JP3769556B2 - Floating solar power generation system - Google Patents

Floating solar power generation system Download PDF

Info

Publication number
JP3769556B2
JP3769556B2 JP2003275835A JP2003275835A JP3769556B2 JP 3769556 B2 JP3769556 B2 JP 3769556B2 JP 2003275835 A JP2003275835 A JP 2003275835A JP 2003275835 A JP2003275835 A JP 2003275835A JP 3769556 B2 JP3769556 B2 JP 3769556B2
Authority
JP
Japan
Prior art keywords
spherical shell
solar
power generation
support frame
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003275835A
Other languages
Japanese (ja)
Other versions
JP2005038270A (en
Inventor
直人 市川
Original Assignee
直人 市川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 直人 市川 filed Critical 直人 市川
Priority to JP2003275835A priority Critical patent/JP3769556B2/en
Publication of JP2005038270A publication Critical patent/JP2005038270A/en
Application granted granted Critical
Publication of JP3769556B2 publication Critical patent/JP3769556B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/70Waterborne solar heat collector modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Description

本発明は、海、湖、池、プール等の水面上に浮かべた状態で太陽電池を利用して発電を行う水上太陽光発電装置に関する。   The present invention relates to a floating solar power generation apparatus that generates power using a solar cell in a state of floating on the water surface of a sea, a lake, a pond, a pool or the like.

水上での太陽光発電は、海や湖の広大な水域を利用でき、陸上のように施設用地を確保する必要がなく、日射を遮る障害物もなく設置場所の制約が少ないという利点がある上、岸から離れた海上で使用する種々の電気装置や、通電ケーブルの敷設困難な場所への電力供給に対応できると共に、発電ユニットの数を多くして大規模な発電施設を構築することも可能である。   Solar power generation on the water has the advantage that it can use the vast waters of the sea and lakes, does not need to secure a site for facilities like onshore, has no obstacles to block sunlight, and has few restrictions on installation locations. In addition to being able to respond to power supply to various electrical devices used offshore from the shore and places where it is difficult to install power cables, it is also possible to build large-scale power generation facilities by increasing the number of power generation units It is.

従来、水上太陽光発電装置として、太陽電池、蓄電池、発光ダイオード等よりなる発光部を搭載したベースに半球状の透光ケースを水密状態に被着したソーラーブイ(特許文献1)、水上に繋留させる球状浮体の上半球部の外面全体に太陽電池を敷設し、該球状浮体の内部に蓄電池や電動装置を設けたもの(特許文献2)、太陽電池アレイを搭載した回転架台を水面に浮上状態として回転可能に支持し、この回転架台をスクリューの駆動によって太陽方向を追尾するように回転させるようにしたもの(特許文献3)、太陽電池と及びモーターを設けた架台を水上に浮かべると共に、複数箇所に定置した各錨に繋がる滑車と架台に設けた滑車との間に無端ベルトを巻き掛け、これらベルトをモーターの駆動で移動させて架台を太陽方向に向かせるようにしたもの(特許文献4)等が提案されている。   Conventionally, as a solar power generator, a solar buoy (Patent Document 1) in which a hemispherical translucent case is attached in a watertight state to a base on which a light emitting unit composed of a solar cell, a storage battery, a light emitting diode, etc. is mounted, is tethered on the water. A solar cell is laid on the entire outer surface of the upper hemisphere of the spherical floating body, and a storage battery and an electric device are provided inside the spherical floating body (Patent Document 2), and a rotating mount on which the solar cell array is mounted floats on the water surface. As the rotating mount is rotated so as to track the sun direction by driving a screw (Patent Document 3), a mount provided with a solar cell and a motor is floated on the water, Wrap endless belts between the pulleys connected to each fence placed in place and the pulleys provided on the gantry, and move these belts by driving the motor so that the gantry is directed toward the sun. Those manner (Patent Document 4) have been proposed.

ところで、太陽光発電においては、発電効率を高める上で、太陽電池を構成するソーラーパネルの面方向を太陽光の照射方向に対して垂直になることが望ましい。しかるに、前記のソーラーブイでは、ソーラーパネルの向きを調整できないため、日中を通して高い発電効率が得られない。また、球状浮体の上半球部の外面全体に太陽電池を敷設したものでは、その外面全体の太陽電池の内で日陰側になる領域を常に生じることになるから、設備効率面での無駄が非常に大きいという欠点がある。   By the way, in solar power generation, in order to improve power generation efficiency, it is desirable that the surface direction of the solar panel constituting the solar cell be perpendicular to the irradiation direction of sunlight. However, in the solar buoy, the orientation of the solar panel cannot be adjusted, so that high power generation efficiency cannot be obtained throughout the day. In addition, in the case where solar cells are laid on the entire outer surface of the upper hemisphere of the spherical floating body, there will always be a shaded area in the solar cells on the entire outer surface, which is very wasteful in terms of equipment efficiency. Has the disadvantage of being large.

一方、水面に浮上状態とした回転架台をスクリューの駆動によって回転させるものや、水上に浮かべた架台を無端ベルトの移動を介して回転させるものでは、ソーラーパネルの向きを太陽位置の東から西への日周変化に追随させることができ、それだけ発電効率は向上するが、太陽位置の日周変化は東から西への方位変化と共に高低変化もあるため、常に最大限の発電効率を得ることはできない上、架台が回転する際に水の流れや風波の影響を受け易く、ソーラーパネルの向きを適正な方位に設定することが非常に困難であり、太陽方向を追従させる姿勢制御手段としての信頼性も不充分である。   On the other hand, in the case of rotating a rotating platform that is floated on the surface of the water by driving a screw or rotating a platform that is floated on the water through the movement of an endless belt, the solar panel is oriented from east to west of the solar position. The power generation efficiency is improved accordingly, but the solar position's diurnal variation also changes with the direction change from east to west, so it is always possible to obtain the maximum power generation efficiency. In addition, it is easy to be affected by the flow of water and wind waves when the gantry rotates, and it is very difficult to set the solar panel to the proper orientation. Sex is also insufficient.

実開平1−103495号公報Japanese Utility Model Publication No. 1-103495 特開平6−229366号公報JP-A-6-229366 特開昭61−223909号公報JP 61-223909 A 実開昭62−40610号公報Japanese Utility Model Publication No. 62-40610

本発明は、上述の情況に鑑み、水上太陽光発電装置として、ソーラーパネルの向きを太陽位置の東から西への方位変化と高低変化の両方に対応して追従させることができ、もって常時最大限の発電効率が得られ、しかも太陽方向追従手段としての信頼性が高い上、耐久性に優れ、安価に製作できるものを提供することを目的としている。   In view of the above-mentioned situation, the present invention can follow the orientation of the solar panel corresponding to both the azimuth change from the east to the west and the elevation change of the solar position as a floating solar power generation device, and is always at the maximum. The purpose of the present invention is to provide a device that can achieve a limited power generation efficiency, is highly reliable as a solar direction tracking means, has excellent durability, and can be manufactured at low cost.

上記目的を達成するために、本発明の請求項1に係る水上太陽光発電装置は、図面の参照符号を付して示せば、定姿勢保持手段(回転止めロープ8,8)によって水上で非回転の浮き姿勢に保持される透明性の球殻1内に、太陽電池ユニット2が中心部において当該球殻1の内頂部(掛止部15)から垂下する索体(吊りロープ4)によって傾動及び自転可能に吊持されると共に、姿勢制御機構(コントローラー22)を備え、太陽電池ユニット2は、前記球殻1の内面に周方向に等配する複数箇所で当接する支持枠20と、この支持枠20の上面側に取り付けられたソーラーパネル3と、該支持枠20の下面側の中心部に相対回転自在に枢着された旋回体21と、この旋回体21の枢着部(中心ボス部20a)を中心とする円環状をなし、該支持枠20の下面側に固設されたラックギヤ23とを具備し、旋回体21は、前記ラックギヤ23に噛合するピニオン(駆動ピニオン25a)及びその回転駆動手段(可逆転モーター26a)と、前記ラックギヤ23の円環の半径方向に沿って移動可能な方向設定ウエイト28及びその移動手段(可逆転モーター26b,スクリュー軸27)とを具備し、太陽電池ユニット2が球殻1内で方向設定ウエイト28側を下位とした傾斜姿勢をとり、姿勢制御機構にて前記移動手段及び回転駆動手段の作動を制御することにより、方向設定ウエイト28の半径方向移動と旋回体21の旋回移動に伴う重心変位によってソーラーパネル3の仰角及び方位角を設定するように構成している。   In order to achieve the above object, a floating solar power generation apparatus according to claim 1 of the present invention is shown on the water by a constant attitude holding means (rotation stop ropes 8, 8), if indicated with reference numerals in the drawings. The solar cell unit 2 is tilted by a rope (suspending rope 4) that hangs down from the inner top portion (hanging portion 15) of the spherical shell 1 in the center portion in the transparent spherical shell 1 that is held in a rotating floating posture. The solar cell unit 2 includes a support frame 20 that contacts the inner surface of the spherical shell 1 at a plurality of locations that are equally distributed in the circumferential direction. The solar panel 3 attached to the upper surface side of the support frame 20, the revolving body 21 pivotally attached to the center portion on the lower surface side of the support frame 20, and the pivot portion (central boss) of the revolving body 21 A circular shape centering on the part 20a), The revolving body 21 includes a pinion (drive pinion 25a) meshing with the rack gear 23, its rotation driving means (reversible motor 26a), and the rack gear. 23, a direction setting weight 28 movable along the radial direction of the annular ring and its moving means (reversible motor 26b, screw shaft 27), and the solar cell unit 2 has a direction setting weight 28 in the spherical shell 1. By taking an inclined posture with the side as a lower side and controlling the operation of the moving means and the rotation driving means by the posture control mechanism, the displacement of the center of gravity due to the radial movement of the direction setting weight 28 and the turning movement of the swiveling body 21 is achieved. The elevation angle and azimuth angle of the solar panel 3 are set.

請求項2の発明は、上記請求項1の水上太陽光発電装置において、球殻1内が不活性ガスで置換されてなる構成としている。   According to a second aspect of the present invention, in the above-described water solar power generation apparatus of the first aspect, the inside of the spherical shell 1 is replaced with an inert gas.

請求項3の発明は、上記請求項1又は2の水上太陽光発電装置において、支持枠20がばね力(圧縮コイルスプリング24a)で付勢された球形ローラー24によって球殻1内面に押接する構成としている。   According to a third aspect of the present invention, in the above-described water solar power generation apparatus according to the first or second aspect, the support frame 20 is pressed against the inner surface of the spherical shell 1 by a spherical roller 24 biased by a spring force (compression coil spring 24a). It is said.

請求項4の発明は、上記請求項1〜3のいずれかの水上太陽光発電装置において、球殻1の底部側に球殻バランサーウエイト14が付設されてなる構成としている。   According to a fourth aspect of the present invention, in the above-described floating solar power generation apparatus according to any one of the first to third aspects, a spherical shell balancer weight 14 is provided on the bottom side of the spherical shell 1.

請求項5の発明は、上記請求項1〜4のいずれかの水上太陽光発電装置において、球殻1の底部側に水中ポンプ7が付設されると共に、該球殻の外頂部に当該水中ポンプ7から送られる水を球殻1外周面に向けて噴射する水噴射ノズル16が設けられてなる構成としている。   According to a fifth aspect of the present invention, the submersible pump 7 is attached to the bottom side of the spherical shell 1 and the submersible pump is attached to the outer top portion of the spherical shell. The water injection nozzle 16 which injects the water sent from 7 toward the outer peripheral surface of the spherical shell 1 is provided.

請求項6の発明は、上記請求項1〜5のいずれかの水上太陽光発電装置において、移動手段が、方向設定ウエイト28に螺挿したスクリュー軸27と、このスクリュー軸27を回転駆動する可逆転モーター26bとからなる構成としている。   According to a sixth aspect of the present invention, in the above-described floating solar power generation apparatus according to any one of the first to fifth aspects, the moving means can rotate the screw shaft 27 and the screw shaft 27 screwed into the direction setting weight 28. The reverse rotation motor 26b is used.

請求項7の発明は、上記請求項1〜6のいずれかの水上太陽光発電装置において、太陽電池ユニット2がその中心回りに等配した少なくとも3枚の発電能力が等しいソーラーパネル3を備え、これらソーラーパネル3が支持枠20に対して中心側を低くするように緩傾斜し、姿勢制御機構がこれらソーラーパネル3の出力差を最小にするように前記移動手段及び回転駆動手段の作動を制御するものである構成としている。   Invention of Claim 7 is equipped with the solar panel 3 in which the solar cell unit 2 is equally distributed around the center in the water solar power generation device in any one of the said Claims 1-6, and the power generation capability is equal. These solar panels 3 are gently inclined so that the center side is lowered with respect to the support frame 20, and the attitude control mechanism controls the operation of the moving means and the rotation driving means so as to minimize the output difference of these solar panels 3. It is set as the structure to do.

請求項1の発明に係る水上太陽光発電装置は、太陽電池ユニットが水上で非回転の浮き姿勢に保持される透明性の球殻内に傾動及び自転可能に吊持され、その支持枠の下面側に枢着された旋回体のピニオンが支持枠側の円環状のラックギヤに噛合すると共に、該旋回体にラックギヤの円環の半径方向に沿って移動可能な方向設定ウエイトを備え、太陽電池ユニットが球殻内で方向設定ウエイト側を下位とした傾斜姿勢をとり、支持枠に取り付けたソーラーパネルの仰角を該方向設定ウエイトの半径方向移動による重心変位により、また該ソーラーパネルの方位角を旋回体の旋回移動に伴う重心変位により、それぞれ設定できるように構成していることから、ソーラーパネルを日の出から日没までの太陽位置の西から東への方位変化と高低変化の両方に追従して常に集光量が最大になる向きとして、最大限の発電効率を得ることができる。しかして、太陽電池ユニットは、球殻内で吊持されているため、傾動及び自転によるソーラーパネルの向きの変更が円滑になされることに加え、その支持体が球殻の内面に周方向に等配する複数箇所で当接しているから、吊持姿勢が安定し、波や風によって球殻が多少揺動しても設定した向きは変わらない上、その向きの設定を方向設定ウエイトの半径方向移動と旋回体の旋回移動とで行えるため、太陽方向に追従させる姿勢制御の高い信頼性が得られ、また太陽電池ユニットを納めるケーシングの外形が球をなすことによって風圧を受けにくく、風力が風向き方向にしか作用しないために回転を生じにくい。   According to a first aspect of the present invention, there is provided a water solar power generation apparatus in which a solar cell unit is suspended so as to be able to tilt and rotate in a transparent spherical shell held in a non-rotating floating posture on water, and the lower surface of the support frame. A pinion of a revolving body pivotally attached to the side engages with an annular rack gear on the support frame side, and the revolving body is provided with a direction setting weight movable along the radial direction of the ring of the rack gear, and a solar cell unit Takes a slanted posture with the direction setting weight side in the spherical shell, and the elevation angle of the solar panel attached to the support frame is turned by the center of gravity displacement due to the radial movement of the direction setting weight, and the azimuth angle of the solar panel is swung The solar panel is configured to be able to be set according to the displacement of the center of gravity accompanying the turning movement of the body, so the solar panel changes from west to east and from high to low, from sunrise to sunset. Always follow both the direction in which current light intensity is maximum, it is possible to obtain the maximum power generation efficiency. Thus, since the solar cell unit is suspended in the spherical shell, the orientation of the solar panel is smoothly changed by tilting and rotation, and the support body is circumferentially provided on the inner surface of the spherical shell. Since it is in contact at multiple locations that are evenly distributed, the suspension posture is stable, and even if the spherical shell fluctuates slightly due to waves or wind, the set orientation does not change, and the orientation setting is set to the radius of the direction setting weight. Because it can be performed by moving the direction and turning the swivel body, high reliability of attitude control to follow the solar direction is obtained, and the outer shape of the casing that houses the solar cell unit forms a sphere, making it difficult to receive wind pressure, Since it works only in the wind direction, it is difficult to cause rotation.

しかも、この水上太陽光発電装置にあっては、太陽電池ユニットが球殻内に納められているから、外部の水や塩分の付着による錆や塩害を生じず、発電機構及び作動機構の耐久性が良好であり、また太陽電池ユニットが球殻から分離しているため、日射によって昇温する球殻の熱が太陽電池ユニットに伝わりにくい上、球殻が水に接していることにより、球殻の温度が水との熱交換によって低下し、もって太陽電池の高温化による発電効率の低下が抑制される。更に、この発電装置は、ソーラーパネルの向きの設定を方向設定ウエイトの半径方向移動と旋回体の旋回移動とで行え、動作部分の構造が非常に簡素であることに加え、球殻が太陽電池アレイの保護を兼ねるため、ソーラーパネル自体の保護ケーシングを省略でき、もって低コストで製作できるという利点がある。   Moreover, in this floating solar power generation device, since the solar cell unit is housed in the spherical shell, rust and salt damage due to adhesion of external water and salt do not occur, and the durability of the power generation mechanism and the operation mechanism Since the solar cell unit is separated from the spherical shell, the heat of the spherical shell heated by solar radiation is not easily transmitted to the solar cell unit, and the spherical shell is in contact with water. The temperature of the solar battery is reduced by heat exchange with water, so that a reduction in power generation efficiency due to the high temperature of the solar cell is suppressed. Furthermore, this power generator can set the solar panel orientation by moving the direction setting weight in the radial direction and the swiveling movement of the swivel body. In addition to the very simple structure of the operating part, the spherical shell is a solar cell. Since it also serves to protect the array, the protective casing of the solar panel itself can be omitted, and there is an advantage that it can be manufactured at a low cost.

請求項2の発明によれば、上記の水上太陽光発電装置において、球殻内が不活性ガスで置換されているため、球殻内面の結露による曇りを生じず、もって球殻の光透過性が常に良好に保たれ、高い発電効率が得られると共に、太陽電池ユニットの金属部分の錆や酸化劣化を防止でき、耐久寿命が延びるという利点がある。   According to the invention of claim 2, in the above-mentioned water solar power generation device, since the inside of the spherical shell is replaced with an inert gas, clouding due to condensation on the inner surface of the spherical shell does not occur, and thus the light transmittance of the spherical shell is achieved. However, there is an advantage that high power generation efficiency can be obtained at all times, rust and oxidation deterioration of the metal portion of the solar cell unit can be prevented, and the durability life is extended.

請求項3の発明によれば、上記の水上太陽光発電装置において、支持枠がばね力で付勢された球形ローラーによって球殻内面に押接していることから、太陽電池ユニットの吊持姿勢がより安定化する上、その傾動及び自転によるソーラーパネルの変位を球形ローラーの転動によってより円滑に行える。   According to the invention of claim 3, in the above-described floating solar power generation apparatus, since the support frame is pressed against the inner surface of the spherical shell by the spherical roller biased by the spring force, the suspension posture of the solar cell unit is In addition to stabilization, the solar panel can be displaced more smoothly by the rolling of the spherical roller due to the tilting and rotation.

請求項4の発明によれば、上記の水上太陽光発電装置において、球殻の底部側に球殻バランサーウエイトが付設されているため、球殻は波があっても常に該バランサーウエイト側を下にした浮上姿勢に安定に保たれる。   According to the invention of claim 4, since the spherical shell balancer weight is attached to the bottom side of the spherical shell in the above water solar power generation device, the spherical shell always keeps the balancer weight side down even if there is a wave. It is kept stable in the floating position.

請求項5の発明によれば、上記の水上太陽光発電装置において、水中ポンプから送られる水を球殻の頂部から水噴射ノズルによって外周面に向けて噴射する構成としているから、その水との熱交換と水の蒸発による気化熱とで球殻が冷やされ、もって内部の気体の膨張による球殻の破壊を確実に防止できると共に、太陽電池の高温化による発電効率の低下を回避できる。   According to the invention of claim 5, in the above-described water solar power generation device, since the water sent from the submersible pump is jetted from the top of the spherical shell toward the outer peripheral surface by the water jet nozzle, The spherical shell is cooled by heat exchange and the heat of vaporization due to water evaporation, so that the spherical shell can be reliably prevented from being destroyed due to the expansion of the internal gas, and a decrease in power generation efficiency due to the high temperature of the solar cell can be avoided.

請求項6の発明によれば、上記の水上太陽光発電装置において、方向設定ウエイトをスクリュー軸の回転によって移動させる構成としているから、該方向設定ウエイトの位置を微調整でき、もってソーラーパネルの太陽方向に合わせる仰角設定を極めて精度よく行える。   According to the sixth aspect of the present invention, since the direction setting weight is moved by the rotation of the screw shaft in the above-described water solar power generation apparatus, the position of the direction setting weight can be finely adjusted, so that the solar panel solar It is possible to set the elevation angle according to the direction with extremely high accuracy.

請求項7の発明によれば、上記の水上太陽光発電装置において、太陽電池ユニットの中心回りに等配した少なくとも3枚のソーラーパネルが支持枠に対して中心側を低くするように緩傾斜し、姿勢制御機構がこれらソーラーパネルの出力差を最小にするように前記移動手段及び回転駆動手段の作動を制御するように構成しているから、光センサの如き格別な太陽方位検出器を必要とせず、それだけ製作コストを低減できるという利点がある。   According to the invention of claim 7, in the above-described floating solar power generation apparatus, at least three solar panels equally distributed around the center of the solar cell unit are gently inclined so that the center side is lowered with respect to the support frame. The attitude control mechanism is configured to control the operation of the moving means and the rotation driving means so as to minimize the output difference between the solar panels, so that a special solar direction detector such as an optical sensor is required. Therefore, there is an advantage that the manufacturing cost can be reduced accordingly.

以下、本発明に係る水上太陽光発電装置の実施形態について、図面を参照して具体的に説明する。図1において、1は海等の水W上で浮遊状態にある球殻、2は該球殻1内に収容された太陽電池ユニット、3は太陽電池ユニット2のソーラーパネル、4は太陽電池ユニット2を吊持する吊りロープ、5は水底Bに定置したアンカー、6は球殻1の底端とアンカー5とを繋ぐ係留ロープ、7は係留ロープ6の途中に介装した水中ポンプ、8はアンカー5の前後両側へ張出したアーム部5a,5aの各先端と球殻1の前後両側下部に設けた各掛止部11とを繋ぐ回転止めロープ、9は太陽電池ユニット2にて発電された電力を外部に導く電力ケーブルである。   Hereinafter, an embodiment of a floating solar power generation apparatus according to the present invention will be specifically described with reference to the drawings. In FIG. 1, 1 is a spherical shell that is floating on the water W such as the sea, 2 is a solar cell unit accommodated in the spherical shell 1, 3 is a solar panel of the solar cell unit 2, and 4 is a solar cell unit. 2 is an anchor placed on the bottom B, 6 is a mooring rope connecting the bottom end of the spherical shell 1 and the anchor 5, 7 is a submersible pump interposed in the middle of the mooring rope 6, 8 is Rotation-stopping ropes 9 connecting the respective ends of the arm portions 5a, 5a protruding to the front and rear sides of the anchor 5 and the respective hooking portions 11 provided at the lower portions of the front and rear sides of the spherical shell 1 are generated by the solar cell unit 2. This is a power cable that guides power to the outside.

球殻1は、ポリカーボネートやアクリル樹脂等の透明性の高い合成樹脂からなる上半球体1aと下半球体1bとを嵌合一体化することにより、密閉状の球形ケースを構成したものであり、内空間10が窒素ガスによって置換されている。そして、球殻1の内底部となる下半球体1bの中央部には下方へ突出する円筒部12が形成され、該円筒部12の内側で構成される凹陥部13に球殻バランサーウエイト14が嵌装されており、この球殻バランサーウエイト14の重量によって球殻1が円筒部12を最下位とする姿勢に安定的に保たれている。また、アンカー5に繋がる係留ロープ6の上端は円筒部12の下面に設けた掛止部12aに止着されている。一方、吊りロープ4は、球殻1の内頂部となる上半球体1aの内面中央部に設けた掛止部15に上端が止着されると共に、下端が球殻1の中心位置において太陽電池ユニット2の中心部に設けた掛止部2aに止着されている。   The spherical shell 1 constitutes a sealed spherical case by fitting and integrating an upper hemisphere 1a and a lower hemisphere 1b made of a highly transparent synthetic resin such as polycarbonate or acrylic resin, The inner space 10 is replaced with nitrogen gas. A cylindrical portion 12 that protrudes downward is formed in the central portion of the lower hemisphere 1b that is the inner bottom portion of the spherical shell 1, and a spherical shell balancer weight 14 is formed in the recessed portion 13 that is formed inside the cylindrical portion 12. The spherical shell balancer weight 14 is fitted and the spherical shell 1 is stably maintained in a posture in which the cylindrical portion 12 is at the lowest position. The upper end of the mooring rope 6 connected to the anchor 5 is fixed to a hooking portion 12 a provided on the lower surface of the cylindrical portion 12. On the other hand, the suspension rope 4 has an upper end fastened to a hooking portion 15 provided at the center of the inner surface of the upper hemisphere 1 a that is the inner top portion of the spherical shell 1, and a lower end at the center position of the spherical shell 1. The unit 2 is secured to a latching part 2 a provided at the center.

なお、アンカー5の両側アーム部5a,5aと球殻1の前後の掛止部11,11とを繋ぐ回転止めロープ8,8は、球殻1を自由浮遊状態よりも若干深く水W中に引き込むように長さを設定しており、これによって球殻1が水の流れや風波の影響を受けて回転するのを阻止している。また、球殻1の外頂部には水噴射ノズル16が設けられ、この水噴射ノズル16に水中ポンプ7から延出する導水管7aが連結されており、水中ポンプ7の作動によって水噴射ノズル16の全周に設けた吐出口16aより球殻1の外周面に向けて水が噴射されるようになっている。なお、水中ポンプ7には電気ケーブル9からの支線9aが接続されており、その駆動電力はソーラーパネル3…による発電量の一部で賄われる。   It should be noted that the anti-rotation ropes 8 and 8 connecting the both side arm portions 5a and 5a of the anchor 5 and the hooking portions 11 and 11 on the front and rear of the spherical shell 1 are slightly deeper than the free floating state in the water W. The length is set so as to pull in, thereby preventing the spherical shell 1 from rotating under the influence of water flow or wind waves. A water injection nozzle 16 is provided on the outer top of the spherical shell 1, and a water conduit 7 a extending from the submersible pump 7 is connected to the water injection nozzle 16. Water is jetted toward the outer peripheral surface of the spherical shell 1 from the discharge ports 16a provided on the entire circumference. Note that a branch line 9a from an electric cable 9 is connected to the submersible pump 7, and the drive power is covered by a part of the power generation amount by the solar panels 3.

太陽電池ユニット2は、図2及び図3でも示すように、支持枠20と、該支持枠20の上面側に固設された扇形をなす4枚のソーラーパネル3…と、該支持枠20の下面側に配置し、当該支持枠20の中心ボス部20aに相対回転自在に枢着された旋回体21と、該旋回体21の中央寄り位置に取り付けられたコントローラー22とで構成されている。しかして、ソーラーパネル3…は、保護ケーシングを有さず、太陽電池アレイが露呈したものとなっている。   As shown in FIGS. 2 and 3, the solar cell unit 2 includes a support frame 20, four fan-shaped solar panels 3 fixed on the upper surface side of the support frame 20, and the support frame 20. The revolving body 21 is disposed on the lower surface side and is pivotally attached to the central boss portion 20a of the support frame 20 so as to be relatively rotatable. The controller 22 is attached to a position near the center of the revolving body 21. Therefore, the solar panels 3 have no protective casing, and the solar cell array is exposed.

この太陽電池ユニット2の支持枠20は、図3に示すように、中心ボス部20aと同心の円環部20bとを十字状に配置する4本の連結杆20c…を介して連結一体化した円形枠を構成しており、球殻1の最大断面部近傍つまり直径を含む平面に略沿って配置している。そして、各ソーラーパネル3は、扇形の要側を支持枠20の中心ボス部20aに止着すると共に、外周円弧側を該支持枠20の円環部20bに突設された取付片20dに止着することにより、図1に示すように中心側を低くするように緩傾斜した配置状態になっている。また、支持枠20の下面側には、その中心ボス部20aと同心の円環状をなすラックギヤ23がギヤ面を下向きにして連結杆20c…に固着されている。   As shown in FIG. 3, the support frame 20 of this solar cell unit 2 is connected and integrated through four connecting rods 20c... In which a central boss portion 20a and a concentric ring portion 20b are arranged in a cross shape. It constitutes a circular frame and is arranged substantially along the plane near the maximum cross-section of the spherical shell 1, that is, the diameter. Each solar panel 3 is fastened to the central boss portion 20a of the support frame 20 at the fan-shaped main side, and is attached to the mounting piece 20d protruding from the annular portion 20b of the support frame 20 at the outer peripheral arc side. As shown in FIG. 1, it is in a state of being gently inclined so as to lower the center side. Further, on the lower surface side of the support frame 20, a rack gear 23 having an annular shape concentric with the central boss portion 20a is fixed to the connecting rod 20c with the gear surface facing downward.

更に、図4で詳細に示すように、支持枠20の各連結杆20cの外端には、端部材20eがねじ止めされており、この端部材20eの孔部20fに保持された球形ローラー24が、圧縮コイルスプリング24aにて付勢された押圧ピン24bを介して球殻1の内面に押接している。   Further, as shown in detail in FIG. 4, an end member 20e is screwed to the outer end of each connecting rod 20c of the support frame 20, and the spherical roller 24 held in the hole 20f of the end member 20e. Is pressed against the inner surface of the spherical shell 1 through a pressing pin 24b biased by a compression coil spring 24a.

太陽電池ユニット2の旋回体21は、支持枠20の径方向に沿う角筒状本体21aの両端部上面側に、各々旋回体21のラックギヤ23に噛合する駆動ピニオン25aと従動ピニオン25bとが取り付けられると共に、駆動ピニオン25aを回転させる可逆転モーター26aが固設されている。また、角筒状本体21aの従動ピニオン25b側の半部の下面側には、該支持枠20と平行するスクリュー軸27が回転自在に枢支されると共に、当該本体21aの中央寄りの位置に該スクリュー軸27を回転駆動させる可逆転モーター26bが固設されている。そして、スクリュー軸27は角ブロック状の方向設定ウエイト28に螺挿すると共に、この方向設定ウエイト28が図5に示すように溝部28aで角筒状本体21aに摺動自在に嵌合しており、可逆転モーター26bの駆動によるスクリュー軸27の回転に伴い、方向設定ウエイト28が角筒状本体21aをガイドとして半径方向に移動するように設定されている。なお、可逆転モーター26a,26bの駆動電力とコントローラー22の作動電力は、ソーラーパネル3…の発電量の一部で賄われる。   The swivel body 21 of the solar cell unit 2 is provided with a drive pinion 25a and a driven pinion 25b that mesh with the rack gears 23 of the swivel body 21 on the upper surfaces of both end portions of the rectangular tubular main body 21a along the radial direction of the support frame 20, respectively. At the same time, a reversible motor 26a for rotating the drive pinion 25a is fixed. A screw shaft 27 parallel to the support frame 20 is rotatably supported on the lower surface side of the half portion of the rectangular tubular main body 21a on the driven pinion 25b side, and at a position near the center of the main body 21a. A reversible motor 26b for rotating the screw shaft 27 is fixed. The screw shaft 27 is screwed into a square block-shaped direction setting weight 28, and the direction setting weight 28 is slidably fitted to the rectangular tube-shaped main body 21a through a groove 28a as shown in FIG. With the rotation of the screw shaft 27 driven by the reversible motor 26b, the direction setting weight 28 is set so as to move in the radial direction using the rectangular tubular main body 21a as a guide. The driving power of the reversible motors 26a and 26b and the operating power of the controller 22 are covered by a part of the power generation amount of the solar panels 3.

コントローラー22は、常時もしくは数十秒から数分程度の一定時間置きに、4枚のソーラーパネル3…の出力を比較し、その出力差からの演算によって太陽方向を検出すると共に、この検出した太陽方向と4枚のソーラーパネル3…の全体の向きとの方位角及び仰角のずれを算出し、この算出値と、予め入力されている駆動ピニオン25aの回転量と方位角変位量との関係、ならびにスクリュー軸27の回転量と仰角変位量との関係に基づいて、可逆転モーター25a,25bを上記のずれを修正するのに必要なだけ駆動させる指令信号を出力するようになっている。   The controller 22 compares the outputs of the four solar panels 3 ... constantly or at regular intervals of several tens of seconds to several minutes, detects the sun direction by calculation from the output difference, and detects the detected sun The deviation of the azimuth angle and the elevation angle between the direction and the whole direction of the four solar panels 3 is calculated, and the relationship between the calculated value and the rotation amount and azimuth displacement amount of the drive pinion 25a input in advance, In addition, based on the relationship between the rotation amount of the screw shaft 27 and the elevation angle displacement amount, a command signal for driving the reversible motors 25a and 25b as much as necessary to correct the above-described deviation is output.

すなわち、この水上太陽光発電装置にあっては、球殻1内で吊持された太陽電池ユニット2は、方向設定ウエイト28の重量によって常に該ウエイト28側を下位とした傾斜姿勢をとるため、この方向設定ウエイト28の半径方向移動に伴う重心変位により、該傾斜状態の傾き度合つまりソーラーパネル3…の仰角が変わり、また旋回体21の支持枠20に対する回転移動、つまり方向設定ウエイト28の周方向移動に伴う重心変位により、水平面内での向きつまりソーラーパネル3…の方位角が変わる。従って、上記コントローラー22による可逆転モーター25a,25bの駆動制御により、ソーラーパネル3…の全体の向きを、日の出から日没までの太陽位置の西から東への方位変化と高低変化の両方に追従させ、もって常に集光量が最大になるように設定して、最大限の発電効率を得ることができる。しかして、旋回体21の回転移動は円環状のラックギヤ23とピニオン25a,25bとの噛合により、また方向設定ウエイト28の半径方向移動はスクリュー軸27の回転により、それぞれ容易に行える上、共に微調整が可能であるから、方位角及び仰角を極めて精度よく設定できる。
That is, in this water solar power generation device, the solar cell unit 2 suspended in the spherical shell 1 always takes an inclined posture with the weight 28 side as a lower position due to the weight of the direction setting weight 28. Due to the displacement of the center of gravity accompanying the radial movement of the direction setting weight 28, the inclination degree of the inclined state, that is, the elevation angle of the solar panel 3 changes, and the rotational movement of the revolving structure 21 relative to the support frame 20 , that is, the circumference of the direction setting weight 28 The orientation in the horizontal plane, that is, the azimuth angle of the solar panel 3 changes due to the displacement of the center of gravity accompanying the movement of direction . Therefore, by the drive control of the reversible motors 25a and 25b by the controller 22, the entire direction of the solar panel 3 follows both the azimuth change from the west to the east and the height change of the solar position from sunrise to sunset. Therefore, the maximum power generation efficiency can be obtained by always setting the amount of light collection to be maximum. Thus, the rotational movement of the revolving body 21 can be easily performed by meshing the annular rack gear 23 with the pinions 25a and 25b, and the radial movement of the direction setting weight 28 can be easily performed by the rotation of the screw shaft 27. Since the adjustment is possible, the azimuth angle and the elevation angle can be set with extremely high accuracy.

しかして、この水上太陽光発電装置では、太陽電池ユニット2が球殻1内で吊持され、且つその支持枠20がばね力で付勢された球形ローラー24によって球殻1の内面に周方向に等配する複数箇所で押接していることから、方向設定ウエイト28の半径方向移動と旋回体21の旋回移動とによるソーラーパネル3…全体の向きの変更が円滑になされることに加え、太陽電池ユニット2の吊持姿勢が安定し、波や風によって球殻1が多少揺動しても設定した向きが変わらず、また太陽電池ユニット2を収容するケーシングの外形が球をなすことによって風圧を受けにくく、風力が風向き方向にしか作用しないために水平方向の回転を生じにくい上、球殻バランサーウエイト14によって球殻1が常に該バランサーウエイト14側を下にした浮上姿勢に安定に保たれるから、ソーラーパネル3…全体の向きを太陽方向に追従させる姿勢制御の高い信頼性が得られる。   Thus, in this water solar power generation apparatus, the solar cell unit 2 is suspended in the spherical shell 1 and the support frame 20 is circumferentially applied to the inner surface of the spherical shell 1 by a spherical roller 24 biased by a spring force. In addition to the smooth change in the overall direction of the solar panel 3 due to the radial movement of the direction setting weight 28 and the turning movement of the swivel body 21, the solar panel 3. The suspension posture of the battery unit 2 is stable, the set orientation does not change even if the spherical shell 1 is slightly swung by waves and winds, and the outer shape of the casing that houses the solar cell unit 2 forms a sphere. Since the wind force only acts in the direction of the wind, it is difficult to cause horizontal rotation, and the spherical shell balancer weight 14 causes the spherical shell 1 to always float with the balancer weight 14 side down. Since kept stable is the attitude, high reliability of the attitude control to follow the solar panels 3 ... overall orientation to the sun direction is obtained.

また、この水上太陽光発電装置は、太陽電池ユニット2が球殻1内に納められているから、外部の水や塩分の付着による錆や塩害を生じず、しかも球殻内が窒素ガスで置換されているため、電極端子や電気回路等の酸化劣化や金属部分の酸化劣化が防止され、発電機構及び作動機構の耐久性が良好であり、太陽電池ユニット2全体として長寿命となり、また水蒸気の結露による球殻1内面の曇りを生じず、球殻1の光透過性が常に良好に保たれて高い発電効率が得られる。また、太陽電池ユニット2が球殻1から分離しているため、日射によって昇温する球殻1の熱が太陽電池ユニットに伝わりにくい上、球殻1が水Wに接しているため、該球殻1の温度が水1Wとの熱交換によって低下し、もって太陽電池の高温化による発電効率の低下が抑制される。更に、夏期等で日射が強い場合には、水中ポンプ7の稼働によって水Wを球殻1の頂部から外周面に噴射させ、その水との熱交換と水の蒸発による気化熱とで球殻1を冷やすことかできるから、内部の気体の膨張による球殻1の破壊を確実に防止できると共に、球殻1内部の高温化による発電効率の低下を回避できる。なお、一般的に、太陽電池は70℃の温度で常温時の約20%の出力低下を生じるとされている。   Further, in this floating solar power generation device, since the solar cell unit 2 is housed in the spherical shell 1, rust and salt damage due to adhesion of external water and salt do not occur, and the inside of the spherical shell is replaced with nitrogen gas. Therefore, oxidation deterioration of electrode terminals and electric circuits, and oxidation deterioration of metal parts are prevented, and the durability of the power generation mechanism and the operation mechanism is good. Clouding of the inner surface of the spherical shell 1 due to condensation does not occur, and the light transmittance of the spherical shell 1 is always kept good, and high power generation efficiency is obtained. Further, since the solar cell unit 2 is separated from the spherical shell 1, the heat of the spherical shell 1 that is heated by solar radiation is not easily transmitted to the solar cell unit, and the spherical shell 1 is in contact with the water W. The temperature of the shell 1 is reduced by heat exchange with the water 1W, and thus the reduction in power generation efficiency due to the high temperature of the solar cell is suppressed. Further, when the solar radiation is strong in summer or the like, the water shell W is jetted from the top of the bulb shell 1 to the outer peripheral surface by the operation of the submersible pump 7, and the bulb shell is obtained by heat exchange with the water and heat of vaporization caused by water evaporation. 1 can be cooled, it is possible to reliably prevent the spherical shell 1 from being destroyed due to the expansion of the internal gas, and to avoid a decrease in power generation efficiency due to the high temperature inside the spherical shell 1. In general, it is said that a solar cell causes an output decrease of about 20% at a normal temperature at a temperature of 70 ° C.

一方、この水上太陽光発電装置は、ソーラーパネル3…全体の向きの設定を方向設定ウエイト28の半径方向移動と旋回体21の旋回移動とで行うため、動作部分の構造が非常に簡素である上、球殻1に太陽電池アレイの保護を担わせ、ソーラーパネル3自体の保護ケーシングを省略しているから、低コストで製作できると共に故障を生じにくいという利点がある。また、コントローラー22による姿勢制御を4枚のソーラーパネル3…の出力差に基づいて行うようにしているから、光センサの如き格別な太陽方位検出器を必要とせず、それだけ設備コストが低減される。   On the other hand, in this floating solar power generation apparatus, since the setting of the orientation of the entire solar panel 3 is performed by the radial movement of the direction setting weight 28 and the turning movement of the turning body 21, the structure of the operation part is very simple. In addition, since the solar cell array is protected by the spherical shell 1 and the protective casing of the solar panel 3 itself is omitted, there is an advantage that it can be manufactured at a low cost and is less likely to cause a failure. In addition, since the attitude control by the controller 22 is performed based on the output difference of the four solar panels 3..., No special solar direction detector such as an optical sensor is required, and the equipment cost is reduced accordingly. .

また、このようなソーラーパネル3…間の出力差に基づく姿勢制御方式によれば、朝夕の太陽高度が低い時間帯においては、自ずと水面での反射光を含めた集光量が最大になるようにソーラーパネル3…全体の向きが設定されることになり、これによって通常の太陽追尾システムよりも大きな発電量を得ることができる。なお、上述した実施形態では4枚のソーラーパネル3…を用いているが、同様に出力差に基づく姿勢制御を行う上では、太陽電池ユニット2の中心側を低くする緩傾斜状態で当該中心回りに等配した少なくとも3枚のソーラーパネルがあればよい。   Further, according to the attitude control method based on the output difference between the solar panels 3..., The amount of collected light including the reflected light on the water surface is automatically maximized in the time zone when the solar altitude is low in the morning and evening. The orientation of the entire solar panel 3 is set, and thereby it is possible to obtain a larger amount of power generation than a normal solar tracking system. In the above-described embodiment, four solar panels 3 are used. Similarly, in performing posture control based on the output difference, the center of the solar cell unit 2 is lowered in a gentle inclination state that lowers the center side. There should be at least three solar panels that are evenly distributed.

本発明の水上太陽光発電装置は、上記実施形態として例示した構成以外に種々設計変更可能である。例えば、球殻1を非回転の浮き姿勢に保持する定姿勢保持手段は、上記実施形態では球殻1の一対の掛止部11,11を回転止めロープ8,8にてアンカー5の一対のアーム5a,5aに繋ぎ留める構成としているが、各掛止部11をアンカー5から離れた位置に定置した別のアンカーに繋ぎ留めたり、近辺に岸壁や岩等の固定部位があれば、その部位間の水上又は水中にロープ等の索体を張りわたし、その索体に球殻1を回転しないように複数箇所で繋ぎ留める等、種々の手段を採用できる。なお、複数基の水上太陽光発電装置を並べて配置する場合は、例えば、図6の実線で示すように岸壁や岩等の固定部位S,S間の水W中に張りわたした1条の索体81に各球殻1をハ字形に配置する繋留ロープ82,82を介して繋ぎ留めたり、図7に示すように固定部位S,S間の水上に張りわたした平行2条の索体83,83に各球殻1の両側を直接に繋ぎ留めたり、更に近辺に固定部位のない状況では、図6の仮想線で示すように水底にポール付きアンカー51,51を配置し、これらアンカー51,51間に張りわたした索体81に各球殻1を同様に繋ぎ留める等の定姿勢保持手段を採用すればよい。   The water solar power generation apparatus of the present invention can be variously modified in addition to the configuration exemplified as the above embodiment. For example, the fixed posture holding means for holding the spherical shell 1 in a non-rotating floating posture is a pair of anchoring portions 11 and 11 of the spherical shell 1 in the above-described embodiment. It is configured to be connected to the arms 5a, 5a, but if each hooking part 11 is connected to another anchor placed at a position away from the anchor 5, or if there is a fixed part such as a quay or rock in the vicinity, that part Various means can be employed such as attaching a rope or other rope on the water or water in between and securing the spherical shell 1 to the rope at a plurality of locations so as not to rotate. In addition, when arranging a plurality of floating solar power generators side by side, for example, as shown by the solid line in FIG. 6, a single rope stretched in the water W between fixed parts S, S such as a quay or a rock Two parallel ropes 83, which are fastened to the body 81 via anchoring ropes 82, 82 for arranging the spherical shells 1 in a C shape, or stretched on the water between the fixed portions S, S as shown in FIG. , 83 are directly connected to both sides of each spherical shell 1, or anchors 51, 51 with poles are arranged on the bottom of the water as shown by phantom lines in FIG. , 51 may be used as a fixed posture holding means such as connecting the spherical shells 1 to the cord 81 extending between the two.

また、本発明の水上太陽光発電装置における姿勢制御機構は、既述のように少なくとも3枚のソーラーパネルの出力差に基づく姿勢制御を行う方式に限らず、光センサー等の光学的機器によって検出される太陽方向に基づいてピニオン25aの回転駆動手段と方向設定ウエイト28の移動手段を駆動して姿勢制御を行う方式、設置場所における一年の季節毎や月毎あるいは日毎の太陽運行データを予め入力し、この太陽運行データに基づいて自動的に同様の姿勢制御を行う方式等も採用可能である。なお、光学的機器によって太陽方向を検出したり、太陽運行データを予め入力する方式においては、太陽電池ユニット2の支持枠20に一枚物のソーラーパネル3を取り付ければよい。しかして、姿勢制御機構を組み込んだコントロ−ラー22は、球殻1側に取り付けてもよい。更に、このコントロ−ラー22や蓄電池等を方向設定用ウエイト28として利用することも可能である。   Further, the attitude control mechanism in the floating solar power generation apparatus of the present invention is not limited to the system that performs attitude control based on the output difference of at least three solar panels as described above, but is detected by an optical device such as an optical sensor. The attitude control is performed by driving the rotation driving means of the pinion 25a and the moving means of the direction setting weight 28 based on the sun direction, and the solar operation data for each season, month, or day in the installation location in advance. It is also possible to adopt a method of inputting and automatically performing the same attitude control based on this solar operation data. In the method of detecting the sun direction with an optical device or inputting solar operation data in advance, a single solar panel 3 may be attached to the support frame 20 of the solar cell unit 2. Thus, the controller 22 incorporating the attitude control mechanism may be attached to the spherical shell 1 side. Further, the controller 22 or a storage battery can be used as the direction setting weight 28.

その他、本発明の水上太陽光発電装置では、球殻1内を置換する不活性ガスの種類、太陽電池ユニット2における支持枠20及び旋回体21の形状、方向設定ウエイト28の移動手段、該太陽電池ユニット2を吊持する索体の種類、水中ポンプ7の取付け位置等、細部構成については実施形態以外に種々設計変更可能である。   In addition, in the floating solar power generation device of the present invention, the type of inert gas that replaces the inside of the spherical shell 1, the shape of the support frame 20 and the swivel body 21 in the solar cell unit 2, the moving means of the direction setting weight 28, the sun Various design changes other than the embodiment can be made with respect to the detailed configuration such as the type of the cable body that holds the battery unit 2 and the attachment position of the submersible pump 7.

本発明の一実施形態に係る水上太陽光発電装置の設置状態を示す縦断側面図である。It is a vertical side view which shows the installation state of the floating solar power generation device which concerns on one Embodiment of this invention. 図1のイ−イ線の断面矢視図である。It is a cross-sectional arrow view of the II line of FIG. 図1のロ−ロ線の断面矢視図である。It is a cross-sectional arrow view of the roll line of FIG. 同水上太陽光発電装置における球殻内面と太陽電池ユニットの支持枠との当接部分を示す断面図である。It is sectional drawing which shows the contact part of the spherical shell inner surface and the support frame of a solar cell unit in the same water solar power generation device. 同太陽電池ユニットの旋回体における方向設定用ウエイトの保持状態を示す断面図である。It is sectional drawing which shows the holding | maintenance state of the weight for direction setting in the turning body of the solar cell unit. 同水上太陽光発電装置の複数基を配置する場合の一構成例を示す縦断側面図である。It is a vertical side view which shows one structural example in the case of arrange | positioning the multiple unit of the same water solar power generation device. 同水上太陽光発電装置の複数基を配置する場合の他の構成例を示す平面図である。It is a top view which shows the other structural example in the case of arrange | positioning the multiple unit of the same water-type solar power generation device.

符号の説明Explanation of symbols

1 球殻
2 太陽電池ユニット
3 ソーラーパネル
4 吊りロープ(索体)
7 水中ポンプ
8 回転止めロープ(定姿勢保持手段)
14 球殻バランサーウエイト
15 掛止部(内頂部)
16 水噴射ノズル
20 支持枠
21 旋回体
22 コントローラー(姿勢制御機構)
23 ラックギヤ
24 球形ローラー
24a 圧縮コイルスプリング(ばね力)
25a 駆動ピニオン
25b 従動ピニオン
26a 可逆転モーター(回転駆動手段)
26b 可逆転モーター(移動手段)
27 スクリュー軸(移動手段)
28 方向設定ウエイト
1 Spherical Shell 2 Solar Cell Unit 3 Solar Panel 4 Hanging Rope (Rope)
7 Submersible pump 8 Non-rotating rope (fixed posture holding means)
14 Spherical shell balancer weight 15 Hook (inner top)
16 Water injection nozzle 20 Support frame 21 Revolving body 22 Controller (Attitude control mechanism)
23 rack gear 24 spherical roller 24a compression coil spring (spring force)
25a Drive pinion 25b Follower pinion 26a Reversible motor (rotation drive means)
26b Reversible motor (moving means)
27 Screw shaft (moving means)
28 Direction setting weight

Claims (7)

定姿勢保持手段によって水上で非回転の浮き姿勢に保持される透明性の球殻内に、太陽電池ユニットが中心部において当該球殻の内頂部から垂下する索体によって傾動及び自転可能に吊持されると共に、姿勢制御機構を備え、
太陽電池ユニットは、前記球殻の内面に周方向に等配する複数箇所で接触する支持枠と、この支持枠の上面側に取り付けられたソーラーパネルと、該支持枠の下面側の中心部に相対回転自在に枢着された旋回体と、この旋回体の枢着部を中心とする円環状をなし、該支持枠の下面側に固設されたラックギヤとを具備し、
旋回体は、前記ラックギヤに噛合するピニオン及びその回転駆動手段と、前記ラックギヤの円環の半径方向に沿って移動可能な方向設定ウエイト及びその移動手段とを具備し、 太陽電池ユニットが球殻内で方向設定ウエイト側を下位とした傾斜姿勢をとり、姿勢制御機構にて前記移動手段及び回転駆動手段の作動を制御することにより、方向設定ウエイトの半径方向移動と旋回体の旋回移動に伴う重心変位によってソーラーパネルの仰角及び方位角を設定するように構成されてなる水上太陽光発電装置。
The solar cell unit is suspended in a transparent spherical shell held in a non-rotating floating posture on the water by a fixed posture holding means so that the solar cell unit can be tilted and rotated by a cord hanging from the inner top of the spherical shell at the center. Is equipped with a posture control mechanism,
The solar cell unit has a support frame that is equally distributed in the circumferential direction on the inner surface of the spherical shell, a solar panel attached to the upper surface side of the support frame, and a central portion on the lower surface side of the support frame. A revolving body pivotally mounted so as to be relatively rotatable, and an annular ring centered on a pivoting portion of the revolving body, and a rack gear fixed to the lower surface side of the support frame,
The swivel body includes a pinion meshing with the rack gear and its rotation driving means, a direction setting weight movable along the radial direction of the ring of the rack gear, and its moving means. The center of gravity associated with the radial movement of the direction setting weight and the turning movement of the swiveling body is achieved by taking an inclined attitude with the direction setting weight side as the lower position and controlling the operation of the moving means and the rotation driving means by the attitude control mechanism. A floating solar power generation apparatus configured to set an elevation angle and an azimuth angle of a solar panel by displacement.
球殻内が不活性ガスで置換されてなる請求項1記載の水上太陽光発電装置。   The floating solar power generator according to claim 1, wherein the inside of the spherical shell is replaced with an inert gas. 支持枠がばね力で付勢された球形ローラーによって球殻内面に押接する請求項1又は2に記載の水上太陽光発電装置。   The floating solar power generator according to claim 1 or 2, wherein the support frame is pressed against the inner surface of the spherical shell by a spherical roller biased by a spring force. 球殻の底部側に球殻バランサーウエイトが付設されてなる請求項1〜3のいずれかに記載の水上太陽光発電装置。   The floating solar power generator according to any one of claims 1 to 3, wherein a spherical shell balancer weight is attached to the bottom side of the spherical shell. 球殻の底部側に水中ポンプが付設されると共に、該球殻の外頂部に当該水中ポンプから送られる水を球殻外周面に向けて噴射する水噴射ノズルが設けられてなる請求項1〜4のいずれかに記載の水上太陽光発電装置。   A submersible pump is attached to the bottom side of the spherical shell, and a water injection nozzle that injects water sent from the submersible pump toward the outer peripheral surface of the spherical shell is provided on the outer top of the spherical shell. The water solar power generation device according to any one of 4. 移動手段が、方向設定ウエイトに螺挿したスクリュー軸と、このスクリュー軸を回転駆動するモーターとからなる請求項1〜5のいずれかに記載の水上太陽光発電装置。   The floating solar power generator according to any one of claims 1 to 5, wherein the moving means includes a screw shaft screwed into the direction setting weight and a motor that rotationally drives the screw shaft. 太陽電池ユニットがその中心回りに等配した少なくとも3枚の発電能力が等しいソーラーパネルを備え、これらソーラーパネルが支持枠に対して中心側を低くするように緩傾斜し、姿勢制御機構がこれらソーラーパネルの出力差を最小にするように前記移動手段及び回転駆動手段の作動を制御するものである請求項1〜6のいずれかに記載の水上太陽光発電装置。
The solar cell unit is equipped with at least three solar panels with the same power generation capacity equally distributed around the center, these solar panels are gently inclined so that the center side is lowered with respect to the support frame, and the attitude control mechanism The floating solar power generator according to any one of claims 1 to 6, wherein the operation of the moving means and the rotation driving means is controlled so as to minimize an output difference of the panel.
JP2003275835A 2003-07-17 2003-07-17 Floating solar power generation system Expired - Fee Related JP3769556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003275835A JP3769556B2 (en) 2003-07-17 2003-07-17 Floating solar power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003275835A JP3769556B2 (en) 2003-07-17 2003-07-17 Floating solar power generation system

Publications (2)

Publication Number Publication Date
JP2005038270A JP2005038270A (en) 2005-02-10
JP3769556B2 true JP3769556B2 (en) 2006-04-26

Family

ID=34212363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003275835A Expired - Fee Related JP3769556B2 (en) 2003-07-17 2003-07-17 Floating solar power generation system

Country Status (1)

Country Link
JP (1) JP3769556B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4687961B2 (en) * 2005-06-24 2011-05-25 有限会社中島工業 Floating water purification system
CN100592231C (en) * 2008-03-05 2010-02-24 中国科学院国家天文台 Full-sun area guiding method and system
US8646227B2 (en) 2008-07-03 2014-02-11 Mh Solar Co., Ltd. Mass producible solar collector
US8229581B2 (en) 2008-07-03 2012-07-24 Mh Solar Co., Ltd. Placement of a solar collector
US8345255B2 (en) 2008-07-03 2013-01-01 Mh Solar Co., Ltd. Solar concentrator testing
US8450597B2 (en) 2008-07-03 2013-05-28 Mh Solar Co., Ltd. Light beam pattern and photovoltaic elements layout
US8253086B2 (en) 2008-07-03 2012-08-28 Mh Solar Co., Ltd. Polar mounting arrangement for a solar concentrator
KR101113703B1 (en) * 2008-10-14 2012-02-21 기재권 Water floating type solar photovoltaic power generator
KR100944073B1 (en) * 2009-07-13 2010-02-24 김승섭 Solar light power generating device
KR20110019575A (en) * 2009-08-20 2011-02-28 삼성전자주식회사 Solar light utilizing system
KR101165741B1 (en) 2010-07-12 2012-07-17 김승섭 Floating Photovoltaic Power Generation System
KR101221324B1 (en) 2010-12-15 2013-01-11 김승섭 Tracking apparatus for float type photovoltatic power generation
KR101124486B1 (en) * 2011-10-31 2012-06-27 대한민국 Hybrid type photovoltaic power generation device having oval shape
KR101562916B1 (en) 2014-05-20 2015-11-05 쓰리아이전기 주식회사 Solar generator for water
KR102400562B1 (en) * 2020-05-06 2022-05-20 두산에너빌리티 주식회사 Floating solar energy wireless transfer system using floating module

Also Published As

Publication number Publication date
JP2005038270A (en) 2005-02-10

Similar Documents

Publication Publication Date Title
JP3769556B2 (en) Floating solar power generation system
JP4647608B2 (en) Solar concentrator
US8322332B2 (en) Self-erecting gimbal mounted solar radiation collectors
US9340265B2 (en) Arrangement of floating platforms
US7887188B2 (en) Spherical heliostat
JP2018502777A (en) Floating water solar power generator
ES2846998T3 (en) A wave energy conversion system and a method of generating electrical energy from wave energy
JP2011138997A (en) Photovoltaic power generation device
JP2015205632A (en) On-water solar power generation device and solar power generation system, and solar light collector
KR101492448B1 (en) Floating type apparatus for generating photovoltaic power
EP0050189B1 (en) Apparatus for collecting and concentrating solar light energy
JP2019529204A (en) Rotating floating platform
CN112202398A (en) Automatic clean cooling linkage photovoltaic tracking means and system
KR20130117306A (en) Tracking type floating pv system
KR20120000325A (en) Hybrid generating system using the ocean stream, solar power and wind power together
KR101358392B1 (en) Method and Apparatus for Driving Plate-shape Member Using Three Wires, Solar Tracking Apparatus and Sunlight Reflecting Apparatus Using the Same
JP3315108B1 (en) Seesaw type solar power generation water heater system
KR101201716B1 (en) Weight balanced Solar tracking system for photovoltaic power generating system
RU2519530C2 (en) Solar radiation concentrator (versions)
KR101165741B1 (en) Floating Photovoltaic Power Generation System
JPS61223909A (en) Solar light tracking device
US20220149774A1 (en) Rocking solar panel sun tracking mounting system
NZ198834A (en) Sunbeam tracking,concentrating and guiding apparatus in transparent capsule
CN115384714A (en) Floating photovoltaic tracking system of surface of water
RU123228U1 (en) SOLAR CONCENTRATOR (OPTIONS)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees