JP3770886B2 - Pressure tube dismantling method for the new converter - Google Patents

Pressure tube dismantling method for the new converter Download PDF

Info

Publication number
JP3770886B2
JP3770886B2 JP2003156707A JP2003156707A JP3770886B2 JP 3770886 B2 JP3770886 B2 JP 3770886B2 JP 2003156707 A JP2003156707 A JP 2003156707A JP 2003156707 A JP2003156707 A JP 2003156707A JP 3770886 B2 JP3770886 B2 JP 3770886B2
Authority
JP
Japan
Prior art keywords
pressure tube
fuel
tube assembly
assembly
new
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003156707A
Other languages
Japanese (ja)
Other versions
JP2004361113A (en
Inventor
剛司 田尻
浩 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003156707A priority Critical patent/JP3770886B2/en
Publication of JP2004361113A publication Critical patent/JP2004361113A/en
Application granted granted Critical
Publication of JP3770886B2 publication Critical patent/JP3770886B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Disintegrating Or Milling (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、廃止措置に入った新型転換炉(ATR)を解体する方法に関し、特に原子炉本体から取り外した圧力管集合体を細断処理する方法に関する。
【0002】
【従来の技術】
新型転換炉は減速材に重水を用い、冷却材に軽水を用いる圧力管型原子炉であり、日本ではATR原型炉「ふげん」が建設され、その原子炉設備については、例えば非特許文献1に示されている。このふげん発電所は近々運転を終了することがすでに決定され、運転終了後は所定の廃止措置準備期間を経て解体されることになっている。原子炉は燃料を取り出しても内部が放射化しており、その廃止措置には種々の技術開発や準備が必要となるが、この発明は特に圧力管集合体の解体のために検討されたものである。
【0003】
図7は、新型転換炉の原子炉本体部分を示す概念図である。図7において、円筒状の減速材容器(カランドリアタンク)1の上下の管板間に、圧力管集合体2を通すための管(カランドリア管)3が多数、格子状に配列され、カランドリアタンク1には減速材としての重水が満たされるようになっている。カランドリアタンク1の上下面及び側面は、鉄水遮へい体4により覆われている。圧力管集合体2は圧力管(本体)5と、その上下に接合された圧力管延長管6及び7とからなり、圧力管5はカランドリア管3内に収容され、上下延長管6,7は鉄水遮へい体4を貫通している。
【0004】
圧力管5には燃料集合体が納められ、上下延長管6,7には一次冷却材配管8,9が接続されている。図示しないが、上下延長管6,7には一次冷却材は通すが放射線のストリーミングは防止する遮へいプラグが装着され、下部延長管7の下端部は一次冷却水を密封するシールプラグで閉じられている。なお、下部遮へいプラグとシールプラグとは、図示しない燃料交換装置による着脱が可能なように、ボールラッチ機構により下部延長管7と結合され、また下部遮へいプラグと燃料集合体とはコレット機構により結合されている。下部冷却配管9から圧力管集合体2に流入した冷却水(軽水)は圧力管5で熱せられて蒸気となり、上部冷却配管8からタービンに供給される。この原子炉本体部分は、図示しない原子炉格納容器に格納されている。
【0005】
図8は、圧力管集合体2の管体のみを3分して示した縦断面図である。すでに述べたように、圧力管集合体2は圧力管5とその上下端にロールジョイント法により接合された上部延長管6及び下部延長管7とからなり、下部延長管7の側面には冷却水の入口管ノズル10とシールリーク系ノズル11が突出している。各部の長さは、圧力管5が約5m、上部延長管6が約2m、下部延長管7が約3mで、全長は約10mである。また、圧力管5の外径は約130mmであり、最大径は下部延長管7の最下端部で約190mmである。
【0006】
【非特許文献1】
日本機械学会編 機械工学便覧 C.エンジニアリング編 初版4刷
1997年 日本機械学会 p.C7−78〜83
【0007】
【発明が解決しようとする課題】
さて、圧力管集合体2は長期の運転により放射化されているため、細断処理を行なうには遠隔操作や遮へいなどの処置が必要である。その場合、圧力管集合体2の細断作業を格納容器内、例えば原子炉本体の直下で実施することが考えられる。図7は、そのような例を示したものである。すなわち、図7において、原子炉本体の下方に、入口管ノズル部を切断するノズル部切断機12及び圧力管集合体2を細断する圧力管切断機13が設置されている。圧力管集合体2は入口管ノズル部で一次冷却材配管9から切り離された後、圧力管吊下し機14により保護筒15を通して圧力管細断機13に吊り下ろされ、適宜の長さに細断される。細断された圧力管集合体2は廃材収納装置16に回収され、次工程に搬送される。
【0008】
ところが、格納容器内での細断処理には、次のような問題点がある。
(1)細断作業を格納容器の中で行うと周辺雰囲気の放射能レベルが上昇し、他の作業を平行して行えない。ちなみに、圧力管集合体は多数本(224本)あり、その細断作業や細断後の搬送作業には長時間を要し、結果として原子炉解体工事のクリティカル工期が長くなる。
(2)圧力管細断機は新規に製作される装置であるため、原子炉解体後はその装置自体が廃棄物となり、二次廃棄物が増加する。
(3)細断作業を大気中で行うので、装置の遮へいに要する物量が嵩む。
【0009】
この発明の課題は、新型転換炉の廃止措置に伴う圧力管解体作業を合理的に進め、工期の短縮、解体廃棄物の低減、遮へい処置の簡易化等を図ることにある。
【0010】
【課題を解決するための手段】
上記課題を解決するために、この発明は、廃止措置に入った新型転換炉の原子炉本体から取り外した圧力管集合体を、燃料交換装置並びに、燃料交換プールとトランスファーシュートとを備える燃料移送装置を利用して使用済燃料貯蔵プールまで搬送し、この圧力管集合体を前記プール内で細断するものとする(請求項1)。
【0011】
圧力管集合体は円筒形状で、かつ多数本あることを考慮すると、その取扱い作業は単純繰返し作業となり得る。そこで、この搬送作業を本来燃料を水中で取り扱う燃料取扱設備を利用して行えば、自動化、省力化の効果が大きい。また、圧力管集合体の細断作業をプール水中で行うことができるので、水による遮へい効果を利用できるとともに、格納容器内の他の作業を妨げることがない。更に、燃料取扱設備撤去後に圧力管集合体の切断・移送装置を設置する場合に比べて解体廃棄物の低減を図ることができる。
【0012】
圧力管集合体は前述した通り約10mの長尺であり、また冷却水の入口管ノズルなどが側方に突出している。従って、圧力管集合体は搬送前に取り扱い容易な適宜の長さに切断し、入口管ノズルなどは切除する必要がある。そこで、燃料交換装置の頭部に前記圧力管集合体の切断装置を設置し、この切断装置により前記圧力管集合体を取扱いが容易な形状・寸法に切断してから搬送するようにするのがよい(請求項2)。
【0013】
ところで、本来、燃料集合体を収容するように作られた圧力管集合体は燃料集合体よりも大径であり、燃料取扱設備の移送経路には通過最大径の点でネックが存在する。まず、燃料交換装置のマガジンチューブには、圧力管集合体は収容できない。そこで、燃料交換装置については、マガジンユニットを廃し、前記圧力管集合体の最大径が収容可能な案内管を新たに設置するのがよい。これにより、燃料交換装置の通過最大径の拡大を図ることができる(請求項3)。
【0014】
また、トランスファシュートのトランスファ容器も、圧力管集合体の大部分の直径を収容できない。そこで、トランスファシュートはトランスファ容器を前記圧力管集合体の最大径が収容可能な新たな容器に交換して、通過最大径の拡大を図るのがよい(請求項4)。
【0015】
一方、使用済燃料貯蔵プールまで搬送した前記圧力管集合体は、前記プール内の仮置ラックにいったん仮置きした後、細断するようにするのがよい(請求項5)。これにより、原子炉本体からの圧力管集合体の取外し・移送作業を細断作業と独立して進めることができる。
【0016】
【発明の実施の形態】
図3は、燃料取扱設備の全体構成図である。図3において、燃料取扱設備は、燃料集合体の圧力管集合体に対する装荷及び取出しを行う燃料交換装置17、並びに格納容器18と燃料貯蔵プール19との間で燃料集合体を移送する燃料移送装置20とからなっている。燃料交換装置17は、カランドリアタンク1内に構成された原子炉本体の下方に移動自在に配置され、燃料交換時には原子炉下部から圧力管集合体内の燃料集合体を取り出し、燃料交換プール21の下方に移動する。燃料交換装置17内の燃料集合体は、トランスファポート22を介して燃料出入機23により引き上げられ、次いで上部スイング装置24、トランスファシュート25を通して格納容器外の燃料貯蔵プール19に排出される。この燃料集合体は、下部スイング装置26を介して燃料移送機27に吊り上げられ、使用済燃料ラックまで搬送される。新燃料は上記と逆の順序で格納容器18に搬入され、燃料交換装置17により圧力管集合体に装荷される。
【0017】
図1及び図2は、原子炉設備の廃止措置時において、既存の燃料取扱設備を、一部改造を加えて利用して行う圧力管集合体の解体処理フローを示し、図2は図1のII−II線に沿う断面図である。燃料取扱設備は本来、圧力管集合体に収納される燃料集合体を取り扱うもので、圧力管集合体は当然に燃料集合体よりも寸法が大きい。そのため、燃料取扱設備には通過最大径の関係から、そのままでは圧力管集合体を取り扱えない部分があり、この部分には改造を加える必要がある。以下、この改造を含めて、図1及び図2に示す処理フローを(1) (8)の手順に従って説明する。なお、従来例と対応する部分には同一の符号を用いるものとする。
【0018】
(1) まず、燃料交換装置17を炉下部で位置決めし、圧力管集合体2を受け取る。その際、入口管ノズル10及びシールリーク径ノズル11(図8参照)は、側方に突出して取扱いのじゃまになるため切除する。また、圧力管集合体2はそのままでは長すぎるため、適当な長さ、例えば1/3〜1/4に切断する。これらの切断は前段作業として、燃料交換装置17の頭部に設置した圧力管切断装置28により行う。
【0019】
図4に、圧力管切断装置28の一例を示す。図4において、水封式の昇降・旋回駆動部29上に前後移動駆動部30を介して、前後一対のメタルソー方式の切断機構部31, 32が支持され、図4の右側のメタルソー33は垂直に、左側のメタルソー33は水平に取り付けられている。図示圧力管切断装置28は、燃料交換時に圧力管と燃料交換装置17とを水密に結合するために設けられていたスナウトが取り除かれた跡に取り付けられている。圧力管集合体2を切断するには、天井クレーンと同構造の圧力管吊下し機14(図1)で圧力管集合体2を吊り下げ支持したまま、切断機構部31によりノズル部を切除し、次いで切断機構部32により管体部分を切断する。圧力管切断装置28としては、プラズマ切断方式やアブレシブ切断方式など他の方式も採用可能である。
【0020】
一方、燃料交換装置17の圧力容器内にはマガジンユニットが設けられ、マガジンユニットには燃料集合体をそれぞれ収容する4本のマガジンチューブが、スナウトの中心に順次回転移動するようにマガジン支持胴に支持されている。しかし、内径が現状のままのマガジンチューブには、圧力管集合体は収容できない。従って、マガジンチューブを内径の大きいものに交換するか、マガジンユニットを除去して新たな案内管を設置し、圧力管集合体を収容できるように改造する。このように改造した燃料交換装置17に、上記したように切断機構部32で切断した圧力管集合体2を自重で降下させて収容する。燃料交換装置17の中は水で満たされていて、圧力管集合体2はこの水で遮蔽される。
【0021】
(2) 燃料交換装置17に圧力管集合体2を収容したら、燃料交換装置17を横行走行台車により移動させ、トランスファポート22に対して位置付ける。
【0022】
(3) 燃料出入機23により圧力管集合体2を把持して燃料交換プール21に吊り出す。ここで、燃料出入機23の本来のグリッパ34は燃料集合体を外側から把持する構造になっているが、このグリッパ34は圧力管集合体2には使えない。そこで、グリッパ34を改造し、輪切りにより内周面が露出した圧力管集合体2を内側から把持するようにする。
【0023】
図5及び図6に、圧力管集合体2を把持するグリッパの構成例を示す。各図の(A)はグリッパを圧力管集合体内に吊り下ろした状態、(B)は圧力管集合体を把持した状態である。図5はカム軸35の昇降動作を爪36の出入り動作に変える構造のもので、圧力管集合体2に挿入後、爪36を外周側に張り出して、圧力管集合体2の内周面を摩擦で把持する。図6は環状の風船(エアピッカー)37を空気圧で膨張させて、同様に把持する構造のものである。
【0024】
(4) 燃料出入機23を移動し、圧力管集合体2を上部スイング装置24にセットする。
【0025】
(5) 圧力管集合体2をトランスファシュート25により、燃料受渡プール38に移送する。このとき、圧力管集合体単独では取扱いが難しいので、トランスファ容器のような収納筒に収容する必要があるが、本来のトランスファ容器は燃料集合体に対してがたつきの生じない内径に作られているので、内径を拡大した新たなトランスファ容器に交換する。
【0026】
(6) 燃料移送機27により、下部スイング装置26から圧力管集合体2を吊り上げる。燃料移送機27においても、燃料出入機23と同様のグリッパを用いる。
【0027】
(7) 圧力管集合体2を使用済燃料貯蔵プール19に移送し、圧力管仮置ラック39に圧力管集合体2を仮置きする。なお、圧力管仮置ラック39は、使用済燃料ラックを撤去した跡に設置する。
【0028】
(8) 燃料移送機27により圧力管仮置ラック39から圧力管集合体2を使用済燃料搬出室40に移送し、そこに設置した圧力管細断装置41により圧力管集合体2を細断する。細断後の廃材は別スペースに移送して廃棄物容器に収容する。
【0029】
上記した燃料取扱設備を用いた圧力管集合体の移送・細断は、以下の利点が想定される。
(1)ほとんどの取扱作業が、水中かつ遠隔で行える。従って、解体作業に伴う被ばくを最小限に抑えられる。
(2)処理装置の水中設置により、目視での作業監視が可能である。また、切断時に発生する切粉やドロスなどの飛散が抑えられ、二次廃棄物の回収方策が容易である。
(3)圧力管集合体を格納容器外に搬出した後に細断作業が行えるので、格納容器内での高線量作業を減らせる。
(4)使用済燃料貯蔵プール内に圧力管集合体を仮置きすることにより、原子炉本体からの圧力管集合体の取外し・移送とその後の細断・廃棄物容器への収容を独立して計画することが可能で、細断処理を待たずに圧力管集合体を取り外して移送することができ、格納容器内作業の工程裕度が増加する。また、その結果として、格納容器内の他の作業工程に対する影響が小さくなる。
(5)既存のトランスファシュートを利用して圧力管集合体を移送できるため、格納容器を貫通するための新たな通路が不要になる。
(6)既存設備の有効活用となり、廃止措置作業専用設備などの新たな廃棄物の発生が減じられる。結果として、解体処理コストの低減が図れる。
【0030】
【発明の効果】
以上の通り、この発明によれば、原子炉本体から取り外した圧力管集合体を、燃料交換装置並びに、燃料交換プールとトランスファーシュートとを備える燃料移送装置で使用済燃料貯蔵プールまで搬送し、圧力管集合体をプール内で細断するものとすることにより、既存の設備の一部に改造を施すだけで、プール水の遮へい効果を利用した解体細断時の被ばくの低減や既存設備の有効利用による解体廃棄物の低減を図ることができる。
【図面の簡単な説明】
【図1】この発明の実施の形態を示す圧力管集合体の搬送フロー図である。
【図2】図1のII−II線に沿う断面図である。
【図3】燃料取扱設備の全体構成を説明する図である。
【図4】圧力管切断装置の概略構成を示す側面図である。
【図5】燃料出入機のグリッパの構成を示し、(A)は開放状態、(B)は把持状態である。
【図6】燃料出入機のグリッパの異なる構成を示し、(A)は開放状態、(B)は把持状態である。
【図7】原子炉格納容器内で圧力管集合体を解体細断処理する方法を示す図である。
【図8】圧力管集合体を3分して示した縦断面図である。
【符号の説明】
1 カランドリアタンク
2 圧力管集合体
17 燃料交換装置
19 燃料貯蔵プール
20 燃料移送装置
21 燃料交換プール
22 トランスファポート
23 燃料出入機
24 上部スイング装置
25 トランスファシュート
26 下部スイング装置
27 燃料移送機
28 圧力管切断装置
38 燃料受渡プール
39 圧力管仮置ラック
40 使用済燃料搬出室
41 圧力管細断装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of disassembling an advanced conversion reactor (ATR) that has entered into decommissioning, and more particularly to a method of chopping a pressure tube assembly removed from a reactor body.
[0002]
[Prior art]
The new conversion reactor is a pressure tube nuclear reactor that uses heavy water as a moderator and light water as a coolant. Is shown in The Fugen Power Station has already been determined to end operation soon, and will be demolished after a predetermined decommissioning preparation period. The nuclear reactor is activated even when the fuel is taken out, and various technological developments and preparations are required for its decommissioning. This invention was especially studied for dismantling the pressure tube assembly. is there.
[0003]
FIG. 7 is a conceptual diagram showing a reactor main body portion of the new conversion reactor. In FIG. 7, a large number of pipes (Calandria pipes) 3 for passing the pressure pipe assembly 2 are arranged in a lattice between upper and lower tube plates of a cylindrical moderator container (Calandria tank) 1. The tank 1 is filled with heavy water as a moderator. The upper and lower surfaces and side surfaces of the calandria tank 1 are covered with an iron water shielding body 4. The pressure pipe assembly 2 is composed of a pressure pipe (main body) 5 and pressure pipe extension pipes 6 and 7 joined to the upper and lower sides thereof. The pressure pipe 5 is accommodated in the calandria pipe 3, and the upper and lower extension pipes 6 and 7 are It penetrates the iron water shielding body 4.
[0004]
A fuel assembly is housed in the pressure pipe 5, and primary coolant pipes 8 and 9 are connected to the upper and lower extension pipes 6 and 7. Although not shown, the upper and lower extension pipes 6 and 7 are fitted with shielding plugs that allow primary coolant to pass but prevent streaming of radiation, and the lower ends of the lower extension pipes 7 are closed by seal plugs that seal the primary cooling water. Yes. The lower shielding plug and the seal plug are coupled to the lower extension pipe 7 by a ball latch mechanism so that they can be attached and detached by a fuel changer (not shown), and the lower shielding plug and the fuel assembly are coupled by a collet mechanism. Has been. The cooling water (light water) flowing into the pressure pipe assembly 2 from the lower cooling pipe 9 is heated by the pressure pipe 5 to become steam, and is supplied from the upper cooling pipe 8 to the turbine. This reactor main body portion is stored in a reactor containment vessel (not shown).
[0005]
FIG. 8 is a longitudinal sectional view showing only the tube of the pressure tube assembly 2 in three parts. As described above, the pressure pipe assembly 2 is composed of the pressure pipe 5 and the upper extension pipe 6 and the lower extension pipe 7 joined to the upper and lower ends thereof by the roll joint method. The inlet pipe nozzle 10 and the seal leak system nozzle 11 protrude. The length of each part is about 5 m for the pressure pipe 5, about 2 m for the upper extension pipe 6, about 3 m for the lower extension pipe 7, and about 10 m in total length. The outer diameter of the pressure pipe 5 is about 130 mm, and the maximum diameter is about 190 mm at the lowermost end of the lower extension pipe 7.
[0006]
[Non-Patent Document 1]
Mechanical Engineering Handbook edited by the Japan Society of Mechanical Engineers Engineering First edition 4th edition 1997 Japan Society of Mechanical Engineers p. C7-78-83
[0007]
[Problems to be solved by the invention]
Now, since the pressure tube assembly 2 has been activated by long-term operation, it is necessary to perform a remote operation or shielding to perform the shredding process. In that case, it is conceivable to perform the shredding operation of the pressure tube assembly 2 in the containment vessel, for example, directly under the reactor main body. FIG. 7 shows such an example. That is, in FIG. 7, a nozzle part cutting machine 12 that cuts the inlet pipe nozzle part and a pressure pipe cutting machine 13 that shreds the pressure pipe assembly 2 are installed below the reactor main body. After the pressure pipe assembly 2 is cut off from the primary coolant pipe 9 at the inlet pipe nozzle portion, it is suspended by the pressure pipe chopping machine 13 through the protective cylinder 15 by the pressure pipe suspending machine 14 to an appropriate length. Shredded. The shredded pressure tube assembly 2 is collected in the waste material storage device 16 and transferred to the next process.
[0008]
However, the shredding process in the containment vessel has the following problems.
(1) If shredding work is performed in a containment vessel, the radioactivity level of the surrounding atmosphere increases, and other work cannot be performed in parallel. Incidentally, there are a large number (224) of pressure tube assemblies, and it takes a long time for the shredding work and the transporting work after shredding, and as a result, the critical construction period of the reactor demolition work becomes longer.
(2) Since the pressure tube shredder is a newly manufactured device, after the reactor is dismantled, the device itself becomes waste and secondary waste increases.
(3) Since the shredding operation is performed in the air, the amount of material required for shielding the device increases.
[0009]
An object of the present invention is to rationally proceed with the pressure tube disassembly work associated with the decommissioning of the new conversion furnace, to shorten the construction period, reduce dismantling waste, simplify the shielding treatment, and the like.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a fuel transfer device, a fuel transfer device including a fuel change pool, a fuel change pool, and a transfer chute. Is used to transport to the spent fuel storage pool, and this pressure tube assembly is shredded within the pool (claim 1).
[0011]
Considering that the pressure tube assembly is cylindrical and has a large number, the handling operation can be a simple repetitive operation. Therefore, if this transfer operation is performed by using a fuel handling facility that originally handles the fuel underwater, the effect of automation and labor saving is great. In addition, since the pressure tube assembly can be shredded in the pool water, the shielding effect by water can be used and other operations in the containment vessel are not hindered. Furthermore, the dismantling waste can be reduced as compared with the case where a pressure pipe assembly cutting / transferring device is installed after the fuel handling facility is removed.
[0012]
As described above, the pressure tube assembly is approximately 10 m long, and the cooling water inlet tube nozzle protrudes laterally. Therefore, it is necessary to cut the pressure tube assembly to an appropriate length that is easy to handle before transportation, and to cut off the inlet tube nozzle and the like. Therefore, a pressure tube assembly cutting device is installed at the head of the fuel exchange device, and the pressure tube assembly is cut into a shape and size that can be easily handled by the cutting device and then transported. Good (claim 2).
[0013]
By the way, the pressure tube assembly originally designed to accommodate the fuel assembly has a larger diameter than the fuel assembly, and there is a neck in the maximum passage diameter in the transfer path of the fuel handling equipment. First, the pressure tube assembly cannot be accommodated in the magazine tube of the fuel changer. Therefore, for the fuel exchange device, it is preferable to abolish the magazine unit and newly install a guide tube capable of accommodating the maximum diameter of the pressure tube assembly. Thereby, the passage maximum diameter of the fuel changer can be increased (claim 3).
[0014]
Also, the transfer container of the transfer chute cannot accommodate most of the diameter of the pressure tube assembly. In view of this, it is preferable that the transfer chute is replaced with a new container that can accommodate the maximum diameter of the pressure tube assembly to increase the maximum passing diameter.
[0015]
On the other hand, the pressure tube assembly transported to the spent fuel storage pool is temporarily placed in a temporary rack in the pool and then shredded (Claim 5). Thereby, the removal / transfer operation of the pressure tube assembly from the reactor main body can proceed independently of the shredding operation.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 3 is an overall configuration diagram of the fuel handling facility. In FIG. 3, the fuel handling facility includes a fuel exchange device 17 for loading and unloading the fuel assembly from the pressure tube assembly, and a fuel transfer device for transferring the fuel assembly between the containment vessel 18 and the fuel storage pool 19. It consists of twenty. The fuel changer 17 is movably disposed below the reactor main body configured in the calandria tank 1, takes out the fuel assembly in the pressure tube assembly from the lower part of the reactor at the time of fuel replacement, and Move down. The fuel assembly in the fuel changer 17 is pulled up by the fuel inlet / outlet machine 23 via the transfer port 22 and then discharged to the fuel storage pool 19 outside the containment vessel through the upper swing device 24 and the transfer chute 25. This fuel assembly is lifted by the fuel transfer machine 27 via the lower swing device 26 and is transported to the spent fuel rack. The new fuel is carried into the containment vessel 18 in the reverse order as described above, and is loaded into the pressure tube assembly by the fuel changer 17.
[0017]
1 and 2 show a flow of disassembling the pressure pipe assembly that is performed by modifying the existing fuel handling equipment with some modifications , at the time of decommissioning of the reactor equipment. It is sectional drawing which follows the II-II line. The fuel handling equipment originally handles the fuel assembly stored in the pressure tube assembly, and the pressure tube assembly is naturally larger in size than the fuel assembly. Therefore, there is a part that cannot handle the pressure pipe assembly as it is because of the maximum passage diameter in the fuel handling equipment, and it is necessary to modify this part. Hereinafter, the processing flow shown in FIGS. 1 and 2 including this modification will be described in accordance with the procedures (1) to (8) . In addition, the same code | symbol shall be used for the part corresponding to a prior art example.
[0018]
(1) First, the fuel changer 17 is positioned in the lower part of the furnace, and the pressure pipe assembly 2 is received. At that time, the inlet pipe nozzle 10 and the seal leak diameter nozzle 11 (see FIG. 8) protrude from the side and are cut off because they interfere with handling. Further, since the pressure tube assembly 2 is too long as it is, it is cut into an appropriate length, for example, 1/3 to 1/4. These cuttings are performed by a pressure tube cutting device 28 installed at the head of the fuel changer 17 as a preceding operation.
[0019]
FIG. 4 shows an example of the pressure tube cutting device 28. In FIG. 4, a pair of front and rear metal saw type cutting mechanisms 31, 32 are supported on a water-sealed lift / swivel drive unit 29 via a front / rear drive unit 30, and the right metal saw 33 in FIG. In addition, the left metal saw 33 is mounted horizontally. The illustrated pressure tube cutting device 28 is attached to the trace where the snout provided for watertightly coupling the pressure tube 5 and the fuel change device 17 during the fuel change is removed. In order to cut the pressure tube assembly 2, the nozzle portion is cut by the cutting mechanism 31 while the pressure tube assembly 2 is suspended and supported by the pressure tube suspension machine 14 (FIG. 1) having the same structure as the overhead crane. Then, the tube part is cut by the cutting mechanism 32. As the pressure tube cutting device 28, other methods such as a plasma cutting method and an abrasive cutting method can be adopted.
[0020]
On the other hand, a magazine unit is provided in the pressure vessel of the fuel changer 17, and four magazine tubes each containing fuel assemblies are installed in the magazine support cylinder so as to sequentially rotate and move to the center of the snout. It is supported. However, the pressure tube assembly cannot be accommodated in the magazine tube whose inner diameter is as it is. Therefore, the magazine tube is replaced with one having a larger inner diameter, or the magazine unit is removed and a new guide tube is installed, so that the pressure tube assembly can be accommodated. The pressure changer assembly 2 cut by the cutting mechanism 32 as described above is lowered and accommodated in the refueling device 17 thus modified. The fuel changer 17 is filled with water, and the pressure pipe assembly 2 is shielded with this water.
[0021]
(2) When the pressure pipe assembly 2 is accommodated in the fuel changer 17, the fuel changer 17 is moved by the traversing carriage and positioned with respect to the transfer port 22.
[0022]
(3) The pressure pipe assembly 2 is gripped by the fuel loading / unloading machine 23 and suspended from the fuel exchange pool 21. Here, the original gripper 34 of the fuel loading / unloading machine 23 has a structure for gripping the fuel assembly from the outside, but the gripper 34 cannot be used for the pressure tube assembly 2. Therefore, the gripper 34 is modified so that the pressure pipe assembly 2 whose inner peripheral surface is exposed by ring cutting is gripped from the inside.
[0023]
5 and 6 show a configuration example of a gripper that holds the pressure tube assembly 2. (A) of each figure is the state which suspended the gripper in the pressure tube assembly, (B) is the state which hold | gripped the pressure tube assembly. FIG. 5 shows a structure in which the raising / lowering operation of the camshaft 35 is changed to an operation of moving the claw 36 in and out. After the insertion into the pressure tube assembly 2, the claw 36 is extended to the outer peripheral side to Gripping with friction. FIG. 6 shows a structure in which an annular balloon (air picker) 37 is inflated with air pressure and gripped in the same manner.
[0024]
(4) The fuel inlet / outlet machine 23 is moved, and the pressure tube assembly 2 is set in the upper swing device 24.
[0025]
(5) The pressure pipe assembly 2 is transferred to the fuel delivery pool 38 by the transfer chute 25. At this time, since the pressure tube assembly alone is difficult to handle, it is necessary to store it in a storage cylinder such as a transfer container, but the original transfer container is made to have an inner diameter that does not rattle the fuel assembly. Therefore, replace it with a new transfer container with an enlarged inner diameter.
[0026]
(6) The pressure pipe assembly 2 is lifted from the lower swing device 26 by the fuel transfer device 27. The fuel transfer device 27 also uses the same gripper as that of the fuel input / output device 23.
[0027]
(7) The pressure tube assembly 2 is transferred to the spent fuel storage pool 19 and the pressure tube assembly 2 is temporarily placed in the pressure tube temporary rack 39. The pressure tube temporary rack 39 is installed on the trace where the spent fuel rack is removed.
[0028]
(8) The pressure tube assembly 2 is transferred from the pressure tube temporary rack 39 to the spent fuel carry-out chamber 40 by the fuel transfer device 27, and the pressure tube assembly 2 is shredded by the pressure tube shredding device 41 installed there. To do. The shredded waste material is transferred to another space and stored in a waste container.
[0029]
The following advantages are assumed for the transfer and shredding of the pressure pipe assembly using the fuel handling facility described above.
(1) Most handling operations can be performed underwater and remotely. Therefore, exposure associated with the dismantling work can be minimized.
(2) Visual monitoring of work is possible by installing the treatment equipment in water. Moreover, scattering of chips and dross generated at the time of cutting is suppressed, and a secondary waste recovery policy is easy.
(3) Since the chopping operation can be performed after the pressure tube assembly is carried out of the containment vessel, the high-dose operation in the containment vessel can be reduced.
(4) By temporarily placing the pressure tube assembly in the spent fuel storage pool, the removal and transfer of the pressure tube assembly from the reactor body and subsequent shredding / containment in a waste container can be performed independently. The pressure tube assembly can be removed and transferred without waiting for the shredding process, and the process margin of the work in the containment vessel is increased. As a result, the influence on other work processes in the containment vessel is reduced.
(5) Since the pressure tube assembly can be transferred using the existing transfer chute, a new passage for penetrating the containment vessel is unnecessary.
(6) Effective use of existing equipment will reduce the generation of new waste such as equipment dedicated to decommissioning work. As a result, the cost for dismantling can be reduced.
[0030]
【The invention's effect】
As described above, according to the present invention, the pressure tube assembly removed from the reactor main body is transported to the spent fuel storage pool by the fuel transfer device and the fuel transfer device including the fuel replacement pool and the transfer chute , By slicing the pipe assembly in the pool, it is possible to reduce the exposure during shredding shredding using the shielding effect of the pool water and to make the existing equipment effective by simply modifying a part of the existing equipment. Reduction of demolition waste by use can be achieved.
[Brief description of the drawings]
FIG. 1 is a transfer flow diagram of a pressure tube assembly showing an embodiment of the present invention.
2 is a cross-sectional view taken along line II-II in FIG.
FIG. 3 is a diagram illustrating an overall configuration of a fuel handling facility.
FIG. 4 is a side view showing a schematic configuration of a pressure tube cutting device.
FIGS. 5A and 5B show a configuration of a gripper of a fuel loading / unloading machine, where FIG. 5A shows an open state and FIG. 5B shows a gripping state.
6A and 6B show different configurations of the gripper of the fuel loading / unloading machine, where FIG. 6A shows an open state and FIG. 6B shows a gripping state.
FIG. 7 is a view showing a method of dismantling and shredding a pressure tube assembly in a reactor containment vessel.
FIG. 8 is a longitudinal sectional view showing a pressure tube assembly in three parts.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Calandria tank 2 Pressure pipe assembly 17 Fuel change device 19 Fuel storage pool 20 Fuel transfer device 21 Fuel change pool 22 Transfer port 23 Fuel inlet / outlet machine 24 Upper swing device 25 Transfer chute 26 Lower swing device 27 Fuel transfer device 28 Pressure tube Cutting device 38 Fuel delivery pool 39 Pressure tube temporary rack 40 Spent fuel delivery chamber 41 Pressure tube shredding device

Claims (5)

廃止措置に入った新型転換炉の原子炉本体から取り外した圧力管集合体を、燃料交換装置並びに、燃料交換プールとトランスファーシュートとを備える燃料移送装置を利用して使用済燃料貯蔵プールまで搬送し、この圧力管集合体を前記プール内で細断することを特徴とする新型転換炉の圧力管解体方法。The pressure tube assembly removed from the reactor body of the new conversion reactor that has been decommissioned is transported to the spent fuel storage pool using a fuel transfer device and a fuel transfer device including a fuel change pool and a transfer chute. A pressure tube disassembling method for a new conversion furnace, wherein the pressure tube assembly is shredded in the pool. 前記燃料交換装置の頭部に前記圧力管集合体の切断装置を設置し、この切断装置により前記圧力管集合体を取扱いが容易な形状・寸法に切断してから搬送することを特徴とする請求項1記載の新型転換炉の圧力管解体方法。 The pressure tube assembly cutting device is installed at the head of the fuel exchange device, and the pressure tube assembly is cut into a shape and size that can be easily handled by the cutting device, and then transported. Item 4. A pressure tube dismantling method for a new type conversion furnace according to Item 1. 前記燃料交換装置のマガジンユニットに換えて前記圧力管集合体の最大径が収容可能な案内管を新たに設置し、前記燃料交換装置の通過最大径を拡大することを特徴とする請求項1記載の新型転換炉の圧力管解体方法。2. A guide pipe capable of accommodating the maximum diameter of the pressure tube assembly is newly installed in place of the magazine unit of the fuel exchange apparatus, and the maximum passage diameter of the fuel exchange apparatus is expanded. Pressure tube dismantling method for the new type of conversion furnace. 前記トランスファシュートのトランスファ容器を前記圧力管集合体の最大径が収容可能な新たな容器に交換し、前記トランスファシュートの通過最大径を拡大することを特徴とする請求項1記載の新型転換炉の圧力管解体方法。 Wherein the transfer container transfer chute and replaced with a new container maximum diameter that can be accommodated in the pressure tube assembly, the new converter reactor of claim 1, wherein enlarging the maximum diameter passing the transfer chute Pressure tube disassembly method. 前記使用済燃料貯蔵プールまで搬送した前記圧力管集合体を前記プール内の仮置ラックにいったん仮置きした後、細断することを特徴とする請求項1記載の新型転換炉の圧力管解体方法。 2. The pressure tube dismantling method for a new conversion furnace according to claim 1, wherein the pressure tube assembly transported to the spent fuel storage pool is temporarily placed in a temporary rack in the pool and then shredded. .
JP2003156707A 2003-06-02 2003-06-02 Pressure tube dismantling method for the new converter Expired - Fee Related JP3770886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003156707A JP3770886B2 (en) 2003-06-02 2003-06-02 Pressure tube dismantling method for the new converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003156707A JP3770886B2 (en) 2003-06-02 2003-06-02 Pressure tube dismantling method for the new converter

Publications (2)

Publication Number Publication Date
JP2004361113A JP2004361113A (en) 2004-12-24
JP3770886B2 true JP3770886B2 (en) 2006-04-26

Family

ID=34050704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003156707A Expired - Fee Related JP3770886B2 (en) 2003-06-02 2003-06-02 Pressure tube dismantling method for the new converter

Country Status (1)

Country Link
JP (1) JP3770886B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4256349B2 (en) * 2005-01-07 2009-04-22 株式会社日立エンジニアリング・アンド・サービス Nuclear reactor demolition and removal equipment, and demolition and removal method
RO133587A2 (en) * 2017-06-23 2019-08-30 Candu Energy Inc. System and method for reducing nuclear reactor components volume
KR20240048884A (en) 2022-10-07 2024-04-16 두산에너빌리티 주식회사 System and method for simultaneous removal of heavy water pressure pipes and reactor pipes

Also Published As

Publication number Publication date
JP2004361113A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
JP5734543B2 (en) Refueling assembly for nuclear reactors
JP2019027989A (en) Method for dismantling nuclear reactor pressure vessel
JP3770886B2 (en) Pressure tube dismantling method for the new converter
Ren et al. Design and application of a special underwater cutting device for the decommissioning of the first HWRR reactor in China
WO2007083401A1 (en) Method for dismantling heat exchanger installed in building for nuclear reactor
JP6312911B1 (en) Reactor pressure vessel dismantling method
JP6436304B2 (en) In-furnace debris collection method and collection device
JP2006098165A (en) Dismantling method of reactor pressure vessel
CA3066142A1 (en) System and method for volume reduction of nuclear reactor components
CN115867988A (en) Fuel processing system, arrangement and process for a nuclear reactor
JP2016217987A (en) Method for opening reactor pressure vessel and method for taking out fuel debris
RU2224307C2 (en) Fast reactor refueling method and system
JPS61288200A (en) Overhaul machine for nuclear reactor, function thereof is released
JP6230964B2 (en) Fuel debris retrieval device and fuel debris retrieval method
Raghupathy et al. Component Handling System: Prototype Fast Breeder Reactor (PFBR) and Beyond
JPH01308999A (en) Storage pretreatment for spent fuel
JP2005010070A (en) Replacing facility for level load of spent reactor fuel
JP5111587B2 (en) How to store radioactive waste
JP6446370B2 (en) System and method for disposing of one or more radioactive parts from a nuclear power plant reactor
Sodhi et al. Conceptual design of core component handling system in PFBR
JP3519074B2 (en) Removal method of reactor pressure vessel
JP2004108795A (en) Radioactive material storage method and its facilities
JP2021060224A (en) Nuclear reactor pressure vessel dismantling method and device
JP6368513B2 (en) Water filling method in reactor pressure vessel in nuclear power plant
JPH02222891A (en) Fuel handling device of fast breeder reactor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees