JP3771103B2 - Two tank blood reservoir - Google Patents

Two tank blood reservoir Download PDF

Info

Publication number
JP3771103B2
JP3771103B2 JP2000058240A JP2000058240A JP3771103B2 JP 3771103 B2 JP3771103 B2 JP 3771103B2 JP 2000058240 A JP2000058240 A JP 2000058240A JP 2000058240 A JP2000058240 A JP 2000058240A JP 3771103 B2 JP3771103 B2 JP 3771103B2
Authority
JP
Japan
Prior art keywords
blood
storage chamber
reservoir
liquid
crystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000058240A
Other languages
Japanese (ja)
Other versions
JP2001245972A (en
Inventor
清重 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2000058240A priority Critical patent/JP3771103B2/en
Publication of JP2001245972A publication Critical patent/JP2001245972A/en
Application granted granted Critical
Publication of JP3771103B2 publication Critical patent/JP3771103B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • External Artificial Organs (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、リザーバ容量を変えることなく血液充填量を削減できる体外循環法用の貯血槽に関する。
【0002】
【従来技術及び問題点】
心臓内部の弁,心臓表面の冠動脈等を処置する心臓外科手術では、心臓停止下の手術が必須である。この手術では、心臓停止下で全身の循環を維持するため、心臓に還流してきた静脈血を体外に導き出して貯血槽に一旦蓄え、酸素化した後で心臓の出口に当たる上行大動脈から返血する体外循環法が併用される。
従来の貯血槽1は、静脈血流入口2から送り込まれた静脈血aをフィルタ3で濾過し、浄化血液bをドレイン口4からポンプ5によって人工肺6に送り出す構造をもっている(図1)。血液は、人工肺6で酸素化された後、酸素富化血液cとして上行大動脈に送り出される。
【0003】
貯血槽1としては、体外循環法では回路全体を充填する量の血液が必要となることから、可能な限り少ない充填量で体外循環できるように人工肺,熱交換器等の構成品の改良が進められてきた。その結果、現在では成人の回路充填に必要な血液量は1500ml程度までに削減されている。
【0004】
血液量1500mlのうち500ml程度が貯血槽1に貯留される血液で占められ、貯血槽1からドレイン口4を経て送り出される血液bの流出量は4000〜5000ml/分に設定される。したがって、貯血槽1に500mlの血液を貯留していても、静脈血を体外に導出する経路に何らかのトラブルが発生すると、貯血槽1から血液bが送り出される一途となり、貯血槽1が数秒のうちに空になる。貯血槽1の空洞化は、血液循環回路への空気の混入を誘発し、体外循環で最も危険で忌避すべき事態に至る原因となる。貯血槽1の空洞化を防止して体外循環法の安全度を向上させる上では、体外循環量に応じた貯血が必要になる。
【0005】
他方、体外循環回路は、通常、リンゲル液で充填した後に運転開始される。リンゲル液の充填量を削減することは、血液希釈度を抑制する上で直接的に効き、手術中の貧血を軽減する効果を奏する。リンゲル液の充填量削減に関しても従来から種々の改良が施され、必要血液量と同等レベルまで軽減されている。しかし、血液循環回路の1/3程度をも占める貯血槽1に対する改善は、貯血槽1内の血液量削減と体外循環の安全性とが相反することから、これまでのところ提案されていない。
【0006】
また、心臓外科手術では、手術中に心臓周囲に氷水を満たし、心停止液が使用される。氷水や心停止液の大部分が体外循環回路に回収されるため、これによっても血液が高度に希釈され、貧血が進行する原因になる。過剰に混入した水分を除去するために血液濃縮器7(Hemoconcentrator)を使用することもある。この場合、酸素富化血液cの一部を血液濃縮器7に送り込み、水分,心停止液等を晶質液eとして分離する。晶質液eが分離された血液dは吸引口8を経て貯血槽1に返送され、晶質液eは廃液回収容器9に回収される。血液濃縮器7の稼動はもっぱら手作業であり、貯血槽1内の液面をみながら廃液及び廃液中止を繰り返す煩雑な作業であるため、極めて大きな作業負担になる。
【0007】
【発明が解決しようとする課題】
血液濃縮器7で分離された晶質液eは、そのまま廃液回収容器9に回収されている。しかし、限外濾過膜を用いて晶質液eを分離するとき、体外循環系を流れる血液cと成分的に同じ血液となる。
本発明は、血液濃縮器で分離される晶質液に着目し、晶質液を貯血槽に収容することにより、貯血槽の空洞化を防ぎ且つ循環用血液で占めるべき容量を少なくし、充填量削減を可能にした貯血槽を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の二槽貯血槽は、その目的を達成するため、貯血槽を血液貯留室及び晶質液貯留室に区分し、血液貯留室には静脈血流入口,静脈血を濾過するフィルタ及び濾過された血液を人工肺に送り出すドレイン口を設け、晶質液流入管を介して晶質液貯留室を血液濃縮器に接続し、血液貯留室内の血液による浮力で弁座に押し付けられる浮遊弁を晶質液貯留室の底部に設けていることを特徴とする。
晶質液貯留室の側壁の所定高さ位置には、廃液回収容器に至る廃液管を開口させることが好ましい。晶質液貯留室内に蓄えられている晶質液が過剰になったとき、過剰分が廃液管に溢流するので晶質液貯留室内の液面レベルが一定に維持される。
【0009】
【実施の形態】
本発明に従った二槽式貯血槽は、たとえば図2にみられるように、貯血槽1を血液貯留室10及び晶質液貯留室11の2槽に区分し、血液濃縮器7の晶質液流入管12を晶質液貯留室11に接続している。また、晶質液貯留室11の底部に浮遊弁13を設け、血液貯留室10から晶質液貯留室11への血液流を防止している。晶質液貯留室11の側壁に適宜の高さ位置で廃液管14が開口しており、晶質液貯留室11内にある余剰の晶質液eが廃液管14を経て廃液回収容器9に排出される。
【0010】
血液貯留室10及び晶質液貯留室11の合計容量は、貯血槽1の空洞化による危険な状態を回避するため、一槽式の貯血槽1(図1)とほぼ同じ容量に設定される。この二槽式貯血槽では、血液濃縮器7から分離された晶質液eを晶質液貯留室11に送り込み、リザーバ−液体容量として利用することにより、従来の一槽式貯血槽と同じ液体容量を維持する。
【0011】
血液貯留室10に通常量の血液bが貯留されている状態では、血液bによって浮遊弁13が押し上げられて弁座15に当接し、弁開口が閉じられ、血液貯留室10と晶質液貯留室11が遮断される(図3a)。したがって、静脈血aがフィルタ3を通過して異物が除去された後、浄化血液bが人工肺6に送り出される経路が形成される。
何らかの理由で血液貯留室10に貯留されている血液bが少なくなると、浮遊弁13に働く浮力が小さくなる。その結果、浮遊弁13が下降し、弁座15との間に隙間が生じる。すなわち、弁開口が開放されるため、晶質液貯留室11内の晶質液eが弁開口を経てドレイン口4に流れ込み、血液bの不足分を補填する(図3b)。
【0012】
晶質液貯留室11内に多量の晶質液eが溜まった状態では、晶質液貯留室11の側壁に設けられている廃液管14の開口部に晶質液eの液面が近づく。開口部を超える量の晶質液eは、廃液管14に溢流し、廃液回収容器9に回収される(図3c)。したがって、晶質液貯留室11内の液面が一定に維持される。
このようにして、貯血槽1を血液貯留室10及び晶質液貯留室11の二槽式としているので、貯血槽の容量、ひいては血液充填量を大幅に削減できる。また、体外循環中に必要に応じて実施される輸血に際しても、何ら支障を来すことがない。
【0013】
【発明の効果】
以上に説明したように、本発明の二槽貯血槽は、血液貯留室と晶質液貯留室との二槽にしているため、血液充填量を大幅に軽減できる。貯血槽の血液充填量は血液循環回路全体に占める割合が1/3程度と極めて大きなものであるから、この部分の血液充填量の軽減によって体外循環中の血液の過剰希釈を抑え、貧血の度合いを軽減することにもなり、輸血量の削減も可能になる。しかも、晶質液貯留室内に蓄えられている晶質液の量に応じて過剰晶質液量を自動制御できるため、貯血槽の液面をみながら廃液及び廃液中止を行う従来法に比較して手術中の作業負担も軽減される。
【図面の簡単な説明】
【図1】 従来の一槽式貯血槽を備えた体外循環回路の模式図
【図2】 本発明に従った二槽貯血槽を備えた体外循環回路の模式図
【図3】 二槽貯血槽の標準状態(a),晶質液貯留室から晶質液がドレイン口に流れ込んでいる状態(b)及び晶質液貯留室内の晶質液が一定量に維持されること(c)を説明する図
【符号の説明】
2:静脈血流入口 3:フィルタ 4:ドレイン口 6:人工肺 7:血液濃縮器 9:廃液回収容器 10:血液貯留室 11:晶質液貯留室
12:晶質液流入管 13:浮遊弁 14:廃液管 15:弁座
[0001]
[Industrial application fields]
The present invention relates to a blood reservoir for extracorporeal circulation that can reduce the amount of blood filling without changing the reservoir capacity.
[0002]
[Prior art and problems]
In cardiac surgery for treating a valve inside the heart, a coronary artery on the surface of the heart, and the like, an operation under cardiac arrest is essential. In this operation, in order to maintain systemic circulation under cardiac arrest, the venous blood that has flowed back to the heart is led out of the body, temporarily stored in a blood reservoir, oxygenated, and then returned from the ascending aorta that hits the heart Circulation method is used together.
A conventional blood reservoir 1 has a structure in which venous blood a fed from a venous blood flow inlet 2 is filtered by a filter 3 and purified blood b is sent from a drain port 4 to an artificial lung 6 by a pump 5 (FIG. 1). The blood is oxygenated by the oxygenator 6 and then sent to the ascending aorta as oxygen-enriched blood c.
[0003]
As the blood reservoir 1, the extracorporeal circulation method requires an amount of blood that fills the entire circuit. Therefore, the components such as the artificial lung and the heat exchanger can be improved so that the extracorporeal circulation can be performed with the smallest possible filling amount. It has been advanced. As a result, the blood volume required for circuit filling for adults has now been reduced to about 1500 ml.
[0004]
Approximately 500 ml of the blood volume of 1500 ml is occupied by blood stored in the blood reservoir 1, and the outflow amount of blood b sent from the blood reservoir 1 through the drain port 4 is set to 4000 to 5000 ml / min. Therefore, even if 500 ml of blood is stored in the blood reservoir 1, if some trouble occurs in the path for leading venous blood to the outside of the body, the blood b is sent out from the blood reservoir 1, and the blood reservoir 1 is kept in a few seconds. It becomes empty. The hollowing out of the blood reservoir 1 induces air mixing into the blood circulation circuit, which leads to the most dangerous and evasive situation in the extracorporeal circulation. In order to prevent hollowing of the blood reservoir 1 and improve the safety level of the extracorporeal circulation method, blood storage corresponding to the extracorporeal circulation amount is required.
[0005]
On the other hand, the extracorporeal circuit is normally started after filling with Ringer's solution. Reducing the amount of Ringer's solution is directly effective in suppressing blood dilution and has the effect of reducing anemia during surgery. Various improvements have been made to reduce the filling amount of Ringer's solution, and the level has been reduced to the same level as the necessary blood volume. However, an improvement to the blood reservoir 1 that occupies about 1/3 of the blood circulation circuit has not been proposed so far because the reduction of blood volume in the blood reservoir 1 and the safety of extracorporeal circulation are contradictory.
[0006]
In cardiac surgery, the heart is filled with ice water during the operation, and a cardioplegia solution is used. Most of the ice water and cardioplegia is collected in the extracorporeal circuit, which also causes the blood to be highly diluted and cause anemia to progress. The blood concentrator 7 (Hemoconcentrator) may be used to remove excessively mixed water. In this case, a part of the oxygen-enriched blood c is sent to the blood concentrator 7 to separate water, cardioplegia, etc. as the crystalline liquid e. The blood d from which the crystalline liquid e has been separated is returned to the blood reservoir 1 through the suction port 8, and the crystalline liquid e is recovered in the waste liquid recovery container 9. The operation of the blood concentrator 7 is exclusively a manual operation, and is a complicated operation in which the waste liquid and the waste liquid suspension are repeated while looking at the liquid level in the blood reservoir 1.
[0007]
[Problems to be solved by the invention]
The crystalline liquid e separated by the blood concentrator 7 is recovered as it is in the waste liquid recovery container 9. However, when the crystalline liquid e is separated using the ultrafiltration membrane, the blood componentally becomes the same as the blood c flowing in the extracorporeal circulation system.
The present invention pays attention to the crystalline liquid separated by the blood concentrator, and by storing the crystalline liquid in the blood reservoir, the hollowing of the blood reservoir is prevented and the volume that should be occupied by the circulating blood is reduced and filled. It aims at providing the blood reservoir which enabled quantity reduction.
[0008]
[Means for Solving the Problems]
In order to achieve the object, the two-tank blood reservoir of the present invention divides the blood reservoir into a blood storage chamber and a crystalline liquid storage chamber, the blood storage chamber has a venous blood flow inlet, a filter for filtering venous blood, and a filtration A drain port for delivering the blood to the artificial lung is provided, the crystal liquid storage chamber is connected to the blood concentrator via the crystal liquid inflow tube, and a floating valve that is pressed against the valve seat by the buoyancy of the blood in the blood storage chamber It is provided at the bottom of the crystalline liquid storage chamber.
It is preferable to open a waste liquid pipe leading to a waste liquid recovery container at a predetermined height position on the side wall of the crystalline liquid storage chamber. When the amount of the crystalline liquid stored in the crystalline liquid storage chamber becomes excessive, the excess amount overflows into the waste liquid pipe, so that the liquid level in the crystalline liquid storage chamber is maintained constant.
[0009]
Embodiment
As shown in FIG. 2, for example, the two-tank blood reservoir according to the present invention divides the blood reservoir 1 into two tanks, a blood reservoir 10 and a crystal solution reservoir 11, and the crystal quality of the blood concentrator 7. The liquid inflow pipe 12 is connected to the crystalline liquid storage chamber 11. A floating valve 13 is provided at the bottom of the crystalline liquid storage chamber 11 to prevent blood flow from the blood storage chamber 10 to the crystalline liquid storage chamber 11. A waste liquid pipe 14 is opened at an appropriate height on the side wall of the crystal liquid storage chamber 11, and excess crystal liquid e in the crystal liquid storage chamber 11 passes through the waste liquid pipe 14 to the waste liquid recovery container 9. Discharged.
[0010]
The total capacity of the blood storage chamber 10 and the crystalline liquid storage chamber 11 is set to substantially the same capacity as that of the one tank type blood reservoir 1 (FIG. 1) in order to avoid a dangerous state due to the hollowing of the blood reservoir 1. . In this two-tank blood reservoir, the crystal liquid e separated from the blood concentrator 7 is fed into the crystal liquid storage chamber 11 and used as a reservoir-liquid capacity, so that the same liquid as the conventional one-tank blood reservoir is used. Maintain capacity.
[0011]
In a state where a normal amount of blood b is stored in the blood storage chamber 10, the floating valve 13 is pushed up by the blood b and contacts the valve seat 15, the valve opening is closed, and the blood storage chamber 10 and the crystalline liquid storage are stored. The chamber 11 is shut off (FIG. 3a). Therefore, after the venous blood a passes through the filter 3 and the foreign matter is removed, a path through which the purified blood b is sent to the oxygenator 6 is formed.
If the blood b stored in the blood storage chamber 10 decreases for some reason, the buoyancy acting on the floating valve 13 decreases. As a result, the floating valve 13 is lowered and a gap is formed between the floating valve 13 and the valve seat 15. That is, since the valve opening is opened, the crystalline liquid e in the crystalline liquid storage chamber 11 flows into the drain port 4 through the valve opening, and compensates for the shortage of blood b (FIG. 3b).
[0012]
In a state where a large amount of the crystalline liquid e has accumulated in the crystalline liquid storage chamber 11, the liquid surface of the crystalline liquid e approaches the opening of the waste liquid pipe 14 provided on the side wall of the crystalline liquid storage chamber 11. The amount of the crystalline liquid e exceeding the opening overflows into the waste liquid pipe 14 and is recovered in the waste liquid recovery container 9 (FIG. 3c). Therefore, the liquid level in the crystalline liquid storage chamber 11 is maintained constant.
Thus, since the blood reservoir 1 is of the two-tank type, that is, the blood reservoir 10 and the crystalline liquid reservoir 11, the capacity of the blood reservoir and thus the blood filling amount can be greatly reduced. In addition, there is no problem even when blood transfusion is performed as necessary during extracorporeal circulation.
[0013]
【The invention's effect】
As described above, the two-tank blood reservoir of the present invention has two blood reservoir chambers and a crystalline liquid reservoir chamber, so that the blood filling amount can be greatly reduced. Since the blood filling volume of the blood reservoir is very large, about 1/3 of the entire blood circulation circuit, reducing the blood filling volume in this part suppresses the excessive dilution of blood in the extracorporeal circulation, and the degree of anemia The amount of blood transfusion can also be reduced. Moreover, since the excess amount of crystal liquid can be automatically controlled according to the amount of crystal liquid stored in the crystal liquid storage chamber, it is compared with the conventional method in which waste liquid and waste liquid are stopped while looking at the liquid level in the blood reservoir. This reduces the work burden during surgery.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an extracorporeal circuit having a conventional one-tank blood reservoir. FIG. 2 is a schematic diagram of an extracorporeal circuit having a two-tank blood reservoir according to the present invention. Standard state (a), state (b) in which crystal liquid flows from the crystal liquid storage chamber into the drain port, and the fact that the crystal liquid in the crystal liquid storage chamber is maintained at a constant amount (c) Figure [Explanation of symbols]
2: Venous blood flow inlet 3: Filter 4: Drain port 6: Artificial lung 7: Blood concentrator 9: Waste liquid collection container 10: Blood reservoir 11: Crystalline fluid reservoir 12: Crystalline fluid inlet tube 13: Floating valve 14: Waste pipe 15: Valve seat

Claims (2)

貯血槽を血液貯留室及び晶質液貯留室に区分し、血液貯留室には静脈血流入口,静脈血を濾過するフィルタ及び濾過された血液を人工肺に送り出すドレイン口を設け、晶質液流入管を介して晶質液貯留室を血液濃縮器に接続し、血液貯留室内の血液による浮力で弁座に押し付けられる浮遊弁を晶質液貯留室の底部に設けていることを特徴とする二槽貯血槽。The blood reservoir is divided into a blood storage chamber and a crystalline liquid storage chamber. The blood storage chamber is provided with a venous blood flow inlet, a filter for filtering venous blood, and a drain port for sending filtered blood to the artificial lung. The crystal liquid storage chamber is connected to the blood concentrator through an inflow pipe, and a floating valve that is pressed against the valve seat by buoyancy due to blood in the blood storage chamber is provided at the bottom of the crystal liquid storage chamber Two tank blood reservoir. 晶質液貯留室の側壁の所定高さ位置に、廃液回収容器に至る廃液管を開口させている請求項1記載の二槽貯血槽。The two-tank blood reservoir according to claim 1, wherein a waste liquid pipe reaching the waste liquid recovery container is opened at a predetermined height position on the side wall of the crystalline liquid storage chamber.
JP2000058240A 2000-03-03 2000-03-03 Two tank blood reservoir Expired - Fee Related JP3771103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000058240A JP3771103B2 (en) 2000-03-03 2000-03-03 Two tank blood reservoir

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000058240A JP3771103B2 (en) 2000-03-03 2000-03-03 Two tank blood reservoir

Publications (2)

Publication Number Publication Date
JP2001245972A JP2001245972A (en) 2001-09-11
JP3771103B2 true JP3771103B2 (en) 2006-04-26

Family

ID=18578864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000058240A Expired - Fee Related JP3771103B2 (en) 2000-03-03 2000-03-03 Two tank blood reservoir

Country Status (1)

Country Link
JP (1) JP3771103B2 (en)

Also Published As

Publication number Publication date
JP2001245972A (en) 2001-09-11

Similar Documents

Publication Publication Date Title
JP6685374B2 (en) Blood purification device and priming method thereof
JP3223985B2 (en) Artificial kidney and its control method
US4137160A (en) Device for separating low density material such as gas bubbles from a liquid, and the use thereof in a dialysis delivery system
WO2010070886A1 (en) Blood purifier and method of priming same
JPH09108341A (en) Blood filter and extracorporeal circuit
CN111903665B (en) Liquid storage device and isolated organ perfusion system
JP3906477B2 (en) Method for priming blood circuit
JP3771103B2 (en) Two tank blood reservoir
US7722561B2 (en) Peritoneal dialyzer and method of peritoneal dialysis
JP2002165878A (en) Blood storage tank
WO2024066153A1 (en) Membrane oxygenator blood storage tank
JP3231077B2 (en) Blood reservoir
JPH0126707B2 (en)
JP2003290342A (en) Extracorporeal circulation blood circuit system
JPH027667B2 (en)
JPS628183B2 (en)
JP2519140B2 (en) Blood circuit chamber
JPH06102088B2 (en) Blood reservoir
JP2836029B2 (en) Blood filtration dialysis machine
JP2583301Y2 (en) Artificial lung circuit
JPH025967A (en) Blood purifying device
JP2762360B2 (en) Blood reservoir with pump
JPH0663127A (en) Blood circuit for external circulation of blood
JP2002204827A (en) Venous blood storage tub with cardiotomy
JPS5912903Y2 (en) Artificial kidney dialysate deaerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees