 1: 9 to 9: 1, (B) (A) 0.5 to 30 parts by mass per 100 parts by mass of component R 1 —SO 2 -C (N 2) -SO 2 -R 2
(Wherein R 1 and R 2 are each an isopropyl group or a tert-butyl group)
And an acid generator composed of at least one selected from diazomethane compounds represented by the formula (1) and (C) (A) containing 0.01 to 1.0 part by weight of amine per 100 parts by weight of the component. A resist layer which is laminated on a layer containing an atom having a lone pair of electrons selected from a titanium nitride layer, a phosphorus / silicate glass layer, a boron / phosphorus / silicate glass layer, a silicon nitride layer and a trisilicon trinitride layer. A chemically amplified positive resist composition for forming .
さらに(D)(A)成分100質量部当り0.01〜1.0質量部の有機カルボン酸を含有する請求項記載の化学増幅型ポジ型レジスト組成物。The chemical amplification type positive resist composition according to claim 4, further comprising 0.01 to 1.0 part by mass of an organic carboxylic acid per 100 parts by mass of component (D) and component (A). 窒化チタン層、リン・シリケートガラス層、ホウ素・リン・シリケートガラス層、窒化ケイ素層及び四窒化三ケイ素層の中から選ばれた孤立電子対をもつ原子を含む層を設けた基板上に、請求項4又は5記載の化学増幅型レジスト組成物を用いてレジスト層を形成し、次いでこれに選択的に活性線を照射し、後加熱したのち、アルカリ現像することを特徴とするレジストパターン形成方法。 On a substrate provided with a layer containing an atom having a lone pair of electrons selected from a titanium nitride layer, a phosphorus-silicate glass layer, a boron-phosphorus-silicate glass layer, a silicon nitride layer and a trisilicon trinitride layer. Item 6. A resist pattern forming method comprising: forming a resist layer using the chemically amplified resist composition according to Item 4 ; and then selectively irradiating the resist layer with actinic radiation; .
JP2001165726A 2001-05-31 2001-05-31 Photosensitive laminate, positive resist composition used therefor, and resist pattern forming method using them Expired - Fee Related JP3771815B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001165726A JP3771815B2 (en) 2001-05-31 2001-05-31 Photosensitive laminate, positive resist composition used therefor, and resist pattern forming method using them
TW092135984A TWI275907B (en) 2001-05-31 2002-05-29 Chemical amplification type positive type resist composition
KR1020020029760A KR100573819B1 (en) 2001-05-31 2002-05-29 Sensitive stacked structure and resist pattern forming method using the same
TW091111491A TW594413B (en) 2001-05-31 2002-05-29 Photosensitive layered body and method for forming resist pattern using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001165726A JP3771815B2 (en) 2001-05-31 2001-05-31 Photosensitive laminate, positive resist composition used therefor, and resist pattern forming method using them

Publications (2)

Publication Number Publication Date
JP2002357903A JP2002357903A (en) 2002-12-13
JP3771815B2 true JP3771815B2 (en) 2006-04-26

Family

ID=19008360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001165726A Expired - Fee Related JP3771815B2 (en) 2001-05-31 2001-05-31 Photosensitive laminate, positive resist composition used therefor, and resist pattern forming method using them

Country Status (3)

Country Link
JP (1) JP3771815B2 (en)
KR (1) KR100573819B1 (en)
TW (2) TW594413B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005172949A (en) * 2003-12-08 2005-06-30 Tokyo Ohka Kogyo Co Ltd Photoresist composition and resist pattern forming method
JP4732046B2 (en) * 2005-07-20 2011-07-27 東京応化工業株式会社 Resist composition and resist pattern forming method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3046225B2 (en) * 1995-06-15 2000-05-29 東京応化工業株式会社 Coating solution for forming positive resist film
ATE199985T1 (en) * 1996-02-09 2001-04-15 Wako Pure Chem Ind Ltd POLYMER AND RESIST MATERIAL
JP3808140B2 (en) * 1996-09-10 2006-08-09 Azエレクトロニックマテリアルズ株式会社 Hydroxystyrene polymers protected with novel acid-sensitive groups and radiation-sensitive materials containing them
JP3679205B2 (en) * 1996-09-20 2005-08-03 富士写真フイルム株式会社 Positive photosensitive composition
JP3817347B2 (en) * 1997-09-16 2006-09-06 住友化学株式会社 Positive photoresist composition
WO1999015935A1 (en) * 1997-09-22 1999-04-01 Clariant International Ltd. Novel process for preparing resists
KR100270352B1 (en) * 1998-09-16 2001-03-02 박찬구 Copolymer for Chemically Amplified Photoresist Preparation and Chemically Amplified Positive Photoresist Composition Containing the Same
TWI225184B (en) * 2000-01-17 2004-12-11 Shinetsu Chemical Co Chemical amplification type resist composition

Also Published As

Publication number Publication date
TW200413854A (en) 2004-08-01
TW594413B (en) 2004-06-21
TWI275907B (en) 2007-03-11
KR100573819B1 (en) 2006-04-26
JP2002357903A (en) 2002-12-13
KR20030006975A (en) 2003-01-23

Similar Documents

Publication Publication Date Title
TWI309756B (en) Water-soluble resin composition, pattern forming method and resist pattern inspection method
JP3046225B2 (en) Coating solution for forming positive resist film
JP3948646B2 (en) Positive resist composition and resist pattern forming method using the same
JP4057807B2 (en) Fine resist pattern forming method
TW201233666A (en) Lactone photoacid generators and resins and photoresists comprising same
TW200304582A (en) Negative deep ultraviolet photoresist
US6340556B1 (en) Tailoring of linewidth through electron beam post exposure
JP3787271B2 (en) Fine resist hole pattern forming method
US6921621B2 (en) Positive resist composition of chemical amplification type, resist coated material, method of forming resist pattern, and process for producing semiconductor device
JPH11305440A (en) Forming method of resist pattern
US6852466B2 (en) Photoresist compositions particularly suitable for short wavelength imaging
JPH11218919A (en) Chemically amplifying negative resist composition
JP3771815B2 (en) Photosensitive laminate, positive resist composition used therefor, and resist pattern forming method using them
TWI307451B (en) Photoresist composition
JP2002091003A (en) Positive resist composition for forming thin film and photosensitive material using the same
JPH096003A (en) Positive type resist composition
JP2002148784A (en) Chemical amplification type positive type resist coating liquid and resist pattern forming method using the same
JP2001272781A (en) Positive type radiation sensitive resin composition
JP3677466B2 (en) Resist pattern forming material
JPH0922117A (en) Positive resist composition
US6645694B2 (en) Pattern formation material and pattern formation method
US6511786B2 (en) Pattern formation material and pattern formation method
JP3708459B2 (en) Chemically amplified positive resist composition
JP3708472B2 (en) Resist pattern forming method and semiconductor device manufacturing method
JP3673210B2 (en) Chemically amplified positive resist composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060210

R150 Certificate of patent or registration of utility model

Ref document number: 3771815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees