JP3770726B2 - Gasification ash melting furnace - Google Patents

Gasification ash melting furnace Download PDF

Info

Publication number
JP3770726B2
JP3770726B2 JP04609498A JP4609498A JP3770726B2 JP 3770726 B2 JP3770726 B2 JP 3770726B2 JP 04609498 A JP04609498 A JP 04609498A JP 4609498 A JP4609498 A JP 4609498A JP 3770726 B2 JP3770726 B2 JP 3770726B2
Authority
JP
Japan
Prior art keywords
slag
combustion
chamber
recovery
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04609498A
Other languages
Japanese (ja)
Other versions
JPH11248133A (en
Inventor
善利 関口
英雄 下谷
大祐 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP04609498A priority Critical patent/JP3770726B2/en
Publication of JPH11248133A publication Critical patent/JPH11248133A/en
Application granted granted Critical
Publication of JP3770726B2 publication Critical patent/JP3770726B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガス化焼却炉で生成した熱分解ガスを導入して急速に燃焼させ、熱分解ガスに同伴される灰分を溶融するガス化焼却設備におけるガス化灰溶融炉に関する。
【0002】
【従来の技術】
従来のガス化灰溶融炉などの燃料ガスや排ガスなどに同伴された灰を溶融するものや汚泥などの旋回溶融炉は、図2に示すように、上部から炉室1に未燃分を含むガスを着火バーナー2から旋回させて吹き込むとともに着火バーナー2により着火し、空気ノズル3から吹き込まれた燃焼空気により燃焼加熱させ、燃焼ガスに同伴された灰分を加熱溶融して炉壁で付着回収させ、この溶融スラグを炉室1の底部に形成された排滓口4から排出させるものであった。この溶融炉では、燃焼ガスを旋回させて下方に送り、底壁5に衝突させて上方に迂回させることにより、炉室1での滞留時間をできるだけ長くし溶融スラグが炉壁に接触させて付着する機会を多く確保するように構成されていた。
【0003】
【発明が解決しようとする課題】
しかし、上記従来の溶融炉では、灰の回収率が低く、通常60%にとどまり、最大で80%程度であった。そのため、排ガスダクトの下流側で排ガス中から灰や飛灰を回収する排ガス処理設備の大型化を招き、また捕集された有害物質を含むスラグの処分費用が高くなり、運転コストを押し上げる要因となっていた。
【0004】
本発明は、上記問題点を解決して、排ガスに同伴されるスラグの回収率をより向上させることができるガス化灰溶融炉を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために本発明は、ガス化燃焼炉で生成された熱分解ガスを導入するとともに燃焼空気を吹き込んで高温燃焼させ、熱分解ガスに同伴された灰分を加熱溶融する燃焼室と、この燃焼ガス中に同伴されたスラグを捕捉回収するスラグ回収室とを具備したガス化灰溶融炉であって、前記燃焼室からの燃焼ガスの流送方向を側方に迂回するように前記スラグ回収室を配置し、前記スラグ回収室の上流側底部に、上流側下方に傾斜されて回収した溶融スラグを集め回収スラグ層を形成するスラグ案内床を形成するとともに、当該スラグ案内床の上流側に、前記回収スラグ層の溶融スラグを排出堰を介して排出する排滓口を形成し、前記燃焼室とスラグ回収室との間に、その軸心が燃焼室軸心に対してスラグ回収室下流側に傾斜されて燃焼ガスを前記スラグ案内床上の前記回収スラグ層に向って噴射する絞り部を形成したものである。
【0006】
上記構成によれば、燃焼室からスラグ回収室に排出される燃焼ガスを、絞り部を介して高速でスラグ案内床上の回収スラグ層に衝突させ排ガス中の溶融スラグを効果的に回収でき、また回収スラグ層の温度低下を防止できる。さらに絞り部から噴射された燃焼ガスがスラグ回収室下流側に傾斜した方向から回収スラグ層に衝突することにより、燃焼ガスの迂回流をスムーズに流して乱流の発生を防止し、排滓口への燃焼ガスの逆流を防止できてスラグの品質低下を防止できる。そしてスラグ回収室に沿って迂回させる燃焼ガスの遠心力により、比重の大きい溶融スラグを効果的にスラグ案内床や底壁に接触させて、溶融スラグをより効果的に回収することができスラグの回収率を大幅に向上させることができる。
【0007】
また請求項2記載の発明は、上記構成の絞り部の軸心を燃焼室軸心に対してスラグ回収室下流側に20°〜30°の範囲で傾斜させるとともに、絞り部の軸心に対するスラグ案内床の傾斜角を90°+α(0°<α≦10°)としたものである。
【0008】
上記構成によれば、絞り部の軸心を傾斜させてスラグ衝突後の燃焼ガスの迂回方向を90°より少し大きくすることにより、スラグ案内床の回収スラグ層を上流側に案内して加熱効果を増大させるとともに、燃焼ガスの迂回流をスムーズに流すことができる。
【0009】
【発明の実施の形態】
ここで、本発明に係るガス化灰溶融炉の実施の形態を図1に基づいて説明する。
【0010】
この灰溶融炉は、ガス化焼却炉10により酸素不足の状態で燃焼されて生成された未燃分や灰分、チャー(乾溜炭素分)などのダストとを含む熱分解ガスを導入して燃焼させ、熱分解ガスに同伴された灰分等を加熱溶融して溶融スラグとして捕集するもので、熱分解ガスを燃焼させる燃焼室11と、この燃焼室11からの燃焼ガスの流送方向を側方に変向迂回させるとともに燃焼ガス中からスラグを捕集するスラグ回収室12とで構成されている。
【0011】
前記燃焼室11は鉛直軸心C1を有する円形断面に形成され、上部側壁に鉛直軸心C1から偏心して接続され熱分解ガスを軸心C1を中心に旋回させるガス導入口13と、昇温バーナー14と、熱分解ガス中に燃焼空気を吹き込んで着火させる空気ノズル15,16とが設けられている。
【0012】
前記スラグ回収室12は、下流側上方に所定角度θ2で傾斜する底壁21が形成され、さらに上方に向う熱交換器付の排ガス通路22が形成されている。また、底壁21の上流側が、捕集された溶融スラグを集めて回収スラグ層MSを形成するスラグ案内床21aに構成され、スラグ案内床21aの上流端から排出堰21bを介して回収した溶融スラグを排出する排滓口23が設けられている。この排滓口23が上流側の高温部に配置されることで、スラグ案内床21a上の回収スラグ層MSが効果的に加熱されて固化が防止される。
【0013】
前記底壁21のスラグ案内床21a上方には、燃焼室11を絞る円形断面の絞り部31が開口されている。この絞り部31は、流路内径dが燃焼室の11の流路内径Dに対して0.3〜0.5倍(絞り比:0.07〜0.2)の範囲に設定されており、これにより燃焼ガスを急加速して高速でスラグ案内床21a上の回収スラグ層MSに衝突させ、比重の大きい同伴ダストを高速で回収スラグ層MSに突入させて効果的に捕捉することができる。(なお、従来の溶融炉にも絞り部は見られるが、この絞り部は燃焼ガスを攪拌して滞留時間を長くすることを目的とし、その直径比は0.7程度である。)
【0014】
また、絞り部31の軸心C2は、スラグ回収室12の下流側にθ3=20°〜30°で傾斜するように形成され、軸心C2と底壁21との成す迂回角θ4=90°+αに設定されている。このαは0を越えて10°以下の範囲に設定されており、(スラグ回収室12の傾斜角θ2=10°〜20°)、これにより絞り部31から噴射される燃焼ガス流をスムーズに下流側に流送して、遠心力による固体の分離効果を促進させることができる。ここで、燃焼ガスの遠心力は1/r3に比例するため、燃焼ガスの遠心力は約8〜27倍に増大し、燃焼ガスに含まれるダストを底壁21表面の回収スラグ層MSに衝突させて効果的に捕捉することができる。また迂回角θ4により、燃焼ガスの乱流を防止するとともに、燃焼ガスの排滓口23への逆流を防止してスラグ品質の低下(未溶融物の同伴)を防止することができる。
【0015】
ここでαを0°を越えて10°以下の範囲としたのは、0°以下では燃焼ガスの流れがスムーズにならないためであり、また10°を越えると、燃焼ガスの遠心力による固体の分離効果が小さくなるためである。
【0016】
上記構成において、ガス導入口13から燃焼室11内に旋回されて導入された熱分解ガスは、複数の空気ノズル15,16から燃焼空気が供給されて燃焼され、同伴ダストが高温に加熱されて灰分が溶融される。そして、燃焼ガスは絞り部31に導入されることにより急加速されてスラグ案内床21aに向って噴射される。燃焼ガスがスラグ案内床21a上の回収スラグ層MSに高速で衝突することにより同伴されたスラグが効果的に捕捉され、さらにスムーズに下流側に変向された燃焼ガスの遠心力により、直接衝突しない同伴スラグもスラグ案内床21aや底壁21、側壁などに衝突接触して捕捉され、燃焼ガスの同伴ダスト中のスラグが約90%の高回収率で捕捉される。ここでスラグ回収率(スラグ化率)(%)は[スラグ排出量/(スラグ排出量+飛灰量)]×100で表わされる。さらに燃焼排ガスは排ガス通路22に排出され、捕捉された回収スラグ層MSは、燃焼ガスとの接触によりスラグを捕捉しつつ保温されて、排滓口23から排出される。この時、燃焼ガスがスムーズに下流側に送られることから、排滓口23に燃焼ガスが逆流するようなことが無く、スラグの品質低下を招くこともない。
【0017】
上記実施の形態によれば、燃焼室11からスラグ回収室12に送られる燃焼ガスを、絞り部31で大きく絞って急加速させ、高速でスラグ回収室12のスラグ案内床21a上の回収スラグ層MSに衝突接触させるので、スラグを回収スラグ層MSに突入させて効果的に捕捉することができる。また絞り部の軸心C2とスラグ案内床21aとの成す迂回角θ4を90°より少し大きい角度に設定したので、燃焼ガスの流れをスムーズに迂回させて、その遠心力により同伴されたスラグをスラグ案内床21aや底壁21に接触させ、効果的に捕捉させることができ、従来に比べて大幅にスラグ回収率を向上させることができる。さらに迂回される燃焼ガスが排滓口23に逆流せず、スラグの品質を低下させることもない。さらにまた、スラグ回収室12の排滓口25をより高温のスラグ案内床21aの上流端に形成したので、溶融スラグMSを効果的に加熱して固化を防止することができる。
【0018】
【発明の効果】
以上に述べたごとく請求項1記載の発明によれば、燃焼室からスラグ回収室に排出される燃焼ガスを、絞り部を介して高速でスラグ案内床上の回収スラグ層に衝突させ排ガス中の溶融スラグを効果的に回収でき、また回収スラグ層の温度低下を防止できる。さらに絞り部から噴射された燃焼ガスがスラグ回収室下流側に傾斜した方向から回収スラグ層に衝突することにより、燃焼ガスの迂回流をスムーズに流して乱流の発生を防止し、排滓口への燃焼ガスの逆流を防止できてスラグの品質低下を防止できる。そしてスラグ回収室に沿って迂回させる燃焼ガスの遠心力により、比重の大きい溶融スラグを効果的にスラグ案内床や底壁に接触させて、溶融スラグをより効果的に回収することができスラグの回収率を大幅に向上させることができる。
【0019】
また請求項2記載の発明によれば、絞り部の軸心を傾斜させてスラグ衝突後の燃焼ガスの迂回方向を90°より少し大きくすることにより、スラグ案内床の回収スラグ層を上流側に案内して加熱効果を増大させるとともに、燃焼ガスの迂回流をスムーズに流すことができる。
【図面の簡単な説明】
【図1】本発明に係るガス化灰溶融炉の実施の形態を示す縦断面図である。
【図2】従来のガス化灰溶融炉の縦断面図である。
【符号の説明】
10 ガス化焼却炉
11 燃焼室
12 スラグ回収室
13 ガス導入口
14 昇温バーナー
15,16 空気ノズル
21 底壁
21a スラグ案内床
22 排ガス通路
23 排滓口
31 絞り部
MS 溶融スラグ層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gasified ash melting furnace in a gasification incineration facility that introduces a pyrolysis gas generated in a gasification incinerator and rapidly burns it to melt ash accompanying the pyrolysis gas.
[0002]
[Prior art]
Conventional gasification ash melting furnaces such as those that melt ash entrained in fuel gas and exhaust gas, and swirl melting furnaces such as sludge contain unburned material in the furnace chamber 1 from above as shown in FIG. Gas is swirled and blown from the ignition burner 2 and ignited by the ignition burner 2, and is burned and heated by the combustion air blown from the air nozzle 3, and the ash accompanying the combustion gas is heated and melted and deposited and recovered on the furnace wall. The molten slag was discharged from the discharge port 4 formed at the bottom of the furnace chamber 1. In this melting furnace, the combustion gas is swirled and sent downward, collided with the bottom wall 5 and detoured upward, thereby making the residence time in the furnace chamber 1 as long as possible and bringing the molten slag into contact with the furnace wall. It was structured to ensure many opportunities to do.
[0003]
[Problems to be solved by the invention]
However, in the conventional melting furnace, the ash recovery rate is low, usually only 60%, and about 80% at maximum. As a result, the exhaust gas treatment facility that collects ash and fly ash from the exhaust gas downstream of the exhaust gas duct is increased, and the disposal cost of the slag containing the collected harmful substances increases, which increases the operating cost. It was.
[0004]
An object of the present invention is to provide a gasified ash melting furnace capable of solving the above problems and further improving the recovery rate of slag accompanying the exhaust gas.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention includes a combustion chamber that introduces pyrolysis gas generated in a gasification combustion furnace and blows combustion air at high temperature to heat and melt ash accompanying the pyrolysis gas. the entrained slag in the combustion gases to a gas Kahai melting furnace and a slag recovery chamber for capturing recovering, said Nagareoku direction of the combustion gas from the combustion chamber so as to bypass the side A slag recovery chamber is disposed, and a slag guide floor is formed at the bottom of the upstream side of the slag recovery chamber to collect the molten slag that is inclined downward and recovered to form a recovery slag layer, and upstream of the slag guide floor. A discharge port for discharging the molten slag of the recovered slag layer through the discharge weir is formed on the side, and the axis of the slag is recovered between the combustion chamber and the slag recovery chamber with respect to the combustion chamber axis. It is inclined to the chamber downstream It is obtained by forming a throttle portion for ejecting toward the baked gas to the recovery slag layer of the slag guide floor.
[0006]
According to the above configuration, the combustion gas discharged from the combustion chamber to the slag recovery chamber can collide with the recovery slag layer on the slag guide floor at high speed via the throttle, and the molten slag in the exhaust gas can be effectively recovered . The temperature drop of the recovery slag layer can be prevented. Furthermore, the combustion gas injected from the throttle part collides with the recovery slag layer from the direction inclined to the downstream side of the slag recovery chamber, thereby smoothly flowing the bypass flow of the combustion gas and preventing the occurrence of turbulence, and the exhaust port It is possible to prevent the backflow of the combustion gas to the slag and prevent the quality of the slag from deteriorating. And by the centrifugal force of the combustion gas that makes a detour along the slag recovery chamber, the molten slag having a large specific gravity can be effectively brought into contact with the slag guide floor and the bottom wall, so that the molten slag can be recovered more effectively. The rate can be greatly improved.
[0007]
According to the second aspect of the present invention, the axis of the throttle portion having the above-described configuration is inclined in the range of 20 ° to 30 ° downstream of the slag recovery chamber with respect to the combustion chamber axis, and the slag with respect to the axis of the throttle portion. the inclination angle of the guide bed is obtained by a 90 ° + α (0 ° < α ≦ 10 °).
[0008]
According to the above-described configuration, the recovered slag layer of the slag guide floor is guided to the upstream side by inclining the axis of the throttle portion and making the detour direction of the combustion gas after the slag collision slightly larger than 90 °, thereby heating effect Can be increased, and the bypass flow of the combustion gas can flow smoothly.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Here, an embodiment of the gasified ash melting furnace according to the present invention will be described with reference to FIG.
[0010]
This ash melting furnace introduces and burns a pyrolysis gas containing unburned matter, ash, and dust such as char (dry-distilled carbon) generated by burning in an oxygen-deficient state by the gasification incinerator 10. The ash and the like accompanying the pyrolysis gas are heated and melted and collected as molten slag, and the combustion chamber 11 for combusting the pyrolysis gas and the flow direction of the combustion gas from the combustion chamber 11 are sideways. And a slag recovery chamber 12 for collecting slag from the combustion gas.
[0011]
The combustion chamber 11 is formed in a circular cross section having a vertical axis C1, and is connected to the upper side wall eccentrically from the vertical axis C1 to turn the pyrolysis gas around the axis C1, and a temperature rising burner. 14 and air nozzles 15 and 16 for injecting combustion air into the pyrolysis gas and igniting it.
[0012]
The slag recovery chamber 12 is formed with a bottom wall 21 inclined at a predetermined angle θ2 at the upper part on the downstream side, and further with an exhaust gas passage 22 with a heat exchanger facing upward. Further, the upstream side of the bottom wall 21 is configured as a slag guide floor 21a that collects the collected molten slag to form a recovery slag layer MS, and the molten recovered from the upstream end of the slag guide floor 21a through the discharge weir 21b. A discharge port 23 for discharging the slag is provided. By arrange | positioning this discharge port 23 in the high temperature part of an upstream, the collection | recovery slag layer MS on the slag guide floor 21a is heated effectively, and solidification is prevented.
[0013]
Above the slag guide floor 21 a of the bottom wall 21, a throttle section 31 having a circular cross section that throttles the combustion chamber 11 is opened. The throttle portion 31 has a flow passage inner diameter d set in a range of 0.3 to 0.5 times (throttle ratio: 0.07 to 0.2) with respect to the flow passage inner diameter D of the combustion chamber 11. Thus, the combustion gas can be accelerated rapidly to collide with the recovered slag layer MS on the slag guide floor 21a at high speed, and entrained dust having a large specific gravity can enter the recovered slag layer MS at high speed and be effectively captured. . (Although a constricted portion can be seen in a conventional melting furnace, the purpose of this constricted portion is to stir the combustion gas and lengthen the residence time, and the diameter ratio is about 0.7.)
[0014]
Further, the axis C2 of the throttle portion 31 is formed on the downstream side of the slag collection chamber 12 so as to be inclined at θ3 = 20 ° to 30 °, and a bypass angle θ4 = 90 ° formed by the axis C2 and the bottom wall 21. It is set to + α. This α is set in the range of more than 0 and not more than 10 ° (inclination angle θ2 of the slag recovery chamber 12 = 10 ° to 20 °), and thereby the combustion gas flow injected from the throttle portion 31 can be made smooth. It can be sent to the downstream side to promote the solid separation effect by centrifugal force. Here, since the centrifugal force of the combustion gas is proportional to 1 / r 3 , the centrifugal force of the combustion gas increases about 8 to 27 times, and the dust contained in the combustion gas is transferred to the recovered slag layer MS on the surface of the bottom wall 21. It can be captured effectively by colliding. Further, the bypass angle θ4 can prevent the turbulent flow of the combustion gas, and also prevent the backflow of the combustion gas to the discharge port 23 to prevent the deterioration of the slag quality (entrainment of unmelted material).
[0015]
Here, α is in the range of more than 0 ° and less than 10 ° because the flow of combustion gas is not smooth at less than 0 °, and when it exceeds 10 °, the solids due to the centrifugal force of the combustion gas This is because the separation effect is reduced.
[0016]
In the above configuration, the pyrolysis gas swirled and introduced into the combustion chamber 11 from the gas inlet 13 is supplied with combustion air from the plurality of air nozzles 15 and 16 and burned, and the accompanying dust is heated to a high temperature. The ash is melted. The combustion gas is suddenly accelerated by being introduced into the throttle section 31 and is injected toward the slag guide floor 21a. When the combustion gas collides with the recovered slag layer MS on the slag guide floor 21a at a high speed, the entrained slag is effectively captured and further directly collided by the centrifugal force of the combustion gas that is smoothly turned downstream. The unaccompanied slag is also captured by colliding with the slag guide floor 21a, the bottom wall 21 and the side wall, and the slag in the entrained dust of the combustion gas is captured at a high recovery rate of about 90%. Here, the slag recovery rate (slag conversion rate) (%) is represented by [slag discharge amount / (slag discharge amount + fly ash amount)] × 100. Further, the combustion exhaust gas is discharged to the exhaust gas passage 22, and the captured recovered slag layer MS is kept warm while capturing the slag by contact with the combustion gas, and is discharged from the exhaust port 23. At this time, since the combustion gas is smoothly sent to the downstream side, the combustion gas does not flow back to the exhaust port 23, and the quality of the slag is not deteriorated.
[0017]
According to the above embodiment, the combustion gas sent from the combustion chamber 11 to the slag recovery chamber 12 is greatly squeezed and rapidly accelerated by the throttle portion 31, and the recovered slag layer on the slag guide floor 21a of the slag recovery chamber 12 is high-speed. Since it is brought into collision contact with the MS, the slag can enter the recovery slag layer MS and be effectively captured. In addition, since the bypass angle θ4 formed by the axis C2 of the throttle portion and the slag guide floor 21a is set to a slightly larger angle than 90 °, the flow of the combustion gas is smoothly bypassed, and the slag accompanied by the centrifugal force is reduced. It can be brought into contact with the slag guide floor 21a and the bottom wall 21 and captured effectively, and the slag recovery rate can be greatly improved as compared with the conventional case. Further, the bypassed combustion gas does not flow back to the exhaust port 23, and the quality of the slag is not deteriorated. Furthermore, since the discharge port 25 of the slag recovery chamber 12 is formed at the upstream end of the higher temperature slag guide floor 21a, the molten slag MS can be effectively heated to prevent solidification.
[0018]
【The invention's effect】
As described above, according to the first aspect of the present invention, the combustion gas discharged from the combustion chamber to the slag recovery chamber collides with the recovery slag layer on the slag guide floor at a high speed via the constriction portion, and is melted in the exhaust gas. Slag can be effectively recovered and the temperature drop of the recovered slag layer can be prevented. Furthermore, the combustion gas injected from the throttle part collides with the recovery slag layer from the direction inclined to the downstream side of the slag recovery chamber, thereby smoothly flowing the bypass flow of the combustion gas and preventing the occurrence of turbulence, and the exhaust port It is possible to prevent the backflow of the combustion gas to the slag and prevent the quality of the slag from deteriorating. And by the centrifugal force of the combustion gas that makes a detour along the slag recovery chamber, the molten slag having a large specific gravity can be effectively brought into contact with the slag guide floor and the bottom wall, so that the molten slag can be recovered more effectively. The rate can be greatly improved.
[0019]
According to the second aspect of the invention, the recovery slag layer of the slag guide floor is made upstream by inclining the axis of the throttle portion to make the detour direction of the combustion gas after the slag collision a little larger than 90 °. While guiding to increase the heating effect, the bypass flow of the combustion gas can flow smoothly.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an embodiment of a gasified ash melting furnace according to the present invention.
FIG. 2 is a longitudinal sectional view of a conventional gasified ash melting furnace.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Gasification incinerator 11 Combustion chamber 12 Slag collection chamber 13 Gas inlet 14 Temperature rising burners 15 and 16 Air nozzle 21 Bottom wall 21a Slag guide floor 22 Exhaust gas passage 23 Exhaust port 31 Restriction part MS Molten slag layer

Claims (2)

ガス化燃焼炉で生成された熱分解ガスを導入するとともに燃焼空気を吹き込んで高温燃焼させ、熱分解ガスに同伴された灰分を加熱溶融する燃焼室と、この燃焼ガス中に同伴されたスラグを捕捉回収するスラグ回収室とを具備したガス化灰溶融炉であって、
前記燃焼室からの燃焼ガスの流送方向を側方に迂回するように前記スラグ回収室を配置し、
前記スラグ回収室の上流側底部に、上流側下方に傾斜されて回収した溶融スラグを集め回収スラグ層を形成するスラグ案内床を形成するとともに、当該スラグ案内床の上流側に、前記回収スラグ層の溶融スラグを排出堰を介して排出する排滓口を形成し、
前記燃焼室とスラグ回収室との間に、その軸心が燃焼室軸心に対してスラグ回収室下流側に傾斜されて燃焼ガスを前記スラグ案内床上の前記回収スラグ層に向って噴射する絞り部を形成した
ことを特徴とするガス化灰溶融炉。
A combustion chamber that introduces the pyrolysis gas generated in the gasification combustion furnace and blows combustion air at a high temperature to heat and melt the ash accompanying the pyrolysis gas and a slag entrained in the combustion gas. A gasified ash melting furnace having a slag recovery chamber for capturing and recovering,
The slag recovery chamber is arranged to bypass the flow direction of the combustion gas from the combustion chamber to the side,
At the bottom of the upstream side of the slag recovery chamber, a slag guide floor is formed that collects the recovered molten slag inclined downward and forms a recovery slag layer, and on the upstream side of the slag guide floor, the recovered slag layer Forming a drainage outlet for discharging the molten slag through the discharge weir,
A throttle between the combustion chamber and the slag recovery chamber whose axis is inclined toward the downstream side of the slag recovery chamber with respect to the combustion chamber axis and injects combustion gas toward the recovery slag layer on the slag guide floor A gasified ash melting furnace characterized by forming a part.
前記絞り部の軸心を燃焼室軸心に対して前記スラグ回収室下流側に20°〜30°の範囲で傾斜させるとともに、
前記絞り部の軸心に対する前記スラグ案内床の傾斜角を90°+α(0°<α≦10°)とした
ことを特徴とする請求項1記載のガス化灰溶融炉。
With tilting in a range of 20 ° to 30 ° to the slag recovery chamber downstream the axis of the narrowed portion with respect to the combustion chamber axis,
Gas Kahai melting furnace according to claim 1, characterized in that said slag guide angle of inclination of the floor 90 ° + α (0 ° < α ≦ 10 °) with respect to the axis of the narrowed portion.
JP04609498A 1998-02-27 1998-02-27 Gasification ash melting furnace Expired - Fee Related JP3770726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04609498A JP3770726B2 (en) 1998-02-27 1998-02-27 Gasification ash melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04609498A JP3770726B2 (en) 1998-02-27 1998-02-27 Gasification ash melting furnace

Publications (2)

Publication Number Publication Date
JPH11248133A JPH11248133A (en) 1999-09-14
JP3770726B2 true JP3770726B2 (en) 2006-04-26

Family

ID=12737412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04609498A Expired - Fee Related JP3770726B2 (en) 1998-02-27 1998-02-27 Gasification ash melting furnace

Country Status (1)

Country Link
JP (1) JP3770726B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104676604B (en) * 2015-02-13 2017-04-19 上海煜工环保科技有限公司 Heat storage ash melting device

Also Published As

Publication number Publication date
JPH11248133A (en) 1999-09-14

Similar Documents

Publication Publication Date Title
JP4479655B2 (en) Grate-type waste incinerator and its combustion control method
SK287642B6 (en) Solid fuel burner and combustion method using solid fuel burner
KR100446348B1 (en) Process and furnace for burning refuse
CN113405105B (en) Slag coking prevention device of circulating fluidized bed garbage incinerator
JP3557912B2 (en) Combustion melting furnace, combustion melting method, and waste heat power generation system
JP3770726B2 (en) Gasification ash melting furnace
EP0436056B1 (en) Method and apparatus for partial combustion of coal
JP3847055B2 (en) Secondary combustion equipment for dust-containing exhaust gas
JP2006336905A (en) Air cooling type exhaust gas cooling tower
JPH054565B2 (en)
JPH11294734A (en) Rotary melting furnace
JP3779681B2 (en) Incinerator
JP3973071B2 (en) Gasification melting furnace
RU2350838C1 (en) High-temperature cyclone reactor
JPS6176818A (en) Slag tap type cyclon combustion furnace
RU2154234C1 (en) Furnace
JP3585348B2 (en) Burner type ash melting furnace using fluff fuel
JP4015878B2 (en) Waste gasification and melting system
JP3243843U (en) Opposite combustion liquid slag discharge boiler
JP3310816B2 (en) Melt combustion equipment
JPH09243027A (en) Combustion burner and combustion method
JP2582419B2 (en) Melt combustion equipment
SU1368567A1 (en) Furnace for burning wood waste
KR940008393B1 (en) Incinerator
JP2869937B2 (en) Slag type combustion device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees