JP3770844B2 - Simple biaxial property measurement method for plain woven fabric - Google Patents

Simple biaxial property measurement method for plain woven fabric Download PDF

Info

Publication number
JP3770844B2
JP3770844B2 JP2002053035A JP2002053035A JP3770844B2 JP 3770844 B2 JP3770844 B2 JP 3770844B2 JP 2002053035 A JP2002053035 A JP 2002053035A JP 2002053035 A JP2002053035 A JP 2002053035A JP 3770844 B2 JP3770844 B2 JP 3770844B2
Authority
JP
Japan
Prior art keywords
woven fabric
plain woven
restraint
degree
weft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002053035A
Other languages
Japanese (ja)
Other versions
JP2003254883A (en
Inventor
知正 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Composites Inc
Original Assignee
Fujikura Rubber Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Rubber Ltd filed Critical Fujikura Rubber Ltd
Priority to JP2002053035A priority Critical patent/JP3770844B2/en
Publication of JP2003254883A publication Critical patent/JP2003254883A/en
Application granted granted Critical
Publication of JP3770844B2 publication Critical patent/JP3770844B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【0001】
【技術分野】
本発明は、平織布を経糸方向と緯糸方向に共に引張力を与えたときの弾性係数を一軸引張試験機を用いて簡易的に測定する方法に関する。
【0002】
【従来技術及びその問題点】
例えば、ベローズ、ダイアフラム、テント等の膜構造物は、低弾性率ゴムからなるゴム母材内に強化材としての平織布を埋め込んだ複合材からなっている。平織布とゴム材料の弾性係数比は、103〜104も異なるため、膜構造物としての特性は平織布の特性が支配的である。従って、膜構造物が圧力を受けて多軸応力状態となったときの特性の解析には、平織布の特性の解析が不可欠である。
【0003】
平織布の特性は、経糸と緯糸にそれぞれ引張力を加えた二軸応力状態(応力比1:1)で測定することが望ましい。しかし、二軸試験機は大がかりで高価であるばかりか、試験法自体が難しい。
【0004】
【発明の目的】
本発明は、簡易な一軸引張試験機を用いて、平織布の二軸応力状態の任意の応力比における弾性係数を測定する方法を得ることを目的とする。
【0005】
【発明の概要】
本発明方法は、経糸と緯糸を有する平織布試片を、緯糸方向の拘束度を異ならせた複数の異なる拘束状態で経糸方向に引っ張り、それぞれの拘束度におけるひずみと弾性係数の関係を求める第一のステップ;有限要素法に基づき、中央部における、上記拘束度と、経糸と緯糸との応力比と、の関係を求める第二のステップ;及び第一のステップで求めた各拘束度におけるひずみ‐弾性係数の関係と、第二のステップで求めた各拘束度におけるひずみ‐応力比の関係から、各ひずみにおける応力比と弾性係数との関係を求める第三のステップ;を有することを特徴としている。この方法によれば、経糸と緯糸の応力比が1:1のときの弾性係数、つまり二軸応力状態における平織布の弾性係数を求めることができる。
【0006】
【発明の実施形態】
具体例に基づいて本発明を説明する。
「第一ステップ」
図1ないし図4は、一軸引張試験機を用いて緯糸方向の拘束度を異ならせながら平織布試験片TPを経糸方向に引っ張る状態を示している。一軸引張試験機は、平織布試験片TPの両端部を保持した一対のクロスヘッド(チャック)11を、互いに離間する方向に直線移動させる試験機である。クロスヘッド11の移動方向と平織布試験片TPの経糸方向Xとは一致している。図1は、緯糸の拘束度r=0としたとき(緯糸を全く拘束しないとき)の引張状態を示している。この一軸引張状態では、平織布試験片TPは負荷方向(経糸方向X)には延び、経糸方向Xと直交する緯糸方向Yには縮む。
【0007】
図2、図3は、図1の一軸引張状態において、平織布試験片TPの緯糸方向Yのすべての繊維の縮みを拘束した状態(拘束度r=1)を示している。平織布試験片TPの緯糸方向Yの糸の両端部はそれぞれ、一つの縦拘束板12に接着され、この一対の縦拘束板12の両端部がクロスヘッド11に支持されている。一対の縦拘束板12の距離は固定されている。この引張状態は、一軸応力状態で発生した横ひずみに等しいひずみを緯糸方向Yに与えたことと等価であり、平織布試験片TPは二軸応力状態となる。しかし、この状態は、経糸と緯糸の応力比が1:ν(ポアソン比)でしかない。本実施形態は、一軸引張試験機を用いながら、応力比1:1の二軸応力状態における平織布試験片TPの弾性係数を測定する方法を提案する。
【0008】
図4は、平織布試験片TPの緯糸方向Yの拘束度を異ならせる具体例を示している。一対のクロスヘッド11の間には、緯糸方向Yの複数の(数が多い程好ましい)横拘束板13ができるだけ等間隔に位置しており、この横拘束板13の両端部の接着エリア13aに、平織布試験片TPの緯糸方向Yの糸の両端部が接着されている。横拘束板13による接着エリア13aの経糸方向Xの合計長さをΣpとし、横拘束板13に拘束されない平織布試験片TPの経糸方向Xの合計長さをΣqとすると、Σp/(Σq+Σp)が拘束度rである。横拘束板13の接着エリア13aに接着されている緯糸方向Yの繊維は縮むことができない。拘束度を異ならせるとは、この横拘束板13の数及び合計幅を異ならせることを意味する。この横拘束板13を用いて拘束度を変化させる方法は、厳密ではないが、本測定方法においては、必要にして十分な擬似的な拘束度が得られる。
【0009】
なお、平織布試験片TPの具体例を挙げると、平織布から一定幅(例えば45mm)で切り出し、経糸が一定数(例えば70本、幅25mm)になるように両端から経糸を同数ずつ取り除き、ばらばらになった緯糸の両端部を横拘束板13の接着エリア13aへの接着部とする。
【0010】
図5は、拘束度r=0、0.25、0.5、0.63及び1の5種類につき、サンプル数n=3で、簡易二軸伸張試験を行って求めた各拘束度における応力‐ひずみ線図である。ひずみは、クロスヘッド11の移動距離から負荷方向のひずみとして算出した。応力は、繊維束一本当たりの荷重値と定義する。このグラフから、緯糸の拘束度が高くなるにつれて、経糸の応力値が顕著に高くなっていることが認められる。
【0011】
図6は、図5の試験結果を各拘束度における弾性係数‐ひずみ関係に置き換えたグラフである。すなわち、応力をひずみで除することで、各拘束度毎に、ひずみと弾性係数の関係を求めたものである。このグラフから、ひずみが1%未満と小さい領域では、平織布試験片TPの急激な弾性係数の変化が生じており、二軸応力状態での弾性係数を求めてその挙動を調べる必要性があることが推論できる。また、弾性係数のひずみ依存性を考慮する必要がある。
【0012】
「第二ステップ」
前述のように、以上の解析で求めることができる弾性係数は、応力比が1:ν(ポアソン比)の状態までであり、任意の応力比、さらには応力比1:1のときの平織布試験片TPの弾性係数を求めることはできない。そこで、第二ステップでは、有限要素法に基づき、平織布試験片TPの拘束度と応力比の関係を求める。有限要素法では、平織布試験片TPを直交異方性材として扱い、布の材料非線形性を考慮した二次元平面応力解析を行った。図7はその概念図で、試験片モデルTPの左端(経糸方向端部)を完全拘束し、右端に経糸方向Xの強制変位を与えた。上下端部は緯糸方向Yのみを拘束した。拘束度rは、矩形に分割した小要素(有限要素)の緯糸方向Yの両端自由端における全節点数と、その拘束節点数との比で定義した。また、平織布試験片TPのポアソン比νをν=0.41、弾性係数Eは、図6に示す値をひずみ増分に応じて与えた。
【0013】
この解析試験片モデルTPの中央部では、拘束の影響が見られない。図8は、ポアソン比ν=0.41の場合の有限要素法による解析試験片モデルTPの中央部での応力比と拘束度の関係を求めたグラフである。拘束度r=1のときの応力比はポアソン比ν=0.41に収束していることが分かる。
【0014】
「第三ステップ」
第三ステップでは、以上の第一ステップで求めたそれぞれの拘束度における弾性係数‐ひずみ関係と、第二ステップで求めた拘束度と応力比の関係を組み合わせ、拘束度をパラメータから除いて、各ひずみにおける応力比と弾性係数との関係を求める。図9は、そのグラフである。第一ステップの実際の測定で得られる最大の応力比は、1:ν(ポアソン比)であるが、第二のステップで得た応力比‐拘束度の関係を外挿することで、応力比が1:1のときの平織布試験片TPの弾性係数をひずみ毎に求めることができる。
【0015】
以上の実施形態では、平織布試験片TPの緯糸の拘束度を異ならせるために、横拘束板13を用いたが、代わりに、経糸方向に並ぶ多数のクリップを有する一対の縦拘束板を設け、これらの多数のクリップに対し選択的に緯糸の両端部を拘束しても、緯糸の拘束度を異ならせることができる。図10は、市販されているこの種の試験機の概略図で、引張方向に平行に設けた一対の引張方向ガイド20にそれぞれ多数のクリップ部材21が移動自在に支持されており、このクリップ部材21の先端部に平織布試験片TPの緯糸を保持するクリップ21aが備えられている。平織布試験片TPの経糸方向Xの両端部は、クロスヘッド11に保持されて引張力が与えられる。この試験機では、クリップ部材21の数と間隔で、拘束度rを変化させることができる。
【0016】
【発明の効果】
以上のように本発明によれば、平織布の二軸応力状態の任意の応力比における弾性係数を一軸引張試験機を用いて簡易的に測定することができる。
【図面の簡単な説明】
【図1】一軸引張試験機によって平織布試験片を拘束度r=0で引っ張る状態の概念斜視図である。
【図2】同拘束度r=1で引っ張る状態の概念斜視図である。
【図3】図2のIII‐III線に沿う概念断面図である。
【図4】同異なる拘束度で引っ張るときの概念平面図である。
【図5】異なる拘束度での応力‐ひずみ関係の測定結果例を示すグラフ図である。
【図6】図5の結果を各拘束度での弾性係数‐ひずみ関係に変換したグラフ図である。
【図7】平織布試験片の有限要素法による拘束度を説明する平面図である。
【図8】平織布試験片の拘束度と応力比との関係を有限要素法で求めたグラフ図である。
【図9】図6と図8の結果から求めた各ひずみ毎の弾性係数‐応力比の関係を示すグラフ図である。
【図10】平織布試験片の別の引張試験機の例を示す概念図である。
【符号の説明】
TP 平織布試験片
X 経糸方向
Y 緯糸方向
[0001]
【Technical field】
The present invention relates to a method for simply measuring an elastic modulus when a tensile force is applied to a plain woven fabric in both the warp and weft directions using a uniaxial tensile tester.
[0002]
[Prior art and its problems]
For example, film structures such as bellows, diaphragms, and tents are made of a composite material in which a plain woven fabric as a reinforcing material is embedded in a rubber base material made of low elastic modulus rubber. Since the elastic modulus ratio between the plain woven fabric and the rubber material is different by 10 3 to 10 4 , the properties of the membrane structure are dominated by the properties of the plain woven fabric. Therefore, the analysis of the characteristics of the plain woven fabric is indispensable for the analysis of the characteristics when the membrane structure is subjected to pressure and is in a multiaxial stress state.
[0003]
The characteristics of the plain woven fabric are desirably measured in a biaxial stress state (stress ratio of 1: 1) in which a tensile force is applied to each of the warp and the weft. However, the biaxial testing machine is not only large and expensive, but also the test method itself is difficult.
[0004]
OBJECT OF THE INVENTION
An object of the present invention is to obtain a method for measuring an elastic modulus at an arbitrary stress ratio in a biaxial stress state of a plain woven fabric using a simple uniaxial tensile tester.
[0005]
SUMMARY OF THE INVENTION
In the method of the present invention, a plain woven fabric specimen having warp and weft is pulled in the warp direction in a plurality of different restraint states with different degrees of restraint in the weft direction, and the relationship between strain and elastic modulus at each restraint is obtained. 1st step; 2nd step which calculates | requires the relationship between the said restraint degree in the center part and the stress ratio of a warp and a weft based on the finite element method; and each restraint degree calculated | required by the 1st step A third step for determining the relationship between the stress ratio and the elastic modulus at each strain from the relationship between the strain and the elastic modulus and the relationship between the strain and the stress ratio at each degree of restraint determined in the second step. It is said. According to this method, the elastic modulus when the stress ratio between the warp and the weft is 1: 1, that is, the elastic coefficient of the plain woven fabric in the biaxial stress state can be obtained.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described based on specific examples.
"First step"
1 to 4 show a state in which a plain woven fabric test piece TP is pulled in the warp direction while varying the degree of restraint in the weft direction using a uniaxial tensile tester. The uniaxial tensile tester is a tester that linearly moves a pair of cross heads (chucks) 11 holding both ends of a plain woven fabric test piece TP in a direction away from each other. The moving direction of the cross head 11 and the warp direction X of the plain woven fabric test piece TP coincide with each other. FIG. 1 shows a tensile state when the weft restraint degree r = 0 (when the weft thread is not restrained at all). In this uniaxial tension state, the plain woven fabric test piece TP extends in the load direction (warp direction X) and contracts in the weft direction Y orthogonal to the warp direction X.
[0007]
2 and 3 show a state (constraint degree r = 1) in which the shrinkage of all the fibers in the weft direction Y of the plain woven fabric test piece TP is restrained in the uniaxial tension state of FIG. Both ends of the yarn in the weft direction Y of the plain woven fabric test piece TP are bonded to one longitudinal restraint plate 12, and both ends of the pair of longitudinal restraint plates 12 are supported by the cross head 11. The distance between the pair of vertical restraint plates 12 is fixed. This tensile state is equivalent to applying a strain equal to the lateral strain generated in the uniaxial stress state in the weft direction Y, and the plain woven fabric test piece TP is in the biaxial stress state. However, in this state, the stress ratio between the warp and the weft is only 1: ν (Poisson's ratio). The present embodiment proposes a method for measuring the elastic modulus of a plain woven fabric test piece TP in a biaxial stress state with a stress ratio of 1: 1 while using a uniaxial tensile tester.
[0008]
FIG. 4 shows a specific example in which the degree of restraint in the weft direction Y of the plain woven fabric test piece TP is varied. Between the pair of cross heads 11, a plurality of (more preferable) lateral restraint plates 13 in the weft direction Y are positioned at equal intervals as much as possible. In the bonding areas 13 a at both ends of the lateral restraint plates 13, Both ends of the yarn in the weft direction Y of the plain woven fabric test piece TP are bonded. When the total length in the warp direction X of the bonding area 13a by the lateral restraint plate 13 is Σp, and the total length in the warp direction X of the plain woven fabric test piece TP not restrained by the lateral restraint plate 13 is Σq, Σp / (Σq + Σp ) Is the degree of restraint r. The fibers in the weft direction Y bonded to the bonding area 13a of the lateral restraint plate 13 cannot be shrunk. Making the degree of restraint different means making the number and total width of the lateral restraint plates 13 different. The method of changing the degree of restraint using the lateral restraint plate 13 is not strict, but in this measurement method, a sufficient degree of pseudo restraint can be obtained if necessary.
[0009]
A specific example of the plain woven fabric specimen TP is cut out from the plain woven fabric with a constant width (for example, 45 mm), and the same number of warps from both ends so that the number of warps is a constant (for example, 70, width 25 mm) The both ends of the wefts that have been removed and separated are used as bonding portions to the bonding area 13 a of the lateral restraint plate 13.
[0010]
FIG. 5 shows the stress at each degree of restraint obtained by conducting a simple biaxial extension test with the number of samples n = 3 for five kinds of restraint degrees r = 0, 0.25, 0.5, 0.63 and 1. -Strain diagram. The strain was calculated as the strain in the load direction from the moving distance of the crosshead 11. The stress is defined as a load value per fiber bundle. From this graph, it is recognized that the stress value of the warp is remarkably increased as the degree of restraint of the weft is increased.
[0011]
FIG. 6 is a graph in which the test result of FIG. 5 is replaced with an elastic coefficient-strain relationship at each degree of constraint. That is, by dividing the stress by the strain, the relationship between the strain and the elastic modulus is obtained for each degree of constraint. From this graph, in the region where the strain is as small as less than 1%, there is a sudden change in the elastic modulus of the plain woven fabric specimen TP, and there is a need to investigate the behavior by obtaining the elastic modulus in the biaxial stress state. I can reason. It is also necessary to consider the strain dependence of the elastic modulus.
[0012]
"Second step"
As described above, the elastic modulus that can be obtained by the above analysis is up to the state where the stress ratio is 1: ν (Poisson's ratio), and the plain weave when the stress ratio is 1: 1 and the stress ratio is 1: 1. The elastic modulus of the cloth test piece TP cannot be obtained. Therefore, in the second step, the relationship between the degree of restraint of the plain woven fabric test piece TP and the stress ratio is obtained based on the finite element method. In the finite element method, a plain woven fabric specimen TP was treated as an orthotropic material, and a two-dimensional plane stress analysis was performed in consideration of material nonlinearity of the fabric. FIG. 7 is a conceptual diagram thereof, in which the left end (end portion in the warp direction) of the test piece model TP is completely restrained, and a forced displacement in the warp direction X is given to the right end. The upper and lower ends restrained only the weft direction Y. The degree of restraint r was defined by the ratio of the total number of nodes at the free ends of both ends in the weft direction Y of a small element (finite element) divided into rectangles to the number of restrained nodes. The Poisson's ratio ν of the plain woven fabric test piece TP was ν = 0.41, and the elastic modulus E was given the value shown in FIG. 6 according to the strain increment.
[0013]
In the central part of this analytical specimen model TP, no restraint effect is observed. FIG. 8 is a graph showing the relationship between the stress ratio and the degree of restraint at the center of the analytical specimen model TP by the finite element method when the Poisson's ratio ν = 0.41. It can be seen that the stress ratio when the constraint degree r = 1 converges to the Poisson's ratio ν = 0.41.
[0014]
"Third step"
In the third step, the elastic modulus-strain relationship at each degree of restraint obtained in the first step above is combined with the relation between the degree of restraint obtained in the second step and the stress ratio, and the degree of restraint is excluded from the parameters. The relationship between the stress ratio in strain and the elastic modulus is obtained. FIG. 9 is a graph thereof. The maximum stress ratio obtained in the actual measurement of the first step is 1: ν (Poisson's ratio), but by extrapolating the stress ratio-constraint relationship obtained in the second step, the stress ratio The elastic modulus of the plain woven fabric test piece TP when the ratio is 1: 1 can be obtained for each strain.
[0015]
In the above embodiment, the transverse restraint plate 13 is used to vary the degree of restraint of the weft of the plain woven fabric test piece TP. Instead, a pair of longitudinal restraint plates having a number of clips arranged in the warp direction are used. Even if the both ends of the weft are selectively restrained with respect to the large number of clips, the degree of restraint of the weft can be made different. FIG. 10 is a schematic view of this type of testing machine that is commercially available. A number of clip members 21 are movably supported by a pair of tension direction guides 20 provided parallel to the tension direction. A clip 21 a for holding the weft of the plain woven fabric test piece TP is provided at the tip of 21. Both ends in the warp direction X of the plain woven fabric test piece TP are held by the cross head 11 and given a tensile force. In this testing machine, the restraint degree r can be changed by the number and interval of the clip members 21.
[0016]
【The invention's effect】
As described above, according to the present invention, the elastic modulus at an arbitrary stress ratio in the biaxial stress state of the plain woven fabric can be easily measured using the uniaxial tensile tester.
[Brief description of the drawings]
FIG. 1 is a conceptual perspective view of a state in which a plain woven fabric test piece is pulled at a constraint degree r = 0 by a uniaxial tensile tester.
FIG. 2 is a conceptual perspective view of a state of pulling at the same constraint degree r = 1.
3 is a conceptual cross-sectional view taken along line III-III in FIG.
FIG. 4 is a conceptual plan view when pulling with different degrees of restriction.
FIG. 5 is a graph showing examples of measurement results of stress-strain relationships at different degrees of constraint.
6 is a graph obtained by converting the result of FIG. 5 into an elastic coefficient-strain relationship at each degree of constraint.
FIG. 7 is a plan view for explaining the degree of restraint by a finite element method on a plain woven fabric test piece.
FIG. 8 is a graph showing the relationship between the degree of restraint of a plain woven fabric test piece and the stress ratio obtained by the finite element method.
9 is a graph showing the relationship between the elastic modulus-stress ratio for each strain obtained from the results of FIGS. 6 and 8. FIG.
FIG. 10 is a conceptual diagram showing an example of another tensile tester for plain woven fabric test pieces.
[Explanation of symbols]
TP plain weave test piece X Warp direction Y Weft direction

Claims (2)

経糸と緯糸を有する平織布試片を、緯糸方向の拘束度を異ならせた複数の異なる拘束状態で経糸方向に引っ張り、それぞれの拘束度におけるひずみと弾性係数の関係を求める第一のステップ;
有限要素法に基づき、上記平織布試片の中央部における、上記拘束度と、経糸と緯糸との応力比と、の関係を求める第二のステップ;及び
上記第一のステップで求めた各拘束度におけるひずみ‐弾性係数の関係と、第二のステップで求めた各拘束度‐応力比の関係から、各ひずみにおける応力比と弾性係数との関係を求める第三のステップ;
を有することを特徴とする平織布の簡易二軸特性測定方法。
A first step in which a plain woven fabric specimen having warp and weft is pulled in the warp direction in a plurality of different restrained states with different degrees of restraint in the weft direction, and the relationship between strain and elastic modulus at each restraint is obtained;
Based on the finite element method, a second step for determining the relationship between the degree of restraint and the stress ratio between the warp and the weft in the central portion of the plain woven fabric specimen; and each of the steps determined in the first step A third step for determining the relationship between the stress ratio and the elastic modulus at each strain from the relationship between the strain and the elastic modulus in the degree of constraint and the relationship between each degree of constraint and the stress ratio obtained in the second step;
A simple biaxial property measuring method for plain woven fabrics, comprising:
請求項1記載の簡易二軸特性測定方法において、上記第三のステップでは、経糸と緯糸の応力比が1:1のときの弾性係数を求める平織布の簡易二軸特性測定方法。2. The simple biaxial characteristic measuring method according to claim 1, wherein, in the third step, the plain woven fabric is obtained by obtaining an elastic coefficient when the stress ratio between the warp and the weft is 1: 1.
JP2002053035A 2002-02-28 2002-02-28 Simple biaxial property measurement method for plain woven fabric Expired - Fee Related JP3770844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002053035A JP3770844B2 (en) 2002-02-28 2002-02-28 Simple biaxial property measurement method for plain woven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002053035A JP3770844B2 (en) 2002-02-28 2002-02-28 Simple biaxial property measurement method for plain woven fabric

Publications (2)

Publication Number Publication Date
JP2003254883A JP2003254883A (en) 2003-09-10
JP3770844B2 true JP3770844B2 (en) 2006-04-26

Family

ID=28664569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002053035A Expired - Fee Related JP3770844B2 (en) 2002-02-28 2002-02-28 Simple biaxial property measurement method for plain woven fabric

Country Status (1)

Country Link
JP (1) JP3770844B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101883241B1 (en) * 2017-02-14 2018-07-30 주식회사 유토엔지니어링 Sample loader for physical property analyzer
CN111965019A (en) * 2020-07-23 2020-11-20 河海大学 Visual integral type soil body unipolar stretching device breaks
US11768193B2 (en) 2019-12-20 2023-09-26 The Research Foundation For The State University Of New York System and method for characterizing the equibiaxial compressive strength of 2D woven composites

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109284539B (en) * 2018-08-30 2022-11-04 沈阳云仿科技有限公司 Method for optimizing size and technological parameters of hydraulic or pneumatic forming die of U-shaped corrugated pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101883241B1 (en) * 2017-02-14 2018-07-30 주식회사 유토엔지니어링 Sample loader for physical property analyzer
US11768193B2 (en) 2019-12-20 2023-09-26 The Research Foundation For The State University Of New York System and method for characterizing the equibiaxial compressive strength of 2D woven composites
CN111965019A (en) * 2020-07-23 2020-11-20 河海大学 Visual integral type soil body unipolar stretching device breaks
CN111965019B (en) * 2020-07-23 2021-11-09 河海大学 Visual integral type soil body unipolar stretching device breaks

Also Published As

Publication number Publication date
JP2003254883A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
US20120129416A1 (en) Auxetic knitted fabric
Beex et al. Experimental identification of a lattice model for woven fabrics: Application to electronic textile
JP3770844B2 (en) Simple biaxial property measurement method for plain woven fabric
CN101694443A (en) Three-dimensional mechanical property tester for fabric and textile structural composite materials
Shahabi et al. Effect of fabric structure and weft density on the Poisson's ratio of worsted fabric
Dano, Guy Gendron, Andre Picard Mechanical behavior of a triaxial woven fabric composite
WO2005067379A2 (en) A test device and method for measuring strength
Liao et al. Computerized failure analysis of nonwoven fabrics based on fiber failure criterion
Durville A finite element approach of the behaviour of woven materials at microscopic scale
Szostkiewicz et al. Stiffness identification and tearing analysis for coated membranes under biaxial loads
Potluri et al. Biaxial shear testing of textile preforms for formability analysis
Xiao et al. Large deformation modelling of tight woven fabric under high air pressure
Adanur et al. Computer simulation of mechanical properties of nonwoven geotextiles in soil-fabric interaction
CN109145475B (en) Method for determining tensile breaking strength of satin cotton fabric
Wang A method for tensile test of geotextiles with confining pressure
Zako et al. Characterization of Low Cycle Fatigue for Woven Fabric Composites (Below the Freezing Point)
Jung et al. Experimental feasibility investigation on wearability of cloth-type electronic devices composed of functional polyvinylidene difluoride (PVDF) fibers
Seretis et al. On the strength and failure mechanism of woven para-aramid protection fabrics
Masteikaitė et al. A method for mobility estimation of textile-polymeric systems
Gross et al. Effect of Pick Spacing and Warp and Weft Volume Fraction on Intrinsic Residual Stresses in 3D Woven Composites
YOSHIDA et al. Effect of the Number of Laminated Plies on Elastic Properties of Plain-Weave Fabric Composite Laminates
RU75050U1 (en) DEVICE FOR DETERMINING DEFORMATION PROPERTIES OF KNITTED FABRIC
CN108008011A (en) A kind of method of test material tensile modulus of elasticity
Patel et al. Effect of specimen size and strain rate on the tensile properties of heat-sealed and needle-punched nonwoven fabrics
Godfrey et al. Analysis of damage tolerance to tear propagation in stressed structural fabrics

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060207

R150 Certificate of patent or registration of utility model

Ref document number: 3770844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees