JP3770712B2 - Super abrasive wheel and method for manufacturing the same - Google Patents

Super abrasive wheel and method for manufacturing the same Download PDF

Info

Publication number
JP3770712B2
JP3770712B2 JP26452197A JP26452197A JP3770712B2 JP 3770712 B2 JP3770712 B2 JP 3770712B2 JP 26452197 A JP26452197 A JP 26452197A JP 26452197 A JP26452197 A JP 26452197A JP 3770712 B2 JP3770712 B2 JP 3770712B2
Authority
JP
Japan
Prior art keywords
nickel
tin
base metal
weight
diffusion region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26452197A
Other languages
Japanese (ja)
Other versions
JPH1199477A (en
Inventor
正範 松川
正智 手島
大介 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Noritake Super Abrasive Co Ltd
Original Assignee
Noritake Co Ltd
Noritake Super Abrasive Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd, Noritake Super Abrasive Co Ltd filed Critical Noritake Co Ltd
Priority to JP26452197A priority Critical patent/JP3770712B2/en
Publication of JPH1199477A publication Critical patent/JPH1199477A/en
Application granted granted Critical
Publication of JP3770712B2 publication Critical patent/JP3770712B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、石材、コンクリート、セラミックス、耐火れんが等、脆性材料の切断、切削加工に使用される超砥粒ホイール及びその製造方法に関する。
【0002】
【従来の技術】
台金の表面に砥粒層を同時成形により形成した超砥粒ホイールは、石材、コンクリート、セラミックス、耐火れんが等、脆性材料の切断或いは切削加工に使用されているが、このような同時成形の超砥粒ホイールにおいては、台金と砥粒層との接合力が安全上最も重要である。
【0003】
従来この要求を充たすために、鉄製台金の表面に銅メッキを施し、また砥粒層のボンド材として、メッキ成分と同質の銅を使用している。これによって、砥粒層を台金表面に焼結成形する際に、メッキ成分の銅と砥粒層を構成する銅とが相互拡散し、砥粒層とメッキ層とを相互拡散によって強固に接合することが可能となる。また、台金と銅メッキ層とは、機械的結合によって強固に接合される。
【0004】
このような技術として、例えば、特開昭63−22274号公報には、銅メッキした鉄製薄板を下地層として、ダイヤモンド層に銅、錫、亜鉛、ニッケルのような金属粉末を使用して一緒に焼結する方法が開示されている。
【0005】
しかしながら、台金表面に銅メッキを施すことは製造工数の増加となるばかりでなく、メッキを施さない部分には絶縁体で台金表面を被覆しなければならないというメッキ加工の問題上、砥粒層形成部以外にも全面にメッキを施さざるを得ず、これがコストダウンの大きな阻害要因となっている。
【0006】
またこの他に、実開昭55−142258号公報には、台金と砥粒層との接合強度を向上させるために、台金の外周面の突起部に多数の凹陥部を設けてセグメントチップを焼結させ、機械的に接合強度を強くしたダイヤモンド砥石が記載されているが、このような凹陥部を設けるのは加工費が高く、現実的な製造方法としては採用しにくい。
【0007】
【発明が解決しようとする課題】
本発明において解決すべき課題は、製造コストを低減し、かつ、台金と砥粒層との接合力に優れた超砥粒ホイールを提供することにある。
【0008】
【課題を解決するための手段】
本発明者は上記課題を解決するために、銅メッキを施すことなく、これと同等以上の接合力を得る方法について鋭意研究の結果、従来ボンド材としても使用されているニッケル及び錫を特定の割合で使用することによって、これが解決できることを知見し、本発明を完成するに至ったものである。
【0009】
すなわち、本発明の超砥粒ホイールは、ダイヤモンドやCBNなどの超砥粒とボンド材である金属粉末とを混合した混合体を焼結することにより砥粒層を形成するとともに、同砥粒層を鉄系の台金表面にメッキ層を介さずに直に接合する超砥粒ホイールであって、前記金属粉末として少なくともニッケル及び錫を使用し、かつ前記ニッケルに対する錫の量を15〜35重量%の範囲としたことを特徴とするものである。
【0010】
ここで、ニッケルはボンド材として使用した場合、耐熱性が高くボンド焼けしない、強度が高く延性に富むために砥粒層の強度を高める、という特徴を有する。反面、強度が高く磨耗しにくいので、砥粒の自生作用を起こしにくくする特性がある。
【0011】
これに対し錫は、耐熱性が低くボンド焼けする、強度が低く延性が低いために砥粒層の強度が低い、という特性から、ボンド材の主材としては不適切であり、主に添加剤として用いられている。一方、強度が低く磨耗しやすいことから、砥粒の自生作用を促進するという特徴を有する。
【0012】
本発明者は実験の結果、ニッケルの量に対し、錫を15〜35重量%とすることで、耐熱性が低く強度が低いという錫の欠点を発現させることなく、砥粒層の焼結温度である700〜1000℃の低い温度で流動化してニッケルの周囲を覆い、その結果、ニッケルを活性化させて、鉄製台金内に深く入り込み10μm以上にわたってニッケルの拡散領域を持つことが可能となることを知見した。なお、ニッケルと錫以外の材料としては、銅、コバルト、鉄などが好適に使用可能である。
【0013】
ここで、ニッケルの量に対する錫の量が15重量%未満であると、錫の量が不足し、ニッケルの周囲を覆いきれずに、台金へのニッケルの拡散領域が狭くなる。またボンド強度が高過ぎて砥粒の自生作用を起こしにくくする。他方35重量%を超えると、ニッケルの拡散領域は微増するが強度不足となるため、上記範囲が望ましい。
【0014】
また、ニッケルの含有量はボンド材全体の15重量%以上が望ましく、より好ましくは40重量%以上である。ニッケルの含有量が15重量%未満の場合、錫の量が前記の範囲であってもニッケルの量が不足し、ニッケルの拡散領域が狭くなって、砥粒層と台金との接合強度が低くなる。15重量%以上であれば10μm以上の拡散領域が得られ、40重量%以上になると拡散領域と接合強度が高いレベルで安定する。
【0015】
図1は錫の溶融によるニッケルの活性化を説明する模式図であり、(a)は常温で加圧したときの状態、(b)は300℃で加圧したときの状態、(c)は700℃で加圧したときの状態をそれぞれ示す。なお、本説明ではニッケル及び錫以外の材料として銅を含有したものについて述べるが、銅に代えてコバルトや鉄でも同様の傾向が見られた。
【0016】
図1において、1は鉄製台金、2は砥粒層、3はニッケルの粉末、4は錫の粉末、5は銅の粉末であり、砥粒層2中のダイヤモンド砥粒は図示を省略している。同図(a)に示すように、常温で加圧した状態では、各金属粉末間には多数の空間が存在する。これを300℃に加熱して加圧すると、同図(b)に示すように、空間が少なくなるとともに錫の粉末4が溶融してニッケルの粉末3及び銅の粉末5の表面を被覆する。さらに700℃以上で加熱すると、同図(c)に示すように、溶融した錫4aとニッケル及び銅とが合金化を始める。
【0017】
この合金化によってニッケルが活性化され、ニッケルが鉄製台金1内に深く入り込み10μm以上にわたって拡散領域を形成する。この場合、鉄製台金に従来のような銅メッキが施されていると、ニッケルが鉄製台金に拡散されにくく、拡散領域は4μm程度しか得られないが、本発明では銅メッキを施さない鉄製台金1を用いるので、10μm以上の拡散領域が形成される。
【0018】
【発明の実施の形態】
本発明の超砥粒ホイールは、ボンド材の組成が異なる点を除いて、従来の超砥粒ホイールと同様な手順によって製造し、使用することができる。
以下本発明におけるボンド材の組成に関して、実験例に基づいて詳細に説明する。
【0019】
〔実験例1〕ニッケルと錫の組成比の検討
ボンド材全体の重量に対するニッケルの割合を50重量%に固定し、ニッケルに対する錫の割合を0〜50重量%の範囲で変化させたときの、台金へのニッケルの拡散領域及び接着強度を図2に示し、ニッケルに対する錫の割合を20重量%に固定し、ボンド材全体の重量に対するニッケルの割合を0〜70重量%の範囲で変化させたときの、台金へのニッケルの拡散領域及び接着強度を図3に示す。
【0020】
図2に示すように、ニッケルに対する錫の割合が15〜35重量%のとき、台金へのニッケルの拡散領域は10μm以上でかつ接着強度が100Kgf/cm以上となる結果が得られた。また、図3に示すように、ボンド材全体の重量に対するニッケルの割合が15重量%以上のとき、台金へのニッケルの拡散領域は10μm以上でかつ接着強度が100Kgf/cm以上となる結果が得られた。
【0021】
〔実験例2〕拡散領域と接着強度・疲労強度の関係調査
ボンド材全体の重量に対するニッケルの割合及びニッケルに対する錫の割合を種々変えて台金へのニッケルの拡散領域が0〜20μmの範囲の超砥粒ホイールを製作し、接着強度と疲労強度を調査した結果を図4に示す。ここで疲労強度は、接着部に繰り返し応力を加え、接着部が疲労破壊するまでの繰り返し回数で表す。
【0022】
図4に示すように、台金へのニッケルの拡散領域が10μm以上あると、接着強度は100Kgf/cm以上となり、疲労強度(疲労破壊するまでの繰り返し回数)は10000回以上となり、従来の台金表面に銅メッキを施した場合と同程度の接着強度と疲労強度が得られる。
【0023】
〔実験例3〕焼結温度と拡散領域・砥粒の破砕性の関係調査
ボンド材全体の重量に対するニッケルの割合が15重量%以上でかつニッケルに対する錫の割合が15〜35重量%の範囲のボンド材を用いて焼結したときの焼結温度と拡散領域及び砥粒の破砕性との関係を調査した結果を図5に示す。ここで砥粒の破砕性は、加熱後の試料砥粒と鋼球を鋼製のカプセルに入れて一定時間揺動し、この後カプセル中の砥粒を取り出し、試料砥粒より一段下の篩を用いて篩い分けを行ったときの、一段下の篩通過量(g)/試料砥粒総重量(g)×100(%)で表す。
【0024】
図5に示すように、焼結温度が700℃以上であると、台金へのニッケルの拡散領域が10μm以上となる。他方、焼結温度が1000℃を超えると、砥粒結晶中の金属介在物が熱応力により砥粒粒子を破壊してクラックが発生し、砥粒の破砕性が急増する。この結果から、焼結温度は700〜1000℃の範囲が適当であることがわかる。
【0025】
なお上記実施例では、ニッケルと錫とを別々準備してこれを混合したものについて説明したが、あらかじめ上記割合のニッケル粉と錫粉とを合金化したものも使用できる。この場合、合金化していない方が、若干ニッケルの拡散領域が広いことが確認された。
【0026】
【発明の効果】
本発明によって以下の効果を奏することができる。
【0027】
(1)金属粉末としてニッケル及び錫を使用し、かつニッケルに対する錫の量を15〜35重量%の範囲とすることで、従来のような台金に銅メッキを施すことなく、砥粒層の接合強度を高めることができる。
【0028】
(2)特にニッケルの含有量をボンド材全体の15重量%以上とすることで、台金へのニッケルの拡散領域が10μm以上と広くなり、高い接合強度を得ることができる。
【0029】
(3)ニッケル及び錫を特定の範囲で使用することにより、700〜1000度の比較的低温で焼結を行うことができる。
【0030】
(4)比較的安価な金属材料であるニッケルや錫を使用すること、及び台金の銅メッキを省くことにより、製造コストを低減することができる。
【図面の簡単な説明】
【図1】 錫の溶融によるニッケルの活性化を説明する模式図である。
【図2】 錫の含有量と台金へのニッケルの拡散領域及び接着強度の関係を示す図である。
【図3】 ニッケルの含有量と台金へのニッケルの拡散領域及び接着強度の関係を示す図である。
【図4】 拡散領域と接着強度・疲労強度の関係を示す図である。
【図5】 焼結温度と拡散領域・砥粒の破砕性の関係を示す図である。
【符号の説明】
1 鉄製台金
2 砥粒層
3 ニッケルの粉末
4 錫の粉末
4a 溶融した錫
5 銅の粉末
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a superabrasive wheel used for cutting and cutting brittle materials such as stone, concrete, ceramics, and refractory bricks, and a method for manufacturing the same.
[0002]
[Prior art]
Super-abrasive wheels with an abrasive layer formed on the surface of a base metal by simultaneous molding are used for cutting or cutting brittle materials such as stone, concrete, ceramics, refractory bricks, etc. In the superabrasive wheel, the bonding force between the base metal and the abrasive layer is the most important for safety.
[0003]
Conventionally, in order to satisfy this requirement, copper plating is applied to the surface of an iron base metal, and copper having the same quality as the plating component is used as a bonding material for the abrasive layer. As a result, when the abrasive layer is sintered and formed on the base metal surface, the copper of the plating component and the copper constituting the abrasive layer are interdiffused, and the abrasive layer and the plated layer are firmly bonded by mutual diffusion. It becomes possible to do. Further, the base metal and the copper plating layer are firmly bonded by mechanical bonding.
[0004]
As such a technique, for example, in Japanese Patent Application Laid-Open No. 63-22274, a copper-plated iron thin plate is used as an underlayer, and a diamond layer is used together with metal powders such as copper, tin, zinc and nickel. A method of sintering is disclosed.
[0005]
However, copper plating on the surface of the base metal not only increases the number of manufacturing steps, but also due to the problem of plating processing that the base metal surface must be covered with an insulator on the part that is not plated, abrasive grains Other than the layer forming portion, the entire surface must be plated, which is a major impediment to cost reduction.
[0006]
In addition, Japanese Utility Model Laid-Open No. 55-142258 discloses a segment chip in which a large number of concave portions are provided on the protrusions on the outer peripheral surface of the base metal in order to improve the bonding strength between the base metal and the abrasive layer. Although a diamond grindstone in which the bonding strength is mechanically increased is described, it is difficult to adopt such a recessed portion as a practical manufacturing method because of the high processing cost.
[0007]
[Problems to be solved by the invention]
The problem to be solved in the present invention is to provide a superabrasive wheel that reduces the manufacturing cost and is excellent in the bonding force between the base metal and the abrasive layer.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have conducted intensive research on a method for obtaining a bonding force equal to or higher than that without applying copper plating. As a result, nickel and tin that have been conventionally used as bond materials are specified. It has been found that this can be solved by using the ratio, and the present invention has been completed.
[0009]
That is, the superabrasive wheel of the present invention forms an abrasive layer by sintering a mixture of superabrasives such as diamond and CBN and a metal powder as a bonding material, and the abrasive layer. Is a superabrasive wheel that directly joins the iron base metal surface without a plating layer, and uses at least nickel and tin as the metal powder, and the amount of tin with respect to the nickel is 15 to 35 wt. % Range.
[0010]
Here, when nickel is used as a bond material, it has characteristics that it has high heat resistance and does not burn, and has high strength and high ductility, so that the strength of the abrasive layer is increased. On the other hand, it has high strength and is difficult to wear, and therefore has the characteristic of making it difficult for the abrasive grains to self-act.
[0011]
In contrast, tin is unsuitable as the main material of the bond material because it has low heat resistance and bond burns, and the strength of the abrasive layer is low due to low strength and low ductility. It is used as. On the other hand, since it has low strength and easily wears, it has a feature of promoting the self-generated action of the abrasive grains.
[0012]
As a result of the experiment, the inventors have determined that the sintering temperature of the abrasive layer is not manifested by the disadvantage of tin that the heat resistance is low and the strength is low by setting the tin to 15 to 35% by weight with respect to the amount of nickel. It is fluidized at a low temperature of 700 to 1000 ° C. to cover the periphery of nickel, and as a result, nickel can be activated to penetrate deep into the iron base metal and have a nickel diffusion region over 10 μm or more. I found out. In addition, as materials other than nickel and tin, copper, cobalt, iron, and the like can be suitably used.
[0013]
Here, when the amount of tin is less than 15% by weight with respect to the amount of nickel, the amount of tin is insufficient, and the nickel diffusion region to the base metal becomes narrow without covering the periphery of nickel. Also, the bond strength is too high to make it difficult for the abrasive grains to self-generate. On the other hand, if it exceeds 35% by weight, the nickel diffusion region increases slightly, but the strength becomes insufficient, so the above range is desirable.
[0014]
Further, the nickel content is desirably 15% by weight or more, more preferably 40% by weight or more of the entire bond material. When the nickel content is less than 15% by weight, even if the tin content is within the above range, the nickel content is insufficient, the nickel diffusion region becomes narrow, and the bonding strength between the abrasive layer and the base metal becomes low. Lower. If it is 15% by weight or more, a diffusion region of 10 μm or more is obtained, and if it is 40% by weight or more, the diffusion region and the bonding strength are stabilized at a high level.
[0015]
FIG. 1 is a schematic diagram explaining the activation of nickel by melting of tin, (a) is a state when pressurized at room temperature, (b) is a state when pressurized at 300 ° C., (c) is Each state when pressurized at 700 ° C. is shown. In addition, although this description describes what contains copper as materials other than nickel and tin, the same tendency was seen also in cobalt and iron instead of copper.
[0016]
In FIG. 1, 1 is an iron base metal, 2 is an abrasive layer, 3 is nickel powder, 4 is tin powder, 5 is copper powder, and diamond abrasive grains in the abrasive layer 2 are not shown. ing. As shown in FIG. 5A, in a state where the pressure is applied at room temperature, there are a large number of spaces between the metal powders. When this is heated to 300 ° C. and pressurized, the space is reduced and the tin powder 4 is melted to cover the surfaces of the nickel powder 3 and the copper powder 5 as shown in FIG. When further heated at 700 ° C. or higher, as shown in FIG. 5C, the molten tin 4a, nickel and copper start to be alloyed.
[0017]
Nickel is activated by this alloying, and nickel penetrates deeply into the iron base 1 to form a diffusion region over 10 μm or more. In this case, if the conventional copper plating is applied to the iron base metal, nickel is not easily diffused into the iron base metal, and a diffusion region of only about 4 μm can be obtained. Since the base metal 1 is used, a diffusion region of 10 μm or more is formed.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The superabrasive wheel of the present invention can be manufactured and used in the same procedure as a conventional superabrasive wheel except that the composition of the bond material is different.
Hereinafter, the composition of the bond material in the present invention will be described in detail based on experimental examples.
[0019]
[Experimental Example 1] Examination of composition ratio of nickel and tin When the ratio of nickel to the weight of the entire bond material was fixed to 50 wt%, the ratio of tin to nickel was changed in the range of 0 to 50 wt%. The diffusion region and adhesion strength of nickel to the base metal are shown in FIG. 2, the ratio of tin to nickel is fixed to 20% by weight, and the ratio of nickel to the total weight of the bond material is changed in the range of 0 to 70% by weight. FIG. 3 shows the diffusion region and adhesion strength of nickel to the base metal.
[0020]
As shown in FIG. 2, when the ratio of tin to nickel was 15 to 35% by weight, the result was that the diffusion region of nickel into the base metal was 10 μm or more and the adhesive strength was 100 Kgf / cm or more. As shown in FIG. 3, when the ratio of nickel to the total weight of the bond material is 15% by weight or more, the diffusion region of nickel into the base metal is 10 μm or more and the adhesive strength is 100 Kgf / cm or more. Obtained.
[0021]
[Experimental Example 2] Investigation of relationship between diffusion region and bond strength / fatigue strength The ratio of nickel to the weight of the entire bond material and the ratio of tin to nickel were varied so that the diffusion region of nickel into the base metal was in the range of 0 to 20 μm. FIG. 4 shows the results of manufacturing a superabrasive wheel and examining the adhesive strength and fatigue strength. Here, the fatigue strength is represented by the number of repetitions until the bonded portion is subjected to fatigue failure by repeatedly applying stress to the bonded portion.
[0022]
As shown in FIG. 4, when the diffusion region of nickel to the base metal is 10 μm or more, the adhesive strength is 100 kgf / cm or more, and the fatigue strength (the number of repetitions until fatigue failure) is 10,000 times or more. Adhesive strength and fatigue strength similar to those obtained when copper plating is applied to the gold surface can be obtained.
[0023]
[Experimental Example 3] Investigation of relationship between sintering temperature and diffusion region / abrasive crushability The ratio of nickel to the total weight of the bond material is 15% by weight or more and the ratio of tin to nickel is in the range of 15 to 35% by weight. FIG. 5 shows the results of investigating the relationship between the sintering temperature, the diffusion region, and the grindability of the abrasive grains when sintered using the bond material. Here, the grindability of the abrasive grains is determined by placing the heated sample abrasive grains and steel balls in a steel capsule and shaking them for a certain period of time. Then, the abrasive grains in the capsule are taken out and sieved one step below the sample abrasive grains. When sieving is carried out, it is expressed as a sieve passing amount one step below (g) / total weight of sample abrasive grains (g) × 100 (%).
[0024]
As shown in FIG. 5, when the sintering temperature is 700 ° C. or higher, the diffusion region of nickel into the base metal becomes 10 μm or more. On the other hand, when the sintering temperature exceeds 1000 ° C., the metal inclusions in the abrasive grains break the abrasive grains due to thermal stress to generate cracks, and the friability of the abrasive grains increases rapidly. From this result, it is understood that the sintering temperature is suitably in the range of 700 to 1000 ° C.
[0025]
In addition, although the said Example demonstrated what prepared nickel and tin separately and mixed this, what previously alloyed nickel powder and tin powder of the said ratio can also be used. In this case, it was confirmed that the nickel diffusion region was slightly wider when not alloyed.
[0026]
【The invention's effect】
The following effects can be achieved by the present invention.
[0027]
(1) Nickel and tin are used as metal powder, and the amount of tin with respect to nickel is in the range of 15 to 35% by weight. Bonding strength can be increased.
[0028]
(2) In particular, by setting the nickel content to 15% by weight or more of the entire bond material, the nickel diffusion region to the base metal becomes as wide as 10 μm or more, and high bonding strength can be obtained.
[0029]
(3) By using nickel and tin in a specific range, sintering can be performed at a relatively low temperature of 700 to 1000 degrees.
[0030]
(4) Manufacturing costs can be reduced by using nickel or tin, which are relatively inexpensive metal materials, and omitting copper plating of the base metal.
[Brief description of the drawings]
FIG. 1 is a schematic diagram for explaining the activation of nickel by melting of tin.
FIG. 2 is a diagram showing the relationship between the tin content, the diffusion region of nickel into the base metal, and the adhesive strength.
FIG. 3 is a diagram showing the relationship between the nickel content, the nickel diffusion region to the base metal, and the adhesive strength.
FIG. 4 is a diagram showing a relationship between a diffusion region and adhesive strength / fatigue strength.
FIG. 5 is a diagram showing the relationship between the sintering temperature and the diffusibility of the diffusion region and abrasive grains.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Iron base metal 2 Abrasive grain layer 3 Nickel powder 4 Tin powder 4a Molten tin 5 Copper powder

Claims (2)

超砥粒とボンド材である金属粉末とを混合した混合体を焼結することにより砥粒層を形成するとともに、同砥粒層を鉄系の台金表面に直に接合する超砥粒ホイールであって、前記金属粉末として少なくともニッケル及び錫を使用し、かつ前記ニッケルに対する錫の量を15〜35重量%の範囲とし、前記ニッケルの含有量をボンド材全体の15重量%以上として、焼結による台金へのニッケルの拡散領域を10μm以上としたことを特徴とする超砥粒ホイール。A superabrasive wheel that forms a grain layer by sintering a mixture of superabrasive grains and metal powder as a bonding material, and directly joins the abrasive grain layer to the surface of an iron base metal. And at least nickel and tin are used as the metal powder, the amount of tin with respect to the nickel is in the range of 15 to 35% by weight, and the nickel content is 15% by weight or more of the entire bond material. A superabrasive wheel characterized in that the diffusion region of nickel into the base metal by ligation is 10 μm or more . 超砥粒とボンド材である金属粉末とを混合した混合体を焼結することにより砥粒層を形成するとともに、同砥粒層を鉄系の台金表面に直に接合する超砥粒ホイールであって、前記金属粉末として少なくともニッケル及び錫を使用し、かつ前記ニッケルに対する錫の量を15〜35重量%の範囲とし、前記ニッケルの含有量をボンド材全体の15重量%以上として、焼結による台金へのニッケルの拡散領域を10μm以上とした超砥粒ホイールの製造方法であって、前記焼結温度が700〜1000℃の範囲であることを特徴とする超砥粒ホイールの製造方法。A superabrasive wheel that forms a grain layer by sintering a mixture of superabrasive grains and metal powder as a bonding material, and directly joins the abrasive grain layer to the surface of an iron base metal. And at least nickel and tin are used as the metal powder, the amount of tin with respect to the nickel is in the range of 15 to 35% by weight, and the nickel content is 15% by weight or more of the entire bond material. A method for producing a superabrasive wheel in which the diffusion region of nickel into the base metal by ligation is 10 μm or more , wherein the sintering temperature is in the range of 700 to 1000 ° C. Method.
JP26452197A 1997-09-29 1997-09-29 Super abrasive wheel and method for manufacturing the same Expired - Fee Related JP3770712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26452197A JP3770712B2 (en) 1997-09-29 1997-09-29 Super abrasive wheel and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26452197A JP3770712B2 (en) 1997-09-29 1997-09-29 Super abrasive wheel and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH1199477A JPH1199477A (en) 1999-04-13
JP3770712B2 true JP3770712B2 (en) 2006-04-26

Family

ID=17404418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26452197A Expired - Fee Related JP3770712B2 (en) 1997-09-29 1997-09-29 Super abrasive wheel and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3770712B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014205225A (en) * 2013-04-15 2014-10-30 株式会社ノリタケカンパニーリミテド Grinding abrasive wheel for high-hardness brittle material

Also Published As

Publication number Publication date
JPH1199477A (en) 1999-04-13

Similar Documents

Publication Publication Date Title
CA2124393C (en) Method of making an abrasive compact
CN1066661C (en) Improved metal bond and metal abrasive articles
EP0246118B1 (en) Thermally stable abrasive diamond product, and process for making such a product
JP2991728B2 (en) Method for producing porous polycrystalline diamond compact impregnated with silicon
EP2519381B1 (en) Abrasive article incorporating an infiltrated abrasive segment
CN1014306B (en) Low pressure bonding of pcd bodies and method
JP2006501073A (en) Brazed diamond tools and their manufacturing methods
JPS6159270B2 (en)
JPH081521A (en) Tool for processing abrasive grains bound using new metal bond and manufacture thereof
JP2602984B2 (en) Method for producing molded body for polishing and tool therefor
JP3770712B2 (en) Super abrasive wheel and method for manufacturing the same
CN1019761B (en) Improved cutting part and manufacture method and the purposes that is combined with the polycrystalline diamond briquetting
JP2000141230A (en) Metal bond grindstone and its manufacture
JP3052603B2 (en) Porous metal bond whetstone
JP3712832B2 (en) Resinoid super abrasive wheel
JP3814311B2 (en) Method for producing composite abrasive grains
FR2623201A1 (en) DIAMOND COMPOSITE ABRASIVE PRODUCT, PROCESS FOR PREPARING THE SAME, AND DRILLING OR MACHINING TOOLS EQUIPPED THEREFOR
JPS6099568A (en) Porous metal bond grindstone and preparation thereof
JP3055084B2 (en) Porous metal bond whetstone and method of manufacturing the same
JP2565622B2 (en) Grinding stone manufacturing method
JP4187287B2 (en) Metal bond grinding wheel
JPS63256369A (en) Diamond wire saw and manufacture thereof
JPS644840Y2 (en)
JPH04297284A (en) Blade for ice skate
SU1013244A1 (en) Method of making diamond-containing aggregates

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040407

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040412

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees