JP3771763B2 - Surface coated metal plate with excellent weldability and corrosion resistance - Google Patents

Surface coated metal plate with excellent weldability and corrosion resistance Download PDF

Info

Publication number
JP3771763B2
JP3771763B2 JP36284099A JP36284099A JP3771763B2 JP 3771763 B2 JP3771763 B2 JP 3771763B2 JP 36284099 A JP36284099 A JP 36284099A JP 36284099 A JP36284099 A JP 36284099A JP 3771763 B2 JP3771763 B2 JP 3771763B2
Authority
JP
Japan
Prior art keywords
film
weldability
corrosion resistance
metal plate
inorganic pigment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36284099A
Other languages
Japanese (ja)
Other versions
JP2001171036A (en
Inventor
岳史 渡瀬
忠繁 中元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP36284099A priority Critical patent/JP3771763B2/en
Publication of JP2001171036A publication Critical patent/JP2001171036A/en
Application granted granted Critical
Publication of JP3771763B2 publication Critical patent/JP3771763B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、溶接性及び耐食性に優れた表面被覆金属板に関する。
【0002】
【従来の技術】
家電製品等の内部部品は溶接により接合されることが多く、優れた溶接性が要求される。
【0003】
一方、原板ままでは耐食性に劣ることから、溶接性と耐食性を兼ね備えた金属板を提供すべく、従来は原板の上に、耐食性向上作用・防錆作用のある無機顔料(シリカ、クロム酸化合物等)を、溶接性を阻害しない程度に薄く被覆していた。これは、上記構成とすることにより、無機顔料添加による耐食性向上、及び皮膜の薄膜化による溶接性向上の両方を得ようというものである。
【0004】
ところが上記構成を採用したとしても安定した溶接性は得られず、頻繁に電極チップの洗浄および電極チップの交換を余儀なくされているというのが実情である。従って、安定したスポット溶接性を確保し、更に耐食性も兼ね備えた表面被覆金属板の提供が切望されていた。
【0005】
【発明が解決しようとする課題】
本発明は上記事情に着目してなされたものであり、その目的は、連続的に安定したスポット溶接性を確保すると共に、耐食性も兼ね備えた表面被覆金属板を提供することにある。
【0006】
【課題を解決するための手段】
上記課題を解決し得た本発明に係る溶接性及び耐食性に優れた表面被覆金属板は、金属板に複数層の皮膜が形成された表面被覆金属板であって、上記皮膜のうち最表層皮膜は、無機顔料を含まないことにより溶接性が高められ、上記最表層皮膜の下には、無機顔料を1〜40重量%含む下塗り皮膜が形成されることにより耐食性が高められたものであるところに要旨を有するものである。
【0007】
ここで、上記最表層皮膜及び下塗り皮膜の厚さが0.1〜3.0μmであるものや、上記最表層皮膜のガラス転移点が100℃以下であるものは、本発明の好ましい態様である。
【0008】
【発明の実施の形態】
本発明者らは、連続的に安定したスポット溶接性を確保し、更に耐食性も兼ね備えた表面被覆金属板を提供すべく、これら両特性の向上を目的として提供されている従来の薄膜被覆金属板(原板の上にシリカ等の無機顔料を薄く被覆してなる金属板)について、スポット溶接性が低下する原因を詳細に検討してみた。
【0009】
一般に皮膜の膜厚が薄くなると溶接性は向上する。薄膜部分では通電し易いからである。しかしながら、当該薄膜皮膜に無機顔料を添加した金属板をスポット溶接すると、▲1▼電極チップに無機顔料が付着し、スパークが発生し易くなる;▲2▼無機顔料の添加により電極チップが損傷する、という現象が生じる為、溶接が安定しないことが明らかになった。即ち、シリカ等の無機顔料は耐食性向上には有効であるが、当該無機顔料を添加すると、スパークの発生や電極チップの損傷が見られ、結果的に、安定した溶接性が得られないということが分かった。
【0010】
以上の知見により、「溶接性向上」という観点からすれば、金属板に、実質的に無機顔料を含まない薄膜皮膜を設けることが必要であることが明らかになった。そして、溶接性に加えて耐食性にも優れた表面被覆金属板を得る為には、皮膜の構成を複数層とし、最表層皮膜を実質的に無機顔料を含まない皮膜とし、当該最表層皮膜の下には、無機顔料を含む下塗り皮膜を形成することが有効であることが分かった。即ち、溶接性と耐食性の両特性を確保する為には、皮膜の構成を少なくとも二層とし、このうち最表層皮膜では、下塗り皮膜中に添加される無機顔料に基づく電極チップの損傷等を防止し、安定した連続溶接性の向上を図ると共に、下塗り皮膜では無機顔料の添加により耐食性の向上を図る、という様に、皮膜毎に性能の役割分担を行う方法が有効であることを見出し、本発明を完成したのである。
【0011】
この様に本発明は、「無機顔料の添加によりスパークの発生や電極チップの損傷が見られ、連続して安定した溶接性が得られない」という、無機顔料と溶接性の関係を明らかにしたところに最重要ポイントが存在する。そして、無機顔料のみに着目して連続溶接性と耐食性の向上を図る場合には、皮膜構成を上記の複数層に特定することが有効であり、この様な構成を採用することにより始めて、無機顔料添加による耐食性向上作用を有効に発揮させつつ、優れた連続溶接性を確保することができることを明らかにしたところに本発明の技術的意義が存在する。
【0012】
以下、本発明の構成について詳述する。
【0013】
前述した通り、本発明の表面被覆金属板は金属板に複数層の皮膜が形成された金属板であって、上記皮膜のうち最表層皮膜は、実質的に無機顔料を含まない薄膜皮膜とすることにより溶接性が高められ、上記最表層皮膜の下には、無機顔料を含む下塗り皮膜が形成されることにより耐食性が高められたものであるところに特徴を有するものである。
【0014】
まず、本発明によれば、溶接性向上の為には、無機顔料を含まない皮膜を最表層皮膜に設けることが不可欠である。前述した通り、皮膜中に無機顔料が添加されると、スポット溶接時に無機顔料が電極チップに付着し、スパークが発生したり電極チップを損傷することから、溶接が安定せず、所望のナゲット径が確保できない為溶接性に劣る。従って、下塗り皮膜中に添加される無機顔料に基づく電極チップの損傷等を防止する為には、無機顔料を含まない皮膜を最表層皮膜に設けなければならないのである。ここで、「無機顔料を含まない」とは、無機顔料を全く含まない(添加量=0)場合を意味する。
【0015】
上記最表層皮膜の厚さは0.1〜3.0μmであることが推奨される。この様な薄膜皮膜とすることにより通電性が良好になり、優れた溶接性が確保されるからである。0.1μm未満では電極チップを充分保護することができない。より好ましくは0.2μm以上、更により好ましくは0.3μm以上である。但し、3.0μmを超えると導電性がなくなり、溶接できなくなる。より好ましくは2.5μm以下、更により好ましくは2.0μm以下である。
【0016】
また、一層優れた溶接性を得る為には、上記皮膜のガラス転移点は100℃以下であることが好ましい。ガラス転移点が100℃を超えると皮膜が硬くなる為、無機顔料を含有する下塗り皮膜において、当該無機顔料の添加に基づく電極チップの損傷を充分防止することができない。より好ましくは90℃以下、更により好ましくは80℃以下である。尚、ガラス転移点の下限は、溶接性向上の観点からすれば特に制限されないが、皮膜の疵付き性を考慮すれば0℃以上であることが推奨される。より好ましくは10℃以上、更により好ましくは20℃以上である。
【0017】
上記最表層皮膜は実質的に無機顔料を含まない皮膜であれば良く、当該皮膜を構成する樹脂としては、ポリエステル系樹脂、ウレタン系樹脂、アクリル系樹脂、エポキシ系樹脂、フッ素系樹脂等の樹脂、及びこれら樹脂の混合物または変性した樹脂より構成される有機系皮膜であることが推奨される。
【0018】
尚、上記構成は主に溶接性向上という観点のみに着目し、当該皮膜の構成を「実質的に無機顔料を含まない」旨特定したものであるが、無機顔料以外の成分の添加を排除するものではない。従って、例えば溶接性に加えて黒色鋼板の提供を目指す場合には、上記皮膜にカーボンブラック等の有機顔料を添加することが推奨される。
【0019】
更に耐疵付き性の向上を目指して、当該皮膜をクリヤー皮膜とすることも好ましい態様であり、これらの態様も全て本発明の範囲内に包含される。
【0020】
ここで、クリヤー皮膜を構成する樹脂としては特に限定されず、アクリル系樹脂、ウレタン系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、フッ素系樹脂、シリコン系樹脂等の樹脂、及びこれら樹脂の混合物または変性した樹脂等が挙げられる。更にクリヤー皮膜中には、本発明の作用を損なわない範囲で、架橋剤、ワックス、艶消し剤、顔料等を添加しても良い。
【0021】
更に本発明では、最表層皮膜の下には、無機顔料を含む下塗り皮膜が形成されていることが必要であり、この様な下塗り皮膜を施すことにより耐食性が向上する。この様に本発明では、上層皮膜では溶接性向上を、下層皮膜では耐食性向上を、という様に各皮膜毎に性能の役割分担を行わせることにより、各性能を同時に備えた金属板を提供することが可能になるのである。
【0022】
ここで、本発明に用いられる無機顔料としては、耐食性向上の目的で通常用いられる無機顔料であれば特に限定されず、シリカ、クロム酸化合物等が挙げられる。このうち優れた耐食性が得られるのは、粒径の小さい(2〜300nm)シリカである。
【0023】
また、上記無機顔料の添加量は1〜40重量%であることが好ましい。1重量%未満では所望の耐食性向上効果が得られない。より好ましくは3重量%以上、更により好ましくは5重量%以上である。但し、40重量%を超えて無機顔料が添加されると電極チップの損傷が著しくなり溶接性に劣る。より好ましくは35重量%以下、更により好ましくは30重量%以下である。
【0024】
上記下塗り皮膜には無機顔料の他、本発明の作用を損なわない範囲で他の成分も含まれる。例えば導電性の向上を目指してNi粉、リン化鉄等の導電性顔料を、溶接性を阻害しない程度に添加しても良いし、更に、架橋剤、ワックス、艶消し剤、顔料等の通常用いられる添加剤を添加しても良い。
【0025】
更に上記下塗り皮膜は、無機系皮膜・有機系皮膜のいずれでも良く、或いは、これらの複合系であっても構わない。このうち有機系皮膜を構成する樹脂としては、ポリエステル系樹脂、ウレタン系樹脂、アクリル系樹脂、エポキシ系樹脂、フッ素系樹脂等の樹脂、及びこれら樹脂の混合物または変性した樹脂が挙げられる。
【0026】
尚、上記下塗り皮膜は、最表層皮膜の下に形成されるものは全て本発明の範囲内に包含される。例えば三層の複数皮膜からなる場合、基材側から見て皮膜を第一皮膜、第二皮膜、及び第三皮膜(最表層皮膜)とすると、本発明では、当該第三皮膜が、実質的に無機顔料を含まない皮膜であれば良く、無機顔料を含む耐食性皮膜は第一皮膜に形成されていても良いし、第二皮膜に形成されていても良く、或いは、第一皮膜及び第二皮膜の双法に形成されていても良く、いずれの態様も全て本発明の範囲内に包含される。
【0027】
以上、本発明の表面被覆金属板を構成する皮膜について詳述した。上述した通り、本発明の最重要ポイントは皮膜の構成を特定したところにあり、皮膜以外の金属板(原板)については特に限定されない。従って本発明では、冷延鋼板、熱延鋼板、電気亜鉛めっき鋼板(EG)、溶融亜鉛めっき鋼板(GI)、合金化溶融亜鉛めっき鋼板(GA)、5%Al−Znめっき鋼板、55%Al−Znめっき鋼板、Al等の各種めっき鋼板、ステンレス鋼板等の鋼板類;溶接用途に用いられる公知の金属板等を全て適用することができる。勿論、これらの金属板に、耐食性向上、皮膜の密着性向上等を目的として、クロメート処理やリン酸塩処理等の表面処理を行っても良い。
【0028】
次に本発明の金属板を製造する方法について説明する。本発明の金属板は、上記成分を含む塗料を、公知の塗装方法で順次原板の表面に塗布し、乾燥させて製造することができる。塗装方法は特に限定されないが、例えば表面を清浄化して、必要に応じて塗装前処理(例えばリン酸塩処理、クロメート処理など)を施した長尺金属帯表面に、ロールコーター法、スプレー法、カーテンフローコーター法などを用いて塗料を塗工し、熱風乾燥炉を通過させて乾燥させる方法などが挙げられる。被膜厚さの均一性や処理コスト、塗装効率などを総合的に勘案して実用上好ましいのは、ロールコーター法である。
【0029】
尚、樹脂塗装を施す金属板には、樹脂被膜との密着性または耐食性の向上目的で、塗装前処理としてリン酸塩処理またはクロメート処理を施しても構わない。但し、クロメート処理材については、樹脂塗装金属板使用中のクロム溶出性の観点から、クロメート処理時のCr付着量を35mg/m2以下に抑制することが好ましい。この範囲であれば、本発明の表面処理金属板は、下地クロメート処理層からのクロム溶出を抑えることが可能である。また、従来のクロメート処理材は必要に応じて設けられる上塗り塗装の耐水密着性が、6価クロムの溶出に伴って、湿潤環境下において低下する傾向にあるが、本発明の表面処理金属板では溶出が抑制されるため、上塗り被膜の耐水密着性が悪化することはない。
【0030】
以下実施例によって本発明をさらに詳述するが、下記実施例は本発明を制限するものではなく、本発明の趣旨を逸脱しない範囲で変更実施することはすべて本願発明に含まれる。
【0031】
【実施例】
実施例1
クロメート処理(Cr付着量20mg/m2)した板厚0.8mmの原板に、表1〜3に示す如く皮膜の種類、添加剤、及び膜厚を種々変化させた下塗り皮膜及び上塗り皮膜を施して試験サンプルを作製した。この様にして得られた二層皮膜鋼板の溶接性、耐食性、及びTgを下記評価方法で評価した。
【0032】
(1)溶接性試験
図1の電極チップを用い、下記要領で連続溶接試験を実施し、形成されたナゲット径が5√t(t:膜厚)を下回らない連続溶接回数を測定した。
加圧力 :200kgf
サイクル:12サイクル
電 流:ナゲット径が約5√t+1mmとなる様な電流値を予備実験で調査し、そのときの電流値で連続溶接試験を実施した。
得られた連続打点数に応じ、下記基準により評価した。
◎:300打点以上
○:100〜299打点
△:10〜99打点
×:9打点以下。
【0033】
(2)加工部耐食性
JIS Z 2371に記載の塩水噴霧試験(試験時間:240時間)を行い、平面部の錆発生率を下記評価基準で評価した。
◎:異常なし
○:錆発生1%未満
△:錆発生1%以上〜10%未満
×:錆発生10%以上。
【0034】
(3)Tg
JIS K 7121に記載の示差走査熱量計(DSC)を用い、Tgを測定した。
【0035】
(4)耐疵付き性試験
試験サンプル表面に、10円硬貨を45°に傾けた状態で荷重200gで押付け、10cm/sの速度でサンプル表面を擦った後の皮膜外観変化を下記基準で評価した。
◎:異常なし
○:僅かに痕跡あり
これらの結果を表1〜3に併記する。
【0036】
【表1】

Figure 0003771763
【0037】
【表2】
Figure 0003771763
【0038】
【表3】
Figure 0003771763
【0039】
まず、表1は原板の種類をGA;下塗り皮膜の種類をポリエステル系有機皮膜、無機顔料(シリカ)の添加量を10重量%;上塗り皮膜のTgを60℃と一定にし、下塗り皮膜の膜厚及び上塗り皮膜の膜厚を、本発明の好ましい範囲で変化させた例であるが、いずれも溶接性及び耐食性に優れていた。
【0040】
また、表2のNo.29〜38は、上記表1において、下塗り皮膜の膜厚及び上塗り皮膜の膜厚を1.0μmと一定にし、上塗り皮膜のTgを種々変化させた例である。このうちTgを本発明の好ましい範囲(100℃以下)に制御したNo.29〜37は、溶接性及び耐食性の両特性に優れているが、Tgが好ましい範囲を超えるNo.38は溶接性に劣っていた。
【0041】
また、表2のNo.39〜48は、上記表1において、下塗り皮膜の膜厚及び上塗り皮膜の膜厚を1.0μmと一定にし、下塗り皮膜中の無機顔料の添加量を、本発明の好ましい範囲で種々変化させた例であるが、いずれも溶接性及び耐食性に優れていた。
【0042】
また、表2のNo.49〜51は、上記表1において、下塗り皮膜の膜厚及び上塗り皮膜の膜厚を1.0μmと一定にし、原板の種類を変化させた例であるが、いずれも溶接性及び耐食性に優れていた。
【0043】
表2のNo.52〜58は、上記表1において、下塗り皮膜の膜厚及び上塗り皮膜の膜厚を1.0μmと一定にし、下塗り皮膜の種類及び上塗り皮膜の種類を種々た変化させた例であるが、いずれも溶接性及び耐食性に優れていた。
【0044】
これに対し、表3のNo.59〜65は夫々以下の不具合を有している。
【0045】
まず、No.59は下塗り皮膜を施さない例、No.60は下塗り皮膜の膜厚が本発明の好ましい要件を下回る例であり、いずれも耐食性に劣っていた。
【0046】
また、No.61は下塗り皮膜の膜厚が本発明の好ましい要件を超える例であり、溶接性に劣っていた。
【0047】
更にNo.62は上塗り皮膜を施さない例、No.63は上塗り皮膜の膜厚が本発明の好ましい要件を下回る例、No.64は上塗り皮膜の膜厚が本発明の好ましい要件を超える例であり、いずれも溶接性に劣っていた。また、No.65は、上塗り皮膜に無機顔料を添加した例であるが、溶接性に劣るものであった。
【0048】
【発明の効果】
本発明の表面被覆金属板は以上の様に構成されているので、連続的に安定したスポット溶接性が確保されると共に、良好な耐食性も兼ね備えた表面被覆金属板を効率よく提供することができた。
【図面の簡単な説明】
【図1】実施例に用いた溶接性試験測定用電極チップの形状を示す概略説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface-coated metal plate excellent in weldability and corrosion resistance.
[0002]
[Prior art]
Internal parts such as home appliances are often joined by welding, and excellent weldability is required.
[0003]
On the other hand, since the original plate is inferior in corrosion resistance, an inorganic pigment (silica, chromic acid compound, etc.) having an anti-corrosion and anti-corrosion effect has been conventionally provided on the original plate to provide a metal plate having both weldability and corrosion resistance. ) Was thinly coated so as not to impair the weldability. This is to obtain both the improvement of the corrosion resistance by adding the inorganic pigment and the improvement of the weldability by reducing the thickness of the film by adopting the above configuration.
[0004]
However, even if the above configuration is adopted, stable weldability cannot be obtained, and it is a fact that the electrode tips are frequently washed and replaced. Therefore, it has been desired to provide a surface-coated metal sheet that ensures stable spot weldability and also has corrosion resistance.
[0005]
[Problems to be solved by the invention]
The present invention has been made paying attention to the above circumstances, and an object of the present invention is to provide a surface-coated metal plate that ensures continuously stable spot weldability and also has corrosion resistance.
[0006]
[Means for Solving the Problems]
The surface-coated metal plate excellent in weldability and corrosion resistance according to the present invention that has solved the above-mentioned problems is a surface-coated metal plate in which a plurality of layers are formed on the metal plate, and the outermost layer film among the above-mentioned films Is that the weldability is improved by not containing an inorganic pigment, and the corrosion resistance is improved by forming an undercoat film containing 1 to 40% by weight of an inorganic pigment under the outermost layer film. It has a gist.
[0007]
Here, the thing whose thickness of the said outermost layer membrane | film | coat and undercoat is 0.1-3.0 micrometers, and the glass transition point of the said outermost layer membrane | film | coat are 100 degrees C or less are the preferable aspects of this invention. .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The inventors of the present invention have provided a conventional thin-film-coated metal sheet that is provided for the purpose of improving both of these characteristics in order to provide a surface-coated metal sheet that ensures continuously stable spot weldability and also has corrosion resistance. About the metal plate which coat | covers inorganic pigments, such as a silica, thinly on an original plate, the cause which spot weldability fell was examined in detail.
[0009]
In general, weldability improves as the film thickness decreases. This is because it is easy to energize the thin film portion. However, spot welding of a metal plate to which an inorganic pigment is added to the thin film coat makes (1) the inorganic pigment adhere to the electrode tip and sparks easily occur; and (2) the electrode tip is damaged by the addition of the inorganic pigment. It has become clear that welding is not stable due to the phenomenon. That is, inorganic pigments such as silica are effective in improving corrosion resistance, but when the inorganic pigment is added, sparking and electrode tip damage are observed, and as a result, stable weldability cannot be obtained. I understood.
[0010]
From the above findings, it has been clarified that it is necessary to provide a thin film film substantially not containing an inorganic pigment on a metal plate from the viewpoint of “improvement of weldability”. In order to obtain a surface-coated metal plate that is excellent in corrosion resistance in addition to weldability, the coating composition is composed of a plurality of layers, and the outermost layer film is a film that does not substantially contain an inorganic pigment. It has been found that it is effective to form an undercoat film containing an inorganic pigment below. In other words, in order to ensure both weldability and corrosion resistance, the coating is composed of at least two layers. Of these, the outermost coating prevents damage to the electrode tip based on the inorganic pigment added to the undercoat. In addition, we have found that it is effective to share the role of performance for each film, such as improving the stable continuous weldability and improving the corrosion resistance by adding inorganic pigments in the undercoat film. The invention has been completed.
[0011]
In this way, the present invention clarified the relationship between the inorganic pigment and the weldability that “addition of the inorganic pigment causes sparking and damage to the electrode tip, and a stable weldability cannot be obtained continuously”. However, the most important point exists. And when focusing on only inorganic pigments and improving continuous weldability and corrosion resistance, it is effective to specify the film structure as the above-mentioned multiple layers. The technical significance of the present invention exists when it has been clarified that excellent continuous weldability can be ensured while effectively exerting the effect of improving the corrosion resistance by adding pigments.
[0012]
Hereinafter, the configuration of the present invention will be described in detail.
[0013]
As described above, the surface-coated metal plate of the present invention is a metal plate in which a plurality of layers of films are formed on the metal plate, and the outermost layer film of the above films is a thin film film that does not substantially contain an inorganic pigment. As a result, the weldability is enhanced, and a corrosion resistance is enhanced by forming an undercoat film containing an inorganic pigment under the outermost layer film.
[0014]
First, according to the present invention, in order to improve weldability, it is indispensable to provide a film that does not contain an inorganic pigment on the outermost layer film. As described above, when an inorganic pigment is added to the film, the inorganic pigment adheres to the electrode tip during spot welding, and sparking occurs or damages the electrode tip. Is inferior in weldability. Therefore, in order to prevent damage to the electrode tip based on the inorganic pigment added to the undercoat film, a film containing no inorganic pigment must be provided on the outermost layer film. Here, “does not contain inorganic pigment” means that no inorganic pigment is contained (addition amount = 0).
[0015]
It is recommended that the thickness of the outermost layer film be 0.1 to 3.0 μm. This is because by using such a thin film, the electrical conductivity is improved and excellent weldability is ensured. If it is less than 0.1 μm, the electrode tip cannot be sufficiently protected. More preferably, it is 0.2 μm or more, and still more preferably 0.3 μm or more. However, if it exceeds 3.0 μm, the conductivity is lost and welding cannot be performed. More preferably, it is 2.5 micrometers or less, More preferably, it is 2.0 micrometers or less.
[0016]
In order to obtain better weldability, the glass transition point of the film is preferably 100 ° C. or lower. When the glass transition point exceeds 100 ° C., the film becomes hard, and therefore, in an undercoat film containing an inorganic pigment, damage to the electrode tip due to the addition of the inorganic pigment cannot be sufficiently prevented. More preferably, it is 90 degrees C or less, More preferably, it is 80 degrees C or less. The lower limit of the glass transition point is not particularly limited from the viewpoint of improving the weldability, but it is recommended that the lower limit of the glass transition point be 0 ° C. or higher considering the tackiness of the film. More preferably, it is 10 degreeC or more, More preferably, it is 20 degreeC or more.
[0017]
The outermost layer film may be a film that does not substantially contain an inorganic pigment, and the resin constituting the film is a resin such as a polyester resin, a urethane resin, an acrylic resin, an epoxy resin, or a fluorine resin. And an organic film composed of a mixture of these resins or a modified resin is recommended.
[0018]
The above configuration mainly focuses only on the viewpoint of improving weldability, and the configuration of the coating is specified to be “substantially free of inorganic pigments”, but the addition of components other than inorganic pigments is excluded. It is not a thing. Therefore, for example, when aiming to provide a black steel sheet in addition to weldability, it is recommended to add an organic pigment such as carbon black to the film.
[0019]
Furthermore, it is also a preferred embodiment that the coating is a clear coating for the purpose of improving the scratch resistance, and all of these embodiments are also included in the scope of the present invention.
[0020]
Here, the resin constituting the clear film is not particularly limited, and resins such as acrylic resins, urethane resins, polyolefin resins, polyester resins, fluorine resins, silicon resins, and mixtures or modifications of these resins. Resin and the like. Furthermore, a cross-linking agent, a wax, a matting agent, a pigment, and the like may be added to the clear film as long as the effects of the present invention are not impaired.
[0021]
Furthermore, in the present invention, an undercoat film containing an inorganic pigment is required to be formed under the outermost layer film, and the corrosion resistance is improved by applying such an undercoat film. As described above, the present invention provides a metal plate having each performance at the same time by performing the role sharing of the performance for each film, such as improving the weldability in the upper film and improving the corrosion resistance in the lower film. It becomes possible.
[0022]
Here, the inorganic pigment used in the present invention is not particularly limited as long as it is an inorganic pigment usually used for the purpose of improving corrosion resistance, and examples thereof include silica, chromic acid compounds and the like. Among them, excellent corrosion resistance is obtained with silica having a small particle size (2 to 300 nm).
[0023]
Moreover, it is preferable that the addition amount of the said inorganic pigment is 1 to 40 weight%. If it is less than 1% by weight, the desired effect of improving corrosion resistance cannot be obtained. More preferably, it is 3 weight% or more, More preferably, it is 5 weight% or more. However, if the inorganic pigment is added in excess of 40% by weight, the electrode tip is significantly damaged and the weldability is poor. More preferably, it is 35 weight% or less, More preferably, it is 30 weight% or less.
[0024]
In addition to the inorganic pigment, the undercoat film contains other components as long as the effects of the present invention are not impaired. For example, in order to improve conductivity, conductive pigments such as Ni powder and iron phosphide may be added to such an extent that the weldability is not hindered. Further, crosslinking agents, waxes, matting agents, pigments, etc. Additives used may be added.
[0025]
Furthermore, the undercoat film may be either an inorganic film or an organic film, or may be a composite system thereof. Among these, examples of the resin constituting the organic coating include resins such as polyester resins, urethane resins, acrylic resins, epoxy resins, and fluorine resins, and mixtures or modified resins of these resins.
[0026]
In addition, all the said undercoat films formed under the outermost layer film are included in the scope of the present invention. For example, in the case of a plurality of three-layer coatings, when the coating is a first coating, a second coating, and a third coating (outermost layer coating) when viewed from the substrate side, in the present invention, the third coating is substantially The corrosion-resistant film containing an inorganic pigment may be formed on the first film, the second film, or the first film and the second film. The film may be formed by a dual method, and all the embodiments are included in the scope of the present invention.
[0027]
In the above, the film which comprises the surface coating metal plate of this invention was explained in full detail. As described above, the most important point of the present invention is that the configuration of the coating is specified, and the metal plate (original plate) other than the coating is not particularly limited. Therefore, in the present invention, cold rolled steel sheet, hot rolled steel sheet, electrogalvanized steel sheet (EG), hot dip galvanized steel sheet (GI), alloyed hot dip galvanized steel sheet (GA), 5% Al-Zn plated steel sheet, 55% Al -Zinc plated steel sheets, various plated steel sheets such as Al, and steel sheets such as stainless steel sheets; all known metal plates used for welding applications can be applied. Of course, these metal plates may be subjected to surface treatment such as chromate treatment or phosphate treatment for the purpose of improving the corrosion resistance and improving the adhesion of the film.
[0028]
Next, a method for producing the metal plate of the present invention will be described. The metal plate of the present invention can be produced by applying the paint containing the above components to the surface of the original plate sequentially by a known coating method and drying it. Although the coating method is not particularly limited, for example, the surface of a long metal strip that has been cleaned and subjected to pre-coating treatment (for example, phosphate treatment, chromate treatment, etc.) as necessary, roll coater method, spray method, Examples thereof include a method in which a paint is applied using a curtain flow coater method and the like, and dried by passing through a hot air drying furnace. A roll coater method is preferable in practical use in consideration of uniformity of film thickness, processing cost, coating efficiency, and the like.
[0029]
In addition, the metal plate to which the resin coating is applied may be subjected to a phosphate treatment or a chromate treatment as a pre-coating treatment for the purpose of improving the adhesion to the resin coating or the corrosion resistance. However, with respect to the chromate treatment material, it is preferable to suppress the Cr adhesion amount during chromate treatment to 35 mg / m 2 or less from the viewpoint of chromium elution during use of the resin-coated metal plate. If it is this range, the surface treatment metal plate of this invention can suppress the elution of chromium from a base chromate treatment layer. In addition, the conventional chromate treatment material tends to decrease the water-resistant adhesion of the top coat provided as needed in a wet environment with the elution of hexavalent chromium, but with the surface-treated metal plate of the present invention, Since elution is suppressed, the water-resistant adhesiveness of the top coat does not deteriorate.
[0030]
The present invention will be described in further detail with reference to the following examples. However, the following examples are not intended to limit the present invention, and all modifications and implementations without departing from the spirit of the present invention are included in the present invention.
[0031]
【Example】
Example 1
As shown in Tables 1-3, undercoat and topcoat films with various changes in coating type, additives, and film thickness were applied to a 0.8mm-thick original plate that had been chromate treated (Cr deposition amount 20mg / m 2 ). A test sample was prepared. The weldability, corrosion resistance, and Tg of the two-layer coated steel sheet thus obtained were evaluated by the following evaluation methods.
[0032]
(1) Weldability test Using the electrode tip of FIG. 1, a continuous welding test was carried out in the following manner, and the number of consecutive weldings in which the formed nugget diameter did not fall below 5√t (t: film thickness) was measured.
Applied pressure: 200kgf
Cycle: 12 cycle current: A current value such that the nugget diameter was about 5√t + 1 mm was investigated in a preliminary experiment, and a continuous welding test was performed with the current value at that time.
According to the number of continuous hits obtained, the evaluation was made according to the following criteria.
:: 300 or more hit points ○: 100 to 299 hit points Δ: 10 to 99 hit points ×: 9 hit points or less
[0033]
(2) Processed part corrosion resistance The salt spray test (test time: 240 hours) described in JIS Z 2371 was performed, and the rust generation rate of the flat part was evaluated according to the following evaluation criteria.
◎: No abnormality ○: Rust generation less than 1% Δ: Rust generation 1% or more and less than 10% ×: Rust generation 10% or more.
[0034]
(3) Tg
Tg was measured using a differential scanning calorimeter (DSC) described in JIS K7121.
[0035]
(4) Scratch resistance test test A 10-yen coin was tilted at 45 ° and pressed with a load of 200 g on the sample surface, and the coating appearance change after rubbing the sample surface at a speed of 10 cm / s was evaluated according to the following criteria. did.
A: No abnormality O: Slight traces These results are also shown in Tables 1-3.
[0036]
[Table 1]
Figure 0003771763
[0037]
[Table 2]
Figure 0003771763
[0038]
[Table 3]
Figure 0003771763
[0039]
First, Table 1 shows the original plate type GA; the undercoat film type is a polyester organic film, the amount of inorganic pigment (silica) added is 10% by weight; the Tg of the overcoat film is kept constant at 60 ° C., and the film thickness of the undercoat film In addition, the film thicknesses of the top coat film and the top coat film were varied within the preferred range of the present invention, but both were excellent in weldability and corrosion resistance.
[0040]
In Table 2, No. 29 to 38 are examples in which the thickness of the undercoat film and the film thickness of the topcoat film were kept constant at 1.0 μm and the Tg of the topcoat film was variously changed in Table 1 above. Among these, Tg was controlled within the preferred range (100 ° C. or less) of the present invention. Nos. 29 to 37 are excellent in both weldability and corrosion resistance, but No. 29 in which Tg exceeds the preferable range. No. 38 was inferior in weldability.
[0041]
In Table 2, No. Nos. 39 to 48 in Table 1, the film thickness of the undercoat film and the film thickness of the overcoat film were made constant at 1.0 μm, and the addition amount of the inorganic pigment in the undercoat film was variously changed within the preferable range of the present invention. Although it is an example, all were excellent in weldability and corrosion resistance.
[0042]
In Table 2, No. 49 to 51 are examples in which the thickness of the undercoat film and the film thickness of the topcoat film were fixed to 1.0 μm and the type of the original plate was changed in Table 1 above, but both are excellent in weldability and corrosion resistance. It was.
[0043]
No. in Table 2 52 to 58 are examples in which the film thickness of the undercoat film and the film thickness of the topcoat film are fixed to 1.0 μm and the type of the undercoat film and the type of the topcoat film are variously changed in Table 1 above. Was also excellent in weldability and corrosion resistance.
[0044]
On the other hand, in Table 3, No. Each of 59 to 65 has the following problems.
[0045]
First, no. No. 59 is an example in which an undercoat film is not applied. No. 60 is an example in which the film thickness of the undercoat film falls below the preferable requirement of the present invention, and all of them were inferior in corrosion resistance.
[0046]
No. 61 is an example in which the film thickness of the undercoat exceeds the preferable requirement of the present invention, and the weldability is poor.
[0047]
Furthermore, no. No. 62 is an example in which no top coat is applied. No. 63 is an example in which the film thickness of the overcoat film falls below the preferable requirement of the present invention, No. 63. No. 64 is an example in which the film thickness of the overcoat exceeds the preferable requirement of the present invention, and all have poor weldability. No. 65 is an example in which an inorganic pigment was added to the overcoat film, but was poor in weldability.
[0048]
【The invention's effect】
Since the surface-coated metal sheet of the present invention is configured as described above, it is possible to efficiently provide a surface-coated metal sheet that ensures continuously stable spot weldability and also has good corrosion resistance. It was.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing the shape of a weldability test measurement electrode tip used in an example.

Claims (3)

金属板に複数層の皮膜が形成された表面被覆金属板であって、
前記皮膜のうち最表層皮膜は、無機顔料を含まないことにより溶接性が高められ、
前記最表層皮膜の下には、無機顔料を1〜40重量%含む下塗り皮膜が形成されることにより耐食性が高められたものであることを特徴とする溶接性及び耐食性に優れた表面被覆金属板。
A surface-coated metal plate in which a multi-layered film is formed on a metal plate,
Outermost layer coating of the coating, weldability is improved by containing no free machine pigments,
A surface-coated metal plate excellent in weldability and corrosion resistance, wherein an undercoat film containing 1 to 40% by weight of an inorganic pigment is formed under the outermost layer film, thereby improving corrosion resistance .
前記最表層皮膜及び下塗り皮膜の厚さは0.1〜3.0μmである請求項1に記載の表面被覆金属板。  The surface-coated metal sheet according to claim 1, wherein the outermost layer film and the undercoat film have a thickness of 0.1 to 3.0 μm. 前記最表層皮膜のガラス転移点は100℃以下である請求項1または2に記載の表面被覆金属板。  The surface-coated metal sheet according to claim 1 or 2, wherein a glass transition point of the outermost layer film is 100 ° C or lower.
JP36284099A 1999-12-21 1999-12-21 Surface coated metal plate with excellent weldability and corrosion resistance Expired - Fee Related JP3771763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36284099A JP3771763B2 (en) 1999-12-21 1999-12-21 Surface coated metal plate with excellent weldability and corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36284099A JP3771763B2 (en) 1999-12-21 1999-12-21 Surface coated metal plate with excellent weldability and corrosion resistance

Publications (2)

Publication Number Publication Date
JP2001171036A JP2001171036A (en) 2001-06-26
JP3771763B2 true JP3771763B2 (en) 2006-04-26

Family

ID=18477866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36284099A Expired - Fee Related JP3771763B2 (en) 1999-12-21 1999-12-21 Surface coated metal plate with excellent weldability and corrosion resistance

Country Status (1)

Country Link
JP (1) JP3771763B2 (en)

Also Published As

Publication number Publication date
JP2001171036A (en) 2001-06-26

Similar Documents

Publication Publication Date Title
JPH0144387B2 (en)
EP0119608B1 (en) Coating composite for extended corrosion resistance
JP3771763B2 (en) Surface coated metal plate with excellent weldability and corrosion resistance
JP3567430B2 (en) Painted metal plate with excellent corrosion resistance
JP2690629B2 (en) Organic composite coated steel sheet with excellent corrosion resistance and spot weldability
JP2001009966A (en) Weldable black metal sheet
JPH0468141B2 (en)
JPS598353B2 (en) Composite coated steel plate for highly corrosion-resistant machining with excellent adhesion
JP2787365B2 (en) Organic thin film coated Cr-containing zinc-based multi-layer rust-proof steel sheet having excellent long-term adhesion of organic thin film and cationic electrodeposition coating property, and method for producing the same
JPH07912A (en) Highly corrosion-resistant organic clad metallic sheet
JP3260904B2 (en) Organic composite coated steel sheet with excellent cationic electrodeposition paintability and corrosion resistance
JP2001018322A (en) Conductive black surface-treated metallic plate with outstanding resistance to flaw and fingerprint
JP3389059B2 (en) Method for producing surface-treated steel sheet excellent in fingerprint resistance and grounding property
JPH08267655A (en) Pre-coated steel sheet excellent in corrosion resistance and fingerprint resistance
JP2753666B2 (en) Resin-coated steel sheet with excellent electrodeposition coating properties
JPS6229233Y2 (en)
JPH11310749A (en) Water-based surface treating agent, surface-treated steel sheet, and its production
JPH11217682A (en) Surface treated steel plate for fuel container excellent in corrosion resistance after painting
JP3503194B2 (en) Organic composite coated steel sheet
Park et al. Evaluation of Nonchromated Thin Organic Coatings for Corrosion Inhibition of Electrogalvanized Steel
JPH10278170A (en) Coated metal panel excellent in scratch resistance, damage resistance and coating film galling resistance
JPH0318180Y2 (en)
JP2000008176A (en) Steel sheet for fuel vessel excellent in resistance weldability and corrosion resistance after coating
JPH05115838A (en) Steel sheet for automobiles which is subjected to different surface treatments on front and rear surfaces and has excellent corrosion resistance and weldability
JPS63270131A (en) High-corrosion resistance organic composite plated steel sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees