JP2004361113A - Disassembly method for pressure tube of advanced thermal reactor - Google Patents

Disassembly method for pressure tube of advanced thermal reactor Download PDF

Info

Publication number
JP2004361113A
JP2004361113A JP2003156707A JP2003156707A JP2004361113A JP 2004361113 A JP2004361113 A JP 2004361113A JP 2003156707 A JP2003156707 A JP 2003156707A JP 2003156707 A JP2003156707 A JP 2003156707A JP 2004361113 A JP2004361113 A JP 2004361113A
Authority
JP
Japan
Prior art keywords
pressure
assembly
pressure tube
pressure pipe
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003156707A
Other languages
Japanese (ja)
Other versions
JP3770886B2 (en
Inventor
Goji Tajiri
剛司 田尻
Hiroshi Takahashi
浩 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Japan Atomic Energy Agency
Original Assignee
Japan Nuclear Cycle Development Institute
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Nuclear Cycle Development Institute, Fuji Electric Holdings Ltd filed Critical Japan Nuclear Cycle Development Institute
Priority to JP2003156707A priority Critical patent/JP3770886B2/en
Publication of JP2004361113A publication Critical patent/JP2004361113A/en
Application granted granted Critical
Publication of JP3770886B2 publication Critical patent/JP3770886B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Disintegrating Or Milling (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To shorten a work period, reduce the amount of demolition waste, and simplify a shielding process by rationalizing a disassembly method for pressure tubes when decommissioning of an advanced thermal reactor. <P>SOLUTION: A pressure tube assembly 2 dismantled from a nuclear reactor of an advanced thermal reactor is conveyed to a spent fuel storage pool 19 using an existing fuel handling system and cut finely with a pressure tube cutting machine 41 in the pool. Using the existing fuel handling system to cut pressure tubes in the pool enables to utilize shielding effects due to water. In addition, it does not interfere with other operations unlike a cutting operation in a containment vessel. This process can also reduce the amount of demolition waste compared with the case of preparing a cutting and conveying equipment for a pressure tube assembly 2 after dismantling of the fuel handling system. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、廃止措置に入った新型転換炉(ATR)を解体する方法に関し、特に原子炉本体から取り外した圧力管集合体を細断処理する方法に関する。
【0002】
【従来の技術】
新型転換炉は減速材に重水を用い、冷却材に軽水を用いる圧力管型原子炉であり、日本ではATR原型炉「ふげん」が建設され、その原子炉設備については、例えば非特許文献1に示されている。このふげん発電所は近々運転を終了することがすでに決定され、運転終了後は所定の廃止措置準備期間を経て解体されることになっている。原子炉は燃料を取り出しても内部が放射化しており、その廃止措置には種々の技術開発や準備が必要となるが、この発明は特に圧力管集合体の解体のために検討されたものである。
【0003】
図7は、新型転換炉の原子炉本体部分を示す概念図である。図7において、円筒状の減速材容器(カランドリアタンク)1の上下の管板間に、圧力管集合体2を通すための管(カランドリア管)3が多数、格子状に配列され、カランドリアタンク1には減速材としての重水が満たされるようになっている。カランドリアタンク1の上下面及び側面は、鉄水遮へい体4により覆われている。圧力管集合体2は圧力管(本体)5と、その上下に接合された圧力管延長管6及び7とからなり、圧力管5はカランドリア管3内に収容され、上下延長管6,7は鉄水遮へい体4を貫通している。
【0004】
圧力管5には燃料集合体が納められ、上下延長管6,7には一次冷却材配管8,9が接続されている。図示しないが、上下延長管6,7には一次冷却材は通すが放射線のストリーミングは防止する遮へいプラグが装着され、下部延長管7の下端部は一次冷却水を密封するシールプラグで閉じられている。なお、下部遮へいプラグとシールプラグとは、図示しない燃料交換装置による着脱が可能なように、ボールラッチ機構により下部延長管7と結合され、また下部遮へいプラグと燃料集合体とはコレット機構により結合されている。下部冷却配管9から圧力管集合体2に流入した冷却水(軽水)は圧力管5で熱せられて蒸気となり、上部冷却配管8からタービンに供給される。この原子炉本体部分は、図示しない原子炉格納容器に格納されている。
【0005】
図8は、圧力管集合体2の管体のみを3分して示した縦断面図である。すでに述べたように、圧力管集合体2は圧力管5とその上下端にロールジョイント法により接合された上部延長管6及び下部延長管7とからなり、下部延長管7の側面には冷却水の入口管ノズル10とシールリーク系ノズル11が突出している。各部の長さは、圧力管5が約5m、上部延長管6が約2m、下部延長管7が約3mで、全長は約10mである。また、圧力管5の外径は約130mmであり、最大径は下部延長管7の最下端部で約190mmである。
【0006】
【非特許文献1】
日本機械学会編 機械工学便覧 C.エンジニアリング編 初版4刷1997年 日本機械学会 p.C7−78〜83
【0007】
【発明が解決しようとする課題】
さて、圧力管集合体2は長期の運転により放射化されているため、細断処理を行なうには遠隔操作や遮へいなどの処置が必要である。その場合、圧力管集合体2の細断作業を格納容器内、例えば原子炉本体の直下で実施することが考えられる。図7は、そのような例を示したものである。すなわち、図7において、原子炉本体の下方に、入口管ノズル部を切断するノズル部切断機12及び圧力管集合体2を細断する圧力管切断機13が設置されている。圧力管集合体2は入口管ノズル部で一次冷却材配管9から切り離された後、圧力管吊下し機14により保護筒15を通して圧力管細断機13に吊り下ろされ、適宜の長さに細断される。細断された圧力管集合体2は廃材収納装置16に回収され、次工程に搬送される。
【0008】
ところが、格納容器内での細断処理には、次のような問題点がある。
(1)細断作業を格納容器の中で行うと周辺雰囲気の放射能レベルが上昇し、他の作業を平行して行えない。ちなみに、圧力管集合体は多数本(224本)あり、その細断作業や細断後の搬送作業には長時間を要し、結果として原子炉解体工事のクリティカル工期が長くなる。
(2)圧力管細断機は新規に製作される装置であるため、原子炉解体後はその装置自体が廃棄物となり、二次廃棄物が増加する。
(3)細断作業を大気中で行うので、装置の遮へいに要する物量が嵩む。
【0009】
この発明の課題は、新型転換炉の廃止措置に伴う圧力管解体作業を合理的に進め、工期の短縮、解体廃棄物の低減、遮へい処置の簡易化等を図ることにある。
【0010】
【課題を解決するための手段】
上記課題を解決するために、この発明は、廃止措置に入った新型転換炉の原子炉本体から取り外した圧力管集合体を既存の燃料取扱設備を利用して使用済燃料貯蔵プールまで搬送し、この圧力管集合体を前記プール内で細断するものとする(請求項1)。
【0011】
圧力管集合体は円筒形状で、かつ多数本あることを考慮すると、その取扱い作業は単純繰返し作業となり得る。そこで、この搬送作業を本来燃料を水中で取り扱う燃料取扱設備を利用して行えば、自動化、省力化の効果が大きい。また、圧力管集合体の細断作業をプール水中で行うことができるので、水による遮へい効果を利用できるとともに、格納容器内の他の作業を妨げることがない。更に、燃料取扱設備撤去後に圧力管集合体の切断・移送装置を設置する場合に比べて解体廃棄物の低減を図ることができる。
【0012】
圧力管集合体は前述した通り約10mの長尺であり、また冷却水の入口管ノズルなどが側方に突出している。従って、圧力管集合体は搬送前に取り扱い容易な適宜の長さに切断し、入口管ノズルなどは切除する必要がある。そこで、燃料交換装置の頭部に前記圧力管集合体の切断装置を設置し、この切断装置により前記圧力管集合体を取扱いが容易な形状・寸法に切断してから搬送するようにするのがよい(請求項2)。
【0013】
ところで、本来、燃料集合体を収容するように作られた圧力管集合体は燃料集合体よりも大径であり、燃料取扱設備の移送経路には通過最大径の点でネックが存在する。まず、燃料交換装置のマガジンチューブには、圧力管集合体は収容できない。そこで、燃料交換装置については、マガジンユニットを廃し、前記圧力管集合体の最大径が収容可能な案内管を新たに設置するのがよい。これにより、燃料交換装置の通過最大径の拡大を図ることができる(請求項3)。
【0014】
また、トランスファシュートのトランスファ容器も、圧力管集合体の大部分の直径を収容できない。そこで、トランスファシュートはトランスファ容器を前記圧力管集合体の最大径が収容可能な新たな容器に交換して、通過最大径の拡大を図るのがよい(請求項4)。
【0015】
一方、使用済燃料貯蔵プールまで搬送した前記圧力管集合体は、前記プール内の仮置ラックにいったん仮置きした後、細断するようにするのがよい(請求項5)。これにより、原子炉本体からの圧力管集合体の取外し・移送作業を細断作業と独立して進めることができる。
【0016】
【発明の実施の形態】
図3は、燃料取扱設備の全体構成図である。図3において、燃料取扱設備は、燃料集合体の圧力管集合体に対する装荷及び取出しを行う燃料交換装置17、並びに格納容器18と燃料貯蔵プール19との間で燃料集合体を移送する燃料移送装置20とからなっている。燃料交換装置17は、カランドリアタンク1内に構成された原子炉本体の下方に移動自在に配置され、燃料交換時には原子炉下部から圧力管集合体内の燃料集合体を取り出し、燃料交換プール21の下方に移動する。燃料交換装置17内の燃料集合体は、トランスファポート22を介して燃料出入機23により引き上げられ、次いで上部スイング装置24、トランスファシュート25を通して格納容器外の燃料貯蔵プール19に排出される。この燃料集合体は、下部スイング装置26を介して燃料移送機27に吊り上げられ、使用済燃料ラックまで搬送される。新燃料は上記と逆の順序で格納容器18に搬入され、燃料交換装置17により圧力管集合体に装荷される。
【0017】
図1及び図2は、原子炉設備の廃止措置時において、既存の燃料取扱設備を利用して行う圧力管集合体の解体処理フローを示し、図2は図1のII−II線に沿う断面図である。燃料取扱設備は本来、圧力管集合体に収納される燃料集合体を取り扱うもので、圧力管集合体は当然に燃料集合体よりも寸法が大きい。そのため、燃料取扱設備には通過最大径の関係から、そのままでは圧力管集合体を取り扱えない部分があり、この部分には改造を加える必要がある。以下、この改造を含めて、図1及び図2に示す処理フローを▲1▼〜▲8▼の手順に従って説明する。なお、従来例と対応する部分には同一の符号を用いるものとする。
【0018】
▲1▼ まず、燃料交換装置17を炉下部で位置決めし、圧力管集合体2を受け取る。その際、入口管ノズル10及びシールリーク径ノズル12(図8参照)は、側方に突出して取扱いのじゃまになるため切除する。また、圧力管集合体2はそのままでは長すぎるため、適当な長さ、例えば1/3〜1/4に切断する。これらの切断は前段作業として、燃料交換装置17の頭部に設置した圧力管切断装置28により行う。
【0019】
図4に、圧力管切断装置28の一例を示す。図4において、水封式の昇降・旋回駆動部29上に前後移動駆動部30を介して、前後一対のメタルソー方式の切断機構部31, 32が支持され、図4の右側のメタルソー33は垂直に、左側のメタルソー33は水平に取り付けられている。図示圧力管切断装置28は、燃料交換時に圧力管13と燃料交換装置17とを水密に結合するために設けられていたスナウトが取り除かれた跡に取り付けられている。圧力管集合体2を切断するには、天井クレーンと同構造の圧力管吊下し機14(図1)で圧力管集合体2を吊り下げ支持したまま、切断機構部31によりノズル部を切除し、次いで切断機構部32により管体部分を切断する。圧力管切断装置28としては、プラズマ切断方式やアブレシブ切断方式など他の方式も採用可能である。
【0020】
一方、燃料交換装置17の圧力容器内にはマガジンユニットが設けられ、マガジンユニットには燃料集合体をそれぞれ収容する4本のマガジンチューブが、スナウトの中心に順次回転移動するようにマガジン支持胴に支持されている。しかし、内径が現状のままのマガジンチューブには、圧力管集合体は収容できない。従って、マガジンチューブを内径の大きいものに交換するか、マガジンユニットを除去して新たな案内管を設置し、圧力管集合体を収容できるように改造する。このように改造した燃料交換装置17に、上記したように切断機構部32で切断した圧力管集合体2を自重で降下させて収容する。燃料交換装置17の中は水で満たされていて、圧力管集合体2はこの水で遮蔽される。
【0021】
▲2▼ 燃料交換装置17に圧力管集合体2を収容したら、燃料交換装置17を横行走行台車により移動させ、トランスファポート22に対して位置付ける。
【0022】
▲3▼ 燃料出入機23により圧力管集合体2を把持して燃料交換プール21に吊り出す。ここで、燃料出入機23の本来のグリッパ34は燃料集合体を外側から把持する構造になっているが、このグリッパ34は圧力管集合体2には使えない。そこで、グリッパ34を改造し、輪切りにより内周面が露出した圧力管集合体2を内側から把持するようにする。
【0023】
図5及び図6に、圧力管集合体2を把持するグリッパの構成例を示す。各図の(A)はグリッパを圧力管集合体内に吊り下ろした状態、(B)は圧力管集合体を把持した状態である。図5はカム軸35の昇降動作を爪36の出入り動作に変える構造のもので、圧力管集合体2に挿入後、爪36を外周側に張り出して、圧力管集合体2の内周面を摩擦で把持する。図6は環状の風船(エアピッカー)37を空気圧で膨張させて、同様に把持する構造のものである。
【0024】
▲4▼ 燃料出入機23を移動し、圧力管集合体2を上部スイング装置24にセットする。
【0025】
▲5▼ 圧力管集合体2をトランスファシュート25により、燃料受渡プール38に移送する。このとき、圧力管集合体単独では取扱いが難しいので、トランスファ容器のような収納筒に収容する必要があるが、本来のトランスファ容器は燃料集合体に対してがたつきの生じない内径に作られているので、内径を拡大した新たなトランスファ容器に交換する。
【0026】
▲6▼ 燃料移送機27により、下部スイング装置26から圧力管集合体2を吊り上げる。燃料移送機27においても、燃料出入機23と同様のグリッパを用いる。
【0027】
▲7▼ 圧力管集合体2を使用済燃料貯蔵プール19に移送し、圧力管仮置ラック39に圧力管集合体2を仮置きする。なお、圧力管仮置ラック39は、使用済燃料ラックを撤去した跡に設置する。
【0028】
▲8▼ 燃料移送機27により圧力管仮置ラック39から圧力管集合体2を使用済燃料搬出室40に移送し、そこに設置した圧力管細断装置41により圧力管集合体2を細断する。細断後の廃材は別スペースに移送して廃棄物容器に収容する。
【0029】
上記した燃料取扱設備を用いた圧力管集合体の移送・細断は、以下の利点が想定される。
(1)ほとんどの取扱作業が、水中かつ遠隔で行える。従って、解体作業に伴う被ばくを最小限に抑えられる。
(2)処理装置の水中設置により、目視での作業監視が可能である。また、切断時に発生する切粉やドロスなどの飛散が抑えられ、二次廃棄物の回収方策が容易である。
(3)圧力管集合体を格納容器外に搬出した後に細断作業が行えるので、格納容器内での高線量作業を減らせる。
(4)使用済燃料貯蔵プール内に圧力管集合体を仮置きすることにより、原子炉本体からの圧力管集合体の取外し・移送とその後の細断・廃棄物容器への収容を独立して計画することが可能で、細断処理を待たずに圧力管集合体を取り外して移送することができ、格納容器内作業の工程裕度が増加する。また、その結果として、格納容器内の他の作業工程に対する影響が小さくなる。
(5)既存のトランスファシュートを利用して圧力管集合体を移送できるため、格納容器を貫通するための新たな通路が不要になる。
(6)既存設備の有効活用となり、廃止措置作業専用設備などの新たな廃棄物の発生が減じられる。結果として、解体処理コストの低減が図れる。
【0030】
【発明の効果】
以上の通り、この発明によれば、原子炉本体から取り外した圧力管集合体を既存の燃料取扱設備で使用済燃料貯蔵プールまで搬送し、圧力管集合体をプール内で細断するものとすることにより、既存の設備の一部に改造を施すだけで、プール水の遮へい効果を利用した解体細断時の被ばくの低減や既存設備の有効利用による解体廃棄物の低減を図ることができる。
【図面の簡単な説明】
【図1】この発明の実施の形態を示す圧力管集合体の搬送フロー図である。
【図2】図1のII−II線に沿う断面図である。
【図3】燃料取扱設備の全体構成を説明する図である。
【図4】圧力管切断装置の概略構成を示す側面図である。
【図5】燃料出入機のグリッパの構成を示し、(A)は開放状態、(B)は把持状態である。
【図6】燃料出入機のグリッパの異なる構成を示し、(A)は開放状態、(B)は把持状態である。
【図7】原子炉格納容器内で圧力管集合体を解体細断処理する方法を示す図である。
【図8】圧力管集合体を3分して示した縦断面図である。
【符号の説明】
1 カランドリアタンク
2 圧力管集合体
17 燃料交換装置
19 燃料貯蔵プール
20 燃料移送装置
21 燃料交換プール
22 トランスファポート
23 燃料出入機
24 上部スイング装置
25 トランスファシュート
26 下部スイング装置
27 燃料移送機
28 圧力管切断装置
38 燃料受渡プール
39 圧力管仮置ラック
40 使用済燃料搬出室
41 圧力管細断装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for dismantling a decommissioned advanced conversion reactor (ATR), and more particularly to a method for shredding a pressure tube assembly removed from a reactor body.
[0002]
[Prior art]
The new converter is a pressure tube reactor using heavy water as the moderator and light water as the coolant. In Japan, the ATR prototype reactor "Fugen" has been constructed. Is shown in It has already been decided that the Fugen power plant will be shut down soon, and it will be demolished after a predetermined decommissioning preparation period. The reactor is activated even after the fuel is taken out, and its decommissioning requires various technical developments and preparations.This invention was specifically studied for the dismantling of pressure pipe assemblies. is there.
[0003]
FIG. 7 is a conceptual diagram showing a reactor main body portion of the new conversion reactor. In FIG. 7, a large number of pipes (Calandria pipes) 3 for passing the pressure pipe assembly 2 are arranged in a lattice pattern between the upper and lower tube sheets of a cylindrical moderator container (Calandria tank) 1, and The tank 1 is filled with heavy water as a moderator. The upper and lower surfaces and side surfaces of the calandria tank 1 are covered with an iron water shield 4. The pressure pipe assembly 2 is composed of a pressure pipe (main body) 5 and pressure pipe extension pipes 6 and 7 joined to the upper and lower sides thereof. The pressure pipe 5 is housed in the calandria pipe 3, and the upper and lower extension pipes 6, 7 It penetrates the iron water shield 4.
[0004]
The fuel assembly is accommodated in the pressure pipe 5, and primary coolant pipes 8, 9 are connected to the vertical extension pipes 6, 7. Although not shown, a shield plug is attached to the upper and lower extension pipes 6 and 7 to pass the primary coolant but prevent radiation streaming, and the lower end of the lower extension pipe 7 is closed by a seal plug for sealing the primary cooling water. I have. The lower shield plug and the seal plug are connected to the lower extension pipe 7 by a ball latch mechanism so that the lower shield plug and the seal plug can be attached and detached by a fuel exchange device (not shown), and the lower shield plug and the fuel assembly are connected by a collet mechanism. Have been. The cooling water (light water) flowing into the pressure pipe assembly 2 from the lower cooling pipe 9 is heated by the pressure pipe 5 to become steam, and is supplied to the turbine from the upper cooling pipe 8. This reactor main body is stored in a reactor containment vessel (not shown).
[0005]
FIG. 8 is a longitudinal sectional view showing only the pipe of the pressure pipe assembly 2 divided into three parts. As described above, the pressure pipe assembly 2 includes the pressure pipe 5 and the upper extension pipe 6 and the lower extension pipe 7 joined to the upper and lower ends thereof by a roll joint method. , An inlet pipe nozzle 10 and a seal leak type nozzle 11 protrude. The length of each part is about 5 m for the pressure pipe 5, about 2 m for the upper extension pipe 6, about 3 m for the lower extension pipe 7, and the total length is about 10 m. The outer diameter of the pressure pipe 5 is about 130 mm, and the maximum diameter is about 190 mm at the lowermost end of the lower extension pipe 7.
[0006]
[Non-patent document 1]
Japan Society of Mechanical Engineers, Mechanical Engineering Handbook C. Engineering Edition First Edition, 4th Press 1997 The Japan Society of Mechanical Engineers p. C7-78-83
[0007]
[Problems to be solved by the invention]
Now, since the pressure tube assembly 2 has been activated by long-term operation, it is necessary to take measures such as remote control and shielding to perform shredding. In this case, it is conceivable that the shredding operation of the pressure tube assembly 2 is performed in the containment vessel, for example, immediately below the reactor body. FIG. 7 shows such an example. That is, in FIG. 7, a nozzle section cutting machine 12 for cutting the inlet pipe nozzle section and a pressure pipe cutting machine 13 for shredding the pressure pipe assembly 2 are provided below the reactor main body. After the pressure pipe assembly 2 is cut off from the primary coolant pipe 9 at the inlet pipe nozzle portion, the pressure pipe assembly 2 is hung by the pressure pipe shredder 13 through the protective cylinder 15 by the pressure pipe hanger 14 and has an appropriate length. Shredded. The shredded pressure tube assembly 2 is collected in the waste material storage device 16 and transported to the next step.
[0008]
However, shredding in the storage container has the following problems.
(1) When the shredding operation is performed in the containment vessel, the radioactivity level in the surrounding atmosphere increases, and other operations cannot be performed in parallel. Incidentally, there are a large number (224) of pressure pipe aggregates, and the shredding work and the transport work after the shredding work take a long time, and as a result, the critical work period of the reactor dismantling work becomes long.
(2) Since the pressure tube shredder is a newly manufactured device, after dismantling the reactor, the device itself becomes waste and secondary waste increases.
(3) Since the shredding operation is performed in the atmosphere, the amount of material required for shielding the device increases.
[0009]
An object of the present invention is to rationally proceed with pressure pipe dismantling work accompanying decommissioning of a new type of converter, to shorten the construction period, reduce dismantling waste, and simplify shielding procedures.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the present invention conveys the pressure pipe assembly removed from the reactor body of the new converter which has been decommissioned to the spent fuel storage pool using the existing fuel handling equipment, This pressure pipe assembly is shredded in the pool (claim 1).
[0011]
Considering that the pressure tube assembly is cylindrical and has a large number, the handling operation can be a simple and repetitive operation. Therefore, if this transport operation is performed using fuel handling equipment that originally handles fuel in water, the effects of automation and labor saving are great. Further, since the shredding work of the pressure pipe assembly can be performed in the pool water, the shielding effect by water can be utilized and other work in the containment vessel is not hindered. Furthermore, it is possible to reduce the amount of dismantling waste as compared with the case where a cutting and transferring device for the pressure pipe assembly is installed after removing the fuel handling equipment.
[0012]
The pressure pipe assembly is about 10 m long as described above, and a cooling water inlet pipe nozzle or the like protrudes to the side. Therefore, it is necessary to cut the pressure pipe assembly into an appropriate length that is easy to handle before transporting, and cut off the inlet pipe nozzle and the like. Therefore, a cutting device for the pressure tube assembly is installed at the head of the refueling device, and the pressure tube assembly is cut into a shape and size that can be easily handled by this cutting device, and then transported. Good (claim 2).
[0013]
By the way, the pressure tube assembly originally designed to accommodate the fuel assembly has a larger diameter than the fuel assembly, and the transfer path of the fuel handling equipment has a neck at the point of the maximum passage diameter. First, the pressure tube assembly cannot be accommodated in the magazine tube of the refueling apparatus. Therefore, in the refueling device, it is preferable to abolish the magazine unit and newly install a guide tube capable of accommodating the maximum diameter of the pressure tube assembly. As a result, it is possible to increase the maximum passage diameter of the refueling device (claim 3).
[0014]
Also, the transfer container of the transfer chute cannot accommodate most of the diameter of the pressure tube assembly. Therefore, in the transfer chute, it is preferable that the transfer container be replaced with a new container capable of accommodating the maximum diameter of the pressure tube assembly so as to enlarge the maximum passage diameter.
[0015]
On the other hand, it is preferable that the pressure pipe assembly transported to the spent fuel storage pool is temporarily placed on a temporary storage rack in the pool, and then shredded (claim 5). Thus, the work of removing and transferring the pressure tube assembly from the reactor body can be performed independently of the shredding work.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 3 is an overall configuration diagram of the fuel handling facility. In FIG. 3, the fuel handling equipment includes a fuel exchange device 17 for loading and unloading the fuel assembly to and from the pressure tube assembly, and a fuel transfer device for transferring the fuel assembly between the storage container 18 and the fuel storage pool 19. It consists of 20. The refueling device 17 is movably disposed below the reactor body formed in the calandria tank 1, takes out the fuel assembly in the pressure pipe assembly from the lower part of the reactor at the time of refueling, and Move down. The fuel assembly in the refueling device 17 is lifted by the fuel accessor 23 through the transfer port 22 and then discharged to the fuel storage pool 19 outside the storage container through the upper swing device 24 and the transfer chute 25. This fuel assembly is lifted by the fuel transfer device 27 via the lower swing device 26 and transported to the spent fuel rack. The new fuel is carried into the storage container 18 in the reverse order to the above, and is loaded into the pressure tube assembly by the fuel exchange device 17.
[0017]
1 and 2 show the flow of dismantling processing of a pressure pipe assembly using existing fuel handling equipment at the time of reactor facility decommissioning, and FIG. 2 is a cross-sectional view taken along the line II-II in FIG. FIG. The fuel handling equipment originally handles the fuel assembly housed in the pressure tube assembly, and the pressure tube assembly is naturally larger in size than the fuel assembly. For this reason, there is a part in the fuel handling equipment that cannot handle the pressure pipe assembly as it is because of the maximum diameter of passage, and it is necessary to modify this part. Hereinafter, including the modification, the processing flow shown in FIGS. 1 and 2 will be described in accordance with the procedures (1) to (8). Note that the same reference numerals are used for the portions corresponding to the conventional example.
[0018]
{Circle around (1)} First, the fuel exchange device 17 is positioned at the lower part of the furnace, and the pressure pipe assembly 2 is received. At this time, the inlet pipe nozzle 10 and the seal leak diameter nozzle 12 (see FIG. 8) protrude sideways and are cut off because they hinder handling. Further, since the pressure pipe assembly 2 is too long as it is, it is cut into an appropriate length, for example, 1/3 to 1/4. These cuts are performed by a pressure pipe cutting device 28 installed at the head of the refueling device 17 as a pre-operation.
[0019]
FIG. 4 shows an example of the pressure tube cutting device 28. In FIG. 4, a pair of front and rear metal saw type cutting mechanisms 31 and 32 are supported on a water ring type elevating and rotating drive unit 29 via a front and rear movement drive unit 30, and a metal saw 33 on the right side of FIG. The left metal saw 33 is mounted horizontally. The illustrated pressure pipe cutting device 28 is attached to the trace from which the snout provided to connect the pressure pipe 13 and the fuel exchange device 17 in a watertight manner at the time of refueling has been removed. In order to cut the pressure pipe assembly 2, the nozzle part is cut off by the cutting mechanism 31 while the pressure pipe assembly 2 is hung and supported by the pressure pipe hanger 14 (FIG. 1) having the same structure as the overhead crane. Then, the tube portion is cut by the cutting mechanism 32. As the pressure tube cutting device 28, other methods such as a plasma cutting method and an abrasive cutting method can be adopted.
[0020]
On the other hand, a magazine unit is provided in the pressure vessel of the refueling device 17, and the magazine unit has four magazine tubes, each of which accommodates a fuel assembly, on a magazine support cylinder so as to sequentially rotate around the center of the snout. Supported. However, a pressure tube assembly cannot be accommodated in a magazine tube having an inner diameter as it is. Therefore, the magazine tube is replaced with a tube having a larger inner diameter, or the magazine unit is removed and a new guide tube is installed, so that the pressure tube assembly can be accommodated. The pressure tube assembly 2 cut by the cutting mechanism 32 as described above is lowered and stored in its own weight in the fuel exchange device 17 thus modified. The inside of the refueling device 17 is filled with water, and the pressure tube assembly 2 is shielded by this water.
[0021]
{Circle around (2)} After the pressure pipe assembly 2 is accommodated in the fuel exchange device 17, the fuel exchange device 17 is moved by the traversing carriage and positioned with respect to the transfer port 22.
[0022]
{Circle around (3)} The pressure pipe assembly 2 is gripped by the fuel inlet / outlet device 23 and suspended from the fuel exchange pool 21. Here, the original gripper 34 of the fuel access unit 23 has a structure in which the fuel assembly is grasped from the outside, but this gripper 34 cannot be used for the pressure tube assembly 2. Therefore, the gripper 34 is modified so that the pressure pipe assembly 2 whose inner peripheral surface is exposed by the round cutting is gripped from the inside.
[0023]
FIGS. 5 and 6 show a configuration example of the gripper that grips the pressure tube assembly 2. (A) of each figure shows a state in which the gripper is suspended in the pressure tube assembly, and (B) shows a state in which the pressure tube assembly is gripped. FIG. 5 shows a structure in which the elevating operation of the camshaft 35 is changed to the in / out operation of the claw 36. After the claw 36 is inserted into the pressure tube assembly 2, the claw 36 is protruded to the outer peripheral side, and the inner peripheral surface of the pressure tube assembly 2 is exposed. Hold by friction. FIG. 6 shows a structure in which a ring-shaped balloon (air picker) 37 is inflated by air pressure and held similarly.
[0024]
(4) The fuel inlet / outlet machine 23 is moved, and the pressure tube assembly 2 is set on the upper swing device 24.
[0025]
(5) The pressure pipe assembly 2 is transferred to the fuel transfer pool 38 by the transfer chute 25. At this time, since it is difficult to handle the pressure pipe assembly alone, it is necessary to store the pressure pipe assembly in a storage cylinder such as a transfer container, but the original transfer container is formed with an inner diameter that does not cause rattling with the fuel assembly. Replace it with a new transfer container with an enlarged inner diameter.
[0026]
(6) The pressure pipe assembly 2 is lifted from the lower swing device 26 by the fuel transfer device 27. Also in the fuel transfer machine 27, the same gripper as the fuel access machine 23 is used.
[0027]
{Circle around (7)} The pressure pipe assembly 2 is transferred to the spent fuel storage pool 19, and the pressure pipe assembly 2 is temporarily placed on the pressure pipe temporary storage rack 39. In addition, the pressure pipe temporary storage rack 39 is installed at the mark where the spent fuel rack has been removed.
[0028]
{Circle around (8)} The pressure pipe assembly 2 is transferred from the pressure pipe temporary storage rack 39 to the spent fuel discharge chamber 40 by the fuel transfer device 27, and the pressure pipe assembly 2 is shredded by the pressure pipe shredding device 41 installed there. I do. The shredded waste material is transferred to another space and stored in a waste container.
[0029]
The transfer / shredding of the pressure pipe assembly using the fuel handling equipment described above has the following advantages.
(1) Most handling operations can be performed underwater and remotely. Therefore, exposure associated with the dismantling operation can be minimized.
(2) The work can be visually monitored by installing the processing apparatus underwater. Further, scattering of chips and dross generated at the time of cutting is suppressed, and a measure for collecting secondary waste is easy.
(3) Since the shredding operation can be performed after the pressure pipe assembly is carried out of the containment vessel, the high-dose work inside the containment vessel can be reduced.
(4) By temporarily placing the pressure tube assembly in the spent fuel storage pool, the removal and transfer of the pressure tube assembly from the reactor body and the subsequent storage in the shredder / waste container are independent. It is possible to plan and remove and transfer the pressure tube assembly without waiting for shredding, thereby increasing the process allowance for the work in the containment vessel. In addition, as a result, the influence on other working steps in the storage container is reduced.
(5) Since the pressure tube assembly can be transferred using the existing transfer chute, a new passage for penetrating the storage container is not required.
(6) Existing equipment is effectively used, and the generation of new waste such as equipment dedicated to decommissioning work is reduced. As a result, the cost of dismantling processing can be reduced.
[0030]
【The invention's effect】
As described above, according to the present invention, the pressure pipe assembly removed from the reactor body is transported to the spent fuel storage pool by the existing fuel handling equipment, and the pressure pipe assembly is shredded in the pool. Thus, it is possible to reduce the exposure at the time of dismantling and shredding by utilizing the pool water shielding effect and to reduce the dismantling waste by effectively utilizing the existing facilities, only by modifying a part of the existing facilities.
[Brief description of the drawings]
FIG. 1 is a flow chart of conveying a pressure tube assembly showing an embodiment of the present invention.
FIG. 2 is a sectional view taken along the line II-II in FIG.
FIG. 3 is a diagram illustrating an overall configuration of a fuel handling facility.
FIG. 4 is a side view showing a schematic configuration of a pressure tube cutting device.
5A and 5B show a configuration of a gripper of the fuel access device, wherein FIG. 5A shows an open state and FIG. 5B shows a gripping state.
FIGS. 6A and 6B show different configurations of the gripper of the fuel access device, wherein FIG. 6A shows an open state and FIG.
FIG. 7 is a diagram showing a method of dismantling and shredding a pressure tube assembly in a reactor containment vessel.
FIG. 8 is a longitudinal sectional view showing a pressure pipe assembly divided into three parts.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 calandria tank 2 pressure pipe assembly 17 fuel exchange device 19 fuel storage pool 20 fuel transfer device 21 fuel exchange pool 22 transfer port 23 fuel access device 24 upper swing device 25 transfer chute 26 lower swing device 27 fuel transfer device 28 pressure pipe Cutting device 38 Fuel delivery pool 39 Pressure pipe temporary storage rack 40 Spent fuel discharge chamber 41 Pressure pipe shredding device

Claims (5)

廃止措置に入った新型転換炉の原子炉本体から取り外した圧力管集合体を既存の燃料取扱設備を利用して使用済燃料貯蔵プールまで搬送し、この圧力管集合体を前記プール内で細断することを特徴とする新型転換炉の圧力管解体方法。The pressure pipe assembly removed from the reactor body of the decommissioned new conversion reactor is transported to the spent fuel storage pool using the existing fuel handling equipment, and this pressure pipe assembly is shredded in the pool A pressure tube disassembly method for a new type converter. 燃料交換装置の頭部に前記圧力管集合体の切断装置を設置し、この切断装置により前記圧力管集合体を取扱いが容易な形状・寸法に切断してから搬送することを特徴とする請求項1記載の新型転換炉の圧力管解体方法。A cutting device for the pressure tube assembly is installed at the head of the refueling device, and the pressure tube assembly is cut into a shape and size that can be easily handled by the cutting device, and then transported. A method for dismantling a pressure tube of a new type conversion furnace according to claim 1. 前記燃料交換装置のマガジンユニットに換えて前記圧力管集合体の最大径が収容可能な案内管を新たに設置し、前記燃料交換装置の通過最大径を拡大することを特徴とする請求項1記載の新型転換炉の圧力管解体方法。The guide tube capable of accommodating the maximum diameter of the pressure pipe assembly is newly installed in place of the magazine unit of the refueling device, and the maximum passage diameter of the refueling device is enlarged. Pressure tube disassembly method for new type of converter. トランスファシュートのトランスファ容器を前記圧力管集合体の最大径が収容可能な新たな容器に交換し、前記トランスファシュートの通過最大径を拡大することを特徴とする請求項1記載の新型転換炉の圧力管解体方法。2. The pressure of a new converter according to claim 1, wherein the transfer container of the transfer chute is replaced with a new container capable of accommodating the maximum diameter of the pressure tube assembly, and the maximum diameter of the transfer chute passing therethrough is enlarged. Pipe dismantling method. 使用済燃料貯蔵プールまで搬送した前記圧力管集合体を前記プール内の仮置ラックにいったん仮置きした後、細断することを特徴とする請求項1記載の新型転換炉の圧力管解体方法。2. The pressure pipe disassembly method for a new type converter according to claim 1, wherein the pressure pipe assembly transported to the spent fuel storage pool is temporarily placed on a temporary rack in the pool and then cut.
JP2003156707A 2003-06-02 2003-06-02 Pressure tube dismantling method for the new converter Expired - Fee Related JP3770886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003156707A JP3770886B2 (en) 2003-06-02 2003-06-02 Pressure tube dismantling method for the new converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003156707A JP3770886B2 (en) 2003-06-02 2003-06-02 Pressure tube dismantling method for the new converter

Publications (2)

Publication Number Publication Date
JP2004361113A true JP2004361113A (en) 2004-12-24
JP3770886B2 JP3770886B2 (en) 2006-04-26

Family

ID=34050704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003156707A Expired - Fee Related JP3770886B2 (en) 2003-06-02 2003-06-02 Pressure tube dismantling method for the new converter

Country Status (1)

Country Link
JP (1) JP3770886B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189378A (en) * 2005-01-07 2006-07-20 Hitachi Engineering & Services Co Ltd Facility for and method of dismantling and removing reactor
WO2018232497A1 (en) 2017-06-23 2018-12-27 Candu Energy Inc. System and method for volume reduction of nuclear reactor components
JP7481068B2 (en) 2022-10-07 2024-05-10 ドゥサン エナービリティー カンパニー リミテッド System and method for simultaneous removal of pressure tube and reactor tube of heavy water reactor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189378A (en) * 2005-01-07 2006-07-20 Hitachi Engineering & Services Co Ltd Facility for and method of dismantling and removing reactor
WO2018232497A1 (en) 2017-06-23 2018-12-27 Candu Energy Inc. System and method for volume reduction of nuclear reactor components
CN111095433A (en) * 2017-06-23 2020-05-01 坎杜能源公司 System and method for reducing nuclear reactor component volume
EP3642850A4 (en) * 2017-06-23 2021-07-14 Candu Energy Inc. System and method for volume reduction of nuclear reactor components
CN111095433B (en) * 2017-06-23 2024-04-12 坎杜能源公司 System and method for reducing the volume of a nuclear reactor component
JP7481068B2 (en) 2022-10-07 2024-05-10 ドゥサン エナービリティー カンパニー リミテッド System and method for simultaneous removal of pressure tube and reactor tube of heavy water reactor

Also Published As

Publication number Publication date
JP3770886B2 (en) 2006-04-26

Similar Documents

Publication Publication Date Title
JP2008164599A (en) Handoff method and assembly for refueling nuclear reactor
JP2019027989A (en) Method for dismantling nuclear reactor pressure vessel
KR101450205B1 (en) A method for dismantling the retired steam generator
TW201714184A (en) Method for decommissioning nuclear power plant
JP6129646B2 (en) Method for carrying out fuel debris in boiling water nuclear power plant
CN109671509A (en) A kind of driving mechanism for control rod of high-temperature gas-cooled apparatus for examination and repair and maintenance craft method
Ren et al. Design and application of a special underwater cutting device for the decommissioning of the first HWRR reactor in China
JP3770886B2 (en) Pressure tube dismantling method for the new converter
WO2007083401A1 (en) Method for dismantling heat exchanger installed in building for nuclear reactor
CN207947073U (en) A kind of driving mechanism for control rod of high-temperature gas-cooled apparatus for examination and repair
JPH09145882A (en) Reactor pressure vessel replacing method and equipment at the time of replacing reactor pressure vessel
CA3066142A1 (en) System and method for volume reduction of nuclear reactor components
CN115867988A (en) Fuel processing system, arrangement and process for a nuclear reactor
CN113299415A (en) Shore-based refueling system for nuclear-powered ship
RU2224307C2 (en) Fast reactor refueling method and system
CN111383786A (en) Method for changing material of pool reactor
JP6230964B2 (en) Fuel debris retrieval device and fuel debris retrieval method
JP6446370B2 (en) System and method for disposing of one or more radioactive parts from a nuclear power plant reactor
JP3519074B2 (en) Removal method of reactor pressure vessel
JP2021060224A (en) Nuclear reactor pressure vessel dismantling method and device
JP3668656B2 (en) Fuel inspection device
JP2016217987A (en) Method for opening reactor pressure vessel and method for taking out fuel debris
Medved et al. Decommissioning of the NPP A-1 heavy water management system-15121
Cross et al. Progress in the development of tooling and dismantling methodologies for the Windscale advanced gas cooled reactor (WAGR)
JPH01308999A (en) Storage pretreatment for spent fuel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees