JP3770755B2 - Substrate processing equipment - Google Patents

Substrate processing equipment Download PDF

Info

Publication number
JP3770755B2
JP3770755B2 JP17092099A JP17092099A JP3770755B2 JP 3770755 B2 JP3770755 B2 JP 3770755B2 JP 17092099 A JP17092099 A JP 17092099A JP 17092099 A JP17092099 A JP 17092099A JP 3770755 B2 JP3770755 B2 JP 3770755B2
Authority
JP
Japan
Prior art keywords
substrate
cleaning liquid
cleaning
liquid flow
continuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17092099A
Other languages
Japanese (ja)
Other versions
JP2001007066A (en
Inventor
昌史 川谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd, Dainippon Screen Manufacturing Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP17092099A priority Critical patent/JP3770755B2/en
Publication of JP2001007066A publication Critical patent/JP2001007066A/en
Application granted granted Critical
Publication of JP3770755B2 publication Critical patent/JP3770755B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、1または複数枚の半導体ウエハなどの基板の洗浄面を、純水や薬液、エッチング液などの洗浄液で洗浄する機能を有する基板洗浄装置や基板洗浄乾燥装置などの基板処理装置に関する。
【0002】
【従来の技術】
従来のこの種の基板処理装置は、例えば、図19に示すように、複数枚の基板Wを平行状態で保持し、これら基板Wに対して、ノズル100から洗浄液を液滴状にして放射状に供給しつつ、各基板Wを一体的に回転させて、基板Wの表裏両面を洗浄面として洗浄するように構成されている。
【0003】
すなわち、従来装置は、基板Wの並び方向におけるノズル100の配置を、各基板WのピッチPよりも広い間隔で配置し、各基板Wの洗浄面に対して斜め方向から洗浄液の液滴QSを吹き付け、基板Wの洗浄面に吹き付けられた洗浄液の液滴QS同士が基板Wの洗浄面上でつながって次第に大きくなり、重力によって基板Wの洗浄面を流れ落ち、基板Wの洗浄面全面を洗浄液で洗浄するように構成している。
【0004】
【発明が解決しようとする課題】
しかしながら、このような構成を有する従来例の場合には、次のような問題がある。
まず、従来装置は、各基板Wの洗浄面に対して斜め方向から洗浄液の液滴QSを吹き付けているので、ノズル100からの洗浄液の液滴QSは、各基板Wの洗浄面の周縁部だけにしか直接的に吹き付けられない。また、ノズル100からの洗浄液の液滴QSが直接的に吹き付けられた部分と、重力によって洗浄液が流れる部分とでは洗浄力に差が生じる。そのため、従来装置では、基板Wの洗浄面の周縁部付近と中央部付近とで洗浄精度に差が生じ、基板Wの洗浄面全面で均一な洗浄が行えないという問題がある。
【0005】
また、重力によって基板Wの洗浄面を流れ落ちる洗浄液の軌跡は非常に不規則である。そのため、基板Wの洗浄面全面に満遍なく洗浄液が供給されずに、基板Wの洗浄面に洗浄液が供給されない部分が形成されることも起こり得るので、基板Wの洗浄面全面を洗浄液で確実に洗浄することが保証されないという問題もある。特に、例えば、基板Wの表面にパターンが形成されている場合など、基板Wの洗浄面内に親水性の部分と疎水性の部分とが形成されている場合、重力によって基板Wの洗浄面を流れ落ちる洗浄液は親水性の部分に流れ易く、疎水性の部分に流れ難くなり、基板Wの洗浄面全面を洗浄液で確実に洗浄することができなくなる。
【0006】
さらに、従来装置では、ノズル100に対する各基板Wの各洗浄面の位置関係により、ノズル100からの洗浄液の液滴QSが直接的に吹き付けられる部分が、各基板Wの各洗浄面ごとに相違するので、各基板Wの各洗浄面ごとでの洗浄精度にも差が生じ、各基板Wの各洗浄面間でも均一な洗浄を行えないという問題もある。
【0007】
本発明は、このような事情に鑑みてなされたものであって、基板の洗浄面全面を均一に洗浄することができ、また、複数枚の基板を同時に洗浄する場合には各基板の各洗浄面間でも均一に洗浄することもできる基板処理装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、このような目的を達成するために、次のような構成をとる。
すなわち、請求項1に記載の発明は、基板の洗浄面を洗浄液で洗浄する機能を有する基板処理装置であって、基板を保持する基板保持手段と、前記基板保持手段を回転させる回転手段と、前記基板の端部から、基板の洗浄面に沿って、連続的に流れる洗浄液流を形成するように、連続的な洗浄液流を基板へ供給する洗浄液流供給手段と、を備え、前記洗浄液流供給手段から前記基板保持手段に保持された基板に前記連続的な洗浄液流を供給しつつ、基板を保持した前記基板保持手段を回転させ、このとき、前記連続的な洗浄液流が基板の洗浄面の回転中心を通過して、基板の洗浄面を洗浄液で洗浄するように構成し、かつ、前記洗浄液流供給手段から前記基板保持手段に保持された基板に供給された1つの連続的な洗浄液流が、基板の端縁で基板の表面と裏面とに分配され、基板の表面及び裏面それぞれで、前記基板の端部から、基板の洗浄面に沿って、連続的に流れる洗浄液流を形成するように、基板へ前記連続的な洗浄液流を供給するものである。
【0009】
請求項2に記載の発明は、基板の洗浄面を洗浄液で洗浄する機能を有する基板処理装置であって、基板を起立姿勢で保持する基板保持手段と、前記基板保持手段を回転させる回転手段と、前記基板の端部から、基板の洗浄面に沿って、連続的に流れる洗浄液流を形成するように、連続的な洗浄液流を基板へ供給する洗浄液流供給手段と、前記回転手段を駆動制御して基板の回転条件を調節し、前記洗浄液流供給手段を調節制御して洗浄液流の供給条件を調節する洗浄制御手段と、を備え、前記洗浄制御手段は、前記回転手段を停止させて、前記基板保持手段に起立姿勢で保持された基板が非回転状態のとき、前記洗浄液流供給手段から基板に供給した前記連続的な洗浄液流が基板の洗浄面の回転中心の鉛直上方を通過する位置を、基板の洗浄面の親水性の度合いが大きいほど基板の洗浄面の回転中心から近く、かつ、基板の洗浄面の疎水性の度合いが大きいほど基板の洗浄面の回転中心から遠くなるように洗浄液流の供給条件を調節するとともに、その洗浄液流の供給条件に応じて基板の回転条件を調節することにより、前記回転手段を回転させて基板が回転状態のとき、洗浄液流が基板の洗浄面の回転中心を通過するようにして、基板の洗浄面を洗浄液で洗浄するものである。
【0010】
(削除)
【0011】
請求項3に記載の発明は、基板の洗浄面を洗浄液で洗浄する機能を有する基板処理装置であって、基板を保持する基板保持手段と、前記基板保持手段を回転させる回転手段と、前記基板の端部から、基板の洗浄面に沿って、連続的に流れる洗浄液流を形成するように、連続的な洗浄液流を基板へ供給する洗浄液流供給手段と、前記回転手段を駆動制御して基板の回転条件を調節し、前記洗浄液流供給手段を調節制御して洗浄液流の供給条件を調節する洗浄制御手段と、を備え、前記洗浄制御手段は、基板の回転時に、前記洗浄液流供給手段から前記基板保持手段に保持された基板に供給される前記連続的な洗浄液流を横切って基板への前記連続的な洗浄液流の供給を一時的に遮断する遮断部材を有する場合に、まず、前記連続的な洗浄液流が基板の洗浄面の回転中心を通過して、基板の洗浄面を洗浄液で洗浄する第1の洗浄を行い、次に、前記第1の洗浄において、基板の洗浄面に供給される前記連続的な洗浄液流が前記遮断部材に遮られたことによって流れなかった基板の洗浄面における洗浄液未供給部分に対して、前記連続的な洗浄液流が流れるように前記洗浄液流の供給条件または/および前記基板の回転条件を変更調節して、基板の洗浄面を洗浄液で洗浄する第2の洗浄を行うように制御するものである。
【0012】
請求項4に記載の発明は、請求項1ないし3のいずれかに記載の基板処理装置において、前記基板保持手段は、複数枚の基板を保持するように構成され、前記洗浄液流供給手段は、前記基板保持手段に保持された各基板の洗浄面ごとに前記連続的な洗浄液流を供給するように構成したものである。
【0013】
請求項5に記載の発明は、請求項2または3に記載の基板処理装置において、前記洗浄液流供給手段から前記基板保持手段に保持された基板に供給された1つの連続的な洗浄液流が、基板の表裏どちらか1つの洗浄面だけに、基板の端部から、基板の洗浄面に沿って、連続的に流れる洗浄液流を形成するように、基板へ連続的な洗浄液流を供給するものである。
【0014】
請求項6に記載の発明は、請求項1または2に記載の基板処理装置において、基板の回転時に、前記洗浄液流供給手段から前記基板保持手段に保持された基板に供給される前記連続的な洗浄液流を横切って基板への前記連続的な洗浄液流の供給を一時的に遮断する遮断部材を有する場合に、基板に供給される前記連続的な洗浄液流を前記遮断部材が横切った後、基板に供給された前記連続的な洗浄液流が、前記遮断部材に遮られたことによって洗浄液流が流れなかった基板の洗浄面における洗浄液未供給部分を流れるようにして、基板の洗浄面を洗浄液で洗浄するように構成したものである。
【0015】
請求項7に記載の発明は、請求項1ないし6のいずれかに記載の基板処理装置において、
基板を乾燥させる乾燥手段をさらに備えたものである。
【0016】
【作用】
請求項1と請求項2と請求項3とに記載の発明の共通する作用は次のとおりである。
基板を基板保持手段に保持し、洗浄液流供給手段から基板保持手段に保持された基板に、基板の端部から、基板の洗浄面に沿って、連続的に流れる洗浄液流を形成するように、連続的な洗浄液流を供給しつつ、回転手段によって基板保持手段およびそれによって保持された基板を回転させて基板の洗浄面を洗浄液で洗浄する。
【0017】
ここで、基板の回転に伴い遠心力および、基板の洗浄面と洗浄液との間で生じる表面張力で基板の洗浄面に沿って流れる洗浄液流の軌跡が変化する。そこで、洗浄液流供給手段から基板の洗浄面に供給される洗浄液流の供給条件と回転手段による基板(基板保持手段)の回転条件とを調節して、連続的な洗浄液流が基板の洗浄面の回転中心を通過するようにして、基板の洗浄面を洗浄液で洗浄する。
【0018】
なお、洗浄液流には実質的に幅を有することになるが、この洗浄液流の幅内のどこかが基板の洗浄面の回転中心を通過するようにすればよい。
【0019】
これにより、洗浄液流は、基板の洗浄面の一端部から回転中心を通過する洗浄面に沿っての連続的な流れを形成し、その状態で、基板は回転するので、基板の洗浄面全面に確実に洗浄液を供給することができ、基板の洗浄面全面を洗浄液で均一に洗浄することができる。
【0020】
なお、上記洗浄液流の供給条件には、洗浄液流供給手段の配置位置や、洗浄液流供給手段から基板に供給される連続的な洗浄液流の供給方向、洗浄液流の流速などを含み、上記基板の回転条件には、回転方向と回転数(回転速度)とを含む。
【0021】
洗浄液流の供給条件によって、主に、基板の非回転時において基板の洗浄面を流れる洗浄液流の軌跡を調節できる。また、基板の回転方向によって、基板の回転に伴う洗浄液流の軌跡の変化する方向を調節でき、基板の回転数によって、基板の回転に伴う洗浄液流の軌跡の変化する量を調節できる。なお、洗浄液流の流速によっても、基板の回転に伴う洗浄液流の軌跡の変化する量を調節することができる。
【0022】
さらに、請求項1に記載の発明によれば、洗浄液流供給手段から基板保持手段に保持された基板に供給された1つの連続的な洗浄液流が、基板の端縁で基板の表面と裏面とに分配され、基板の表面及び裏面それぞれで基板の一端部から各洗浄面の回転中心を通過するように表裏各面に沿って連続的に流れるように、基板へ連続的な洗浄液流を供給する。
【0023】
これにより、基板1枚ごとに1つの連続的な洗浄液流を供給して、基板の表裏両面をそれぞれ洗浄面として同時に洗浄することができる。
【0024】
請求項2に記載の発明の作用は次のとおりである。
基板保持手段は、基板を起立姿勢で保持し、基板保持手段に起立姿勢で保持された基板が非回転状態のとき、洗浄液流供給手段から基板に供給した連続的な洗浄液流が、基板の洗浄面の回転中心を通る鉛直仮想線上で、基板の洗浄面の回転中心よりも上方側を通過するように洗浄液流の供給条件を調節するとともに、その洗浄液流の供給条件に応じて基板の回転条件を調節し、連続的な洗浄液流を基板に供給しつつ、基板を回転させて基板の洗浄面を洗浄液で洗浄する。
【0025】
上述した洗浄液流の供給条件に対しては、基板の回転条件のうちの回転方向として、上記鉛直仮想線上を通過するまでの洗浄面に沿っての洗浄液流を下方に変化させるような回転方向とすれば、基板の回転中に基板の洗浄面に沿って連続的に流れる洗浄液流が、基板の洗浄面の回転中心に向かう方向に洗浄液流の軌跡を変化させることができる。そして、基板の回転数を適宜に調節すれば、基板の回転中に基板の洗浄面に沿って連続的に流れる洗浄液流が、基板の洗浄面の回転中心を通過するように洗浄液流の軌跡を変化させることができる。
【0026】
ここで、基板の洗浄面の表面状態が、全体的に親水性であるか疎水性であるかによって、基板の非回転時における洗浄液流の軌跡や、基板の回転に伴う洗浄液流の軌跡の変化量は相違する。
【0027】
すなわち、上述したように基板が非回転状態のとき、基板に供給した連続的な洗浄液流が鉛直仮想線上で基板の洗浄面の回転中心よりも上方側を通過するような洗浄液流の供給条件の場合、基板の洗浄面の親水性の度合いが大きくなるに従って、洗浄面と洗浄液との間の表面張力によって洗浄面に沿って流れる洗浄液流の水平方向の運動エネルギーが強く減少するから、比較的急に先下がりするような軌跡で流れるので、基板に供給した連続的な洗浄液流が、上記鉛直仮想線上で通過する位置は、基板の洗浄面の上方側であって洗浄面の回転中心に近づく。
【0028】
他方、基板が回転状態のとき、基板に供給した洗浄液流の軌跡は、基板の洗浄面の親水性の度合いが大きくなるに従って、基板の回転に伴う洗浄液流の軌跡の変化量は小さくなり、疎水性の度合いが大きくなるに従って、上記変化量は大きくなる。
【0029】
従って、親水性の度合いが大きい基板では、非回転状態のとき、基板に供給した連続的な洗浄液流は、鉛直仮想線上で基板の洗浄面の回転中心より上方側であって洗浄面の回転中心に近い位置を通過し、回転状態のとき、基板の洗浄面に沿って流れる洗浄液流の軌跡を小さく変化させて基板の洗浄面の回転中心を通過させることができる。一方、親水性の度合いが小さい(疎水性の度合いが大きい)基板では、非回転状態のとき、基板に供給した連続的な洗浄液流は、鉛直仮想線上で基板の洗浄面の回転中心より上方側であって洗浄面の回転中心から遠い位置を通過し、回転状態のとき、基板の洗浄面に沿って流れる洗浄液流の軌跡を大きく変化させて基板の洗浄面の回転中心を通過させることができる。すなわち、洗浄液流の供給条件と基板の回転条件とをある条件に調節することで、基板の洗浄面が親水性である場合と疎水性である場合とで共に、基板の回転時に洗浄液流を基板の洗浄面の回転中心を通過させるように調節することが可能になる。また、洗浄面に疎水性の高い部分と親水性の高い部分とが混在するような基板でも、洗浄液流の軌跡が、洗浄面の回転中心を通過するように調節できる。
【0030】
請求項3に記載の発明は、例えば、基板保持手段が、複数の保持部材で基板の周縁部の複数箇所を保持するように構成されているなど、基板の回転時に、洗浄液流供給手段から基板保持手段に保持された基板に供給される連続的な洗浄液流を横切って基板への連続的な洗浄液流の供給を一時的に遮断する遮断部材(例えば、保持部材)を有する装置に関するものである。このような場合に上記請求項1または2に記載の発明によって基板の洗浄面を洗浄すると、基板に供給される連続的な洗浄液流を遮断部材が横切るごとに、遮断部材が基板への連続的な洗浄液流の供給を一時的に遮断して、基板の洗浄面に部分的に洗浄液が流れない洗浄液未供給部分が形成され、基板の洗浄面に満遍なく洗浄液を供給することができなくなることもある。
【0031】
請求項3に記載の発明によれば、洗浄液流の供給条件または/および基板の回転条件を変更可能に構成し、洗浄制御手段が、まず、連続的な洗浄液流が基板の洗浄面の回転中心を通過して、基板の洗浄面を洗浄液で洗浄する第1の洗浄を行い、次に、その第1の洗浄において、基板の洗浄面に供給される連続的な洗浄液流を遮断部材が遮ったことによって洗浄液が供給されなかった基板の洗浄面における洗浄液未供給部分に対して、連続的な洗浄液流が流れるように洗浄液流の供給条件または/および基板の回転条件を変更調節して、基板の洗浄面を洗浄液で洗浄する第2の洗浄を行うように制御するものである。
【0032】
このように2段階に分けて基板の洗浄面を洗浄することで、基板の洗浄面に満遍なく洗浄液を供給することができる。
【0033】
なお、第2の洗浄の際に基板の洗浄面上を流れる洗浄液流は、基板の洗浄面のうちの洗浄液未供給部分に連続的な洗浄液流が流れればよいので、必ずしも基板の洗浄面の回転中心を通過する必要はなく、基板の洗浄面のうちの洗浄液未供給部分に連続的な洗浄液流を流し得る最適な洗浄液流の軌跡を自由に選択することができる。また、洗浄液流の供給条件や基板の回転条件を各種の条件に変更調節しつつ第2の洗浄を行ってもよい。
【0034】
請求項4に記載の発明は、複数枚の基板を同時に洗浄するための装置であってその作用は次のとおりである。
【0035】
複数枚の基板を基板保持手段に保持し、洗浄液流供給手段から基板保持手段に保持された各基板の洗浄面ごとに、基板の一端部から基板の洗浄面に沿っての連続的な流れを形成するように、連続的な洗浄液流を供給しつつ、回転手段によって基板保持手段およびそれによって保持された複数枚の基板を一体的に回転させ、各基板の洗浄面に沿って流れる連続的な洗浄液流がそれぞれ基板の洗浄面の回転中心を通過するように洗浄液流の供給条件及び基板の回転条件とを調節して、各基板の洗浄面を洗浄液で同時に洗浄する。
【0036】
なお、各基板は基板保持手段に保持されて一体的に回転されるので、各基板の回転条件を同じにすることができ、各基板の洗浄面にそれぞれ供給する連続的な洗浄液流の供給条件を同じにすれば、各基板の洗浄面に沿って流れる連続的な洗浄液流がそれぞれ基板の洗浄面の回転中心を通過するように調節することができる。
【0037】
請求項5に記載の発明によれば、洗浄液流供給手段から基板保持手段に保持された基板に供給された1つの連続的な洗浄液流が、基板の表裏どちらか1つの洗浄面だけに、基板の端部から、基板の洗浄面(表面または裏面)に沿って、連続的に流れる洗浄液流を形成するように、基板へ連続的な洗浄液流を供給する。
【0038】
これにより、基板の1つの洗浄面ごとに1つの連続的な洗浄液流を個別に供給することができる。
【0039】
なお、請求項5に記載の発明で、基板の表裏両面をそれぞれ洗浄面として同時に洗浄する場合には、基板の表面だけに沿って連続的に流れる連続的な洗浄液流と、その基板の裏面だけに沿って連続的に流れる連続的な洗浄液流とを個別に供給する。
【0040】
請求項6に記載の発明によれば、基板に供給される連続的な洗浄液流(基板の洗浄面の回転中心を通過している洗浄液流)を遮断部材が横切った後、基板に供給された連続的な洗浄液流が、遮断部材に遮られたことによって洗浄液流が流れなかった基板の洗浄面における洗浄液未供給部分を流れるようにして、基板の洗浄面を洗浄液で洗浄するものである。
【0041】
これにより、遮断部材を有する場合でも、洗浄液流の供給条件及び基板の回転条件を所定の1つの条件に調節して、基板に連続的な洗浄液流を供給しつつ、基板を回転させて実施する1回の洗浄によって、基板の洗浄面に満遍なく洗浄液を供給することができる。
【0042】
請求項7に記載の発明によれば、基板の洗浄面の洗浄を終えると、洗浄液が付着しているウエット状態の基板を乾燥手段によって乾燥させる。
【0043】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。
図1は本発明の一実施例に係る基板処理装置の要部構成を示す縦断面図であり、図2はその平面図、図3は保持部材の構成を示す断面図である。
【0044】
この実施例は、半導体ウエハなどの略円形状の基板Wを複数枚、同時に洗浄乾燥するように構成している。
【0045】
すなわち、基板保持手段に相当する基板保持機構1は、複数枚の基板Wを起立姿勢で等ピッチに並べて平行状態で保持するように構成されている。この基板保持機構1は、各基板Wの周縁部の複数箇所を保持する複数(図では3つ)の棒状の保持部材2を備えている。各保持部材2は、内側面に複数の溝2aが等ピッチで刻設されていて、各溝2aに基板Wの周縁部を挿入して基板Wを周囲から挟持するように構成している。また、各保持部材2のうちの少なくとも1つは、基板Wを保持する保持状態と、基板Wの周縁部から離れて基板Wの保持を解除する解除状態とで切換え可能に構成されている。
【0046】
各保持部材2は、水平方向の軸芯J周りで回転可能に対向配置された2つのフランジ3の間に支持されている。各フランジ3と各保持部材2及び基板保持機構1に保持された各基板Wは、ベルト伝動機構BMなどを介して、回転手段に相当するモーター4によって軸芯J周りで一体的に回転されるように構成されている。なお、ベルト伝動機構BMを介さずに直結させてもよい。モーター4は、回転方向や回転数を任意に変更調節可能に構成されている。なお、軸芯Jに対して、基板保持機構1に保持された基板Wの洗浄面(表面または/および裏面)の中心WCを一致させて、すなわち、洗浄面の中心WCと基板Wの回転中心WJとを一致させて、保持された基板Wを洗浄面の中心WC周りで回転させるように構成してもよいし、保持された基板Wの洗浄面の中心WCを基板Wの回転中心WJから若干(数mm程度) ずらせて、保持された基板Wを洗浄面の中心WCに対して偏芯させて回転させるように構成してもよい。保持された基板Wを洗浄面の中心WCに対して偏芯させて回転させると、回転中、基板Wの振動を抑制することができる。
【0047】
また、基板保持機構1に保持された各基板Wの洗浄面ごとに、基板Wの一端部から別の端部へ向けて基板Wの洗浄面に沿って連続的に流れる連続的な洗浄液流Qを供給する洗浄液流供給手段に相当する洗浄液流供給機構5を備えている。
【0048】
この洗浄液流供給機構5は、基板保持機構1に保持された基板Wの周辺位置に配設された供給ヘッド6や、供給管7、開閉弁8、流量調節弁9などを備えて構成されている。
【0049】
図1、図2に示す実施例の供給ヘッド6は、両端部が閉止された中空状の管状部材6aに複数個の吐出孔6bが穿設させ、管状部材6a内に充満した洗浄液が各吐出孔6bからそれぞれ押し出されて、各吐出孔6bから個別に連続的な洗浄液流Qが吐出されるように構成されている。これにより、基板保持機構1に保持された各基板Wの洗浄面ごとに連続的な洗浄液流Qを供給するように構成している。
【0050】
管状部材6a内には、供給管7を介して図示しない洗浄液供給源から洗浄液が供給される。洗浄液としては、純水(リンス洗浄時)や薬液(薬液洗浄時)、エッチング液(薄膜除去洗浄時)などが例示される。
【0051】
また、供給管7には開閉弁8と流量調節弁9とが介装されている。開閉弁8の開閉によって、管状部材6a内への洗浄液の供給とその停止(各吐出孔6bから各基板Wへの洗浄液流Qの供給とその停止)が切り換えられる。また、流量調節弁9によって管状部材6a内への洗浄液の供給流量を調節することで、各吐出孔6bから各基板Wへ供給する連続的な洗浄液流Qの流速を調節できるようになっている。なお、流量調節弁9が、管状部材6a内への洗浄液の供給を停止し得る流量調節も可能に構成されて開閉弁8の機能を兼用できる場合には、開閉弁8を省略してもよい。
【0052】
また、洗浄液流供給手段は上記構成に限定されない。例えば、図4に示すように、供給ヘッド6として、連続的な洗浄液流Qを吐出可能に構成された複数のノズル6cを並設して構成し、各ノズル6cに洗浄液を個別に供給し、各ノズル6cから各基板Wに洗浄液流Qを個別に供給するような構成であってもよい。なお、図4中の符号7、8、9は、図1、図2と同様に供給管、開閉弁、流量調節弁をそれぞれ示す。また、この図4に示すように各ノズル6cから各基板Wに連続的な洗浄液流Qを個別に供給するように構成した場合次のような利点もある。
【0053】
基板保持機構1の最大基板保持枚数(例えば50枚)より少ない枚数の基板Wを保持して洗浄する場合、上記吐出孔6bを設けた管状部材6aで供給ヘッド6を構成したときは、各吐出孔6bからの洗浄液流Qの供給/停止は一体的に行われるので、基板保持機構1に実際に保持していない基板Wの保持場所にも洗浄液流Qを供給することになり、洗浄液を無駄に使用する場合がある。これに対して、図4に示す構成では、各ノズル6cからの洗浄液流Qの供給/停止を個別に切り換えられるので、基板保持機構1に実際に保持している基板Wに対してのみ洗浄液流Qを供給することができ、洗浄液の無駄な使用を無くすことができる。
【0054】
ここで、基板Wへの洗浄液流Qの供給形態を図5を参照して説明する。なお、図5は、基板Wの表裏両面に対して洗浄液流Qを供給する場合の供給形態を示している。
【0055】
図5(a)は第1の供給形態を示す。この第1の供給形態は、洗浄液流供給機構5を構成する供給ヘッド6から基板保持機構1に保持された基板Wに供給された1つの連続的な洗浄液流Qが基板Wの端縁で基板Wの表面と裏面とに分配され、基板Wの表面及び裏面それぞれで基板Wの一端部から別の端部へ向けて表裏各面に沿って連続的に流れるように、基板Wへ連続的な洗浄液流Qを供給するものである。
【0056】
この第1の供給形態を実施する場合、洗浄液流Qを基板Wの表面と裏面とに略等分に分配するために、洗浄液流Qの厚みQW(基板Wの厚みWW方向の寸法)方向の中心QWCを、保持された基板Wの厚みWW方向の中心WWCに略一致させることが好ましい。また、基板Wの端縁に当たった洗浄液流Qが周囲へ飛び散るのを抑制するために、洗浄液流Qの厚みQWを厚く(例えば、基板Wの厚みWWよりも厚く)し、洗浄液流Qの流速を可能な限り遅くすることが好ましい。
【0057】
この第1の供給形態によれば、基板W1枚ごとに1つの連続的な洗浄液流Qを供給することで、基板Wの表裏両面をそれぞれ洗浄面として同時に洗浄することができるので、基板W1枚ごとに吐出孔6bやノズル6cを1つ設ければ、基板Wの表裏両面を同時に洗浄することができ、次に説明する第2の供給形態で基板Wの表裏両面を同時に洗浄する場合に比べて、吐出孔6bやノズル6cの個数を半分に減らすことができ、洗浄液流供給機構5の構造を簡略化して基板Wの表裏両面を同時に洗浄することができる。
【0058】
図5(b)は第2の供給形態を示す。この第2の供給形態は、洗浄液流供給機構5を構成する供給ヘッド6から基板保持機構1に保持された基板Wに供給された1つの連続的な洗浄液流Qが、基板Wの一端部から別の端部へ向けて一つの洗浄面だけに沿って連続的に流れるように、基板Wへ連続的な洗浄液流Qを供給するものである。
【0059】
なお、図5(b)は、基板Wの表裏両面をそれぞれ洗浄面として同時に洗浄する場合を示しており、この場合、図示するように、基板Wの一端部から別の端部へ向けて基板Wの表面だけに沿って連続的に流れる連続的な洗浄液流Qと、基板Wの一端部から別の端部へ向けて基板Wの裏面だけに沿って連続的に流れる連続的な洗浄液流Qとを個別に供給する。
【0060】
基板Wの一方側の面のみを洗浄する装置の場合は、図5(b)に示す1枚の基板Wに対して供給する2つの洗浄液流Qのうちの1つの洗浄液流Qのみを1枚に基板Wに供給するように構成すればよい。
【0061】
この第2の供給形態では、各基板Wの洗浄面ごとに洗浄液流Qを個別に供給するための吐出孔6bやノズル6cを配設する。
【0062】
なお、この第2の供給形態で基板Wの表裏両面を同時に洗浄する場合、1つの洗浄液流供給機構5で、各基板Wの表裏両面それぞれに洗浄液流Qを個別に供給するように構成してもよいし、各基板Wの表面それぞれに洗浄液流Qを個別に供給する洗浄液流供給機構5と、各基板Wの裏面それぞれに洗浄液流Qを個別に供給する洗浄液流供給機構5とを分けて、各洗浄液流供給機構5の供給ヘッド6を別々の位置に設置するように構成してもよい。
【0063】
すなわち、上記吐出孔6bを設けた管状部材6aで供給ヘッド6を構成するときには、各基板Wの表裏両面それぞれに洗浄液流Qを個別に供給する吐出孔6bを1つの管状部材6aに設けてもよいし、各基板Wの表面それぞれに洗浄液流Qを個別に供給する吐出孔6bを設けた管状部材6aと、各基板Wの裏面それぞれに洗浄液流Qを個別に供給する吐出孔6bを設けた管状部材6aとを別々に形成して、各管状部材6a(供給ヘッド6)と別々の位置に設置するように構成してもよい。
【0064】
また、図4に示す構成では、各基板Wの表裏両面それぞれに洗浄液流Qを個別に供給するノズル6cの群を一体的に扱ってそのノズル6cの群の設置位置を決めてもよいし、各基板Wの表面それぞれに洗浄液流Qを個別に供給するノズル6cの群と、各基板Wの裏面それぞれに洗浄液流Qを個別に供給するノズル6cの群とを分けて、各ノズル6cの群の設置位置を個別に決めてもよい。
【0065】
なお、表面用と裏面用の各供給ヘッド6を別々の位置に設置したとき、基板Wの非回転状態において、基板Wの表面を流れる洗浄液流Qの軌跡と、基板Wの裏面を流れる洗浄液流Qの軌跡とが相違することになる。後述するように、洗浄時には、基板Wを回転させて、基板Wの洗浄面(表面及び裏面)に沿って流れる洗浄液流Qの軌跡を変化させて洗浄液流Qが基板Wの洗浄面の回転中心WJを通過させるようにするが、後述する洗浄液流Qの供給条件を調節することで、非回転時の基板Wの表面と裏面とで洗浄液流Qの軌跡が異なっていても、基板Wの回転時に、各面において洗浄液流Qが基板Wの各面の回転中心WJを通過させるように調節することは可能である。
【0066】
この第2の供給形態によれば、基板Wの洗浄面ごとに供給する連続的な洗浄液流Qを個別に調節することができ、例えば、基板Wの表裏両面にそれぞれ連続的な洗浄液流Qを供給する場合に、各洗浄液流Qを精度良く調節することができる。また、第1の供給形態のように連続的な洗浄液流Qを基板Wの端縁に当てないので、基板Wの端縁から洗浄液が周囲へ飛び散るのを抑制することもできる。
【0067】
さらに、表面用の洗浄液流供給機構5と裏面用の洗浄液流供給機構5とを分けて構成すると、各基板Wの表裏両面、表面のみ、裏面のみへの洗浄液流Qの供給を切り換えることができ、1台の装置で、表裏両面洗浄、表面のみの洗浄、裏面のみの洗浄を切り換えて実施することができる。
【0068】
図6は装置の制御系の構成を示すブロック図である。
コンピューターなどで構成されるコントローラー10は、基板保持機構1による基板Wの保持とその解除の駆動制御や、モーター4の駆動制御(回転/停止及び、回転時の回転方向や回転数の制御)、開閉弁8の開閉制御、流量調節弁9による供給流量の調節制御などを行って、後述する各基板Wに対する洗浄や乾燥を実行する。なお、このコントローラー10は、請求項7に記載の発明における乾燥手段の機能を有し、後述する第2の洗浄形態を実施する場合には、請求項3に記載の発明における洗浄制御手段の機能を有する。
【0069】
次に、上記構成を有する実施例装置の動作を説明する。
まず、コントローラー10は、各部を以下のように制御して基板Wの洗浄面を洗浄液で洗浄する。
【0070】
すなわち、装置に搬入された基板Wを基板保持機構1に保持し、洗浄液流供給機構5から基板保持機構1に保持された各基板Wの洗浄面ごとに、基板Wの一端部から別の端部へ向けて基板Wの洗浄面に沿って連続的に流れる連続的な洗浄液流Qを供給しつつ、モーター4によって基板保持機構1およびそれによって保持された複数枚の基板Wを一体的に回転させて各基板Wの洗浄面を洗浄液で同時に洗浄する。
【0071】
ここで、基板Wの回転に伴い回転しつつある基板Wとの表面張力および遠心力で基板Wの洗浄面に沿って流れる洗浄液流Qは、図1にTSで示す非回転時の軌跡と、TRで示す回転時の軌跡とに描くように、その軌跡が変化する。
【0072】
そこで、洗浄液流供給機構5の供給ヘッド6から各基板Wの洗浄面に供給される洗浄液流Qの供給条件と、モーター4による基板W(基板保持機構1)の回転条件とを、後述するように調節して、各基板Wの洗浄面に沿って流れる連続的な洗浄液流Qがそれぞれ各基板Wの回転中心WJを通過するように調節して、各基板Wの洗浄面を洗浄液で洗浄する。
【0073】
なお、洗浄液流Qには実質的に幅QD(基板Wの洗浄面方向に広がる寸法)を有することになるが、この洗浄液流Qの幅QD内のどこかが基板Wの洗浄面の回転中心WJを通過するようにすればよい。
【0074】
これにより、洗浄液流Qは、基板Wの洗浄面の一端部から回転中心WJを通過して別の端部へ向けて洗浄面に沿って連続的に流れ、その状態で、基板Wを回転するので、基板Wの洗浄面全面に確実に洗浄液を供給することが可能となり、基板Wの洗浄面全面を均一に洗浄液で洗浄することが可能となる。
【0075】
また、従来装置では、基板Wの洗浄面全体への洗浄液の供給が不確実であるので、基板Wの洗浄面全体への洗浄液の供給を確実に行おうとすると、洗浄時間を長くしなければならず、それに伴って洗浄液の使用量も増大し、その多くが無駄な使用となる。これに対して、この実施例によれば、短時間で、かつ、少ない洗浄液量で、また、無駄な洗浄液の使用を低減して、基板Wの洗浄面全面に洗浄液を確実に供給することが可能となる。
【0076】
さらに、この実施例によれば、複数枚の基板Wに対する洗浄を同時に行うことができる。しかも、各基板Wの洗浄面ごとに個別に洗浄液流Qを供給しているので、各基板Wの洗浄面をそれぞれ均一に洗浄することが可能であるとともに、各基板Wの洗浄面間での洗浄も均一化することができる。
【0077】
なお、上記洗浄液流Qの供給条件には、洗浄液流供給機構5を構成する供給ヘッド6の配置位置や、供給ヘッド6(吐出孔6bやノズル6c)から基板Wに供給される連続的な洗浄液流Qの供給方向、洗浄液流Qの流速などを含み、上記基板Wの回転条件には、回転方向と回転数とを含む。
【0078】
洗浄液流Qの供給条件によって、主に、基板Wの非回転時において基板Wの洗浄面を流れる洗浄液流Qの軌跡TSを調節できる。また、基板Wの回転方向WRによって、基板Wの回転に伴う洗浄液流Qの軌跡TS−TR間の変化方向Fを調節でき、基板Wの回転数によって、基板Wの回転に伴う洗浄液流Qの軌跡TS−TR間の変化量Eを調節できる。なお、洗浄液流Qの流速によっても、基板Wの回転に伴う洗浄液流Qの軌跡TS−TR間の変化量Eを調節することができる。
【0079】
ここで、基板Wの非回転時における洗浄液流Qの軌跡TSと、基板Wの回転方向WRと、基板Wの回転に伴う洗浄液流Qの軌跡TS−TR間の変化方向Fとの関係の一例を図7ないし図9に示す。
【0080】
図7、図8は、基板保持機構1に起立姿勢で保持された基板Wの側方から洗浄液流Qを供給する例を示している。
【0081】
図7(a)、(b)は、基板Wの非回転時に基板Wの洗浄面を流れる洗浄液流Qが、基板Wの洗浄面に向かって見たとき、基板Wの洗浄面の回転中心WJを通る鉛直仮想線VL上で基板Wの洗浄面の回転中心WJよりも上方側を右側から左側に向かって通過するような軌跡TSを形成する場合を示している。また、図7(c)、(d)は、基板Wの非回転時に基板Wの洗浄面を流れる洗浄液流Qが、上記鉛直仮想線VL上で基板Wの洗浄面の回転中心WJよりも上方側を左側から右側に向かって通過するような軌跡TSを形成する場合を示している。
【0082】
図8(a)〜(d)は、基板Wの非回転時に基板Wの洗浄面を流れる洗浄液流Qが、上記鉛直仮想線VL上で基板Wの洗浄面の回転中心WJよりも下方側を通過するような軌跡TSを形成する場合であって、図8(a)、(b)は、洗浄液流Qが、上記鉛直仮想線VLを右側から左側に向かって通過する場合、図8(c)、(d)は、洗浄液流Qが、上記鉛直仮想線VLを左側から右側に向かって通過する場合をそれぞれ示している。
【0083】
図7(a)、(b)、図8(c)、(d)の場合は、基板Wの回転方向WRを、基板Wの洗浄面に向かって見たとき、右周りで回転する回転方向とし、図7(c)、(d)、図8(a)、(b)の場合は、逆に基板Wの回転方向WRを、左周りで回転する回転方向とすれば、基板Wの回転時において基板Wの洗浄面を流れる洗浄液流Qが、基板Wの洗浄面を回転中心WJを通過する方向に軌跡を変化させることができる。
【0084】
また、洗浄液流Qは、基板保持機構1に起立姿勢で保持された基板Wの側方から供給する場合に限らず、図9に示すように、基板Wの上方から供給(流下)させるように構成してもよい。この場合、基板Wの非回転時に基板Wの洗浄面を流れる洗浄液流Qが、上記鉛直仮想線VLに対して左右にずらせた位置より流下するように洗浄液流Qを供給する。図9(a)は、洗浄液流Qを、上記鉛直仮想線VLに対して左側にずらせた位置を流下させる場合を示し、この場合には、基板Wを右周りで回転させれば、基板Wの回転時において基板Wの洗浄面を流れる洗浄液流Qが、基板Wの洗浄面の回転中心WJを通過する方向に軌跡を変化させることができる。また、図9(b)は、洗浄液流Qを、上記鉛直仮想線VLに対して右側にずらせた位置を流下させる場合を示し、この場合には、逆に基板Wを左周りで回転させれば、基板Wの回転時において基板Wの洗浄面を流れる洗浄液流Qが、基板Wの洗浄面を回転中心WJを通過する方向に軌跡を変化させることができる。
【0085】
以上に基づき、基板Wの非回転時における洗浄液流Qの軌跡TSに応じて、その洗浄液流Qが基板Wの回転時に洗浄面の回転中心WJを通過する方向に変化させるための基板Wの回転方向WRを決定することができる。逆に、基板Wの回転方向WRを予め決めておいて、それに応じて基板Wの非回転時における洗浄液流Qの軌跡TS(洗浄液流Qの供給条件)を調節してもよい。
【0086】
また、基板Wの回転時に伴う洗浄液流Qの軌跡TS−TR間の変化量Eは、基板Wの回転数を大きく(回転速度を速く)するに従って大きくなり、洗浄液流Qの流速を遅くするに従って大きくなる。
【0087】
従って、非回転時における洗浄液流Qの軌跡TSに応じて、その洗浄液流Qが基板Wの回転時に洗浄面の回転中心WJを通過するように変化させる変化量だけ、洗浄液流Qの軌跡を変化させるための基板Wの回転数や洗浄液流Qの流速などの条件を、例えば、実験的に求めることができる。逆に、基板Wの回転数や洗浄液流Qの流速などの条件を予め決めておいて、それに応じて基板Wの非回転時における洗浄液流Qの軌跡TSを調節してもよい。
【0088】
以上に基づき、供給ヘッド6の配置位置や、供給ヘッド6から基板Wに供給される連続的な洗浄液流Qの供給方向を調節し、コントローラー10が、洗浄液流Qの流速を所望の流速にするように流量調節弁9を制御するとともに、所望の回転方向WR及び回転数でモーター4を駆動することで、洗浄液流Qの供給条件及び基板Wの回転条件を調節すれば、基板Wの回転時に洗浄液流Qが洗浄面の回転中心WJを通過するように調節することができる。なお、洗浄液流供給機構5を図4に示すように構成する場合、各ノズル6cから供給される洗浄液流Qの流速を同じ流速となるように調節する。
【0089】
ところで、基板Wの洗浄面の表面状態を考慮して、基板Wの非回転時における洗浄液流Qの軌跡TSや、基板Wの回転に伴う洗浄液流Qの軌跡TS−TR間の変化量Eを考察すると、例えば、基板Wの洗浄面全体が親水性、あるいは、平均して親水性である(全体的に親水性である)か、洗浄面全体が疎水性、あるいは、平均して疎水性である(全体的に疎水性である)かによって、基板Wの非回転時における洗浄液流Qの軌跡TSや、基板Wの回転に伴う洗浄液流Qの軌跡TS−TR間の変化量Eは相違する。
【0090】
すなわち、基板Wの洗浄面の親水性の度合いが大きくなるに従って、基板Wの洗浄面に対する洗浄液流Qの表面張力が強くなり、洗浄液流Qの流れの水平方向の運動エネルギーの減少量が増大していく。
【0091】
その結果、例えば、図7、図8に示すように、基板保持機構1に起立姿勢で保持された基板Wの側方から洗浄液流Qを供給する場合、洗浄液流Qの供給条件が同じとき、基板Wの非回転時における洗浄液流Qは、基板Wの洗浄面の親水性の度合いが大きくなるに従って、上記鉛直仮想線VL上で通過する位置が下方に向かうことになる。
【0092】
一方、基板Wの洗浄面に対する洗浄液流Qの表面張力によって、基板Wの洗浄面の親水性の度合いが大きくなるに従って、基板Wの回転に伴う洗浄液流Qの軌跡TS−TR間の変化量Eは小さくなる。
【0093】
ここで、例えば、基板Wの非回転時において、洗浄面の表面状態にかかわらず常に、洗浄液流Qが、図8に示すように、上記鉛直仮想線VL上で基板Wの洗浄面の回転中心WJよりも下方側を通過する場合について考察すると、図10(a)に示すように、洗浄面が全体的に親水性である基板Wの非回転時における洗浄液流Qの軌跡TSAは、洗浄面が全体的に疎水性である基板Wの非回転時における洗浄液流Qの軌跡TSBに比べて、上記鉛直仮想線VL上において、基板Wの洗浄面の回転中心WJより下方側であって洗浄面の回転中心WJから遠ざかる軌跡をとることになる。一方、図10(a)において、基板Wを左周りに回転させたとき、洗浄面が全体的に親水性である基板Wの回転に伴う洗浄液流Qの軌跡TSA−TRA間の変化量EAは、洗浄面が全体的に疎水性である基板Wの回転に伴う洗浄液流Qの軌跡TSB−TRB間の変化量EBに比べて小さい(EA<EB)。
【0094】
従って、例えば、図10(a)に示すように、洗浄液流Qの供給条件及び基板Wの回転条件を、洗浄面が全体的に疎水性である基板Wに対して、基板Wの回転時における洗浄液流Qの軌跡TRBが、基板Wの洗浄面の回転中心WJを通過させるような条件に調節したとき、その同じ条件で、洗浄面が全体的に親水性である基板Wを洗浄すると、回転時における洗浄液流Qの軌跡TRAは、上記鉛直仮想線VLにおいて基板Wの洗浄面の回転中心WJの下方側を通過して、基板Wの洗浄面の回転中心WJを通過しなくなる。
【0095】
また、逆に洗浄液流Qの供給条件及び基板Wの回転条件を、洗浄面が全体的に親水性である基板Wに対して、基板Wの回転時における洗浄液流Qの軌跡TRAが、基板Wの洗浄面の回転中心WJを通過させるような条件に調節したとき、その同じ条件で、洗浄面が全体的に疎水性である基板Wを洗浄すると、基板Wの回転時における洗浄液流Qの軌跡TRBは、上記鉛直仮想線VLにおいて基板Wの洗浄面の回転中心WJの上方側を通過して、基板Wの洗浄面の回転中心WJを通過しなくなる。
【0096】
また、洗浄面が全体的に親水性である基板Wの非回転時における洗浄液流Qの軌跡が、上記鉛直仮想線VL上で基板Wの洗浄面の回転中心WJよりも下方側を通過し、洗浄面が全体的に疎水性である基板Wの非回転時における洗浄液流Qの軌跡が、上記鉛直仮想線VL上で基板Wの洗浄面の回転中心WJよりも上方側を通過するなど、基板Wの洗浄面の表面状態によって、基板Wの非回転時における洗浄液流Qが、上記鉛直仮想線VL上を通過する位置が、洗浄面の回転中心WJを挟んで上下に変動するような場合には、同じ回転方向で洗浄液流Qが基板Wの洗浄面の回転中心WJを通過ように変化させることが不可能となる。
【0097】
また、図9に示すように、基板Wの上方から洗浄液流Qを流下させる場合は、洗浄面が全体的に親水性であるか疎水性であるかにかかわらず、基板Wの非回転時における洗浄液流Qの軌跡は変わらないが、基板Wを回転させたとき、洗浄面が全体的に親水性である基板Wは、洗浄面が全体的に疎水性である基板Wに比べて、基板Wの回転時における洗浄液流Qの軌跡の変化量Eは小さい。従って、例えば、洗浄液流Qの供給条件及び基板Wの回転条件を、洗浄面が全体的に親水性(または、疎水性)である基板Wに応じて調節したとき、その同じ条件で、洗浄面が全体的に疎水性(または、親水性)である基板Wを洗浄すると、回転時における洗浄液流Qの軌跡は、基板Wの洗浄面の回転中心WJを通過しなくなる。
【0098】
ここで、非回転時において、洗浄面の表面状態にかかわらず常に、洗浄液流Qが、図7に示すように、上記鉛直仮想線VL上で基板Wの洗浄面の回転中心WJよりも上方側を通過する場合について考察すると、図10(b)に示すように、洗浄面が全体的に親水性である基板Wの非回転時における洗浄液流Qの軌跡TSAは、洗浄面が全体的に疎水性である基板Wの非回転時における洗浄液流Qの軌跡TSBに比べて、上記鉛直仮想線VL上において、基板Wの洗浄面の回転中心WJより上方側であって基板Wの回転中心WJに近づく軌跡をとることになる。一方、図10(b)において、基板Wを右周りに回転させたとき、洗浄面が全体的に親水性である基板Wの回転に伴う洗浄液流Qの軌跡TSA−TRA間の変化量EAは、洗浄面が全体的に疎水性である基板Wの回転に伴う洗浄液流Qの軌跡TSB−TRB間の変化量EBに比べて小さい(EA<EB)。
【0099】
従って、この場合、洗浄面が全体的に親水性である基板Wでは、非回転状態のとき、洗浄液流Qは鉛直仮想線VL上で基板Wの洗浄面の回転中心WJの上方側であって洗浄面の回転中心WJに近い位置を通過し、回転状態のとき、洗浄液流Qの軌跡TSAを小さく変化させて基板Wの洗浄面の回転中心WJを通過させることができる。一方、洗浄面が全体的に疎水性である基板Wでは、非回転状態のとき、洗浄液流Qは鉛直仮想線VL上で基板Wの洗浄面の回転中心WJの上方側であって洗浄面の回転中心WJから遠い位置を通過し、回転状態のとき、洗浄液流Qの軌跡TSBを大きく変化させて基板Wの洗浄面の中心を通過させることができる。
【0100】
すなわち、基板Wの非回転時において、基板Wの表面状態にかかわらず常に洗浄液流Qが、図10(b)に示すように、上記鉛直仮想線VL上で基板Wの洗浄面の回転中心WJよりも上方側を通過するような軌跡TSである場合、洗浄液流Qの供給条件と基板Wの回転条件とをある条件に調節することで、基板Wの洗浄面が親水性である場合と疎水性である場合とで共に、洗浄時に洗浄液流Qが基板Wの洗浄面の回転中心WJを通過するように調節することが可能になる。また、洗浄面に疎水性の高い部分と親水性の高い部分とが混在するような基板Wでも、洗浄液流Qの軌跡が、洗浄面の回転中心WJを通過するように調節できる。
【0101】
なお、より厳密には、基板Wの非回転時に上記鉛直仮想線VL上を通過する洗浄液流Qの通過位置と洗浄面の回転中心WJとの間の距離と、基板Wの回転に伴う洗浄液流Qの軌跡TS−TR間の変化量Eとは、洗浄面の親水性の度合いに対して線型な関係ではない。例えば、図11(a)に示すように、洗浄面の親水性の度合いが異なる3つの度合いC1(親水性の度合い大)、C2(親水性の度合い中)、C3(親水性の度合い小:疎水性)である基板Wについて考察すると、以下のような結果となる。なお、図11(a)中の軌跡TS1は、洗浄面の親水性の度合いがC1である基板Wの非回転時の洗浄液流Qの軌跡を示し、同じく、軌跡TS2、TS3は、洗浄面の親水性の度合いがC2、C3である基板Wの非回転時の洗浄液流Qの軌跡を示す。
【0102】
図11(a)において、例えば、洗浄面の親水性の度合いが異なる2つの度合いC1、C3である各基板Wに対しては、洗浄液流Qの供給条件と基板Wの回転条件とをある条件に調節すれば、図11(b)、(c)に示すように、洗浄時に洗浄液流Qの幅QD内の、例えば、中心QDCが、基板Wの洗浄面の回転中心WJを通過するように各基板Wの洗浄液流Qを変化させることは可能であるが、その同じ条件で、洗浄面の親水性の度合いが上記2つの度合いC1、C3と異なる別の度合いC2の基板Wを洗浄すると、図11(d)に示すように、洗浄時に洗浄液流Qの幅QD内の中心QDCが、基板Wの洗浄面の回転中心WJから外れた位置を通過することになる。
【0103】
しかしながら、洗浄液流Qは幅QDを有するので、洗浄面の親水性の各種の度合いに対する洗浄時における洗浄液流Qの通過位置のバラツキは洗浄液流Qは幅QD内に吸収することができる。従って、洗浄液流Qの供給条件と基板Wの回転条件とをある条件に調節すれば、洗浄面の親水性の度合いが種々に異なる基板Wを洗浄しても、洗浄時に洗浄液流Qの幅QD内のどこかが基板Wの洗浄面の回転中心WJを通過するように各基板Wの洗浄液流Qを変化させることは可能である。
【0104】
以上を考慮すると、基板Wを起立姿勢で保持して洗浄する場合は、図7に示すように、基板Wの非回転時において、洗浄液流Qが上記鉛直仮想線VL上で基板Wの洗浄面の回転中心WJよりも上方側を通過するような軌跡TSとなるように洗浄液流Qの供給条件を調節するとともに、基板Wの回転条件をその洗浄液流Qの供給条件に応じて調節することが好ましい。
【0105】
なお、上述した洗浄液流Qの供給条件に対する基板Wの回転条件のうちの回転方向WRは、上記鉛直仮想線VL上を通過する前に基板Wの洗浄面に沿って連続的に流れる洗浄液流Qを下方に変化させるような回転方向であり、すなわち、洗浄液流Qが上記鉛直仮想線VLを通過する前に、洗浄液流Qと接している基板W上の部位が下向きに移動するように基板Wを回す方向であり、具体的には、図7に図示するとともに、それ対して先に説明したように、上記鉛直仮想線VL上を通過する洗浄液流Qの流れの方向に応じて決まる。
【0106】
このように洗浄液流Qの供給条件及び基板Wの回転条件を調節することにより、全体的な親水性の度合いが異なる洗浄面の基板Wに対して洗浄液流Qの供給条件及び基板Wの回転条件を同じ条件で洗浄しても、洗浄時に洗浄液流Qが基板Wの洗浄面の回転中心WJを通過するように調節することができ、基板Wの洗浄面の表面状態によって洗浄液流Qの供給条件及び基板Wの回転条件を変更調節することなく、均一な洗浄を行うことができる。
【0107】
また、図1、図2に示す実施例の構成における洗浄時の状態をより厳密に検討すると、基板Wは、複数の保持部材2によって基板Wの周縁部の複数箇所が保持されているので、これら各保持部材2が、請求項3、6に記載の発明における遮断部材となって、基板Wの回転時に、洗浄液流供給機構5の供給ヘッド6から基板保持機構1に保持された基板Wに供給される連続的な洗浄液流Qを次々に横切って基板Wへの連続的な洗浄液流Qの供給を一時的に遮断して、図12、図13に斜線で示すように、基板Wの洗浄面に部分的に洗浄液が流れない洗浄液未供給部分NQが形成され、基板Wの洗浄面に満遍なく洗浄液を供給することができなくなる。
【0108】
なお、図12は、1つの遮断部材(上記実施例では保持部材2)が洗浄液未供給部分NQを形成する状態を時系列に図示したものであり、同図中の軌跡TRt1は、同図(a)のタイミング(遮断部材(保持部材2)で基板Wへの洗浄液流Qが遮断される直前)に基板Wの洗浄面を流れた洗浄液流Qの軌跡を示し、軌跡TRt2は、同図(c)のタイミング(遮断部材(保持部材2)による基板Wへの洗浄液流Qの遮断が解除された時)に基板Wの洗浄面を流れた洗浄液流Qの軌跡を示す。また、図13は、全ての遮断部材(保持部材2)によって形成された洗浄液未供給部分NQを図示したものである。
【0109】
このような遮断部材(保持部材2)を有する装置の場合は、以下の第1の洗浄形態または第2の洗浄形態で洗浄すればよい。
【0110】
まず、第1の洗浄形態としては、(1)連続的な洗浄液流Qが基板Wの洗浄面の回転中心WJを通過し、かつ、(2)基板Wに供給される連続的な洗浄液流Qを遮断部材(各保持部材2)が横切った後、基板Wに供給された連続的な洗浄液流Qが、遮断部材(各保持部材2)に遮られたことによって洗浄液流Qが流れなかった基板Wの洗浄面における洗浄液未供給部分NQを流れるように、洗浄液流Qの供給条件及び基板Wの回転条件を調節して、基板Wの洗浄面を洗浄液で洗浄するものである。
【0111】
(1)を満たす条件については既に説明したので、ここでは、(2)を満たす条件について説明する。
【0112】
この実施例の場合、図12、図13に示すように、各遮断部材(保持部材2)が基板Wへの連続的な洗浄液流Qの供給を一時的に遮断することで形成される洗浄液未供給部分NQにはそれぞれ、洗浄液流Qの供給側の基板Wの一端部から基板Wの洗浄面の回転中心WJまでの間の領域に形成される第1の洗浄液未供給部分NQ1と、基板Wの洗浄面の回転中心WJから洗浄液流Qの放出側の基板Wの別の端部までの間の領域に形成される第2の洗浄液未供給部分NQ2とに分けられる。
【0113】
図12、図13に示す場合、1つの遮断部材(保持部材2)に着目すると、基板Wに供給される連続的な洗浄液流Qをその遮断部材(保持部材2)が横切った後に、まず、図14に示すように、基板Wの洗浄面に洗浄液流Qが供給される供給位置IP付近を、その遮断部材(保持部材2)によって形成された洗浄液未供給部分NQのうちの上記第2の洗浄液未供給部分NQ2が通過するので、図14に時系列に示すように、その第2の洗浄液未供給部分NQ2が、上記供給位置IP付近を通過する間に、他の遮断部材(保持部材2)が遮断せずに連続的な洗浄液流Qが基板Wに供給されるようにすればよい。次に、図15に示すように、基板Wの洗浄面から洗浄液流Qが放出される放出位置OP付近を、その遮断部材(保持部材2)によって形成された洗浄液未供給部分NQのうちの上記第1の洗浄液未供給部分NQ1が通過するので、その第1の洗浄液未供給部分NQ1が、上記放出位置OP付近を通過する間に、他の遮断部材(保持部材2)が遮断せずに連続的な洗浄液流Qが基板Wに供給されるようにすればよい。
【0114】
これで、1つの遮断部材(保持部材2)によって形成された洗浄液未供給部分NQ(NQ1、NQ2)に、基板Wの洗浄面の回転中心WJを通過する洗浄液流Qを流すことができる。他の遮断部材(保持部材2)によって形成された洗浄液未供給部分NQ(NQ1、NQ2)についても同様にして洗浄液流Qを流すようにすればよい。
【0115】
すなわち、上記第1の洗浄形態を実現するためには、遮断部材(保持部材2)の個数や、全ての遮断部材(保持部材2)の配置位置を考慮して、洗浄液流Qが基板Wの洗浄面の回転中心WJを通過する条件を満たし、かつ、各遮断部材(保持部材2)によって形成された各第1の洗浄液未供給部分NQ1がそれぞれ、上記放出位置OP付近を通過する間に、いずれの遮断部材(保持部材2)も基板Wに供給される連続的な洗浄液流Qを遮断せずに連続的な洗浄液流Qが基板Wに供給されるとともに、各遮断部材(保持部材2)によって形成された各第2の洗浄液未供給部分NQ2がそれぞれ、上記供給位置IP付近を通過する間に、いずれの遮断部材(保持部材2)も基板Wに供給される連続的な洗浄液流Qを遮断せずに連続的な洗浄液流Qが基板Wに供給される条件を満たすような洗浄液流Qを洗浄中(基板Wの回転中)に基板Wに供給し得るような洗浄液流Qの供給条件及び基板Wの回転条件に調節して、基板Wの洗浄面を洗浄液で洗浄する。
【0116】
この第1の洗浄形態によれば、浄液流Qの供給条件及び基板Wの回転条件を所定の1つの条件に調節して、基板Wに連続的な洗浄液流Qを供給しつつ、基板Wを回転させて実施する1回の洗浄によって、基板Wの洗浄面に満遍なく洗浄液を供給することができる。
【0117】
次に、第2の洗浄形態について説明する。第2の洗浄形態は、上記実施例のように、流量調節弁9を設けたり、モーター4の回転方向や回転数を任意に変更調節可能に構成するなどして、洗浄液流Qの供給条件または/および基板の回転条件を変更可能に構成する。そして、洗浄制御手段に相当するコントローラー10が、まず、連続的な洗浄液流Qが基板Wの洗浄面の回転中心WJを通過するように洗浄液流Qの供給条件及び基板Wの回転条件を調節して、基板Wの洗浄面を洗浄液で洗浄する第1の洗浄を行うように制御する。この第1の洗浄については既に説明した。次に、コントローラー10は、上記第1の洗浄において、基板Wの洗浄面に供給される連続的な洗浄液流Qが遮断部材(各保持部材2)に遮られたことによって洗浄液が供給されなかった基板Wの洗浄面における洗浄液未供給部分NQ(図13参照)に対して、連続的な洗浄液流Qが供給されるように洗浄液流Qの供給条件及び基板Wの回転条件を変更調節して、基板Wの洗浄面を洗浄液で洗浄する第2の洗浄を行うように制御する。
【0118】
このように2段階に分けて基板Wの洗浄面を洗浄することで、基板Wの洗浄面に満遍なく洗浄液を供給することができる。また、遮断部材の個数や配置位置などの関係で、上記第1の洗浄形態を実現し得る洗浄液流Qの供給条件及び基板Wの回転条件に調節することが困難である場合でも、基板Wの洗浄面全面に満遍なく洗浄液を供給して洗浄することができる。
【0119】
なお、上記第2の洗浄形態のうち、後に行う第2の洗浄の際に基板Wの洗浄面に沿って流れる洗浄液流Qは、基板Wの洗浄面のうちの洗浄液未供給部分NQに連続的な洗浄液流Qが流れればよいので、必ずしも基板Wの洗浄面の回転中心WJを通過する必要はなく、例えば、図16(a)に示すように、基板Wの回転時の洗浄液流Qの軌跡TRが、基板Wの洗浄面の回転中心WJから外れた位置を通過するような洗浄液流Qを基板Wに供給しつつ、第2の洗浄を行ってもよい。従って、上記第1の洗浄時における洗浄液流Qの供給条件及び基板Wの回転条件に対して、洗浄液流Qの流速を変更したり、または/および、モーター4の回転方向を変更したり、または/および、モーター4の回転数を変更したりして、基板Wの洗浄面のうちの洗浄液未供給部分NQに連続的な洗浄液流Qを供給し得る最適な洗浄液流Qの軌跡TRを自由に選択することができる。
【0120】
また、上記第2の洗浄を行う間の洗浄液流Qの供給条件及び基板Wの回転条件は、同じ条件を維持してもよいし、条件を途中で適宜に変更してもよい。例えば、基板Wの回転時の洗浄液流Qの軌跡が、図16(b)に示すTRS〜TREの間で、基板Wを少なくとも1回転するごとに、順次スライドするように洗浄液流Qの供給条件及び基板Wの回転条件を順次変更するなどして、洗浄液未供給部分NQを分割して分割された各洗浄液未供給部分NQの一部ごとに洗浄液流Qを流すように洗浄液流Qの供給条件や基板Wの回転条件を順次変更して、第2の洗浄を実施してもよい。
【0121】
以上に説明した動作により、基板Wの洗浄面の洗浄を終えると、洗浄液が付着しているウエット状態の基板Wを乾燥させる。
【0122】
この基板Wの乾燥は、開閉弁8を開から閉に切り換えて、基板Wへの洗浄液流Qの供給を停止するとともに、基板W(基板保持機構1)の回転を継続することで、各基板Wに付着した洗浄液を振り切って基板Wを乾燥させる。
【0123】
上記乾燥を所定時間行って、基板Wが乾燥されると、モーター4の駆動を停止し、基板保持機構1(保持部材2)による基板Wの保持を解除した後、処理済の基板Wが装置から搬出される。このように、洗浄液による洗浄の後、乾燥を行うことで、基板Wをドライ状態で装置から搬出することができる。
【0124】
なお、上記基板Wの乾燥を実行する際のモーター4の回転数は、上記基板Wの洗浄面の洗浄を実行する際のモーター4の回転数よりも速くすることが好ましい。
【0125】
また、乾燥手段は、基板保持機構1に保持された基板Wを単に(高速)回転させるだけで構成してもよいし、それに加えて、基板保持機構1に保持された基板Wに加熱された水蒸気を供給する水蒸気供給手段や、基板保持機構1に保持された基板WにIPA(イソプロピルアルコール)などの水溶性アルコールの蒸気を供給する蒸気供給手段などを備えて構成してもよい。このように基板Wに加熱された水蒸気や水溶性アルコールの蒸気を供給することで、基板Wに付着している液滴が加熱された水蒸気や水溶性アルコールの蒸気に置換されて基板Wから速やかに除去され、基板Wの乾燥を促進することができる。なお、窒素ガスまたは加熱窒素ガスなどの乾いた気体を供給して乾燥を促進するようにしてもよい。
【0126】
その他、後述する具体的な実施例装置のように、基板保持機構1や供給ヘッド6などをチャンバ内に収容して、このチャンバ内の処理空間において、洗浄と乾燥とを行う場合には、チャンバ内の処理空間の雰囲気を窒素ガスなどの不活性ガス雰囲気に置換する不活性ガス雰囲気置換手段をさらに備えて乾燥手段を構成してもよい。洗浄や乾燥を不活性ガス雰囲気で行うことにより、基板Wに酸素が触れずに処理することができ、基板Wが酸化することを防止できる。
【0127】
ところで、上記動作では、基板Wの洗浄と乾燥を行う動作について説明したが、この実施例では、保持部材2の洗浄も良好に行うことができる。
【0128】
すなわち、基板Wを保持しない状態で、各保持部材2を保持状態に切り換え、洗浄液流Qを供給するとともに、モーター4を駆動して、各保時部材2を軸芯J周りで回転させることで、各保持部材2が次々に複数条の各洗浄液流Qを通過して、各保持部材2を洗浄液で洗浄することができる。このとき、各保持部材2の各溝2aそれぞれに洗浄液流Qが直接的に供給されるので、基板Wと接触する各保持部材2の各溝2aを確実に洗浄することができ、基板Wの汚染を確実に防止することができる。
【0129】
また、各保時部材2の洗浄を終えた後、洗浄液流Qの供給を停止するとともに、基板保持機構1の回転を継続(高速回転に切換えてもよい)することで、各保持部材2に付着した洗浄液を振り切って乾燥させることもできる。
【0130】
次に、本発明を適用する具体的な実施例装置の構成を図面を参照して説明する。図17は本発明の具体的な実施例に係る基板処理装置を正面から見た縦断面図であり、図18は側面から見た縦断面図である。
【0131】
この実施例装置は、略円形の基板Wを複数枚、同時に洗浄乾燥する装置であって、略円筒状のチャンバ20内に、基板保持機構1や洗浄液流供給機構5を構成する供給ヘッド6(吐出孔6bが設けられた管状部材6aやノズル6c)などを収容して構成されている。
【0132】
チャンバ20の上方には、基板Wを搬入/搬出するための開口21が形成されている。この開口21は、図示しない開閉機構によって駆動されるカバー22によって開閉可能に構成されている。
【0133】
また、チャンバ20の下方には、洗浄液を排出したり排気したりするための排液排気口23も設けられている。
【0134】
この実施例装置では、基板保持機構1を構成する複数(図では5つ)の保持部材2のうちの一部の保持部材2Aは、各フランジ3に対して着脱自在に構成されており、残りの保持部材2Bは、回動軸31周りで回動可能な回動アーム32の先端部に設けられている。また、保持部材2Aは、回動軸33周りで回動可能な固定具34によって固定されるように構成されている。各回動軸31及び33は、図示しないリンク機構によって同期して回動され、各保持部材2Aの保持/解除と、固定具34による保持部材2Aの固定/解除が、同期して切り換えられるようになっている。
【0135】
保持部材2Aの下方には、保持部材2Aを昇降するための昇降部材40が2つ配設されている。各昇降部材40は、図示しないエアシリンダによって同期して上下動され、開口21の上方において、保持部材2Aに支持した複数枚の基板Wを、図示しない基板搬送機構の基板チャック機構との間で受け渡しする受け渡し位置と、図に示す待機位置との間で保持部材2Aを昇降するように構成されている。
【0136】
また、各フランジ3は、複数本の連結棒50によって連結されており、供給ヘッド6は、連結棒50の外側に配設されている。
【0137】
その他の構成は、上記実施例と同様であるので、共通する部分は図1ないし図3と同一符号を付してその説明を省略する。
【0138】
このような構成を有する実施例装置において、上記図1ないし図3に示す実施例で説明したような動作により基板Wの洗浄と乾燥とがチャンバ20内の処理空間で行われる。なお、この実施例装置においては、保持部材2(2A、2B)以外にも、連結棒50も、 求項3、6に記載の発明における遮断部材となるので、洗浄の際は、保持部材2A、2B及び連結棒50によって形成される洗浄液未供給部分を考慮して第1の洗浄形態または第2の洗浄形態を実行する。
【0139】
なお、上記装置において、加熱された水蒸気や水溶性アルコールの蒸気などを供給するノズルなどをチャンバ20内に配設してもよい。
【0140】
また、上記装置において、開口21の外周部にパッキングを配設し、カバー22が気密状態で開口21を閉じるように構成し、不活性ガスを供給するノズルなどをチャンバ20内に配設して、チャンバ20内に不活性ガスを供給しつつ、排液排気口23から強制的に排気を行って、チャンバ20内を不活性ガス雰囲気に置換するように構成してもよい。
【0141】
なお、上記実施例では、洗浄液流Qの流速と、基板Wの回転方向及び回転数とを変更可能に構成したが、洗浄液流Qの流速と、基板Wの回転方向及び回転数とのいずれか一方だけを変更可能に構成してもよい。また、洗浄液流Qの供給条件及び基板Wの回転条件をある1つの条件に固定して洗浄を行う場合には、その条件に調節した状態で固定して装置を構成してもよい。さらに、供給ヘッド6の配置位置や、供給ヘッド6からの洗浄液流Qの供給方向は、固定であってもよいし、適宜に変更調節できるように構成してもよい。
【0142】
なお、上記実施例では、洗浄液流Qは、基板Wの回転中心WJを通過した後、基板Wの端部に至って基板Wより離れるまでも、基板Wの洗浄面に沿って連続的に流れているが、基板Wの回転中心WJを通過した後については、必ずしも基板Wの洗浄面に沿って連続的に流れることを要するものではない。例えば、基板Wの回転中心WJを通過した後は、洗浄液が基板Wの洗浄面に沿わず、洗浄面から離れて流れてもよいし、また、連続的に流れなくて細かな飛沫に飛散してもよい。
【0143】
ただし、基板Wの回転中心WJを通過した後も、なるべく基板Wの洗浄面に沿って連続的に流れる方が、洗浄液流Qが基板Wの回転中心WJを通過後も基板Wの洗浄に寄与できて、洗浄効率が高くなって良い。最も好ましくは、前記実施例のように、洗浄液流Qを、基板Wの一端部から別の端部へ向けて基板Wの洗浄面に沿って連続的に流れるようにするのが良い。
【0144】
また、上記実施例では、基板Wに対して洗浄と乾燥とを行う装置を例に採り説明したが、本発明はこれに限定されず、洗浄のみ、あるいは、洗浄と乾燥以外の適宜の処理とを行うなど、基板Wの洗浄面を洗浄液で洗浄する機能を有する装置に本発明を適用することができる。
【0145】
さらに、上記実施例では、複数枚の基板Wを同時に処理するバッチ式の装置を例に説明したが、本発明はこれに限定されず、1枚の基板Wごとに処理する枚葉式の装置にも本発明を適用することができる。
【0146】
また、上記実施例では、基板Wを起立姿勢で保持して処理する装置を例に採り説明したが、本発明はこれに限定されず、基板Wを水平姿勢に保持して処理する装置にも本発明を適用することができる。
【0147】
さらに、上記実施例では、基板Wの周縁部の複数箇所を保持して処理する装置を例に採り説明したが、本発明はこれに限定されない。例えば、枚葉式の装置で、基板Wの表面のみを洗浄する場合、基板Wの裏面の中央部を真空吸着式のスピンチャックで保持して回転させながら基板Wの表面を洗浄液で洗浄する場合にも本発明を適用することができる。
【0148】
【発明の効果】
以上の説明から明らかなように、請求項1と請求項2と請求項3に記載の発明によれば、基板を回転させながら、洗浄液流を、基板の洗浄面の一端部から回転中心を通過して洗浄面に沿って連続的に流しながら洗浄するように構成したので、基板の洗浄面全面に洗浄液を確実に供給することができ、基板の洗浄面全面を均一に洗浄液で洗浄することができる。また、従来装置に比べて、洗浄時間の短縮、洗浄液の使用量の削減、洗浄液の無駄な使用を低減することもできる。
【0149】
さらに、請求項1に記載の発明によれば、1枚の基板に対して1つの連続的な洗浄液流を供給することで、基板の表裏両面にそれぞれ連続的な洗浄液流を供給できるように構成したので、洗浄液流供給手段の構造を簡略化して基板の表裏両面を同時に洗浄することができる。
【0150】
請求項2に記載の発明によれば、基板保持手段で基板を起立姿勢で保持し、基板保持手段に起立姿勢で保持された基板が非回転状態のとき、洗浄液流供給手段から基板に供給した連続的な洗浄液流が、基板の洗浄面の回転中心を通る鉛直仮想線上で、基板の洗浄面の回転中心よりも上方側を通過するように洗浄液流の供給条件を調節するとともに、その洗浄液流の供給条件に応じて基板の回転条件を調節して基板の洗浄面を洗浄液で洗浄するように構成したので、親水性の洗浄面の基板と疎水性の洗浄面の基板とに対して洗浄液流の供給条件及び基板の回転条件を同じ条件で洗浄しても、常に、洗浄時に洗浄液流が基板の洗浄面の回転中心を通過するように洗浄液流の軌跡を変化させるとができ、基板の洗浄面の表面状態によって洗浄液流の供給条件及び基板の回転条件を変更調節することなく、均一な洗浄を行うことができる。
【0151】
請求項3と請求項6に記載の発明によれば、例えば、基板の周縁部の複数箇所を保持する保持部材のように、基板の回転時に、基板への連続的な洗浄液流の供給を一時的に遮断する遮断部材を有するような装置に対しても、基板の洗浄面全面に満遍なく洗浄液を供給することができ、均一な洗浄を行うことができる。
【0152】
特に、請求項3に記載の発明によれば、2段階に分けて洗浄するように構成したので、基板の洗浄面全面に洗浄液を確実に供給して洗浄することができる。また、請求項6に記載の発明を実現し得る洗浄液流の供給条件と基板の回転条件とに調節することが困難である場合でも、基板の洗浄面全面に満遍なく洗浄液を供給して洗浄することができる。
【0153】
また、請求項6に記載の発明によれば、洗浄液流の供給条件及び基板の回転条件を所定の1つの条件に調節して、基板に連続的な洗浄液を供給しつつ、基板を回転させて実施する1回の洗浄によって、基板の洗浄面に満遍なく洗浄液を供給するように構成したので、請求項3に記載の発明のように2段階に分けて洗浄するよりも洗浄時間を短縮することができる。
【0154】
請求項4に記載の発明によれば、基板保持手段を、複数枚の基板を保持するように構成し、洗浄液流供給手段は、基板保持手段に保持された各基板の洗浄面ごとに連続的な洗浄液流を供給するように構成したので、複数枚の基板に対する洗浄を同時に行うことができ、しかも、各基板の洗浄面をそれぞれ均一に洗浄することができるとともに、各基板の洗浄面間での洗浄も均一化することができる。
【0155】
請求項5に記載の発明によれば、基板の洗浄面ごとに連続的な洗浄液流を個別に供給するように構成したので、基板の洗浄面ごとに供給する洗浄液流を精度良く調節することができる。また、請求項1に記載の発明のように、連続的な洗浄液流を基板の端縁に当てないので、基板の端縁から洗浄液が周囲へ飛び散るのを抑制することもできる。
【0156】
請求項7に記載の発明によれば、基板を乾燥させる乾燥手段をさらに備えているので、基板の洗浄面の洗浄を終えた後、洗浄液が付着しているウエット状態の基板を乾燥手段によって乾燥させることができ、処理後の基板をドライ状態で装置から搬出することができる。
【図面の簡単な説明】
【図1】 本発明の一実施例に係る基板処理装置の要部構成を示す縦断面図である。
【図2】 実施例装置の平面図である。
【図3】 保持部材の構成を示す断面図である。
【図4】 洗浄液流供給機構の変形例の概略構成を示す平面図である。
【図5】 洗浄液流の供給形態を示す縦断面図である。
【図6】 実施例装置の制御系の構成を示すブロック図である。
【図7】 基板の非回転時における洗浄液流の軌跡と、基板の回転方向と、基板の回転に伴う洗浄液流の軌跡の変化方向との関係の一例を示す図である。
【図8】 非回転時の洗浄液流の軌跡と、基板の回転方向と、回転に伴う洗浄液流の軌跡の変化方向との関係の別の例を示す図である。
【図9】 非回転時の洗浄液流の軌跡と、基板の回転方向と、回転に伴う洗浄液流の軌跡の変化方向との関係のさらに別の例を示す図である。
【図10】 基板の洗浄面の表面状態に応じた非回転時の洗浄液流の軌跡と、回転に伴う洗浄液流の軌跡の変化量を説明するための図である。
【図11】 基板の洗浄面の親水性の度合いが種々に異なる場合の非回転時の洗浄液流の軌跡と、回転に伴う洗浄液流の軌跡の変化量を説明するための図である。
【図12】 1つの遮断部材が洗浄液未供給部分を形成する状態を時系列に示した図である。
【図13】 全ての遮断部材によって形成された洗浄液未供給部分を示す図である。
【図14】 第1の洗浄形態を説明するための図である。
【図15】 同じく、第1の洗浄形態を説明するための図である。
【図16】 第2の洗浄形態を説明するための図である。
【図17】 本発明の具体的な実施例に係る基板処理装置を正面から見た縦断面図である。
【図18】 図17の実施例装置を側面から見た縦断面図である。
【図19】 従来装置の概略構成を示す正面図と側面図である。
【符号の説明】
1:基板保持機構
2:保持部材
4:モーター
5:洗浄液流供給機構
10:コントローラー
W:基板
WC:基板の洗浄面の中心
WJ:基板の回転中心
Q:連続的な洗浄液流
VL:鉛直仮想線
NQ(NQ1、NQ2):洗浄液未供給部分
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a substrate processing apparatus such as a substrate cleaning apparatus or a substrate cleaning / drying apparatus having a function of cleaning a cleaning surface of a substrate such as one or a plurality of semiconductor wafers with a cleaning liquid such as pure water, a chemical solution, or an etching solution.
[0002]
[Prior art]
  For example, as shown in FIG. 19, a conventional substrate processing apparatus of this type holds a plurality of substrates W in a parallel state, and irradiates these substrates W with droplets of cleaning liquid from nozzles 100. While supplying, each substrate W is integrally rotated to clean both front and back surfaces of the substrate W as a cleaning surface.
[0003]
  That is, the conventional apparatus arranges the nozzles 100 in the arrangement direction of the substrates W at intervals wider than the pitch P of the substrates W, and the cleaning liquid droplets QS are obliquely applied to the cleaning surface of the substrates W. The droplets QS of the cleaning liquid sprayed and sprayed on the cleaning surface of the substrate W are connected to each other on the cleaning surface of the substrate W, and gradually increase, flow down the cleaning surface of the substrate W due to gravity, and the entire cleaning surface of the substrate W is cleaned with the cleaning liquid. It is configured to be washed.
[0004]
[Problems to be solved by the invention]
  However, the conventional example having such a configuration has the following problems.
  First, since the conventional apparatus sprays the cleaning liquid droplets QS from an oblique direction with respect to the cleaning surface of each substrate W, the cleaning liquid droplets QS from the nozzle 100 are only in the peripheral portion of the cleaning surface of each substrate W. Can only be sprayed directly on. Further, there is a difference in cleaning power between the portion where the cleaning liquid droplet QS from the nozzle 100 is directly sprayed and the portion where the cleaning liquid flows due to gravity. Therefore, in the conventional apparatus, there is a problem in that the cleaning accuracy differs between the vicinity of the peripheral portion and the central portion of the cleaning surface of the substrate W, and uniform cleaning cannot be performed on the entire cleaning surface of the substrate W.
[0005]
  Further, the locus of the cleaning liquid that flows down the cleaning surface of the substrate W due to gravity is very irregular. Therefore, the cleaning liquid may not be uniformly supplied to the entire cleaning surface of the substrate W, and a portion where the cleaning liquid is not supplied may be formed on the cleaning surface of the substrate W. Therefore, the entire cleaning surface of the substrate W is reliably cleaned with the cleaning liquid. There is also a problem that it is not guaranteed to do. In particular, when a hydrophilic part and a hydrophobic part are formed in the cleaning surface of the substrate W, for example, when a pattern is formed on the surface of the substrate W, the cleaning surface of the substrate W is moved by gravity. The cleaning liquid that flows down easily flows into the hydrophilic portion and hardly flows into the hydrophobic portion, and the entire cleaning surface of the substrate W cannot be reliably cleaned with the cleaning liquid.
[0006]
  Further, in the conventional apparatus, the portion to which the liquid droplets QS of the cleaning liquid from the nozzle 100 are directly sprayed is different for each cleaning surface of each substrate W due to the positional relationship of each cleaning surface of each substrate W with respect to the nozzle 100. Therefore, there is a difference in the cleaning accuracy for each cleaning surface of each substrate W, and there is a problem that uniform cleaning cannot be performed between the cleaning surfaces of each substrate W.
[0007]
  The present invention has been made in view of such circumstances, and the entire cleaning surface of the substrate can be uniformly cleaned. Also, when a plurality of substrates are cleaned simultaneously, each cleaning of each substrate is performed. It is an object of the present invention to provide a substrate processing apparatus that can evenly clean even between surfaces.
[0008]
[Means for Solving the Problems]
  In order to achieve such an object, the present invention has the following configuration.
  That is, the invention described in claim 1 is a substrate processing apparatus having a function of cleaning a cleaning surface of a substrate with a cleaning liquid, a substrate holding means for holding a substrate, a rotating means for rotating the substrate holding means, Cleaning liquid flow supply means for supplying a continuous cleaning liquid flow to the substrate so as to form a cleaning liquid flow that continuously flows along the cleaning surface of the substrate from the edge of the substrate, and the cleaning liquid flow supply The substrate holding means holding the substrate is rotated while supplying the continuous cleaning liquid flow from the means to the substrate held by the substrate holding means. At this time, the continuous cleaning liquid flow is applied to the cleaning surface of the substrate. The cleaning surface of the substrate passes through the center of rotation and is cleaned with a cleaning liquid, and one continuous cleaning liquid flow supplied from the cleaning liquid flow supply means to the substrate held by the substrate holding means At the edge of the board The continuous and distributed to the substrate so as to form a flow of cleaning liquid that is distributed on the front and back surfaces of the plate and flows continuously from the edge of the substrate along the cleaning surface of the substrate on each of the front and back surfaces of the substrate. A clean flow of cleaning liquid.
[0009]
  The invention described in claim 2 is a substrate processing apparatus having a function of cleaning a cleaning surface of a substrate with a cleaning liquid, a substrate holding means for holding the substrate in an upright posture, and a rotating means for rotating the substrate holding means; A cleaning liquid flow supplying means for supplying a continuous cleaning liquid flow to the substrate from the edge of the substrate along the cleaning surface of the substrate, and driving control of the rotating means. And cleaning control means for adjusting the supply condition of the cleaning liquid flow by adjusting the rotation condition of the substrate and adjusting and controlling the cleaning liquid flow supply means, and the cleaning control means stops the rotating means, When the substrate held in a standing posture on the substrate holding means is in a non-rotating state, the continuous cleaning liquid flow supplied to the substrate from the cleaning liquid flow supplying means isThe position that passes vertically above the center of rotation of the cleaning surface of the substrate is closer to the center of rotation of the cleaning surface of the substrate and the degree of hydrophobicity of the cleaning surface of the substrate is greater as the degree of hydrophilicity of the cleaning surface of the substrate is larger. The larger the distance, the farther from the center of rotation of the cleaning surface of the substrateWhen the substrate is rotated by rotating the rotating means by adjusting the supply condition of the cleaning liquid flow and adjusting the rotation condition of the substrate according to the supply condition of the cleaning liquid flow, the cleaning liquid flow is changed to the cleaning surface of the substrate. The cleaning surface of the substrate is cleaned with a cleaning liquid so as to pass through the center of rotation.
[0010]
  (Delete)
[0011]
  Claim 3The substrate processing apparatus having a function of cleaning the cleaning surface of the substrate with a cleaning liquid, the substrate holding means for holding the substrate, the rotating means for rotating the substrate holding means, and the end of the substrate A cleaning liquid flow supplying means for supplying a continuous cleaning liquid flow to the substrate so as to form a continuous cleaning liquid flow along the cleaning surface of the substrate; and a rotation condition of the substrate by driving and controlling the rotating means. And a cleaning control means for adjusting the supply condition of the cleaning liquid flow by adjusting and controlling the cleaning liquid flow supply means, and the cleaning control means holds the substrate from the cleaning liquid flow supply means when the substrate rotates. In the case of having a blocking member for temporarily interrupting the supply of the continuous cleaning liquid flow to the substrate across the continuous cleaning liquid flow supplied to the substrate held by the means, first, the continuous cleaning liquid The flow washes the substrate A first cleaning is performed in which the cleaning surface of the substrate is cleaned with a cleaning liquid, passing through the center of rotation of the surface, and then in the first cleaning, the continuous cleaning liquid flow supplied to the cleaning surface of the substrate is The supply condition of the cleaning liquid flow and / or the rotation condition of the substrate is set so that the continuous cleaning liquid flow flows with respect to the non-supplying portion of the cleaning liquid on the cleaning surface of the substrate that does not flow due to being blocked by the blocking member. By changing and adjusting, control is performed to perform the second cleaning in which the cleaning surface of the substrate is cleaned with the cleaning liquid.
[0012]
  Claim 4The invention described inAny one of claims 1 to 3In the substrate processing apparatus described above, the substrate holding unit is configured to hold a plurality of substrates, and the cleaning liquid flow supply unit is configured to perform the continuous cleaning for each cleaning surface of each substrate held by the substrate holding unit. It is configured to supply a simple cleaning liquid flow.
[0013]
  Claim 5The invention described inClaim 2 or 3In the described substrate processing apparatus, one continuous cleaning liquid flow supplied from the cleaning liquid flow supplying unit to the substrate held by the substrate holding unit is applied to only one cleaning surface on either the front or back side of the substrate. The continuous cleaning liquid flow is supplied to the substrate from the unit so as to form a cleaning liquid flow that flows continuously along the cleaning surface of the substrate.
[0014]
  Claim 6The invention described inClaim 1 or 2In the substrate processing apparatus described above, when the substrate is rotated, the continuous cleaning liquid flow to the substrate across the continuous cleaning liquid flow supplied from the cleaning liquid flow supply unit to the substrate held by the substrate holding unit. In the case of having a blocking member for temporarily blocking supply, after the blocking member crosses the continuous cleaning liquid flow supplied to the substrate, the continuous cleaning liquid flow supplied to the substrate becomes the blocking member. The cleaning surface of the substrate is cleaned with the cleaning liquid so that the cleaning liquid does not flow due to being blocked by the flow of the cleaning liquid on the cleaning surface of the substrate.
[0015]
  Claim 7The invention described inAny one of claims 1 to 6In the described substrate processing apparatus,
  A drying means for drying the substrate is further provided.
[0016]
[Action]
  Claim 1 and Claim 2Claim 3The operations common to the inventions described above are as follows.
  The substrate is held by the substrate holding means, and the cleaning liquid flow that continuously flows from the edge of the substrate along the cleaning surface of the substrate is formed on the substrate held by the substrate holding means from the cleaning liquid flow supply means. While supplying a continuous cleaning liquid flow, the substrate holding means and the substrate held thereby are rotated by the rotating means to clean the cleaning surface of the substrate with the cleaning liquid.
[0017]
  Here, with the rotation of the substrate, the trajectory of the cleaning liquid flowing along the cleaning surface of the substrate changes due to the centrifugal force and the surface tension generated between the cleaning surface of the substrate and the cleaning liquid. Therefore, by adjusting the supply condition of the cleaning liquid flow supplied to the cleaning surface of the substrate from the cleaning liquid flow supply means and the rotation condition of the substrate (substrate holding means) by the rotation means, the continuous cleaning liquid flow is applied to the cleaning surface of the substrate. The cleaning surface of the substrate is cleaned with a cleaning liquid so as to pass through the rotation center.
[0018]
  Although the cleaning liquid flow has a substantial width, it is only necessary that some part of the width of the cleaning liquid flow passes through the center of rotation of the cleaning surface of the substrate.
[0019]
  As a result, the cleaning liquid flow forms a continuous flow from one end of the cleaning surface of the substrate along the cleaning surface that passes through the center of rotation, and in this state, the substrate rotates. The cleaning liquid can be reliably supplied, and the entire cleaning surface of the substrate can be uniformly cleaned with the cleaning liquid.
[0020]
  The supply condition of the cleaning liquid flow includes the position of the cleaning liquid flow supply means, the supply direction of the continuous cleaning liquid flow supplied from the cleaning liquid flow supply means to the substrate, the flow rate of the cleaning liquid flow, and the like. The rotation condition includes a rotation direction and a rotation speed (rotation speed).
[0021]
  Depending on the supply conditions of the cleaning liquid flow, the trajectory of the cleaning liquid flow flowing on the cleaning surface of the substrate when the substrate is not rotating can be adjusted. Further, the direction in which the trajectory of the cleaning liquid flow changes with the rotation of the substrate can be adjusted by the rotation direction of the substrate, and the amount of change in the trajectory of the cleaning liquid flow with the rotation of the substrate can be adjusted by the number of rotations of the substrate. Note that the amount of change in the locus of the cleaning liquid flow accompanying the rotation of the substrate can also be adjusted by the flow rate of the cleaning liquid flow.
[0022]
  Furthermore, according to the first aspect of the present invention, one continuous cleaning liquid flow supplied from the cleaning liquid flow supplying means to the substrate held by the substrate holding means is formed by the front and back surfaces of the substrate at the edge of the substrate. A continuous cleaning liquid flow is supplied to the substrate so as to continuously flow along the front and back surfaces so as to pass through the center of rotation of each cleaning surface from one end of the substrate on each of the front and back surfaces of the substrate. .
[0023]
  Thus, one continuous cleaning liquid flow can be supplied for each substrate, and both the front and back surfaces of the substrate can be cleaned simultaneously as cleaning surfaces.
[0024]
  The operation of the invention described in claim 2 is as follows.
  The substrate holding means holds the substrate in an upright position, and when the substrate held in the standing position on the substrate holding means is in a non-rotating state, the continuous cleaning liquid flow supplied to the substrate from the cleaning liquid flow supplying means The supply condition of the cleaning liquid flow is adjusted so as to pass above the rotation center of the cleaning surface of the substrate on the vertical imaginary line passing through the rotation center of the surface, and the rotation condition of the substrate is adjusted according to the supply condition of the cleaning liquid flow The substrate is rotated while the cleaning surface of the substrate is cleaned with the cleaning liquid while supplying a continuous cleaning liquid flow to the substrate.
[0025]
  With respect to the cleaning liquid flow supply condition described above, the rotation direction of the substrate rotation condition is such that the cleaning liquid flow along the cleaning surface until it passes on the vertical imaginary line is changed downward. In this case, the cleaning liquid flow that continuously flows along the cleaning surface of the substrate during the rotation of the substrate can change the trajectory of the cleaning liquid flow in the direction toward the rotation center of the cleaning surface of the substrate. If the number of rotations of the substrate is adjusted appropriately, the cleaning liquid flow trajectory is adjusted so that the cleaning liquid flow that continuously flows along the cleaning surface of the substrate during the rotation of the substrate passes through the center of rotation of the cleaning surface of the substrate. Can be changed.
[0026]
  Here, depending on whether the surface state of the cleaning surface of the substrate is hydrophilic or hydrophobic as a whole, the trajectory of the cleaning liquid flow when the substrate is not rotating and the trajectory of the cleaning liquid flow accompanying the rotation of the substrate are changed. The amount is different.
[0027]
  That is, when the substrate is in a non-rotating state as described above, the cleaning liquid flow supply condition is such that the continuous cleaning liquid flow supplied to the substrate passes above the rotation center of the cleaning surface of the substrate on the vertical imaginary line. In this case, as the degree of hydrophilicity of the cleaning surface of the substrate increases, the kinetic energy in the horizontal direction of the cleaning liquid flowing along the cleaning surface is strongly reduced by the surface tension between the cleaning surface and the cleaning liquid. Therefore, the position where the continuous cleaning liquid flow supplied to the substrate passes on the vertical imaginary line is above the cleaning surface of the substrate and approaches the rotation center of the cleaning surface.
[0028]
  On the other hand, when the substrate is in a rotating state, the amount of change in the locus of the cleaning liquid flow accompanying the rotation of the substrate decreases as the cleaning liquid flow trajectory supplied to the substrate increases as the degree of hydrophilicity of the cleaning surface of the substrate increases. As the degree of sex increases, the amount of change increases.
[0029]
  Therefore, hydrophilicFor substrates with a high degree, when the substrate is not rotating, the continuous cleaning liquid flow supplied to the substrate passes on a vertical imaginary line above the center of rotation of the cleaning surface of the substrate and close to the center of rotation of the cleaning surface. In the rotation state, the trajectory of the cleaning liquid flow that flows along the cleaning surface of the substrate can be changed to pass through the rotation center of the cleaning surface of the substrate. On the other hand, in the case of a non-rotating state, in a substrate having a low hydrophilicity (high hydrophobicity), the continuous cleaning liquid flow supplied to the substrate is above the rotational center of the cleaning surface of the substrate on the vertical imaginary line. In this case, the trajectory of the cleaning liquid flowing along the cleaning surface of the substrate can be greatly changed to pass through the rotation center of the cleaning surface of the substrate when passing through a position far from the rotation center of the cleaning surface. . That is, by adjusting the supply condition of the cleaning liquid flow and the rotation condition of the substrate to a certain condition, the cleaning liquid flow is transferred to the substrate during the rotation of the substrate in both cases where the cleaning surface of the substrate is hydrophilic and hydrophobic. It is possible to adjust the cleaning surface to pass through the center of rotation. Further, even in a substrate in which a highly hydrophobic portion and a highly hydrophilic portion are mixed on the cleaning surface, the trajectory of the cleaning liquid flow can be adjusted so as to pass through the center of rotation of the cleaning surface.
[0030]
  Claim 3In the invention described in (4), for example, the substrate holding means is configured to hold a plurality of positions on the peripheral edge of the substrate with a plurality of holding members. The present invention relates to an apparatus having a blocking member (for example, a holding member) that temporarily interrupts the supply of the continuous cleaning liquid flow to the substrate across the continuous cleaning liquid flow supplied to the held substrate. In such a caseClaim 1 or 2When the cleaning surface of the substrate is cleaned according to the invention described in, each time the blocking member crosses the continuous cleaning liquid flow supplied to the substrate, the blocking member temporarily blocks the supply of the continuous cleaning liquid flow to the substrate. As a result, a cleaning liquid non-supply portion where the cleaning liquid does not partially flow is formed on the cleaning surface of the substrate, and the cleaning liquid may not be supplied uniformly to the cleaning surface of the substrate.
[0031]
  Claim 3According to the present invention, the supply condition of the cleaning liquid flow and / or the rotation condition of the substrate can be changed, and the cleaning control means first passes the continuous cleaning liquid flow through the rotation center of the cleaning surface of the substrate. Then, the first cleaning is performed to clean the cleaning surface of the substrate with the cleaning liquid. Next, in the first cleaning, the cleaning liquid is blocked by the blocking member blocking the continuous cleaning liquid flow supplied to the cleaning surface of the substrate. Change the supply condition of the cleaning liquid flow and / or the rotation condition of the substrate so that the continuous cleaning liquid flow will flow to the part where the cleaning liquid is not supplied on the cleaning surface of the substrate where the substrate is not supplied. It controls to perform the 2nd washing | cleaning wash | cleaned with a washing | cleaning liquid.
[0032]
  By cleaning the cleaning surface of the substrate in two stages as described above, the cleaning liquid can be uniformly supplied to the cleaning surface of the substrate.
[0033]
  Note that the cleaning liquid flow that flows on the cleaning surface of the substrate during the second cleaning is not limited to the cleaning surface of the substrate because a continuous cleaning liquid flow may flow in the cleaning liquid non-supply portion of the cleaning surface of the substrate. It is not necessary to pass through the center of rotation, and an optimal cleaning liquid flow trajectory that allows a continuous cleaning liquid flow to flow through a portion of the cleaning surface of the substrate not supplied with the cleaning liquid can be freely selected. Further, the second cleaning may be performed while changing and adjusting the supply condition of the cleaning liquid flow and the rotation condition of the substrate to various conditions.
[0034]
  Claim 4The invention described in 1 is an apparatus for simultaneously cleaning a plurality of substrates, and the operation thereof is as follows.
[0035]
  A plurality of substrates are held by the substrate holding means, and a continuous flow from one end of the substrate along the cleaning surface of the substrate is performed for each cleaning surface of each substrate held by the substrate holding means from the cleaning liquid flow supplying means. The substrate holding means and the plurality of substrates held by the rotating means are integrally rotated while supplying a continuous cleaning liquid flow so as to form a continuous flow along the cleaning surface of each substrate. The supply conditions of the cleaning liquid flow and the rotation conditions of the substrate are adjusted so that the cleaning liquid flow passes through the center of rotation of the cleaning surface of the substrate, and the cleaning surface of each substrate is simultaneously cleaned with the cleaning liquid.
[0036]
  Since each substrate is held and rotated integrally with the substrate holding means, the rotation conditions of each substrate can be made the same, and the supply condition of the continuous cleaning liquid flow supplied to the cleaning surface of each substrate, respectively. Can be adjusted so that the continuous cleaning liquid flow flowing along the cleaning surface of each substrate passes through the center of rotation of the cleaning surface of the substrate.
[0037]
  Claim 5According to the invention described in (1), one continuous cleaning liquid flow supplied from the cleaning liquid flow supplying means to the substrate held by the substrate holding means is applied to the edge portion of the substrate only on one of the front and back cleaning surfaces. Then, a continuous cleaning liquid flow is supplied to the substrate so as to form a continuous flowing cleaning liquid flow along the cleaning surface (front surface or back surface) of the substrate.
[0038]
  Thus, one continuous cleaning liquid stream can be individually supplied for each cleaning surface of the substrate.
[0039]
  In addition,Claim 5When the front and back surfaces of the substrate are simultaneously cleaned as the cleaning surfaces in the invention described in, the continuous cleaning liquid flow that flows continuously along only the front surface of the substrate and the continuous cleaning surface along only the back surface of the substrate. A continuous stream of cleaning fluid flowing through
[0040]
  Claim 6According to the invention described in (3), after the blocking member crosses the continuous cleaning liquid flow (the cleaning liquid flow passing through the rotation center of the cleaning surface of the substrate) supplied to the substrate, the continuous cleaning liquid supplied to the substrate The cleaning surface of the substrate is cleaned with the cleaning liquid such that the cleaning liquid flow is caused to flow through the cleaning liquid non-supplying portion of the cleaning surface of the substrate where the cleaning liquid flow does not flow due to the blocking member blocking.
[0041]
  Accordingly, even when the blocking member is provided, the cleaning liquid flow supply condition and the substrate rotation condition are adjusted to one predetermined condition, and the substrate is rotated while the continuous cleaning liquid flow is supplied to the substrate. The cleaning liquid can be uniformly supplied to the cleaning surface of the substrate by one cleaning.
[0042]
  Claim 7When the cleaning of the cleaning surface of the substrate is finished, the wet substrate to which the cleaning liquid is attached is dried by the drying means.
[0043]
DETAILED DESCRIPTION OF THE INVENTION
  Embodiments of the present invention will be described below with reference to the drawings.
  FIG. 1 is a longitudinal sectional view showing a configuration of a main part of a substrate processing apparatus according to an embodiment of the present invention, FIG. 2 is a plan view thereof, and FIG. 3 is a sectional view showing a configuration of a holding member.
[0044]
  In this embodiment, a plurality of substantially circular substrates W such as semiconductor wafers are simultaneously cleaned and dried.
[0045]
  That is, the substrate holding mechanism 1 corresponding to the substrate holding means is configured to hold a plurality of substrates W in a standing state in a parallel state with an equal pitch. The substrate holding mechanism 1 includes a plurality (three in the figure) of rod-like holding members 2 that hold a plurality of locations at the peripheral edge of each substrate W. Each holding member 2 is configured such that a plurality of grooves 2a are formed at equal pitches on the inner surface, and the peripheral edge of the substrate W is inserted into each groove 2a so as to sandwich the substrate W from the periphery. At least one of the holding members 2 is configured to be switchable between a holding state in which the substrate W is held and a released state in which the holding of the substrate W is released away from the peripheral edge of the substrate W.
[0046]
  Each holding member 2 is supported between two flanges 3 arranged to face each other so as to be rotatable about an axis J in the horizontal direction. Each flange 3, each holding member 2, and each substrate W held by the substrate holding mechanism 1 are integrally rotated around the axis J by a motor 4 corresponding to a rotating means via a belt transmission mechanism BM and the like. It is configured as follows. Note that the belts may be directly connected without using the belt transmission mechanism BM. The motor 4 is configured to be able to arbitrarily change and adjust the rotation direction and the number of rotations. The center WC of the cleaning surface (front surface and / or back surface) of the substrate W held by the substrate holding mechanism 1 is aligned with the axis J, that is, the center WC of the cleaning surface and the rotation center of the substrate W are aligned. The held substrate W may be rotated around the center WC of the cleaning surface so as to coincide with WJ, or the center WC of the cleaning surface of the held substrate W may be changed from the rotation center WJ of the substrate W. The held substrate W may be slightly shifted (several millimeters) to be eccentric with respect to the center WC of the cleaning surface and rotated. When the held substrate W is decentered with respect to the center WC of the cleaning surface and rotated, vibration of the substrate W can be suppressed during the rotation.
[0047]
  Further, for each cleaning surface of each substrate W held by the substrate holding mechanism 1, a continuous cleaning liquid flow Q that continuously flows along the cleaning surface of the substrate W from one end portion of the substrate W to another end portion. Is provided with a cleaning liquid flow supply mechanism 5 corresponding to a cleaning liquid flow supply means.
[0048]
  The cleaning liquid flow supply mechanism 5 includes a supply head 6 disposed at a peripheral position of the substrate W held by the substrate holding mechanism 1, a supply pipe 7, an on-off valve 8, a flow rate adjusting valve 9, and the like. Yes.
[0049]
  The supply head 6 of the embodiment shown in FIGS. 1 and 2 has a plurality of discharge holes 6b formed in a hollow tubular member 6a closed at both ends, and each of the cleaning liquids filled in the tubular member 6a is discharged. Each of the holes 6b is pushed out, and a continuous cleaning liquid flow Q is individually discharged from each discharge hole 6b. Thus, a continuous cleaning liquid flow Q is supplied to each cleaning surface of each substrate W held by the substrate holding mechanism 1.
[0050]
  A cleaning liquid is supplied into the tubular member 6 a from a cleaning liquid supply source (not shown) via the supply pipe 7. Examples of the cleaning liquid include pure water (for rinse cleaning), chemical liquid (for chemical liquid cleaning), etching liquid (for thin film removal cleaning), and the like.
[0051]
  The supply pipe 7 is provided with an on-off valve 8 and a flow rate adjusting valve 9. By opening / closing the on-off valve 8, the supply and stop of the cleaning liquid into the tubular member 6a (the supply and stop of the cleaning liquid flow Q from each discharge hole 6b to each substrate W) are switched. Further, by adjusting the flow rate of the cleaning liquid supplied into the tubular member 6a by the flow rate adjusting valve 9, the flow rate of the continuous cleaning liquid flow Q supplied to each substrate W from each discharge hole 6b can be adjusted. . In addition, when the flow rate adjustment valve 9 is configured to be capable of adjusting the flow rate so that the supply of the cleaning liquid into the tubular member 6a can be stopped and can also function as the on-off valve 8, the on-off valve 8 may be omitted. .
[0052]
  Further, the cleaning liquid flow supply means is not limited to the above configuration. For example, as shown in FIG. 4, the supply head 6 includes a plurality of nozzles 6c configured to discharge a continuous cleaning liquid flow Q, and supplies the cleaning liquid individually to the nozzles 6c. The configuration may be such that the cleaning liquid flow Q is individually supplied from each nozzle 6c to each substrate W. In addition, the code | symbol 7, 8, 9 in FIG. 4 shows a supply pipe | tube, an on-off valve, and a flow regulating valve similarly to FIG. 1, FIG. In addition, as shown in FIG. 4, when the continuous cleaning liquid flow Q is individually supplied from each nozzle 6c to each substrate W, there are the following advantages.
[0053]
  When the substrate holding mechanism 1 holds and cleans a smaller number of substrates W (for example, 50) than the maximum number of substrates held (for example, 50), when the supply head 6 is constituted by the tubular member 6a provided with the discharge holes 6b, each discharge Since the supply / stop of the cleaning liquid flow Q from the hole 6b is performed integrally, the cleaning liquid flow Q is supplied also to the holding position of the substrate W that is not actually held by the substrate holding mechanism 1, and the cleaning liquid is wasted. May be used for On the other hand, in the configuration shown in FIG. 4, since supply / stop of the cleaning liquid flow Q from each nozzle 6c can be switched individually, the cleaning liquid flow is applied only to the substrate W actually held in the substrate holding mechanism 1. Q can be supplied, and useless use of the cleaning liquid can be eliminated.
[0054]
  Here, the supply form of the cleaning liquid flow Q to the substrate W will be described with reference to FIG. FIG. 5 shows a supply form in the case where the cleaning liquid flow Q is supplied to both the front and back surfaces of the substrate W.
[0055]
  FIG. 5A shows a first supply form. In this first supply mode, one continuous cleaning liquid flow Q supplied from the supply head 6 constituting the cleaning liquid flow supply mechanism 5 to the substrate W held by the substrate holding mechanism 1 is the substrate at the edge of the substrate W. Distributed to the front surface and the back surface of W, and continuously flows to the substrate W so that the front and back surfaces of the substrate W continuously flow from one end of the substrate W to the other end along the front and back surfaces. A cleaning liquid flow Q is supplied.
[0056]
  In the case of implementing this first supply mode, in order to distribute the cleaning liquid flow Q to the front and back surfaces of the substrate W approximately equally, the thickness QW of the cleaning liquid flow Q (the dimension of the substrate W in the thickness WW direction) direction. It is preferable to make the center QWC substantially coincide with the center WWC in the thickness WW direction of the held substrate W. Further, in order to prevent the cleaning liquid flow Q hitting the edge of the substrate W from scattering to the surroundings, the thickness QW of the cleaning liquid flow Q is increased (for example, thicker than the thickness WW of the substrate W). It is preferable to make the flow rate as slow as possible.
[0057]
  According to the first supply mode, by supplying one continuous cleaning liquid flow Q for each substrate W, both the front and back surfaces of the substrate W can be simultaneously cleaned as the cleaning surfaces. If one ejection hole 6b and one nozzle 6c are provided for each, both the front and back surfaces of the substrate W can be cleaned at the same time, compared with the case where the front and back surfaces of the substrate W are simultaneously cleaned in the second supply mode described below. Thus, the number of the discharge holes 6b and the nozzles 6c can be reduced to half, the structure of the cleaning liquid flow supply mechanism 5 can be simplified, and the front and back surfaces of the substrate W can be cleaned simultaneously.
[0058]
  FIG. 5B shows a second supply form. In this second supply mode, one continuous cleaning liquid flow Q supplied from the supply head 6 constituting the cleaning liquid flow supply mechanism 5 to the substrate W held by the substrate holding mechanism 1 is supplied from one end of the substrate W. A continuous cleaning liquid flow Q is supplied to the substrate W so as to continuously flow along only one cleaning surface toward another end.
[0059]
  FIG. 5B shows a case where both the front and back surfaces of the substrate W are simultaneously cleaned as the cleaning surfaces. In this case, as shown in the drawing, the substrate W is directed from one end portion to another end portion. A continuous cleaning liquid flow Q that flows continuously along only the front surface of W, and a continuous cleaning liquid flow Q that flows continuously along only the back surface of the substrate W from one end of the substrate W to another end. And supply separately.
[0060]
  In the case of an apparatus for cleaning only one surface of the substrate W, only one cleaning liquid flow Q of the two cleaning liquid flows Q supplied to one substrate W shown in FIG. It may be configured to supply to the substrate W.
[0061]
  In the second supply mode, the discharge holes 6b and the nozzles 6c for individually supplying the cleaning liquid flow Q are provided for each cleaning surface of each substrate W.
[0062]
  When the front and back surfaces of the substrate W are simultaneously cleaned in this second supply mode, the cleaning liquid flow Q is individually supplied to the front and back surfaces of each substrate W by one cleaning liquid flow supply mechanism 5. Alternatively, the cleaning liquid flow supply mechanism 5 that supplies the cleaning liquid flow Q individually to the front surface of each substrate W and the cleaning liquid flow supply mechanism 5 that supplies the cleaning liquid flow Q individually to the back surface of each substrate W are separated. The supply head 6 of each cleaning liquid flow supply mechanism 5 may be installed at different positions.
[0063]
  That is, when the supply head 6 is constituted by the tubular member 6a provided with the discharge holes 6b, the discharge holes 6b for individually supplying the cleaning liquid flow Q to the front and back surfaces of each substrate W may be provided in one tubular member 6a. Alternatively, the tubular member 6a provided with the discharge holes 6b for supplying the cleaning liquid flow Q individually to the front surface of each substrate W and the discharge holes 6b for supplying the cleaning liquid flow Q individually to the back surface of each substrate W were provided. The tubular member 6a may be formed separately, and may be configured to be installed at a position different from each tubular member 6a (supply head 6).
[0064]
  In the configuration shown in FIG. 4, the group of nozzles 6c that individually supply the cleaning liquid flow Q to the front and back surfaces of each substrate W may be handled integrally to determine the installation position of the group of nozzles 6c. A group of nozzles 6c that individually supply the cleaning liquid flow Q to the front surface of each substrate W and a group of nozzles 6c that individually supply the cleaning liquid flow Q to the back surface of each substrate W are divided into groups of nozzles 6c. You may decide the installation position of each.
[0065]
  When the front and back supply heads 6 are installed at different positions, the cleaning liquid flow Q flowing on the surface of the substrate W and the cleaning liquid flow flowing on the back surface of the substrate W when the substrate W is not rotated. The locus of Q is different. As will be described later, at the time of cleaning, the substrate W is rotated to change the trajectory of the cleaning liquid flow Q flowing along the cleaning surface (front and back surfaces) of the substrate W, so that the cleaning liquid flow Q is the rotation center of the cleaning surface of the substrate W. Even if the trajectory of the cleaning liquid flow Q is different between the front surface and the back surface of the non-rotating substrate W by adjusting the supply condition of the cleaning liquid flow Q described later, the rotation of the substrate W is performed. It is sometimes possible to adjust the cleaning liquid flow Q to pass through the center of rotation WJ of each surface of the substrate W on each surface.
[0066]
  According to the second supply mode, the continuous cleaning liquid flow Q supplied to each cleaning surface of the substrate W can be individually adjusted. For example, the continuous cleaning liquid flow Q is applied to both the front and back surfaces of the substrate W. When supplying, each cleaning liquid flow Q can be adjusted with high accuracy. Further, since the continuous cleaning liquid flow Q is not applied to the edge of the substrate W as in the first supply form, it is possible to suppress the cleaning liquid from scattering from the edge of the substrate W to the surroundings.
[0067]
  Further, if the front surface cleaning liquid flow supply mechanism 5 and the rear surface cleaning liquid flow supply mechanism 5 are configured separately, the supply of the cleaning liquid flow Q to the front and back surfaces, only the front surface, and only the back surface of each substrate W can be switched. A single apparatus can be switched between front and back surface cleaning, front surface cleaning, and back surface cleaning.
[0068]
  FIG. 6 is a block diagram showing the configuration of the control system of the apparatus.
  The controller 10 composed of a computer or the like controls the holding and releasing of the substrate W by the substrate holding mechanism 1 and the driving control of the motor 4 (rotation / stop and control of rotation direction and number of rotations during rotation), By performing opening / closing control of the opening / closing valve 8, adjustment control of the supply flow rate by the flow rate adjusting valve 9, etc., cleaning and drying of each substrate W described later are executed. In addition, this controller 10 isClaim 7In the case of having the function of the drying means in the invention described in the above and implementing the second cleaning mode described later,Claim 3It has the function of the washing | cleaning control means in invention described in (1).
[0069]
  Next, the operation of the embodiment apparatus having the above configuration will be described.
  First, the controller 10 controls each part as follows to clean the cleaning surface of the substrate W with the cleaning liquid.
[0070]
  That is, the substrate W carried into the apparatus is held by the substrate holding mechanism 1, and from one end of the substrate W to another end for each cleaning surface of each substrate W held by the substrate holding mechanism 1 from the cleaning liquid flow supply mechanism 5. The substrate holding mechanism 1 and a plurality of substrates W held by the motor 4 are integrally rotated by the motor 4 while supplying a continuous cleaning liquid flow Q that continuously flows along the cleaning surface of the substrate W toward the portion. Thus, the cleaning surface of each substrate W is simultaneously cleaned with the cleaning liquid.
[0071]
  Here, the cleaning liquid flow Q flowing along the cleaning surface of the substrate W due to the surface tension and centrifugal force with the substrate W rotating with the rotation of the substrate W is a non-rotating locus indicated by TS in FIG. The trajectory changes as depicted in the trajectory during rotation indicated by TR.
[0072]
  Therefore, the supply conditions of the cleaning liquid flow Q supplied from the supply head 6 of the cleaning liquid flow supply mechanism 5 to the cleaning surface of each substrate W and the rotation conditions of the substrate W (substrate holding mechanism 1) by the motor 4 will be described later. The continuous cleaning liquid flow Q flowing along the cleaning surface of each substrate W is adjusted to pass through the rotation center WJ of each substrate W, and the cleaning surface of each substrate W is cleaned with the cleaning liquid. .
[0073]
  Note that the cleaning liquid flow Q substantially has a width QD (a dimension extending in the direction of the cleaning surface of the substrate W), but somewhere in the width QD of the cleaning liquid flow Q is the rotation center of the cleaning surface of the substrate W. It only needs to pass WJ.
[0074]
  Accordingly, the cleaning liquid flow Q continuously flows along the cleaning surface from one end portion of the cleaning surface of the substrate W to the other end portion through the rotation center WJ, and rotates the substrate W in this state. Therefore, the cleaning liquid can be reliably supplied to the entire cleaning surface of the substrate W, and the entire cleaning surface of the substrate W can be uniformly cleaned with the cleaning liquid.
[0075]
  In addition, in the conventional apparatus, since the supply of the cleaning liquid to the entire cleaning surface of the substrate W is uncertain, if the cleaning liquid is to be reliably supplied to the entire cleaning surface of the substrate W, the cleaning time must be lengthened. Along with this, the amount of cleaning liquid used increases, and many of them are wasted. On the other hand, according to this embodiment, it is possible to reliably supply the cleaning liquid to the entire cleaning surface of the substrate W in a short time, with a small amount of cleaning liquid, and by reducing the use of unnecessary cleaning liquid. It becomes possible.
[0076]
  Furthermore, according to this embodiment, the cleaning of a plurality of substrates W can be performed simultaneously. In addition, since the cleaning liquid flow Q is individually supplied to each cleaning surface of each substrate W, the cleaning surfaces of each substrate W can be uniformly cleaned, and the cleaning surfaces between the cleaning surfaces of each substrate W can be uniform. Cleaning can be made uniform.
[0077]
  The supply condition of the cleaning liquid flow Q includes the position of the supply head 6 constituting the cleaning liquid flow supply mechanism 5 and the continuous cleaning liquid supplied to the substrate W from the supply head 6 (discharge hole 6b and nozzle 6c). The rotation direction of the substrate W includes the rotation direction and the number of rotations, including the supply direction of the flow Q, the flow rate of the cleaning liquid flow Q, and the like.
[0078]
  Depending on the supply conditions of the cleaning liquid flow Q, the trajectory TS of the cleaning liquid flow Q flowing on the cleaning surface of the substrate W when the substrate W is not rotated can be adjusted. Further, the change direction F between the trajectory TS-TR of the cleaning liquid flow Q accompanying the rotation of the substrate W can be adjusted by the rotation direction WR of the substrate W, and the cleaning liquid flow Q accompanying the rotation of the substrate W can be adjusted by the rotation speed of the substrate W. The amount of change E between the tracks TS-TR can be adjusted. Note that the amount of change E between the trajectory TS-TR of the cleaning liquid flow Q accompanying the rotation of the substrate W can also be adjusted by the flow rate of the cleaning liquid flow Q.
[0079]
  Here, an example of the relationship between the trajectory TS of the cleaning liquid flow Q when the substrate W is not rotating, the rotational direction WR of the substrate W, and the change direction F between the trajectory TS-TR of the cleaning liquid flow Q accompanying the rotation of the substrate W. Is shown in FIGS.
[0080]
  7 and 8 show an example in which the cleaning liquid flow Q is supplied from the side of the substrate W held in a standing posture on the substrate holding mechanism 1.
[0081]
  FIGS. 7A and 7B show the rotation center WJ of the cleaning surface of the substrate W when the cleaning liquid flow Q flowing through the cleaning surface of the substrate W is viewed toward the cleaning surface of the substrate W when the substrate W is not rotating. A locus TS is formed that passes above the rotation center WJ of the cleaning surface of the substrate W from the right side toward the left side on the vertical imaginary line VL passing through. 7C and 7D show that the cleaning liquid flow Q flowing on the cleaning surface of the substrate W when the substrate W is not rotating is above the rotation center WJ of the cleaning surface of the substrate W on the vertical imaginary line VL. The case where the locus | trajectory TS which passes the side toward the right side from the left side is shown is shown.
[0082]
  FIGS. 8A to 8D show that the cleaning liquid flow Q flowing on the cleaning surface of the substrate W when the substrate W is not rotating is below the rotation center WJ of the cleaning surface of the substrate W on the vertical imaginary line VL. FIGS. 8A and 8B show a case where a trajectory TS that passes is passed, and FIGS. 8C and 8B show the case where the cleaning liquid flow Q passes the vertical imaginary line VL from the right side to the left side. (D) and (d) respectively show the case where the cleaning liquid flow Q passes through the vertical imaginary line VL from the left side to the right side.
[0083]
  7A, 7B, 8C, and 8D, when the rotation direction WR of the substrate W is viewed toward the cleaning surface of the substrate W, the rotation direction rotates clockwise. In the case of FIGS. 7C, 7D, 8A, and 8B, the rotation of the substrate W is reversed if the rotation direction WR of the substrate W is the rotation direction that rotates counterclockwise. At this time, the cleaning liquid flow Q flowing through the cleaning surface of the substrate W can change the trajectory in the direction of passing through the center of rotation WJ through the cleaning surface of the substrate W.
[0084]
  Further, the cleaning liquid flow Q is not limited to the case where the cleaning liquid flow Q is supplied from the side of the substrate W held in the standing posture by the substrate holding mechanism 1, but is supplied (flowed down) from above the substrate W as shown in FIG. It may be configured. In this case, the cleaning liquid flow Q is supplied so that the cleaning liquid flow Q flowing on the cleaning surface of the substrate W when the substrate W is not rotated flows from a position shifted to the left and right with respect to the vertical imaginary line VL. FIG. 9A shows a case where the cleaning liquid flow Q is caused to flow down at a position shifted to the left with respect to the vertical imaginary line VL. In this case, if the substrate W is rotated clockwise, the substrate W The trajectory can be changed in the direction in which the cleaning liquid flow Q flowing through the cleaning surface of the substrate W passes through the rotation center WJ of the cleaning surface of the substrate W at the time of rotation. FIG. 9B shows a case where the cleaning liquid flow Q is caused to flow down at a position shifted to the right side with respect to the vertical imaginary line VL. In this case, the substrate W can be rotated counterclockwise. For example, the trajectory of the cleaning liquid flow Q flowing through the cleaning surface of the substrate W during the rotation of the substrate W can be changed in a direction passing through the cleaning center of the substrate W through the rotation center WJ.
[0085]
  Based on the above, the rotation of the substrate W for changing the cleaning liquid flow Q in the direction of passing the rotation center WJ of the cleaning surface when the substrate W rotates according to the trajectory TS of the cleaning liquid flow Q when the substrate W is not rotating. The direction WR can be determined. Conversely, the rotation direction WR of the substrate W may be determined in advance, and the trajectory TS (the supply condition of the cleaning liquid flow Q) of the cleaning liquid flow Q when the substrate W is not rotating may be adjusted accordingly.
[0086]
  Further, the amount of change E between the traces TS-TR of the cleaning liquid flow Q accompanying the rotation of the substrate W increases as the number of rotations of the substrate W increases (the rotation speed increases), and as the flow rate of the cleaning liquid flow Q decreases. growing.
[0087]
  Therefore, according to the trajectory TS of the cleaning liquid flow Q at the time of non-rotation, the trajectory of the cleaning liquid flow Q is changed by an amount of change that changes the cleaning liquid flow Q so as to pass the rotation center WJ of the cleaning surface when the substrate W rotates. Conditions such as the number of rotations of the substrate W and the flow rate of the cleaning liquid flow Q can be obtained experimentally, for example. Conversely, conditions such as the number of rotations of the substrate W and the flow rate of the cleaning liquid flow Q may be determined in advance, and the trajectory TS of the cleaning liquid flow Q when the substrate W is not rotating may be adjusted accordingly.
[0088]
  Based on the above, the arrangement position of the supply head 6 and the supply direction of the continuous cleaning liquid flow Q supplied from the supply head 6 to the substrate W are adjusted, and the controller 10 sets the flow rate of the cleaning liquid flow Q to a desired flow rate. If the supply condition of the cleaning liquid flow Q and the rotation condition of the substrate W are adjusted by controlling the flow rate adjusting valve 9 and driving the motor 4 in a desired rotation direction WR and rotation speed, the substrate W is rotated. The cleaning liquid flow Q can be adjusted so as to pass through the rotation center WJ of the cleaning surface. When the cleaning liquid flow supply mechanism 5 is configured as shown in FIG. 4, the flow rates of the cleaning liquid flow Q supplied from the nozzles 6c are adjusted to be the same flow rate.
[0089]
  By the way, considering the surface condition of the cleaning surface of the substrate W, the amount of change E between the trajectory TS of the cleaning liquid flow Q when the substrate W is not rotating and the trajectory TS-TR of the cleaning liquid flow Q accompanying the rotation of the substrate W is calculated. Considering, for example, the entire cleaning surface of the substrate W is hydrophilic or averagely hydrophilic (overall hydrophilic), or the entire cleaning surface is hydrophobic or averagely hydrophobic. Depending on whether the substrate W is non-rotating or not (the entire surface is hydrophobic), the trajectory TS of the cleaning liquid flow Q when the substrate W is not rotating and the variation E between the trajectory TS-TR of the cleaning liquid flow Q accompanying the rotation of the substrate W are different. .
[0090]
  That is, as the degree of hydrophilicity of the cleaning surface of the substrate W increases, the surface tension of the cleaning liquid flow Q with respect to the cleaning surface of the substrate W increases, and the amount of decrease in the horizontal kinetic energy of the cleaning liquid flow Q increases. To go.
[0091]
  As a result, for example, as shown in FIGS. 7 and 8, when supplying the cleaning liquid flow Q from the side of the substrate W held in the standing posture to the substrate holding mechanism 1, when the supply conditions of the cleaning liquid flow Q are the same, The position of the cleaning liquid flow Q when the substrate W is not rotated passes on the vertical imaginary line VL downward as the degree of hydrophilicity of the cleaning surface of the substrate W increases.
[0092]
  On the other hand, as the degree of hydrophilicity of the cleaning surface of the substrate W increases due to the surface tension of the cleaning liquid flow Q with respect to the cleaning surface of the substrate W, the amount of change E between the traces TS-TR of the cleaning liquid flow Q accompanying the rotation of the substrate W is increased. Becomes smaller.
[0093]
  Here, for example, when the substrate W is not rotated, the cleaning liquid flow Q is always the center of rotation of the cleaning surface of the substrate W on the vertical virtual line VL as shown in FIG. 8 regardless of the surface state of the cleaning surface. Considering the case of passing below the WJ, as shown in FIG. 10A, the trajectory TSA of the cleaning liquid flow Q during non-rotation of the substrate W whose cleaning surface is entirely hydrophilic is the cleaning surface. Compared to the trajectory TSB of the cleaning liquid flow Q when the substrate W, which is entirely hydrophobic, is below the rotation center WJ of the cleaning surface of the substrate W on the vertical imaginary line VL, the cleaning surface The trajectory goes away from the center of rotation WJ. On the other hand, in FIG. 10A, when the substrate W is rotated counterclockwise, the amount of change EA between the trajectories TSA-TRA of the cleaning liquid flow Q accompanying the rotation of the substrate W whose cleaning surface is entirely hydrophilic is The amount of change EB between the traces TSB-TRB of the cleaning liquid flow Q accompanying the rotation of the substrate W whose cleaning surface is entirely hydrophobic is smaller (EA <EB).
[0094]
  Therefore, for example, as shown in FIG. 10A, the supply condition of the cleaning liquid flow Q and the rotation condition of the substrate W are the same as those when the substrate W is rotated with respect to the substrate W whose cleaning surface is entirely hydrophobic. When the track TRB of the cleaning liquid flow Q is adjusted so as to pass through the rotation center WJ of the cleaning surface of the substrate W, the substrate W whose cleaning surface is entirely hydrophilic is cleaned under the same condition. The trajectory TRA of the cleaning liquid flow Q at that time passes below the rotation center WJ of the cleaning surface of the substrate W on the vertical imaginary line VL, and does not pass the rotation center WJ of the cleaning surface of the substrate W.
[0095]
  Conversely, the supply condition of the cleaning liquid flow Q and the rotation condition of the substrate W are as follows. The trajectory TRA of the cleaning liquid flow Q when the substrate W rotates is the substrate W with respect to the substrate W whose cleaning surface is entirely hydrophilic. When the substrate W whose cleaning surface is entirely hydrophobic is cleaned under the same conditions when the condition is adjusted so as to pass the rotation center WJ of the cleaning surface, the locus of the cleaning liquid flow Q when the substrate W rotates The TRB passes above the rotation center WJ of the cleaning surface of the substrate W at the vertical imaginary line VL and does not pass the rotation center WJ of the cleaning surface of the substrate W.
[0096]
  Further, the trajectory of the cleaning liquid flow Q at the time of non-rotation of the substrate W whose cleaning surface is entirely hydrophilic passes below the rotation center WJ of the cleaning surface of the substrate W on the vertical imaginary line VL. The trajectory of the cleaning liquid flow Q when the substrate W whose cleaning surface is entirely hydrophobic does not rotate passes above the rotation center WJ of the cleaning surface of the substrate W on the vertical imaginary line VL. When the position of the cleaning liquid flow Q when the substrate W is not rotating varies on the vertical imaginary line VL varies up and down across the rotation center WJ of the cleaning surface, depending on the surface state of the cleaning surface of W. This makes it impossible to change the cleaning liquid flow Q so as to pass through the rotation center WJ of the cleaning surface of the substrate W in the same rotation direction.
[0097]
  Further, as shown in FIG. 9, when the cleaning liquid flow Q is caused to flow down from above the substrate W, the substrate W is not rotated regardless of whether the cleaning surface is entirely hydrophilic or hydrophobic. The trajectory of the cleaning liquid flow Q does not change. However, when the substrate W is rotated, the substrate W whose cleaning surface is entirely hydrophilic is compared with the substrate W whose cleaning surface is generally hydrophobic. The amount of change E of the locus of the cleaning liquid flow Q at the time of rotation is small. Therefore, for example, when the supply condition of the cleaning liquid flow Q and the rotation condition of the substrate W are adjusted according to the substrate W whose cleaning surface is entirely hydrophilic (or hydrophobic), the cleaning surface When the substrate W that is entirely hydrophobic (or hydrophilic) is cleaned, the trajectory of the cleaning liquid flow Q during rotation does not pass through the rotation center WJ of the cleaning surface of the substrate W.
[0098]
  Here, at the time of non-rotation, the cleaning liquid flow Q is always above the rotation center WJ of the cleaning surface of the substrate W on the vertical imaginary line VL as shown in FIG. 7 regardless of the surface state of the cleaning surface. As shown in FIG. 10B, the trajectory TSA of the cleaning liquid flow Q during non-rotation of the substrate W whose cleaning surface is hydrophilic as a whole is hydrophobic as shown in FIG. Compared with the trajectory TSB of the cleaning liquid flow Q when the substrate W is not rotating, it is above the rotation center WJ of the cleaning surface of the substrate W and above the rotation center WJ of the substrate W on the vertical imaginary line VL. It will take a close track. On the other hand, in FIG. 10B, when the substrate W is rotated clockwise, the amount of change EA between the traces TSA-TRA of the cleaning liquid flow Q accompanying the rotation of the substrate W whose cleaning surface is entirely hydrophilic is The amount of change EB between the traces TSB-TRB of the cleaning liquid flow Q accompanying the rotation of the substrate W whose cleaning surface is entirely hydrophobic is smaller (EA <EB).
[0099]
  Therefore, in this case, in the substrate W whose cleaning surface is hydrophilic as a whole, the cleaning liquid flow Q is above the rotation center WJ of the cleaning surface of the substrate W on the vertical phantom line VL when in the non-rotating state. When passing through a position close to the rotation center WJ of the cleaning surface and in a rotating state, the trajectory TSA of the cleaning liquid flow Q can be changed slightly to pass the rotation center WJ of the cleaning surface of the substrate W. On the other hand, in the substrate W whose cleaning surface is entirely hydrophobic, in the non-rotating state, the cleaning liquid flow Q is above the rotation center WJ of the cleaning surface of the substrate W on the vertical virtual line VL and When passing through a position far from the rotation center WJ and in a rotating state, the trajectory TSB of the cleaning liquid flow Q can be greatly changed to pass the center of the cleaning surface of the substrate W.
[0100]
  That is, when the substrate W is not rotated, the cleaning liquid flow Q is always the rotation center WJ of the cleaning surface of the substrate W on the vertical imaginary line VL, as shown in FIG. 10B, regardless of the surface state of the substrate W. In the case where the trajectory TS passes through the upper side, the cleaning condition of the cleaning surface of the substrate W is made hydrophobic by adjusting the supply condition of the cleaning liquid flow Q and the rotation condition of the substrate W to certain conditions. In both cases, the cleaning liquid flow Q can be adjusted so as to pass through the rotation center WJ of the cleaning surface of the substrate W at the time of cleaning. Further, even in the case of a substrate W in which a highly hydrophobic portion and a highly hydrophilic portion are mixed on the cleaning surface, the locus of the cleaning liquid flow Q can be adjusted so as to pass through the rotation center WJ of the cleaning surface.
[0101]
  More precisely, the distance between the passing position of the cleaning liquid flow Q passing over the vertical imaginary line VL when the substrate W is not rotating and the rotation center WJ of the cleaning surface, and the cleaning liquid flow accompanying the rotation of the substrate W The change amount E between the trajectories TS-TR of Q is not linearly related to the degree of hydrophilicity of the cleaning surface. For example, as shown in FIG. 11A, three degrees C1 (high degree of hydrophilicity), C2 (medium degree of hydrophilicity), and C3 (low degree of hydrophilicity) having different degrees of hydrophilicity of the cleaning surface: Considering the substrate W which is hydrophobic, the following results are obtained. Note that a trajectory TS1 in FIG. 11A indicates a trajectory of the cleaning liquid flow Q when the substrate W whose cleaning surface has a degree of hydrophilicity C1 is not rotating, and similarly, the trajectories TS2 and TS3 are the surface of the cleaning surface. The locus | trajectory of the washing | cleaning liquid flow Q at the time of the non-rotation of the board | substrate W whose hydrophilicity degree is C2 and C3 is shown.
[0102]
  In FIG. 11A, for example, for each of the substrates W having two degrees C1 and C3 having different degrees of hydrophilicity on the cleaning surface, the supply condition of the cleaning liquid flow Q and the rotation condition of the substrate W are set under certain conditions. 11 (b) and 11 (c), for example, the center QDC in the width QD of the cleaning liquid flow Q during the cleaning passes through the rotation center WJ of the cleaning surface of the substrate W as shown in FIGS. Although it is possible to change the cleaning liquid flow Q of each substrate W, under the same conditions, when the substrate W having a degree of hydrophilicity of the cleaning surface different from the above two degrees C1 and C3 is cleaned, As shown in FIG. 11D, the center QDC within the width QD of the cleaning liquid flow Q passes through a position deviating from the rotation center WJ of the cleaning surface of the substrate W during cleaning.
[0103]
  However, since the cleaning liquid flow Q has a width QD, the variation in the passing position of the cleaning liquid flow Q during cleaning with respect to various degrees of hydrophilicity of the cleaning surface can be absorbed in the width QD. Therefore, if the supply condition of the cleaning liquid flow Q and the rotation condition of the substrate W are adjusted to certain conditions, the width QD of the cleaning liquid flow Q during cleaning can be obtained even when the substrate W having different degrees of hydrophilicity on the cleaning surface is cleaned. It is possible to change the cleaning liquid flow Q of each substrate W so that some of them pass through the rotation center WJ of the cleaning surface of the substrate W.
[0104]
  In consideration of the above, when the substrate W is cleaned while being held in an upright position, the cleaning liquid flow Q is cleaned on the vertical imaginary line VL when the substrate W is not rotated, as shown in FIG. The supply condition of the cleaning liquid flow Q is adjusted so that the trajectory TS passes through the upper side of the rotation center WJ, and the rotation condition of the substrate W can be adjusted according to the supply condition of the cleaning liquid flow Q. preferable.
[0105]
  The rotation direction WR of the rotation conditions of the substrate W with respect to the supply condition of the cleaning liquid flow Q described above is the cleaning liquid flow Q that continuously flows along the cleaning surface of the substrate W before passing over the vertical imaginary line VL. The substrate W so that the portion of the substrate W in contact with the cleaning liquid flow Q moves downward before the cleaning liquid flow Q passes through the vertical imaginary line VL. Specifically, it is determined in accordance with the direction of the flow of the cleaning liquid flow Q that passes on the vertical imaginary line VL as described above with reference to FIG.
[0106]
  In this way, by adjusting the supply condition of the cleaning liquid flow Q and the rotation condition of the substrate W, the supply condition of the cleaning liquid flow Q and the rotation condition of the substrate W with respect to the substrate W on the cleaning surface having different overall hydrophilicity levels. Can be adjusted so that the cleaning liquid flow Q passes through the center of rotation WJ of the cleaning surface of the substrate W during cleaning, and the supply condition of the cleaning liquid flow Q depends on the surface state of the cleaning surface of the substrate W. In addition, uniform cleaning can be performed without changing and adjusting the rotation conditions of the substrate W.
[0107]
  Moreover, when the state at the time of cleaning in the configuration of the embodiment shown in FIG. 1 and FIG. 2 is more strictly examined, the substrate W is held at a plurality of positions on the peripheral edge of the substrate W by the plurality of holding members 2. Each of these holding members 2Claims 3 and 6The continuous cleaning liquid flow Q that is supplied to the substrate W held by the substrate holding mechanism 1 from the supply head 6 of the cleaning liquid flow supply mechanism 5 when the substrate W rotates is successively applied when the substrate W is rotated. The supply of the continuous cleaning liquid flow Q across the substrate W is temporarily interrupted, and the cleaning liquid is not supplied so that the cleaning liquid does not partially flow on the cleaning surface of the substrate W, as shown by hatching in FIGS. The portion NQ is formed, and the cleaning liquid cannot be uniformly supplied to the cleaning surface of the substrate W.
[0108]
  FIG. 12 shows a state in which one blocking member (the holding member 2 in the above embodiment) forms the cleaning liquid non-supply portion NQ in time series, and the trajectory TRt1 in FIG. The locus of the cleaning liquid flow Q that has flowed through the cleaning surface of the substrate W at the timing of a) (immediately before the cleaning liquid flow Q to the substrate W is blocked by the blocking member (holding member 2)) is shown in FIG. The trajectory of the cleaning liquid flow Q flowing through the cleaning surface of the substrate W at the timing of c) (when the blocking of the cleaning liquid flow Q to the substrate W by the blocking member (holding member 2) is released) is shown. FIG. 13 illustrates the cleaning liquid non-supply portion NQ formed by all the blocking members (holding members 2).
[0109]
  In the case of an apparatus having such a blocking member (holding member 2), it may be cleaned in the following first cleaning mode or second cleaning mode.
[0110]
  First, as a first cleaning mode, (1) the continuous cleaning liquid flow Q passes through the rotation center WJ of the cleaning surface of the substrate W, and (2) the continuous cleaning liquid flow Q is supplied to the substrate W. After the blocking member (each holding member 2) crosses the substrate, the continuous cleaning liquid flow Q supplied to the substrate W is blocked by the blocking member (each holding member 2), so that the cleaning liquid flow Q does not flow. The cleaning surface of the substrate W is cleaned with the cleaning liquid by adjusting the supply condition of the cleaning liquid flow Q and the rotation condition of the substrate W so as to flow through the cleaning liquid non-supply portion NQ on the cleaning surface of W.
[0111]
  Since the condition satisfying (1) has already been described, the condition satisfying (2) will be described here.
[0112]
  In the case of this embodiment, as shown in FIGS. 12 and 13, each of the blocking members (holding members 2) is not formed with a cleaning liquid formed by temporarily blocking the supply of the continuous cleaning liquid flow Q to the substrate W. Each of the supply portions NQ includes a first cleaning liquid non-supply portion NQ1 formed in a region from one end of the substrate W on the supply side of the cleaning liquid flow Q to the rotation center WJ of the cleaning surface of the substrate W, and the substrate W The second cleaning liquid non-supply portion NQ2 is formed in a region between the rotation center WJ of the cleaning surface and another end of the substrate W on the discharge side of the cleaning liquid flow Q.
[0113]
  In the case shown in FIGS. 12 and 13, focusing on one blocking member (holding member 2), after the blocking member (holding member 2) crosses the continuous cleaning liquid flow Q supplied to the substrate W, first, As shown in FIG. 14, in the vicinity of the supply position IP where the cleaning liquid flow Q is supplied to the cleaning surface of the substrate W, the second portion of the cleaning liquid non-supply portion NQ formed by the blocking member (holding member 2). Since the cleaning liquid non-supply portion NQ2 passes, as shown in time series in FIG. 14, while the second cleaning liquid non-supply portion NQ2 passes near the supply position IP, another blocking member (holding member 2) is passed. The continuous cleaning liquid flow Q may be supplied to the substrate W without blocking. Next, as shown in FIG. 15, the vicinity of the discharge position OP where the cleaning liquid flow Q is discharged from the cleaning surface of the substrate W is above the cleaning liquid non-supply portion NQ formed by the blocking member (holding member 2). Since the first cleaning liquid non-supply portion NQ1 passes, the other blocking member (holding member 2) continues without being blocked while the first cleaning liquid non-supply portion NQ1 passes near the discharge position OP. A typical cleaning liquid flow Q may be supplied to the substrate W.
[0114]
  Thus, the cleaning liquid flow Q that passes through the rotation center WJ of the cleaning surface of the substrate W can flow through the cleaning liquid non-supply portion NQ (NQ1, NQ2) formed by one blocking member (holding member 2). The cleaning liquid flow Q may be caused to flow in the same manner with respect to the non-cleaning liquid supply portion NQ (NQ1, NQ2) formed by the other blocking member (holding member 2).
[0115]
  That is, in order to realize the first cleaning mode, the cleaning liquid flow Q is applied to the substrate W in consideration of the number of blocking members (holding members 2) and the arrangement positions of all the blocking members (holding members 2). While satisfying the condition of passing through the rotation center WJ of the cleaning surface and each of the first cleaning liquid non-supply portions NQ1 formed by each blocking member (holding member 2) passes near the discharge position OP, None of the blocking members (holding members 2) supply the continuous cleaning liquid flow Q to the substrate W without blocking the continuous cleaning liquid flow Q supplied to the substrate W, and each blocking member (holding member 2). Each blocking member (holding member 2) has a continuous cleaning liquid flow Q supplied to the substrate W while each of the second non-cleaning liquid supply portions NQ2 formed by the nozzle passes through the vicinity of the supply position IP. Continuous cleaning liquid flow Q without interruption The cleaning liquid flow Q that satisfies the condition to be supplied to the substrate W is adjusted to the supply condition of the cleaning liquid flow Q and the rotation condition of the substrate W that can be supplied to the substrate W during cleaning (during rotation of the substrate W), The cleaning surface of the substrate W is cleaned with a cleaning liquid.
[0116]
  According to the first cleaning mode, the supply condition of the cleaning liquid flow Q and the rotation condition of the substrate W are adjusted to one predetermined condition, and the continuous cleaning liquid flow Q is supplied to the substrate W while the substrate W is supplied. The cleaning liquid can be uniformly supplied to the cleaning surface of the substrate W by one cleaning performed by rotating the substrate.
[0117]
  Next, the second cleaning mode will be described. In the second cleaning mode, as in the above-described embodiment, the flow rate adjusting valve 9 is provided, or the rotational direction and the rotational speed of the motor 4 can be arbitrarily changed and adjusted. / And the rotation condition of the substrate is configured to be changeable. Then, the controller 10 corresponding to the cleaning control means first adjusts the supply conditions of the cleaning liquid flow Q and the rotation conditions of the substrate W so that the continuous cleaning liquid flow Q passes through the rotation center WJ of the cleaning surface of the substrate W. Then, control is performed so as to perform the first cleaning for cleaning the cleaning surface of the substrate W with the cleaning liquid. This first cleaning has already been described. Next, in the first cleaning, the controller 10 was not supplied with the cleaning liquid because the continuous cleaning liquid flow Q supplied to the cleaning surface of the substrate W was blocked by the blocking member (each holding member 2). The supply condition of the cleaning liquid flow Q and the rotation condition of the substrate W are changed and adjusted so that the continuous cleaning liquid flow Q is supplied to the cleaning liquid non-supply portion NQ (see FIG. 13) on the cleaning surface of the substrate W. Control is performed to perform the second cleaning in which the cleaning surface of the substrate W is cleaned with the cleaning liquid.
[0118]
  Thus, by cleaning the cleaning surface of the substrate W in two stages, the cleaning liquid can be supplied uniformly to the cleaning surface of the substrate W. Even if it is difficult to adjust the supply condition of the cleaning liquid flow Q and the rotation condition of the substrate W that can realize the first cleaning mode due to the number of the blocking members and the arrangement position, the substrate W The cleaning liquid can be supplied uniformly over the entire cleaning surface for cleaning.
[0119]
  In the second cleaning mode, the cleaning liquid flow Q that flows along the cleaning surface of the substrate W at the time of the second cleaning performed later is continuous with the cleaning liquid non-supply portion NQ of the cleaning surface of the substrate W. Therefore, it is not always necessary to pass the rotation center WJ of the cleaning surface of the substrate W. For example, as shown in FIG. The second cleaning may be performed while supplying the cleaning liquid flow Q to the substrate W such that the trajectory TR passes the position deviating from the rotation center WJ of the cleaning surface of the substrate W. Accordingly, the flow rate of the cleaning liquid flow Q is changed with respect to the supply condition of the cleaning liquid flow Q and the rotation condition of the substrate W at the time of the first cleaning, and / or the rotation direction of the motor 4 is changed, or / And by changing the rotation speed of the motor 4, the trajectory TR of the optimum cleaning liquid flow Q that can supply the continuous cleaning liquid flow Q to the cleaning liquid non-supply portion NQ of the cleaning surface of the substrate W is freely set. You can choose.
[0120]
  Further, the supply condition of the cleaning liquid flow Q and the rotation condition of the substrate W during the second cleaning may be the same, or the conditions may be appropriately changed during the second cleaning. For example, the supply condition of the cleaning liquid flow Q is such that the path of the cleaning liquid flow Q during the rotation of the substrate W slides sequentially every time the substrate W is rotated at least once between TRS to TRE shown in FIG. The supply condition of the cleaning liquid flow Q is such that the cleaning liquid non-supply part NQ is divided by dividing the cleaning liquid non-supply part NQ by sequentially changing the rotation conditions of the substrate W and the like. Alternatively, the second cleaning may be performed by sequentially changing the rotation conditions of the substrate W.
[0121]
  When the cleaning of the cleaning surface of the substrate W is completed by the operation described above, the wet substrate W to which the cleaning liquid is attached is dried.
[0122]
  The drying of the substrate W is performed by switching the opening / closing valve 8 from open to closed, stopping the supply of the cleaning liquid flow Q to the substrate W, and continuing the rotation of the substrate W (substrate holding mechanism 1). The cleaning liquid adhering to W is shaken off to dry the substrate W.
[0123]
  When the drying is performed for a predetermined time and the substrate W is dried, the driving of the motor 4 is stopped, the holding of the substrate W by the substrate holding mechanism 1 (holding member 2) is released, and then the processed substrate W is the apparatus. It is carried out from. As described above, the substrate W can be carried out of the apparatus in a dry state by performing drying after cleaning with the cleaning liquid.
[0124]
  Note that the rotational speed of the motor 4 when performing the drying of the substrate W is preferably faster than the rotational speed of the motor 4 when performing cleaning of the cleaning surface of the substrate W.
[0125]
  The drying means may be configured by simply rotating the substrate W held by the substrate holding mechanism 1 (at high speed). In addition, the drying means is heated by the substrate W held by the substrate holding mechanism 1. A water vapor supply means for supplying water vapor, a vapor supply means for supplying a water-soluble alcohol vapor such as IPA (isopropyl alcohol) to the substrate W held by the substrate holding mechanism 1 may be provided. By supplying steam or water-soluble alcohol vapor heated to the substrate W in this way, the droplets adhering to the substrate W are replaced with heated water vapor or water-soluble alcohol vapor so that the substrate W can be quickly replaced. Thus, drying of the substrate W can be promoted. Note that drying may be promoted by supplying a dry gas such as nitrogen gas or heated nitrogen gas.
[0126]
  In addition, when a substrate holding mechanism 1, a supply head 6 and the like are accommodated in a chamber and cleaning and drying are performed in a processing space in the chamber as in a specific embodiment apparatus described later, the chamber The drying unit may be configured by further including an inert gas atmosphere replacing unit that replaces the atmosphere in the processing space with an inert gas atmosphere such as nitrogen gas. By performing cleaning and drying in an inert gas atmosphere, the substrate W can be processed without being exposed to oxygen, and the substrate W can be prevented from being oxidized.
[0127]
  In the above operation, the operation of cleaning and drying the substrate W has been described. However, in this embodiment, the holding member 2 can also be cleaned well.
[0128]
  That is, each holding member 2 is switched to the holding state without holding the substrate W, the cleaning liquid flow Q is supplied, and the motor 4 is driven to rotate each holding member 2 around the axis J. Each holding member 2 passes through each of the plurality of cleaning liquid streams Q one after another, and each holding member 2 can be cleaned with the cleaning liquid. At this time, since the cleaning liquid flow Q is directly supplied to each groove 2a of each holding member 2, each groove 2a of each holding member 2 in contact with the substrate W can be reliably cleaned, and the substrate W Contamination can be reliably prevented.
[0129]
  Further, after the cleaning of each holding member 2 is finished, the supply of the cleaning liquid flow Q is stopped, and the rotation of the substrate holding mechanism 1 is continued (it may be switched to high speed rotation), so that each holding member 2 The attached cleaning solution can be shaken off and dried.
[0130]
  Next, the configuration of a specific embodiment apparatus to which the present invention is applied will be described with reference to the drawings. FIG. 17 is a longitudinal sectional view of a substrate processing apparatus according to a specific embodiment of the present invention as seen from the front, and FIG. 18 is a longitudinal sectional view as seen from the side.
[0131]
  The apparatus of this embodiment is an apparatus for cleaning and drying a plurality of substantially circular substrates W at the same time, and a supply head 6 (which constitutes the substrate holding mechanism 1 and the cleaning liquid flow supply mechanism 5 in a substantially cylindrical chamber 20). A tubular member 6a provided with a discharge hole 6b, a nozzle 6c) and the like are accommodated.
[0132]
  An opening 21 for carrying in / out the substrate W is formed above the chamber 20. The opening 21 can be opened and closed by a cover 22 driven by an opening / closing mechanism (not shown).
[0133]
  A drainage exhaust port 23 for discharging and exhausting the cleaning liquid is also provided below the chamber 20.
[0134]
  In this embodiment apparatus, a part of the plurality of (five in the figure) holding members 2 constituting the substrate holding mechanism 1 is configured to be detachable from the flanges 3 and the rest. The holding member 2 </ b> B is provided at the distal end portion of the rotation arm 32 that can rotate around the rotation shaft 31. In addition, the holding member 2 </ b> A is configured to be fixed by a fixture 34 that can rotate around the rotation shaft 33. The pivot shafts 31 and 33 are rotated in synchronization by a link mechanism (not shown) so that the holding / release of each holding member 2A and the fixing / release of the holding member 2A by the fixture 34 are switched synchronously. It has become.
[0135]
  Two elevating members 40 for elevating and lowering the holding member 2A are disposed below the holding member 2A. Each elevating member 40 is moved up and down in synchronization by an air cylinder (not shown), and a plurality of substrates W supported on the holding member 2A are placed between the substrate chuck mechanism of the substrate transport mechanism (not shown) above the opening 21. The holding member 2A is moved up and down between a delivery position for delivery and a standby position shown in the drawing.
[0136]
  Each flange 3 is connected by a plurality of connecting rods 50, and the supply head 6 is disposed outside the connecting rod 50.
[0137]
  Since other configurations are the same as those in the above embodiment, common portions are denoted by the same reference numerals as in FIGS. 1 to 3 and description thereof is omitted.
[0138]
  In the embodiment apparatus having such a configuration, the cleaning and drying of the substrate W are performed in the processing space in the chamber 20 by the operation described in the embodiment shown in FIGS. In this embodiment device, in addition to the holding member 2 (2A, 2B), the connecting rod 50 is alsoContract Claims 3 and 6Therefore, in the cleaning, the first cleaning mode or the second cleaning mode is executed in consideration of the cleaning liquid non-supply portion formed by the holding members 2A and 2B and the connecting rod 50. To do.
[0139]
  In the above apparatus, a nozzle or the like for supplying heated water vapor or water-soluble alcohol vapor may be disposed in the chamber 20.
[0140]
  In the above apparatus, packing is provided on the outer peripheral portion of the opening 21, the cover 22 is configured to close the opening 21 in an airtight state, and a nozzle or the like for supplying an inert gas is provided in the chamber 20. The exhaust gas may be forcibly exhausted from the drainage outlet 23 while supplying the inert gas into the chamber 20 to replace the inside of the chamber 20 with an inert gas atmosphere.
[0141]
  In the above embodiment, the flow rate of the cleaning liquid flow Q and the rotation direction and the rotation speed of the substrate W are changeable. However, either the flow rate of the cleaning liquid flow Q, the rotation direction or the rotation speed of the substrate W is selected. Only one side may be configured to be changeable. Further, when cleaning is performed with the supply condition of the cleaning liquid flow Q and the rotation condition of the substrate W fixed to a certain condition, the apparatus may be configured by fixing the condition adjusted to the condition. Furthermore, the arrangement position of the supply head 6 and the supply direction of the cleaning liquid flow Q from the supply head 6 may be fixed, or may be configured to be changed and adjusted as appropriate.
[0142]
  In the above embodiment, the cleaning liquid flow Q continuously flows along the cleaning surface of the substrate W even after passing through the rotation center WJ of the substrate W and reaching the end of the substrate W and away from the substrate W. However, after passing through the rotation center WJ of the substrate W, it is not necessarily required to continuously flow along the cleaning surface of the substrate W. For example, after passing through the rotation center WJ of the substrate W, the cleaning liquid may not flow along the cleaning surface of the substrate W but may flow away from the cleaning surface, or may not flow continuously but scatter into fine droplets. May be.
[0143]
  However, even after passing through the rotation center WJ of the substrate W, the continuous flow along the cleaning surface of the substrate W as much as possible contributes to the cleaning of the substrate W even after the cleaning liquid flow Q passes through the rotation center WJ of the substrate W. And cleaning efficiency may be increased. Most preferably, as in the above embodiment, the cleaning liquid flow Q may flow continuously from one end of the substrate W to another end along the cleaning surface of the substrate W.
[0144]
  Further, in the above-described embodiment, the description has been given by taking as an example an apparatus for performing cleaning and drying on the substrate W. However, the present invention is not limited to this, and only cleaning or appropriate processing other than cleaning and drying is possible. The present invention can be applied to an apparatus having a function of cleaning the cleaning surface of the substrate W with a cleaning liquid.
[0145]
  Further, in the above-described embodiment, the batch type apparatus that processes a plurality of substrates W at the same time has been described as an example. However, the present invention is not limited to this, and the single wafer type apparatus that processes each substrate W is used. The present invention can also be applied to.
[0146]
  Further, in the above-described embodiment, the description has been given by taking as an example an apparatus that holds and processes the substrate W in an upright position, but the present invention is not limited to this, and an apparatus that holds and processes the substrate W in a horizontal position is also described. The present invention can be applied.
[0147]
  Furthermore, in the said Example, although demonstrated taking the example of the apparatus which hold | maintains and processes the multiple places of the peripheral part of the board | substrate W, this invention is not limited to this. For example, when only the surface of the substrate W is cleaned with a single wafer type apparatus, the surface of the substrate W is cleaned with a cleaning liquid while rotating the central portion of the back surface of the substrate W held by a vacuum suction spin chuck. The present invention can also be applied to.
[0148]
【The invention's effect】
  As is clear from the above description, claims 1 and 2 andClaim 3According to the invention described in the above, the cleaning liquid flow is configured to be cleaned while continuously flowing along the cleaning surface through the rotation center from one end of the cleaning surface of the substrate while rotating the substrate. The cleaning liquid can be reliably supplied to the entire cleaning surface of the substrate, and the entire cleaning surface of the substrate can be uniformly cleaned with the cleaning liquid. Further, compared with the conventional apparatus, the cleaning time can be shortened, the amount of the cleaning liquid used can be reduced, and the wasteful use of the cleaning liquid can be reduced.
[0149]
  Further, according to the first aspect of the present invention, a continuous cleaning liquid flow can be supplied to both the front and back surfaces of the substrate by supplying one continuous cleaning liquid flow to one substrate. Therefore, the structure of the cleaning liquid flow supply means can be simplified and the front and back surfaces of the substrate can be cleaned simultaneously.
[0150]
  According to the second aspect of the present invention, the substrate is held by the substrate holding means in the standing posture, and when the substrate held in the standing posture by the substrate holding means is in the non-rotating state, the substrate is supplied from the cleaning liquid flow supplying means to the substrate. The supply condition of the cleaning liquid flow is adjusted so that the continuous cleaning liquid flow passes on the vertical imaginary line passing through the rotation center of the cleaning surface of the substrate and above the rotation center of the cleaning surface of the substrate. Since the cleaning surface of the substrate is cleaned with the cleaning liquid by adjusting the rotation condition of the substrate according to the supply conditions, the cleaning liquid flow is applied to the hydrophilic cleaning surface substrate and the hydrophobic cleaning surface substrate. Even if cleaning is performed under the same supply conditions and substrate rotation conditions, the cleaning liquid flow trajectory can be changed so that the cleaning liquid flow always passes through the rotation center of the cleaning surface of the substrate during cleaning. Depending on the surface condition of the surface, Feeding conditions and without adjusting changing the rotation conditions of the substrate, it is possible to perform uniform cleaning.
[0151]
  Claims 3 and 6According to the invention described in the above, for example, a blocking member that temporarily blocks the supply of the cleaning liquid flow to the substrate when the substrate is rotated, such as a holding member that holds a plurality of locations on the peripheral edge of the substrate. Even with such an apparatus, the cleaning liquid can be supplied uniformly over the entire cleaning surface of the substrate, and uniform cleaning can be performed.
[0152]
  In particular,Claim 3According to the invention described above, since the cleaning is performed in two stages, the cleaning liquid can be reliably supplied to the entire cleaning surface of the substrate for cleaning. Also,Claim 6Even when it is difficult to adjust the supply conditions of the cleaning liquid flow and the rotation conditions of the substrate that can realize the invention described in (1), the cleaning liquid can be supplied uniformly over the entire cleaning surface of the substrate for cleaning.
[0153]
  Also,Claim 6According to the invention described in (1), the cleaning liquid flow supply condition and the substrate rotation condition are adjusted to a predetermined one condition, and a continuous cleaning liquid is supplied to the substrate while rotating the substrate. Since the cleaning liquid is uniformly supplied to the cleaning surface of the substrate by cleaning,Claim 3The cleaning time can be shortened as compared with the two-stage cleaning as in the invention described in the above.
[0154]
  Claim 4According to the invention described above, the substrate holding unit is configured to hold a plurality of substrates, and the cleaning liquid flow supply unit is configured to provide a continuous cleaning liquid flow for each cleaning surface of each substrate held by the substrate holding unit. In addition to being able to perform cleaning on a plurality of substrates at the same time, the cleaning surface of each substrate can be uniformly cleaned, and cleaning between the cleaning surfaces of each substrate is also possible. It can be made uniform.
[0155]
  Claim 5According to the invention described above, since the continuous cleaning liquid flow is supplied individually for each cleaning surface of the substrate, the cleaning liquid flow supplied for each cleaning surface of the substrate can be accurately adjusted. Further, as in the first aspect of the invention, since the continuous cleaning liquid flow is not applied to the edge of the substrate, it is possible to suppress the cleaning liquid from scattering from the edge of the substrate to the surroundings.
[0156]
  Claim 7According to the invention described in (2), since the drying means for drying the substrate is further provided, after the cleaning of the cleaning surface of the substrate is finished, the wet substrate to which the cleaning liquid is attached can be dried by the drying means. The processed substrate can be unloaded from the apparatus in a dry state.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a configuration of main parts of a substrate processing apparatus according to an embodiment of the present invention.
FIG. 2 is a plan view of the embodiment device.
FIG. 3 is a cross-sectional view showing a configuration of a holding member.
FIG. 4 is a plan view showing a schematic configuration of a modified example of the cleaning liquid flow supply mechanism.
FIG. 5 is a longitudinal sectional view showing a supply form of a cleaning liquid flow.
FIG. 6 is a block diagram showing a configuration of a control system of the embodiment apparatus.
FIG. 7 is a diagram illustrating an example of a relationship between a trajectory of a cleaning liquid flow when the substrate is not rotated, a rotation direction of the substrate, and a changing direction of the trajectory of the cleaning liquid flow accompanying the rotation of the substrate.
FIG. 8 is a diagram showing another example of the relationship between the trajectory of the cleaning liquid flow during non-rotation, the rotation direction of the substrate, and the change direction of the trajectory of the cleaning liquid flow accompanying the rotation.
FIG. 9 is a diagram showing still another example of the relationship between the trajectory of the cleaning liquid flow during non-rotation, the rotation direction of the substrate, and the changing direction of the trajectory of the cleaning liquid flow accompanying the rotation.
FIG. 10 is a diagram for explaining a cleaning liquid flow trajectory during non-rotation in accordance with a surface state of a cleaning surface of a substrate and a change amount of the cleaning liquid flow trajectory accompanying rotation.
FIG. 11 is a diagram for explaining a cleaning liquid flow trajectory during non-rotation when the degree of hydrophilicity of the cleaning surface of the substrate is different and a change amount of the cleaning liquid flow trajectory accompanying rotation.
FIG. 12 is a diagram showing, in time series, a state where one blocking member forms a cleaning liquid non-supply portion.
FIG. 13 is a view showing a cleaning liquid non-supply portion formed by all the blocking members.
FIG. 14 is a diagram for explaining a first cleaning mode.
FIG. 15 is also a diagram for explaining a first cleaning mode.
FIG. 16 is a diagram for explaining a second cleaning mode.
FIG. 17 is a longitudinal sectional view of a substrate processing apparatus according to a specific embodiment of the present invention as seen from the front.
18 is a longitudinal sectional view of the embodiment apparatus of FIG. 17 as viewed from the side.
FIG. 19 is a front view and a side view showing a schematic configuration of a conventional apparatus.
[Explanation of symbols]
  1: Board holding mechanism
  2: Holding member
  4: Motor
  5: Cleaning liquid flow supply mechanism
  10: Controller
  W: Substrate
  WC: The center of the cleaning surface of the substrate
  WJ: Center of rotation of the substrate
  Q: Continuous cleaning liquid flow
  VL: vertical imaginary line
  NQ (NQ1, NQ2): Cleaning liquid not supplied part

Claims (7)

基板の洗浄面を洗浄液で洗浄する機能を有する基板処理装置であって、
基板を保持する基板保持手段と、
前記基板保持手段を回転させる回転手段と、
前記基板の端部から、基板の洗浄面に沿って、連続的に流れる洗浄液流を形成するように、連続的な洗浄液流を基板へ供給する洗浄液流供給手段と、
を備え、
前記洗浄液流供給手段から前記基板保持手段に保持された基板に前記連続的な洗浄液流を供給しつつ、基板を保持した前記基板保持手段を回転させ、このとき、前記連続的な洗浄液流が基板の洗浄面の回転中心を通過して、基板の洗浄面を洗浄液で洗浄するように構成し、
かつ、前記洗浄液流供給手段から前記基板保持手段に保持された基板に供給された1つの連続的な洗浄液流が、基板の端縁で基板の表面と裏面とに分配され、基板の表面及び裏面それぞれで、前記基板の端部から、基板の洗浄面に沿って、連続的に流れる洗浄液流を形成するように、基板へ前記連続的な洗浄液流を供給する
ことを特徴とする基板処理装置。
A substrate processing apparatus having a function of cleaning a cleaning surface of a substrate with a cleaning liquid,
Substrate holding means for holding the substrate;
Rotating means for rotating the substrate holding means;
Cleaning liquid flow supply means for supplying a continuous cleaning liquid flow to the substrate so as to form a continuous cleaning liquid flow from the edge of the substrate along the cleaning surface of the substrate;
With
While supplying the continuous cleaning liquid flow from the cleaning liquid flow supply means to the substrate held by the substrate holding means, the substrate holding means holding the substrate is rotated. At this time, the continuous cleaning liquid flow is transferred to the substrate. The cleaning surface of the substrate is configured to be cleaned with the cleaning liquid, passing through the center of rotation of the cleaning surface.
In addition, one continuous cleaning liquid flow supplied from the cleaning liquid flow supply unit to the substrate held by the substrate holding unit is distributed to the front surface and the back surface of the substrate at the edge of the substrate. The substrate processing apparatus, wherein the continuous cleaning liquid flow is supplied to the substrate so as to form a continuous cleaning liquid flow from the edge of the substrate along the cleaning surface of the substrate.
基板の洗浄面を洗浄液で洗浄する機能を有する基板処理装置であって、
基板を起立姿勢で保持する基板保持手段と、
前記基板保持手段を回転させる回転手段と、
前記基板の端部から、基板の洗浄面に沿って、連続的に流れる洗浄液流を形成するように、連続的な洗浄液流を基板へ供給する洗浄液流供給手段と、
前記回転手段を駆動制御して基板の回転条件を調節し、前記洗浄液流供給手段を調節制御して洗浄液流の供給条件を調節する洗浄制御手段と、
を備え、
前記洗浄制御手段は、
前記回転手段を停止させて、前記基板保持手段に起立姿勢で保持された基板が非回転状態のとき、前記洗浄液流供給手段から基板に供給した前記連続的な洗浄液流が基板の洗浄面の回転中心の鉛直上方を通過する位置を、基板の洗浄面の親水性の度合いが大きいほど基板の洗浄面の回転中心から近く、かつ、基板の洗浄面の疎水性の度合いが大きいほど基板の洗浄面の回転中心から遠くなるように洗浄液流の供給条件を調節するとともに、
その洗浄液流の供給条件に応じて基板の回転条件を調節することにより、前記回転手段を回転させて基板が回転状態のとき、洗浄液流が基板の洗浄面の回転中心を通過するようにして、基板の洗浄面を洗浄液で洗浄する
ことを特徴とする基板処理装置。
A substrate processing apparatus having a function of cleaning a cleaning surface of a substrate with a cleaning liquid,
Substrate holding means for holding the substrate in an upright position;
Rotating means for rotating the substrate holding means;
Cleaning liquid flow supply means for supplying a continuous cleaning liquid flow to the substrate so as to form a continuous cleaning liquid flow from the edge of the substrate along the cleaning surface of the substrate;
Cleaning control means for driving and controlling the rotating means to adjust the rotation condition of the substrate, adjusting and controlling the cleaning liquid flow supplying means to adjust the supply condition of the cleaning liquid flow;
With
The cleaning control means includes
The continuous cleaning liquid flow supplied to the substrate from the cleaning liquid flow supplying means rotates the cleaning surface of the substrate when the rotating means is stopped and the substrate held in the standing posture by the substrate holding means is in a non-rotating state. The position that passes vertically above the center is closer to the rotation center of the cleaning surface of the substrate as the degree of hydrophilicity of the cleaning surface of the substrate is larger, and the cleaning surface of the substrate is higher as the degree of hydrophobicity of the cleaning surface of the substrate is larger. While adjusting the supply conditions of the cleaning liquid flow so that it is far from the center of rotation ,
By adjusting the rotation condition of the substrate according to the supply condition of the cleaning liquid flow, when the substrate is rotated by rotating the rotating means, the cleaning liquid flow passes through the rotation center of the cleaning surface of the substrate, A substrate processing apparatus for cleaning a cleaning surface of a substrate with a cleaning liquid.
基板の洗浄面を洗浄液で洗浄する機能を有する基板処理装置であって、
基板を保持する基板保持手段と、
前記基板保持手段を回転させる回転手段と、
前記基板の端部から、基板の洗浄面に沿って、連続的に流れる洗浄液流を形成するように、連続的な洗浄液流を基板へ供給する洗浄液流供給手段と、
前記回転手段を駆動制御して基板の回転条件を調節し、前記洗浄液流供給手段を調節制御して洗浄液流の供給条件を調節する洗浄制御手段と、
を備え、
前記洗浄制御手段は、
基板の回転時に、前記洗浄液流供給手段から前記基板保持手段に保持された基板に供給される前記連続的な洗浄液流を横切って基板への前記連続的な洗浄液流の供給を一時的に遮断する遮断部材を有する場合に、
まず、前記連続的な洗浄液流が基板の洗浄面の回転中心を通過して、基板の洗浄面を洗浄液で洗浄する第1の洗浄を行い、次に、前記第1の洗浄において、基板の洗浄面に供給される前記連続的な洗浄液流が前記遮断部材に遮られたことによって流れなかった基板の洗浄面における洗浄液未供給部分に対して、前記連続的な洗浄液流が流れるように前記洗浄液流の供給条件または/および前記基板の回転条件を変更調節して、基板の洗浄面を洗浄液で洗浄する第2の洗浄を行うように制御する
ことを特徴とする基板処理装置。
A substrate processing apparatus having a function of cleaning a cleaning surface of a substrate with a cleaning liquid,
Substrate holding means for holding the substrate;
Rotating means for rotating the substrate holding means;
Cleaning liquid flow supply means for supplying a continuous cleaning liquid flow to the substrate so as to form a continuous cleaning liquid flow from the edge of the substrate along the cleaning surface of the substrate;
Cleaning control means for driving and controlling the rotating means to adjust the rotation condition of the substrate, adjusting and controlling the cleaning liquid flow supplying means to adjust the supply condition of the cleaning liquid flow;
With
The cleaning control means includes
During the rotation of the substrate, the supply of the continuous cleaning liquid flow to the substrate is temporarily interrupted across the continuous cleaning liquid flow supplied from the cleaning liquid flow supplying means to the substrate held by the substrate holding means. When having a blocking member,
First, the continuous cleaning liquid flow passes through the center of rotation of the cleaning surface of the substrate, and first cleaning is performed to clean the cleaning surface of the substrate with the cleaning liquid. Next, in the first cleaning, the cleaning of the substrate is performed. The cleaning liquid flow is performed such that the continuous cleaning liquid flow flows to a portion where the cleaning liquid is not supplied on the cleaning surface of the substrate that has not flown because the continuous cleaning liquid flow supplied to the surface is blocked by the blocking member. The substrate processing apparatus is characterized in that the second cleaning for cleaning the cleaning surface of the substrate with the cleaning liquid is controlled by changing and adjusting the supply condition and / or the rotation condition of the substrate.
請求項1ないし3のいずれかに記載の基板処理装置において、
前記基板保持手段は、複数枚の基板を保持するように構成され、
前記洗浄液流供給手段は、前記基板保持手段に保持された各基板の洗浄面ごとに前記連続的な洗浄液流を供給するように構成したことを特徴とする基板処理装置。
The substrate processing apparatus according to any one of claims 1 to 3 ,
The substrate holding means is configured to hold a plurality of substrates,
The substrate processing apparatus, wherein the cleaning liquid flow supply means is configured to supply the continuous cleaning liquid flow for each cleaning surface of each substrate held by the substrate holding means.
請求項2または3に記載の基板処理装置において、
前記洗浄液流供給手段から前記基板保持手段に保持された基板に供給された1つの連続的な洗浄液流が、基板の表裏どちらか1つの洗浄面だけに、基板の端部から、基板の洗浄面に沿って、連続的に流れる洗浄液流を形成するように、基板へ連続的な洗浄液流を供給することを特徴とする基板処理装置。
In the substrate processing apparatus of Claim 2 or 3 ,
One continuous cleaning liquid flow supplied from the cleaning liquid flow supplying means to the substrate held by the substrate holding means is applied to only one cleaning surface of the substrate, from the edge of the substrate to the cleaning surface of the substrate. A substrate processing apparatus for supplying a continuous cleaning liquid flow to the substrate so as to form a continuous flowing cleaning liquid flow along the substrate.
請求項1または2に記載の基板処理装置において、
基板の回転時に、前記洗浄液流供給手段から前記基板保持手段に保持された基板に供給される前記連続的な洗浄液流を横切って基板への前記連続的な洗浄液流の供給を一時的に遮断する遮断部材を有する場合に、
基板に供給される前記連続的な洗浄液流を前記遮断部材が横切った後、基板に供給された前記連続的な洗浄液流が、前記遮断部材に遮られたことによって洗浄液流が流れなかった基板の洗浄面における洗浄液未供給部分を流れるようにして、基板の洗浄面を洗浄液で洗浄するように構成したことを特徴とする基板処理装置。
The substrate processing apparatus according to claim 1 or 2 ,
During the rotation of the substrate, the supply of the continuous cleaning liquid flow to the substrate is temporarily interrupted across the continuous cleaning liquid flow supplied from the cleaning liquid flow supplying means to the substrate held by the substrate holding means. When having a blocking member,
After the blocking member crosses the continuous cleaning liquid flow supplied to the substrate, the continuous cleaning liquid flow supplied to the substrate is blocked by the blocking member, so that the cleaning liquid flow does not flow. A substrate processing apparatus, wherein a cleaning surface of a substrate is cleaned with a cleaning liquid so as to flow through a cleaning liquid unsupplied portion of the cleaning surface.
請求項1ないし6のいずれかに記載の基板処理装置において、
基板を乾燥させる乾燥手段をさらに備えたことを特徴とする基板処理装置。
The substrate processing apparatus according to claim 1 ,
A substrate processing apparatus, further comprising drying means for drying the substrate.
JP17092099A 1999-06-17 1999-06-17 Substrate processing equipment Expired - Fee Related JP3770755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17092099A JP3770755B2 (en) 1999-06-17 1999-06-17 Substrate processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17092099A JP3770755B2 (en) 1999-06-17 1999-06-17 Substrate processing equipment

Publications (2)

Publication Number Publication Date
JP2001007066A JP2001007066A (en) 2001-01-12
JP3770755B2 true JP3770755B2 (en) 2006-04-26

Family

ID=15913812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17092099A Expired - Fee Related JP3770755B2 (en) 1999-06-17 1999-06-17 Substrate processing equipment

Country Status (1)

Country Link
JP (1) JP3770755B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4364659B2 (en) * 2004-01-29 2009-11-18 芝浦メカトロニクス株式会社 Spin processing apparatus and spin processing method

Also Published As

Publication number Publication date
JP2001007066A (en) 2001-01-12

Similar Documents

Publication Publication Date Title
JP4578373B2 (en) Substrate processing equipment
US11148150B2 (en) Liquid dispensing nozzle and substrate treating apparatus
US6770424B2 (en) Wafer track apparatus and methods for dispensing fluids with rotatable dispense arms
JP5331865B2 (en) Apparatus and method for using a meniscus in substrate processing
US7234477B2 (en) Method and apparatus for drying semiconductor wafer surfaces using a plurality of inlets and outlets held in close proximity to the wafer surfaces
KR101906675B1 (en) Nozzle standby device and substrate treating apparatus
TWI517225B (en) Liquid treatment device and liquid treatment method
KR100559642B1 (en) Liquid treatment device
JP4446875B2 (en) Substrate processing equipment
JP5762925B2 (en) Liquid processing apparatus and liquid processing method
WO2006030953A1 (en) Substrate cleaning treatment apparatus and substrate treatment unit
JP2001033165A (en) Drying nozzle, drying apparatus and washing apparatus using the same
JP2010010679A (en) Substrate processing device and method for selectively etching substrate surface
JP2006278592A (en) Method and apparatus for cleaning substrate
JP4979758B2 (en) Substrate processing apparatus and method
JP5523099B2 (en) Apparatus and method for removing liquid from the surface of a disk-shaped article
JP5512508B2 (en) Liquid processing apparatus and liquid processing method
JP2008108829A (en) Two-fluid nozzle and substrate processing apparatus employing the same
JP2002301413A (en) Nozzle and coating apparatus
JP7175118B2 (en) SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
JP3770755B2 (en) Substrate processing equipment
JP2002151455A (en) Cleaning apparatus for semiconductor wafer
JP6714346B2 (en) Nozzle standby device and substrate processing device
JP2010239013A (en) Substrate treatment apparatus and substrate treatment method
JP2004510348A (en) Fluid delivery ring and method of making and providing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051222

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees